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The Coskewness Puzzle 
 

 

I derive the beta-pricing representation of Harvey and Siddique (2000) conditional 

3M-CAPM and demonstrate the restrictions that it imposes on a quadratic market 

factor model. I confirm that, while the latter is surprisingly successful at capturing the 

cross-sectional variation of the returns on the Fama and French (1995) 30 US 

industry portfolios, the 3M-CAPM coskewness and gamma premia for the period 

1952-2002 turn out to be much smaller when non satiation, risk aversion and non-

increasing absolute risk aversion are imposed. However, I show that they are still 

important in explaining the expected return on certain assets and strategies, such as 

hedge funds and strategies that mimic the momentum factor. Alternatively, I propose 

to use a quadratic market factor model with an upper bound on the volatility of the 

implied stochastic discount factor. This approach allows the explanatory power of the 

quadratic specification to be salvaged yet avoiding fitting unexpected extreme 

outcomes rather then pricing patterns. 

 

 

1. Introduction 

 

There is evidence that assets that display similar covariance but high coskewness 

with the market portfolio tend to display low average returns. Kraus and Litzenberger 

(1976), Friend and Westerfield (1980) and Harvey and Siddique (2000), among 

others, explain this empirical regularity on the basis of a three-moment extension of 

the Capital Asset Pricing Model (3M-CAPM). They find that coskewness is 

important and commands on average a risk premium of 3.6 percent per annum. Both 

Dittmar (2002) and Post, Levy and van Vliet (2003), however, find that the 

significance of the coskewness premium in the cross-section of industry and size-

sorted portfolio average returns is greatly reduced when the shape of the 

representative investor’s utility function is restricted to display non satiation, risk 

aversion and non increasing absolute risk aversion (henceforth, NS, RA and NIARA, 

respectively) over all values of sample wealth.  
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In this paper, I study the unconditional implications of stochastic discount factors that 

are non linear in wealth, both in a no-arbitrage framework and in a utility-based 

equilibrium pricing setting. I especially investigate the role of portfolio skewness in 

asset pricing, both under preference for skewness and in an almost preference-free 

setting. In the next Section, I present some background analytical results on 

stochastic discount factor pricing that will be useful to switch from a no-arbitrage, 

preference-free context to an equilibrium, utility based framework and vice versa. In 

Section 3, I then review the beta-pricing representation of the stochastic discount 

factor models. In Section 4, I apply this beta-pricing representation to stochastic 

discount factors that are non-linear in traded wealth. In Section 5, I show how the 3-

Moment conditional CAPM (3M-CCAPM) formulated by Harvey and Siddique 

(2000) can be seen as a special case of this formulation. I also specify an empirical 

version of this beta pricing representation that explicitly uses conditioning 

information. In Section 6, I present my dataset. In Section 7, I estimate unconditional 

and conditional versions of this model. In Section 8, I present further empirical 

evidence on the cross-sectional explanatory power of the Quadratic Market Factor 

Model and I compare it with the empirical performance of Fama and French’s (1995) 

3-Factor Model. In Section 9, I introduce the alternative beta-gamma representation 

of the 3M-CAPM proposed by Kraus and Litzenberger (1976), I extend it in a 

conditional setting and, more importantly, I derive conditions for imposing a well 

behaved shape of the utility function. In Section 10, I estimate the 3M-CAPM 

imposing these conditions both in an unconditional and conditional setting. In 

Section 11, I discuss the implications of the empirical evidence for the representative 
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investor and I show how this gives rise to a coskewness puzzle. In Section 12, 13 and 

14, I discuss possible solutions to this puzzle and I show that coskewness is 

important even if the market price of coskewness risk is modest and that it is possible 

to preserve a substantial cross-sectional explanatory power while ruling out extreme 

Sharpe ratios. This requires bounding the volatility of the quadratic discount factor. A 

consequence of imposing this bound is that the coskewness puzzle becomes 

considerably milder. In Section 15, I summarize my findings and present my 

conclusions. 

 

2. Stochastic Discount Factor Pricing 

 

I start with as little structure as possible by invoking a theorem credited to Harrison 

and Kreps (1979). This theorem says that, given free portfolio formation and the law 

of one price, a stochastic process mt+1 that prices all assets exists. This process 

satisfies the following condition for all payoffs xt+1 and payoff prices pt: 

 

( )11 ++= tttt xmEp         (1) 

 

Here, the expectation is taken conditional on the available information set. Under the 

additional assumption of no arbitrage, as shown by Hansen and Richard (1987), mt+1 

must be positive. If the set of the assets being priced spans all possible payoffs, mt+1 

is unique and is called the stochastic discount factor (henceforth SDF). Instead, if the 

priced assets are only a subset of the universe of assets, there is an infinite choice of 

processes mt+1 that satisfy (1). These processes share the same projection as the SDF 
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on the priced payoff space. Trivially, the SDF is one of these processes. Any linear 

combination of these processes prices the assets. 

 

Given observed prices and the conditional distribution of payoffs, (1) can be used to 

infer the process followed by mt+1 and thus by the relevant component of the SDF. 

Once we recover mt+1 from a set of asset prices and payoffs, we can then use (1) to 

price any asset that can be represented as a combination of the basis payoffs. To 

estimate the process followed by mt+1, I model it as a linear function of a set of 

factors ft+1: 

 

11 ++
′+= tttt fbam         (2) 

 

Thus, from the perspective of (1) and (2), solving the asset pricing problem amounts 

to finding the linear combination of factors that prices traded assets. This problem in 

turn can be decomposed into first searching for the elementary strategies that can be 

used to replicate the asset payoffs and than assigning prices to the strategies. The 

factors in (2) should therefore be either payoffs of elementary strategies or the 

projection in the payoff space of processes that uniquely identify the strategies (e.g. 

trading rules). The linearity of the pricing equation (1) implies that the price of the 

assets is a linear combination of the prices of the elementary strategies used to 

replicate them.  
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3. Beta Pricing Representation 

 

To derive the beta pricing representation of the conditional asset pricing implications 

of (1) and (2), it is easier to work with demeaned factors and thus it is convenient to 

fold the mean of the latter into the constant. Therefore, I let 

( )1
~

+
′+= ttttt fEbaa and ( )111

~
+++ −= tttt fEff . The process 1+tm  is then rewritten as 

follows:  

 

 11

~~
++

′+= tttt fbam         (3) 

 

Let Ri,t denote the return on the asset i. The price of gross returns, i.e. 1 + Ri,t, is equal 

to 1 by definition, thus (1) implies ( )[ ]11 11 ++ += ittt RmE  for every asset i and we have 

 

 [ ])1(,)1()(1 1,11,1 ++++ +++= titttittt RmCovREmE     (4) 

 

This equation can be easily rewritten in beta-pricing form, thus giving the beta-

pricing representation of the asset pricing implication of (1) and (2): 

 

 ( ) ttittit RE λβγ ,1,
′+=+          (5) 

where, 

 
t

t
a~
1

=γ            (6) 

 ( ) ( ) ( ) ( )1,1

1

11,1

1

11,

~~~
++

−

+++

−

++ =′′= titttttitttttti RfCovfVarRfEffEβ   (7) 
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( ) ( )

t

ttt

t

tttt

t
a

bfVar

a

bffE
~~

~~
111 +++ −=

′
−=λ       (8) 

 

Recognising that the conditionally risk free rate tfR , is defined as
( )1

,

1
1

+

=+
tt

tf
mE

R , 

the intercept in (5) is tft R ,1+=γ . Also, ti ,β is a vector of coefficients from the 

regression of asset i on the factors and tλ  is a parameter vector. The former can be 

seen as the factor loadings whereas the latter are the price of the demeaned factors 

minus their risk neutral valuation, i.e. the factor risk premia. If the factor 1, +tjf  is a 

return, (5) implies that ( )
tjtjt fE λγ +=+1, . Moreover, (5) can be rewritten using 

excess returns as follows: 

 

 ( ) ( )
tttitttitttit bfrCovbrfErE 11,1,11, ,

~
)( +++++ −=′−=     (9) 

 ( )
ttitit rE λβ ,1,

′=+          (10) 

where, 

 ( ) ( ) ( ) ( )1,1

1

11,1

1

11,

~~~
++

−

+++

−

++ =′′= titttttitttttti rfCovfVarrfEffEβ    (11) 

 

Here, lower case letters denote excess returns. Notice that here ti ,β is a vector of 

coefficients from the regression of asset i excess returns on the factors while all the 

other symbols are defined as before.  
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4. Non Linear Factor Pricing 

 

Assume that the cheapest strategies available to investors to replicate all traded assets 

yield payoffs represented by polynomials of the return on stock market wealth. A buy 

and hold strategy of a portfolio of all assets yields the return on market wealth, 

whereas higher order polynomial of the latter can be replicated either buying and 

holding options or by resorting to dynamic trading strategies that replicate the latter. 

Formally, this can be modelled imposing an nth order polynomial structure on 

equation (2) with [ ]n

tmtmt RRf 1,1,1 ..... +++ =′ : 

 

n

tmtntmttt RbRbam 1,,1,,11 .... +++ +++=       (12) 

 

Here, Rm,t+1 denotes the rate of return on stock market wealth. This specification, 

while linear in polynomials of the stock market return, implies that mt+1 is a non 

linear function of the latter. Imposing the existence of a conditionally risk free rate, 

(12) is equivalent to the following: 

 

( )
tf

n

tmtntmttt RRbrbam ,1,,1,,11 .... −+++= +++      (13) 

 

Here, ( ) ( )[ ]1,1,1,

2

1,1,1 ...... ++++++ −−=′
tf

n

tmtftmtmt RRRRrf  can be seen as a new set 

of factors. The no-arbitrage conditional excess returns can be obtained by plugging 

these factors in (9) and (10). Using the factors in (12) amounts to pricing using the 

stock market return, whereas using (13) amounts to using the excess market return 
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and the difference between its polynomials and the risk free rate. In the latter case, 

with n = 1, the factor loading is analogous to the CAPM beta. With n = 2, the set of 

factor loadings also includes the asset covariance and coskewness with the market 

standardized by the variance-covariance matrix of the factors. I label this 

specification Quadratic Market Factor Model (henceforth QMFM). Setting n = 3, 

yields a Cubic Market Factor Model (henceforth CMFM) that allows for cokurtosis, 

in addition to covariance and coskewness, to be priced in the cross section of 

conditional expected asset returns. 

 

Using tftmtm RRq ,

2

1,1, −= ++  as the shorthand notation for the second order market 

return polynomial in excess of the risk free rate, (9) can be rewritten in term of the 

QMFM factors in (13) as follows: 

 

( )
ttmtitttmtittit bqrCovbrrCovrE ,21,1,,11,1,1, ),(),( +++++ −−=   (14) 

 

This shows that tb ,1−  can be interpreted as the price of market risk and tb ,2−  can be 

interpreted as the price of market volatility risk, i.e. the price of the risk arising from 

the quadratic market factor.  

 

Similarly, the betas and risk premia in (10) can be rewritten in terms of the QMFM 

factors in (13) as follows: 

 

( )
ttitit rE λβ ,1,

′=+         (15) 
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where, 

2

1,1,1,1,

1,1,1,1,1,1,1,

,1
)],([)()(

),(),()(),(

++++

+++++++

−

−
=

tmtmttmttmt

tmtittmtmttmttmtit

ti
qrCovqVarrVar

qrCovqrCovqVarrrCov
β  (15a) 

 
2

1,1,1,1,

1,1,1,1,1,1,1,

,2
)],([)()(

),(),()(),(

++++

+++++++

−

−
=

tmtmttmttmt

tmtittmtmttmttmtit

ti
qrCovqVarrVar

rrCovqrCovrVarqrCov
β   (15b) 


























−=
+++

+++

t

t

tmttmtmt

tmtmttmt

t
b

b

qVarqrCov

qrCovrVar

,2

,1

1,1,1,

1,1,1,

)(),(

),()(

λ              (15c) 

 

Here, ),( 1,1, ++ tmtmt qrCov  is a proxy for the skewness of the market excess return 

distribution and ),( 1,1, ++ tmtit qrCov  proxies for the coskewness of asset i excess returns 

with the excess return on the market. This is perhaps easiest to see considering that, 

since the conditionally risk free rate is known at time t, these expression can be 

equivalently rewritten as ),( 2

1,1, ++ tmtmt RRCov  and ),( 2

1,1, ++ tmtit RRCov , respectively. 

Thus the factor loadings ti ,1β  and ti ,2β  are functions of the market variance, its 

skewness and of the covariance and coskewness of the asset i with the market. 

Equation (15) is a restriction that the model in (2) imposes on the cross section of 

expected asset returns. Since these restrictions must hold also for the market 

portfolio, it follows that the no-arbitrage equilibrium market risk premium contains 

both a market variance and a market skewness premium 

 

( ) ),()( 1,1,,21,,11,1 ++++ −−== tmtmtttmtttmtt
qrCovbrVarbrEλ     (16) 
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Thus, when 0,2 ≠tiβ , the QMFM implies the following data generating process of 

asset returns: 

 

 
1,

2

1,,21,,1,,2,1,

1,1,,21,,1,,1,

)1( +++

++++

++++−−=

++++=

titmtitmtititititf

titmtitmtititfti

RRR

qrRR

εββαββ

εββα
  (17) 

( )[ ]1,,2,2, +−= tmtttiti qEλβα        (18) 

 

Here, 1, +tiε is an asset-specific regression residual. When (18) holds for all assets, this 

data generating process implies an APT-type no arbitrage equilibrium between asset 

prices and the prices of the factors, as in Ross (1976) and Chamberlain and 

Rothschild (1983). This data generating process is also the same as the quadratic 

market model used by Barone Adesi, Gagliardini and Urga (2004)
1
. However, these 

authors do not derive the equations for the prices of the factors nor they explicit the 

link between the risk premia (the elements of tλ ) and the risk prices (the negative of 

the elements of tb ). Describing this link is important because it clarifies that 

coskewness and time-variation in betas matter in asset pricing and performance 

evaluation even when 1+tm  is linear in wealth. From (15c), it is clear that the 

quadratic market factor risk premium t,2λ  does not need to be zero when tb ,2  is zero. 

In other words, the volatility risk premium can be non-zero even when the market 

price of volatility risk is zero.  

 

                                                           
1
 Barone Adesi, Gagliardini and Urga (2004) however do not derive the betas and the prices of the 

factors. The equations for these provided in this paper and the SDF setting are therefore novel. 
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5. Asset Pricing Models with Coskewness 

 

So far I examined the role of coskewness in asset pricing and in the data generating 

process of asset returns purely on no arbitrage grounds. I will now discuss how 

specifications that include coskewness arise in the context of equilibrium models that 

specify investors’ preferences and explicitly solve their asset allocation problem. I 

will start from the 3M-CAPM that solve a 3-moment mean-variance-skewness 

portfolio optimization problem for the representative investor. This is the classic 

equilibrium model traditionally used to account for the explanatory power of 

coskewness in the cross section of asset returns. I will then show how coskewness 

terms appear also in multi-period models that solve, in each period, a 2-moment 

mean-variance optimization problem. 

 

The 3M-CAPM 

 

Kraus and Litzenberger (1976) and Harvey and Siddique (2000) approximate the 

stochastic discount factor as a quadratic function of the market return Rm,t+1. This 

formulation corresponds to the case 2=n in (12). Kraus and Litzenberger (1976) 

specify b in (12) as a vector of constants whereas Harvey and Siddique (2000) allow 

it to be conditionally time-varying. Both specifications are based on a third order 

Taylor expansion of a non polynomial representative investor utility function 

because, as shown by Levy (1969) and Tsiang (1972), third degree polynomial utility 

functions are unsuitable to model the preferences of a risk adverse investor. Under 

the law of one price, it is possible to impose the Euler equation equilibrium 



13 

 

conditions for the maximization of a 2-period representative investor’s utility, setting 

prices of the excess returns to zero ( )110 ++= ittt rmE  for every asset i. This yields the 

3M-CAPM asset pricing equation.  

 

Equation (10), with beta coefficients and factor risk premia as in (15), provides a 

beta-pricing representation of the 3M-CAPM. In this context, the factor loadings βi1,t 

and βi2,t are both coefficients of the multiple regression of the asset excess-return on 

the market return and its square and risk measures. From this point of view, they are 

analogous to the CAPM beta coefficient, even though the later are simple regression 

coefficients. The upshot of this representation relative to the specification employed 

by Harvey and Siddique (2000) is that it clarifies the relation between risk premia 

and prices of risk, in (15c). Moreover, it can be used to test the unconditional 

implications of the conditional 3M-CAPM for the cross section of asset returns using 

a simple two pass estimation procedure, by regressing asset excess returns on the 

factors and the average excess returns on the estimated factor loadings. Then, on the 

basis of (16), the parameters bt of the stochastic discount factor in (2) and thus of the 

representative investor’s utility function can then be easily retrieved from estimates 

of the moments of the market return and its square and from the second pass 

estimates of their risk premia, i.e. the elements of the tλ  vector. Harvey and Siddique 

(2000) use instead 2-pass regressions based on mimicking portfolios from which it is 

difficult to infer the implied stochastic discount factor. 

 

This setup is quite general and can price in a unified framework both non-linear 

payoff and market timing under a variety of circumstances. For example, it is clear 
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from (15c) that the coskewness risk premium 2λ is non-zero even when 0,2 =tb  as 

long as 0,1 ≠tb . Thus a non-zero coskewness risk premium can arise also under a 

linear mt+1 and thus also in a mean-variance framework if 0,2 ≠tiβ  as long as the 

asset return distribution is non elliptic. This means that even a mean-variance 

investor is interested in asset with positive coskewness, as long as he is risk-averse. 

In this case however the coskewness risk premium is purely a function of the price of 

the dynamic exposure to the market risk factor generated by 0,2 ≠tiβ and no premium 

arises from preference for skewness. This implies that, even under an mt+1 linear in 

the stock market portfolio, ti,α  in (18) contains a coskewness premium for any 

payoff that displays a non-linear relation with the stock market return, such as assets 

with non zero market coskewness and strategies that pursue market timing objectives. 

In other words, a non-zero t,2λ  implies that the squared market return risk factor is 

priced, i.e. it has a non-zero price, but it does not imply that it helps pricing other 

payoffs. For it to help price the other payoffs and, in particular, payoffs that are linear 

in the market return, it is necessary that 0,2 ≠tb .  

 

Arrow (1971) argued that investors’ utility functions should display non satiation 

(NS), risk aversion (RA) and non-increasing absolute risk aversion (NIARA). The 

latter is related to the notion of prudence, see Kimball (1990). With utility functions 

u(W) defined over wealth, NS implies positive marginal utility of wealth, i.e. 

0)( >′ Wu , RA implies decreasing marginal utility, i.e. 0)( <′′ Wu , whereas NIARA, 

i.e. 0
)/(

≤
′′′−

dW

uud
, implies that the rate of decrease of marginal utility does not 
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increase in wealth. A necessary condition for NIARA, as shown in Arditti (1967), 

is 0≥′′′u . Hence NIARA implies 0≥′′′u  and aversion to negative skewness.  

 

Differentiating (13) twice with respect to wealth, it becomes clear that a necessary 

and sufficient condition for 0≥′′′u  is 02 ≥b and thus this is also a necessary 

condition for NIARA. When this condition holds, a necessary condition for RA 

is 01 <b . In my beta-pricing representation, it is not possible to fully restrict the sign 

of the elements of tλ  a priori but, if coskewness is a second order effect relative to 

covariance and if 01 <b , t,1λ  should be positive to rule out a negative equity 

premium. Also, when market skewness is non positive, i.e. when 

0),( 1,1, ≤++ tmtmt qrCov , 01 <b  and 02 ≥b  imply 0,2 ≤tλ . Thus, 0,1 >tλ  and 0,2 ≤tλ  

are necessary conditions for ‘well behaved’ utility functions, i.e. utility functions that 

display NS, RA and NIARA. Moreover, given estimates of tλ  and of the factors 

variance-covariance matrix, it is possible to recover estimates of the elements of b 

and thus of the shape of the utility function from (15c).  

 

Conditional Models  

 

A premium to hold assets with negative systematic coskewness can also arise from 

the desire to hedge against changes to future expected uncertainty in a multi-period 

setting. This is one of the main results of Chen’s (2002) extension of Campbell 

(1993) inter-temporal conditional CAPM. It is a consequence of allowing for time-

varying expected returns, heteroskedasticity in conditional second moments and 
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NIARA. In particular, it is shown that time-varying conditional market volatility 

helps pricing only those assets that are conditionally co-skewed with the market. A 

further coskewness premium would appear if a second order Taylor expansion of the 

inter-temporal budget constraint was to be used in place of the first-order expansion 

used by Chen (2002). 

 

The unconditional implications of Chen’s (2002) model can be summarized by a 3-

moment conditional CAPM specification with conditioning variables that forecast 

future returns and thus proxy for time-variation in the investment opportunity set. In 

particular, let the at and bt parameters of the stochastic discount factor vary as a linear 

function of the conditioning information provided by the variable zt, tt zaaa
10 += , 

b1,t = b1
0
 + b1

1
zt and b2,t = b2

0
 + b2

1
zt. This is a simple and familiar approach to 

introduce time-variation in the parameters of the utility function of conditional factor 

models. Then, the unconditional implications of (2) can be expressed as follows: 

 

1,

1

21,

0

21,

1

11,

0

1

10

11

++++

++

+++++=

′+=

tmttmtmttmt

tttt

qzbqbrzbrbzaa

fbam

  (19) 

 

Here, the following can be interpreted as the new set of factors that enter the 

stochastic discount factor (henceforth, SDF) equation with fixed parameters: 

 

[ ]′= +++++ 1,1,1,1,1 tmttmtmttmtt qzqrzrzf      (20) 
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Inter-temporal 2-moment models imply 02 =b  in (13), whereas unconditional 3-

moment models imply 01 =a , 01

1 =b  and 01

2 =b . Chen’s (2002) inter-temporal model 

allows all the coefficients to be non zero and, under greed, RA and NIARA, it 

implies the following restrictions: 

 

( ) ( )11 ++
′−= tttttt fEbmEa        (21) 

( ) 11 ≤+tt mE          (22) 

01 ≤a , 01 <b , 00

1 ≤b , 02 ≥b       (23) 

 

Campbell (1993) model with no conditional time-variation in market volatility 

imposes the further restrictions: 

 

 00

2 =b , 01

2 =b          (24) 

 

6. Data 

 

I use monthly data from 1926 to 2002 on portfolios mainly formed following Fama 

and French
2
 (1995). In particular, I use data constructed sorting stocks of the Centre 

for Research on Security Prices (CRSP) database into 30 US industry portfolios, 25 

size and book-to-market portfolios, an overall market portfolio, size, book-to-market 

and momentum portfolios. I also use monthly and quarterly returns on the 1-month 

and 3-month US Government Treasury Bill as proxies for the risk free rate and the 

                                                           
2
 I thank Kenneth French for making available on his website most of the data used in this paper. 
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quarterly consumption-wealth ratio per capita estimates from 1952 to 2002 produced 

by Lettau and Ludvigson (2001), denoted by  cayt. 

 

7. Two-Pass Regression Estimates 

 

I estimate both unconditional and conditional specifications of the 3M-CAPM over 

the period 1952-2002. Since this model nests the 2M-CAPM, I then test whether the 

restrictions that the latter imposes on the former are statistically and economically 

significant. More specifically, I estimate the following unconditional beta-pricing 

representation of (19) based on (15): 

 

iiiiiiiitir ελβλβλβλβλβα ++++++=+ 7,7,6,6,55,44,33,1,    (25) 

 

Here, the elements of the λ vector are the cross-sectional parameter estimates of 

average asset excess returns on the corresponding elements of the β vector. The latter 

are the parameters estimates of the following time series regressions: 

 

titmtmitmi

tmtmitmitiiti

qzq

rzrzr

,,1,7,,6,

,1,5,,4,13,,

εββ

βββα

+++

+++=

−

−−

    (26) 

 

I allow for an intercept in (25) and (26). A model that is fully successful at explaining 

the cross section of asset excess returns should have 0=α . I use tcay as the 

conditioning variable and thus I set tt cayz = . I estimate this model by a 2-pass 
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procedure that involves time series and cross-sectional regressions. In the first pass, I 

estimate in a maximum likelihood setting, by three stage least squares (3SLS), the 

system of time-series regressions equations in (26) for the industries in my sample. 

For the sake of robustness, I do not impose any constraint on the contemporaneous 

covariance of the residuals nor on their variance. In the second pass of the estimation 

procedure, I then use my estimated beta coefficients as the regressors of average 

industry excess returns in a cross-sectional regression based on (25). In doing so, I 

correct the variance and covariance matrix of the estimates for possible cross-

sectional heteroskedasticity. 

 

The empirical results are summarised in Table 1. The coefficient of determination R
2
 

is just under 37 percent (24 percent adjusted). The R
2
 of the unconditional 3M-

CAPM is slightly lower, almost 35 percent, but it is larger once we adjust for the 

degrees of freedom (30 percent). All the coefficient estimates are statistically 

significant. The CCAPM performs considerably worse than the conditional and 

unconditional 3M-CAPM. Its R
2
 is just 7.5 percent (the adjusted one is marginally 

negative) and none of the coefficients estimates, with the exception of the intercept, 

are statistically different from zero at conventional significance levels. Because there 

is considerable cross-sectional dispersion, industry returns are notoriously difficult to 

fit. Thus, relatively low coefficient of cross-sectional determination should not 

surprise and are in line with the estimates reported by Harvey and Siddique (2000). 

These results provide evidence that systematic asset co-skewness does help explain 

the cross-section of average returns. Even explicitly allowing for conditional time-
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variation in the shape of the utility function does not drive out its cross-sectional 

explanatory power. 

 

However, both the 3M-CAPM and the 3M-CCAPM estimates imply a shape of the 

utility function that is incompatible with the risk aversion requirement. This can be 

seen by computing the elements of the bt vector implied by the risk premia λt 

estimates and by the variance-covariance matrix of the factors. Solving (16) for bt 

and using the estimates of the risk premia λ reported in Table 1 and the unconditional 

centred sample moments of the factors, the elements of the 3M-CAPM bt are: 
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   (26b) 

 

The elements of bt for the 2M-CAPM and the 3M-CCAPM can be computed in a 

similar manner. I report in Figure 2 the stochastic discount factor mt+1 implied by the 

2M-CCAPM, the 3M-CAPM and the 3M-CCAPM parameter estimates. These are 

consistent in all three cases with investors’ non-satiation and preference for 

skewness. However, only the 2M-CCAPM stochastic discount factor displays risk 

aversion for every value taken by the market excess return over the sample. Both the 

3M-CAPM and the 3M-CCAPM parameter estimates imply risk aversion only over 

excess returns below 1.5 percent. Above this threshold, the shape of the estimated 
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stochastic discount factor implies risk seeking. In other words, these estimates imply 

an inverse S-shaped utility function.  
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Table 1 

Factor Risk Premia Estimates 

(Two-Pass Regressions) 

 
 α 

 

λ3 

 

λ 4 

 

λ5 

 

λ6 

 

λ7 R
2 

(Adj. R
2
) 

3M-CCAPM 0.91 

(1.90) 

-0.09 

(-0.35) 

0.97 

(2.01) 

-0.01 

(-1.02) 

-0.59 

(-3.49) 

0.002 

(0.69) 

36.9 

(23.9) 

3M-CAPM 0.99 

(2.68) 

 0.96 

(2.84) 

 -0.55 

(-3.55) 

 34.9 

(30.0) 

2M-CCAPM 1.22 

(2.54) 

0.30 

(1.19) 

0.72 

(1.61) 

0.00 

(0.55) 

  7.49 

(-3.18) 

 
Notes. This table reports percentage coefficient estimates, t-statistics (in 

brackets) and measures of fit (R
2
 and adjusted R

2
) for the 2-pass estimation of 

the conditional and unconditional 3M-CAPM and of the CCAPM. All the other 

variables are defined as in the text. The sample period is 1952-2002 and the data 

frequency is quarterly. 

 

 

 

 

Figure 1 

Estimated SDF 
 

 

Notes. This Figure plots the estimated stochastic discount factor 

for the 3M-CCAPM, the 3M-CAPM and the 2M-CCAPM. The 

estimation used a 2-pass procedure with 3-Stage OLS estimates for 

the first step. The SDF of the conditional model is plotted for a 

level of the conditioning variable that corresponds to its sample 

average. The sample period is 1952-2002 and the data frequency is 

quarterly. 
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8. Further Results 

 

The shape of the stochastic discount factor implied by the 3M-CAPM estimates is 

puzzling. To check on this result, I estimate unconditional 3M-CAPM specifications, 

I test the restrictions that these impose on the QMFM and compare it to estimates of 

the 2M-CAPM, the 4M-CAPM and the Fama and French (1995) 3-factor model 

(henceforth 3F-FF). I also experiment with various combinations of the factors of 

these models.  I present estimates for both the 1952-2002 and the longer 1926-2002 

sample period. In a 2-step procedure, I first regress the time series of the 30 industry 

portfolios excess returns on the factors allowing for an intercept in the regression 

equations to I estimate the factor loadings in (15a and b) and then I estimate the risk 

premia in (15c) using a cross sectional regression of the average portfolio returns on 

the factor loadings estimated in the first step.  

 

The results are reported in Table 2. While in the 1926-2002 sample period the 3F-FF 

appears to fit the cross section of industry returns much better than the 2-moment and 

3-moment CAPM, in the shorter sample period 1952-2002 the 3M-CAPM displays a 

much stronger explanatory power. However, the sign of the 3F-FF market risk 

premium becomes disturbingly negative thus implying a negative equity premium, 

while it remains positive for the 2M-CAPM and the 3M-CAPM. The coefficient of 

the squared market return polynomial factor in the 3M-CAPM is negative, thus 

satisfying a necessary condition for DIARA. Moreover, in the shorter sample period 

adding the squared market return factor does increase the cross sectional explanatory 

power, while preserving the positive sign of the market risk premium.  
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As shown in Figure 2, the point estimates of the factor risk premia and the sample 

second moments of the factors imply a well behaved shape of the investors’ utility 

function only in the longer period, whereas this takes a theoretically unacceptable 

shape in the shorter sample period. In the 1926-2002 sample, 73.01 −=b  

and 93.02 =b , thus implying moderate risk aversion and skewness preference. In the 

1952-2002 sample, 38.11 −=b  implies a somewhat more pronounced risk aversion 

while 46.362 =b  suggests a very high rate of change of the curvature of marginal 

utility, rapidly decreasing risk aversion as wealth increases and thus very high 

preference for portfolio skewness. The speed at which risk aversion decreases in 

wealth implies risk seeking over a range of the market return sample realizations. 
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Table 2 

Factor Models 2-Pass Regression Estimates 

 

Model rmt+1 qmt+1 Rmt+1
3
-Rft SMB HML R

2 
σ(m) 

        

   Panel A 

1926-2002 

    

2M-CAPM 0.34 

(1.42) 

     6.7  

3M-CAPM 0.63 

(1.79) 

-0.07 

(-0.42) 

   10.9 14.4 

4M-CAPM 0.59 

(1.16) 

-0.85 

(-2.21) 

-0.3 

(-2.23) 

  18.5  

3F-FF 0.59 

(1.84) 

  0.23 

(1.19) 

-0.57 

(-2.39) 

26.8 14.6 

3M-CAPM + FF 0.56 

(1.49) 

0.04 

(0.27) 

 0.23 

(1.13) 

-0.58 

(-2.28) 

26.9  

        

   Panel B 

1952-2002 

    

2M-CAPM 0.41 

(1.06) 

     3.8  

3M-CAPM 0.94 

(2.75) 

-0.56 

(-3.78) 

   37.9 96.7 

3F-FF -0.13 

(-0.18) 

  0.12 

(0.44) 

-0.74 

(-2.93) 

24.8 31.6 

3M-CAPM + FF 0.15 

(0.23) 

-0.49 

(-3.28) 

 0.31 

(1.29) 

-0.84 

(-3.85) 

49.0  

        

 

 

 

 

 

 

 

 

Notes. This Table reports 2-step regression estimates of the beta-pricing representation of 

various factor models. The top row indicates the factors included in each model. For each 

included factor, I report the risk premia point estimates in percentage and t-statistics in 

brackets. The last two columns report the coefficient of determination R
2
 and the annualized 

volatility of the stochastic discount factor. The market Sharpe ratio is 35.2 percent in the 

1926-2002 period and 40.4 percent in the 1952-2002 period. All the variables are defined as 

in the text. Estimates of the 4M-CAPM in the second sample period are not reported 

because of an extreme multi-collinearity problem between between the squared and the 

cubic factor (the correlation between qmt+1 and Rmt+1
3
-Rft is 95 percent), thus rendering the 

ordinary least square estimates of the factor loadings very inefficient. The data frequency is 

quarterly. 
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Figure 2 

SDF 
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(1927-2002) 
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9. SDF Regularity Conditions 

 

I will now derive a set of regularity conditions that ensure that the estimated 

parameters of the 3M-CAPM imply a shape of the investors’ utility function 

compatible with the assumptions of greed, RA and NIARA. While similar conditions 

have been used by Dittmar (2002) and Post, Levy and van Vliet (2003), my 

formulation is more intuitive and simpler to apply than the set of conditions used by 

Dittmar (2002) and generalize the approach followed by Post, Levy and van Vliet 

(2003) to a conditional SDF setting. These conditions are easier to impose in the 

context of the beta-gamma representation of the 3M-CAPM proposed by Kraus and 

Litzenberger (1976). This is based on a standardised
3
 cubic approximation of a non-

polynomial utility function of the form 3

2

2

1)( WWWWu θθ ++= . Since this is an 

unconditional model, I first extend it to a conditional setting. I do this in Appendix I, 

whereas I focus here on the unconditional implications of the conditional model. 

These boil down to the following set of Euler equations 

 

[ ] 0)|( 1,1, =′
++ tittm rRuE θ        (27) 

with 

)|( 1, ttmRu θ+
′  = 1 + 2θ1,t Rm,t+1 + 3θ2,t Rm,t+1

2
 

 

                                                           
3
 This utility function is standardized, following Post, Levy and Van Vliet (2003), such that u(0|θ) = 0 

and )|0( θu′ = 1. Since utility functions are unique up to a linear transformation, this standardization 

does not affect the results.  
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Here, the parameters of the utility function are potentially time-varying but moments 

are based on unconditional expectations. The orthogonality conditions corresponding 

to the Euler equations are equivalent to (2) with 11 =a , tb ,11 2θ=  and tb ,22 3θ= . This 

model imposes on the cross section of asset excess-returns a restriction similar to 

(10) and (15): 

 

iitirE γδβδ 211, )( +≅+         (28) 

Where, 
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Here, iβ is the unconditional CAPM asset beta, the unconditional gamma coefficient 

iγ  is standardized (unconditional) asset coskewness with the market and it is defined 

as 
[ ][ ]{ }

[ ]3

1,1,

2

1,1,1,1,

)(

)()(

++

++++

−

−−

tmtm

tmtmtiti

RERE

RERrErE
. Equation (28) thus 

provides a beta-gamma representation of the 3M-CAPM. This is different from my 

beta-pricing representation because the beta and gamma coefficients are not 

parameters of the regression of the asset excess returns on the factors and thus they 

typically must be estimated imposing and solving a set of orthogonality conditions 

based on (27) by GMM. Under non satiation, marginal utility must always be 

positive. Therefore the denominator of t,1δ  is always positive. Since variance is 
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always positive, risk aversion and hence 0)|( 1, ≤′′
+ ttmRu θ   implies 0,1 ≥tδ . Similarly, 

if the skewness of the market portfolio is negative, NIARA and hence 

0)|( 1, ≥′′′
+ ttmRu θ  implies 0,2 ≥tδ . 

 

To model time-variation in the parameters of the utility function, I let them depend in 

a linear fashion on a conditioning variable zt that represents the available information 

set: 

 

θ1,t = θ3 + θ4zt         (31) 

θ2,t = θ5 + θ6zt          (32) 

 

Analytical expressions for the first, second and third derivative of utility are needed 

in order to be able to define the conditions for greed, NS and NIARA. I recover these 

by plugging (31) and (32) into (27), taking unconditional expectations and 

differentiating with respect to market wealth: 

 

( ) ( ) 2

65431, 321)|( mmtm RzRzRu θθθθθ ++++=′
+     (33) 

( ) ( ) mm RzzRu 6543 62)( θθθθ +++=′′      (34) 

( )zRu m 656)( θθ +=′′′         (35) 

 

In general, RA requires that )( mRu ′′  be negative and NIARA requires )( mRu ′′′  to be 

positive. Since a cubic utility function cannot be concave over its entire domain, 

0)( >′′
mRu  cannot hold for every value of the market return. Rather, it suffices to 



30 

 

hold only over the sample values of Rm and z. Therefore, when )( mRu ′′′  in (35) is 

positive and thus under NIARA, a sufficient condition for RA is the following: 

 

( ) ( )[ ] ( ) 062 6543 ≤+++ mRMaxzMaxz θθθθ     (36) 

 

Here, the operator ( )Max  denotes the sample maximum of the argument. If 4θ  and 

6θ  are not constrained to be zero, and thus in a conditional model, this condition is 

difficult to impose because z can take both positive and negative values and thus it is 

not possible to identify a priory the sign of both 3θ  and 4θ , on one hand, and 6θ  and 

5θ  on the other hand. Under these circumstances, denoting by ( )Min  the sample 

maximum of the argument, a set of sufficient conditions for both RA and NIARA 

that are relatively easy to impose is the following: 

 

 ( )[ ] ( )[ ] ( ) 062 6543 ≤+++ mRMaxzMaxzMax θθθθ     (37) 

 ( )[ ] ( )[ ] ( ) 062 6543 ≤+++ mRMaxzMaxzMin θθθθ     (38) 

 ( )[ ] ( )[ ] ( ) 062 6543 ≤+++ mRMaxzMinzMax θθθθ     (39) 

 ( )[ ] ( )[ ] ( ) 062 6543 ≤+++ mRMaxzMinzMin θθθθ     (40) 

 

Finally, I rule out extreme solutions by imposing that the sum of beta and gamma 

premia equals the market risk premium, i.e  

 

t,1δ + t,2δ  = ( )1, +tmrE         (41) 
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This is in turn equivalent to imposing that the pricing errors are on average zero, i.e. 

[ ] 0)|( 1,1, =′
++ tmttm rRuE θ , or 

 

[ ]1,1, )|( ++
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   = 0       (42) 

 

Finally, plugging (31) and (32) into (29) and (30) and taking unconditional 

expectations, I recover the unconditional risk premia δ1 and δ2 implied by the 

conditional utility function parameters: 

 

δ1 = 
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δ2 = 
[ ] [ ]
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The above equations give the unconditional asset pricing implications in terms of the 

two risk factors, the market return and its square, of the conditional 3M-CAPM.  
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10. Unrestricted and Restricted GMM 

 

Since the SDF parameters estimates for the period 1952-2002 imply a puzzling shape 

of the representative investor utility function, I estimate the 3M-CAPM and 3M-

CCAPM imposing a well behaved utility function directly. I then test the significance 

of the corresponding restrictions. In empirical applications, I replace unconditional 

expectations by the corresponding sample moments and I estimate the 3M-CAPM 

and 3M-CCAPM by generalized GMM. I estimate the system of 30 orthogonality 

conditions in (27) with the constraint in (41) and with and without the constraints in 

(36) to (40). I run my estimation with instruments (the constant and a lag of the 

market excess return). With the instrumental variables, the set of orthogonality 

conditions is expanded to include the orthogonality of the pricing errors from (27) 

and each of the instruments. I estimate this system by iterated GMM with a 

continuously updating Hansen’s (1982) optimal weighting matrix for the 

orthogonality conditions. 

 

The empirical results are reported in Table 3. When the RA and NIARA constraints 

are not explicitly imposed, the unconditional 3M-CAPM estimates imply a sizeable 

gamma premium, even larger than the beta premium. When I impose the RA and 

NIARA constraints, however, the annualized gamma premium estimate collapses to 

0.65 percent. This is small relative to the beta premium, almost 6.12 percent. This 

confirms the result reported by Dittmar (2002) and by Post, Levy and van Vliet 

(2003) even though my gamma premium estimate is somewhat larger than reported 
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by the latter authors
4
. The relative magnitude of the beta and gamma premia and the 

impact of the RA and NIARA constraints are similar for the conditional 

specification. 

 

To compare the magnitude of the covariance and coskewness premia implied by 

these estimates and by the estimates of my beta-pricing representation, I compute the 

values of the bt parameters of the stochastic discount factor in (3) that correspond to 

the θ  point estimates. To do this, I use the fact that, from (27), tb ,11 2θ=  

and tb ,22 3θ= , with t,1θ and t,2θ  defined as in (31) and (32). In the case of the 

unconditional 3M-CAPM, 0,4 =tθ  and 0,6 =tθ . Thus, for the model with no RA and 

NIARA constraints estimated by GMM, the elements of bt are the following 

 

( ) 90.3222 ,3,4,3,1,1 −==+== ttttt zb θθθθ      (45) 

( ) 93.57333 ,5,6,5,2,2 ==+== ttttt zb θθθθ      (46) 

 

Similarly, for the model estimated imposing RA and NIARA, the elements of b are: 

 

34.22 ,3,1 −== ttb θ         (47) 

86.43 ,5,2 == ttb θ         (48) 

                                                           
4
 This is because I estimate using qt as the second factor whereas Post, Levy and Van Vliet (2003) 

employ the squared market excess return. Using the squared market excess return instead of qt results 

in a pricing kernel that is an approximation of the 3M-CAPM stochastic discount factor. This is 

because the conditionally risk free rate should be subtracted after taking the conditional expectation of 

the squared market return since marginal utility, in the 3M-CAPM, is defined over wealth and its 

square.  
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I do not report the corresponding elements of the bt vector for the conditional models 

because these are time varying. However, the average value over the sample period 

of the elements of bt is relatively close to the corresponding unconditional value
5
. 

Thus, comparing the SDF parameters in (45) and (46) with those implied by the 2-

pass regression estimates reported in Table 1, the relative magnitude of the 

parameters that drive local risk aversion and attitude towards coskewness is similar. 

When RA and NIARA are imposed, (47) and (48) imply a lower degree of local risk 

aversion but also much less preference towards coskewness. Thus, both the 2-pass 

regression and the unconstrained GMM estimates imply too much coskewness 

preference for RA to hold over the entire sample range of market returns.  

 

The differences between the OLS and GMM estimates can be ascribed to the 

estimation procedure and they effectively exemplify the relative merits and 

drawbacks of the two estimators. OLS typically weights the pricing errors of each 

asset equally, whereas GMM, in a quest for efficiency, typically under-weights the 

moments with the largest sampling error because the information that they carry is 

relatively unreliable. In doing this, however, it might place too much importance in 

pricing assets with little capitalization simply because of their low sampling error. 

My application of GMM, that uses a continuously updating optimal weighting matrix 

for the moment conditions, does precisely this. OLS (or GMM with the identity 

matrix in place of the weighting matrix) is instead a more robust estimation 

procedure. 
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Table 3 

GMM-IV Estimates 

 
Model Constraints df TJ  θ3 

 

θ4 

 

θ5 

 

θ6 

 

δ1 

(%) 

δ2 

(%) 

          

3M-CAPM  58 58.79 

[.446] 

-1.95 

[.000] 

 19.31 

[.000] 

 1.08 5.46 

3M-CCAPM  56 58.81 

[.372] 

-1.90 

[.000] 

-167.90 

[.000] 

16.50 

[.000] 

208.10 

[.114] 

1.17 5.36 

3M-CAPM NS, RA, 

NIARA 

58 61.01 

[.368] 

-1.17 

[.000] 

 1.62 

[.000] 

 5.91 0.63 

3M-CCAPM NS, RA, 

NIARA 

56 60.25 

[.324] 

-1.20 

[.000] 

-0.00 

[.508] 

1.65 

[.000] 

-0.00 

[.822] 

6.02 0.64 

          

 

Notes. This table reports the GMM-IV estimation results for various sets of orthogonality 

conditions that correspond to the 3M-CAPM and to the 3M-CCAPM. The instruments in the 

GMM-IV estimation are a constant and the lagged market excess return. The symbol df denotes 

degrees of freedom (number of orthogonality conditions in excess of the number of parameters 

to be estimated). The expression TJ is T (the sample size) times Hansen’s (1982) J statistic and 

it is distributed as a Chi-Squared with degrees of freedom equal to the number of over-

identifying restrictions (DF). All the other variables are defined as in the text. The risk premia 

δ are annualised. Significance levels of t-statistics appear in brackets. The sample period is 

1952-2002 and the data frequency is quarterly. 

 

 

 

11. The Coskewness Puzzle 

 

The considerable explanatory power of coskewness in the cross section of asset 

returns coupled with the ill-behaved shape of the representative investor’s utility 

function that it implies, represent a puzzling conundrum. Numerous contributions 

from the literature on non standard utility theory and behavioural asset pricing, see 

for a review Shefrin (2005), admit a non linear pricing kernel that implies non 

concavity of the utility function over certain ranges of wealth. Similarly, active stock 

traders appear to play negative-sum games and their behavior can sometimes be 

interpreted as ‘gambling’ (see Statman (2002)). In addition, psychologists led by 

                                                                                                                                                                     
5
 The time series of the bt estimates for the conditional models is available from the author upon 
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Kahneman and Tversky (1979) find experimental evidence for local risk seeking 

behavior. Friedman and Savage (1948) and Markowitz (1952) argue that the 

willingness to purchase both insurance and lottery tickets implies that marginal utility 

is increasing over a range. See Hartley and Farrell (2001) and Post and Levy (2002) 

for a recent discussion. 

 

However, if the utility function is non-concave, expected utility is not guaranteed to 

be quasi-concave and thus first order conditions like (1) are not guaranteed to 

pinpoint the maximum of investors’ expected utility functions. The reason for this is 

the mathematical fact that the sum of concave functions is guaranteed to be quasi-

concave
6
 whereas the sum of quasi-concave functions is not guaranteed to be quasi-

concave. Thus only a concave utility function can guarantee that expected utility is 

quasi-concave. In a constrained optimization problem, a stationary point is 

guaranteed to represent a maximum only when the objective function is quasi-

concave. Lacking the quasi-concavity requirement, the parameters of marginal utility 

growth that satisfy the first order conditions )(0 1,1 ++= titt rmE  for each investor are 

not guaranteed to represent the constrained maximum of his expected utility function.  

 

It cannot be ruled out that, while the utility function is non-concave, expected utility 

does turn out to be quasi-concave (even though it is not guaranteed to do so). Then 

the parameters of the representative investor’s stochastic discount factor that satisfy 

the first order conditions )(0 1,1 ++= titt rmE  do represent the constrained maximum of 

                                                                                                                                                                     

request. 
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his expected utility function. However, it is more natural to accept that b2t is 

considerably smaller that the value implied by the 2-pass and unrestricted GMM 

estimates for the period 1952-2002 and that it is closer to the values implied either by 

the long-run 2-pass estimates for the period 1926-2002 or by the restricted GMM 

estimates for the period 1952-2002. This in turn implies that the coskewness 

premium is small relative to the covariance premium. 

 

Once we accept to restrict the magnitude of b2t to rule out risk seeking, two important 

issues arise. The first one involves understanding to what extent coskewness matters 

in asset pricing under this restriction and the second is to explain why coskewness 

successfully manages to capture a large portion of the cross-sectional variation of 

asset returns in spite of the small value of b2t that is theoretically admissible under the 

3M-CAPM. I will now address these two questions in turn. 

 

12. The Role of Coskewness 

 

If we restrict the elements of bt to take the values implied by the restricted GMM 

estimates over the period 1952-2002, from (47) and (48) 44.2,1 −=tb  and 01.5,2 =tb . 

From (15c), these imply the following risk premia: 

 

                                                                                                                                                                     
6
 This is not the case for concave functions. The sum of concave functions is guaranteed to be 

concave. This is why the concavity of utility guarantees the concavity of the expected utility function.  
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On an annualized basis, the market risk premium is 6.01 percent whereas the 

quadratic market factor premium is -0.13 percent. Thus the former is almost 48 times 

as large as the latter.  

 

An alternative and more illuminating way of describing the importance of 

coskewness is to use represent expected asset returns, according to (14), as a function 

of the utility function parameters and of the asset covariance with the factors and 

rewrite it as follows:  

 

( )

ttqtitmtitttmtitmtit

ttmtitttmtittit

bqrCorrbrrCorr

bqrCovbrrCovrE

m
,2,,1,1,,1,,1,1,

,21,1,,11,1,1,

),(),(

),(),(

σσσσ ++++

+++++

−−=

−−=

 (50) 

 

The standard deviation of 1, +tmq , about 2.5 percent on an annualized basis, is much 

smaller than market volatility, about 16.5 percent per annum in the 1952-2002 

period. Thus the latter is almost 7 times as large as the former. Since the absolute 

value of tb ,2   is, even under NS, RA and NIARA, almost twice as large as the 
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absolute value of tb ,1 , for the asset coskewness premium to be as large, in absolute 

value, as the market coskewness premium the asset correlation with  1, +tmq  must be 

just over 3 times as large as the correlation with the market. For example, this would 

be the case if 3.0),( 1,1, =++ tmtit rrCorr  and 1),( 1,1, =++ tmtit qrCorr .  

 

As this simple example shows, the coskewness premium can be important in 

explaining the expected return on certain assets and strategies even when tb ,2  and 

thus the price of coskewness risk is modest. Examples of such strategies are hedge 

funds. Amongst the industries in my sample, however, correlation with 1, +tmq  is 

much smaller than correlation with the market. The Mines industry index has the 

highest the ratio of these two correlation, just over 36 percent, followed by the Steel, 

Construction and Coal indices, just above 20 percent in all three cases. Thus, for the 

Mines industry index the covariance premium is just over 8 times as large as the 

coskewness premium, while it is 15 times as large for the Steel, Construction and 

Coal indices. Of course, for individual stocks within these indices the relative 

importance of the coskewness premium could be higher. Particular portfolios also 

display a high ratio, in absolute value, of correlation with 1, +tmq  to correlation with 

the market. For example, the SMB factor correlation with the market excess return is 

25 percent while its correlation with 1, +tmq  is just above -10 percent. Thus the ratio of 

its correlation with 1, +tmq  to its correlation with the market is equal to -40 percent. 

More interestingly, the UMD momentum factor has a larger, in absolute value, 

correlation with 1, +tmq  than with the market, -11 and -6.74 percent respectively. Thus 
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their ratio is 1.63 and the size of the UMD coskewness premium is, in absolute value, 

almost half the size of its covariance premium. From this perspective, it is not 

surprising that momentum strategies earn abnormal returns relative to those predicted 

by the CAPM. 

 

13. Coskewness and the Cross-Section of Returns  

 

From a 3M-CAPM point of view it is unlikely that coskewness proxies for the 

sensitivity to factors that predict future returns because including cayt as a 

conditioning variable makes little difference. Thus it is unlikely that coskewness 

proxies for the sensitivity to changes to the investment opportunity set as in Merton’s 

(1973), Campbell’s (1993) and Chen’s (2002) models. However, if stock market 

wealth is only a portion of the investors’ overall wealth, a plausible reason for why 

coskewness explains such a large portion of the cross-section of average returns in 

the 1952-2002 period is that it proxies for omitted non market and background risk 

factors. The interesting issue is then the identification of these factors. I leave this 

however for future research. 

 

14. An Alternative Solution 

 

To tackle the coskewness puzzle, we can proceed along an alternative direction by 

accepting that it is difficult both to pinpoint the exact functional form of the utility 

function of traded wealth and to identify the factors for which the squared market 

excess return might proxy. Instead, we can focus on making the most, for pricing 
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purposes, of the information conveyed by the squared market excess return to explain 

the cross-section of average returns while ruling out obvious arbitrage opportunities.  

 

Such an approach recognises that coskewness is an asset characteristic that 

empirically is known, as shown in Table 2, to successfully explain a considerable 

portion of the cross-section of asset returns. Clearly, eliminating the requirement that 

the full set of NS, RA and NIARA conditions hold and, more generally, dispensing 

with the representative investor assumption means adopting a multi-factor, no-

arbitrage perspective along the lines of Ross’ (1976) APT rather than the CAPM and 

its extensions such as the 3M-CAPM.  

 

The QMFM is a potential candidate as a multifactor APT-style model of asset 

returns. However, in the 1952-2002 period this model achieves its impressive 

performance thanks to an unduly high volatility of the corresponding mt+1, denoted 

by σ(m). The latter is estimated by taking the sample standard deviation of mt+1, 

given the sample realizations of the factors and the point estimates of the model 

parameters. As shown in the last column of Table 2, the unconditional volatility of 

mt+1 for the 3M-CAPM and thus for the QMFM is three times as high as the σ(m) of 

the 3F-FF model and more than twice as large as the market Sharpe ratio (henceforth, 

SR).  

 

Even though the SR is not an exhaustive criterion to rank risky alternatives in a non 

mean-variance world, such a high SR does suggest that the QMFM is fitting noise 

rather than genuine asset pricing patterns. If this was not the case, it would be really 
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surprising that so many investors actually hold the market portfolio instead of taking 

advantage of the much more attractive SR offered by portfolios perfectly correlated 

with the SDF. The very high absolute value of the correlation between the SDF and 

the market excess return suggests that it is unlikely that this difference in SR be due 

to exposure to extreme states of the world that the average investors particularly 

dislikes. It appears sensible therefore to bound the σ(m) of the QMFM. For example, 

we might wish to impose as the upper bound a somewhat higher threshold than the 

SR of the market portfolio to allow for the possibility of background risk that the 

representative investor wishes to shed. However, even an upper bound equal to the 

market SR would allow for an higher σ(m) than the 3F-FF model and thus for the 

possibility of a better explanatory power. This bound can be imposed as a moment 

condition in a GMM framework. Equivalently, and more simply, one could search 

directly for the values of the elements of b that satisfy the volatility bound and than, 

given the sample second moments of the factors, solve for the λ using (16). This is 

equivalent to estimating by GMM with restrictions. Once the λ that satisfy the 

restrictions have been computed, they can be multiplied by the asset beta coefficients 

estimated using the familiar time series regressions to give the expected return on the 

assets. Regressing actual returns on expected returns, it is then possible to evaluate 

the explanatory power of the restricted model.  

 

Following this method, I start from the estimates of λ and of the sample moments of 

the 1, +tmr  market return and 1, +tmq  factors reported in (26b). These imply that the 

annualized risk premium associated with the squared market return factor, i.e. 

2.2,2 −=tλ  percent, is large in absolute value relative to the annualized price of the 



43 

 

market risk premium, i.e. 8.3,1 =tλ  percent. Because of the ill-behaved shape of the 

utility function implied by the 3M-CAPM with these point estimates of the model 

parameters, I reduce σ(m) by decreasing 2b  from 38.04 to 6. The resulting σ(m) is 

40.5 percent and thus approximately equal to the SR of the stock market portfolio 

(incidentally, the SDF is now well behaved and displays NS, RA and NIARA over 

the whole range of the sample market excess return realizations). However, the price 

of the coskewness factor is also largely reduced, i.e. 2.0,2 −=tλ  percent annualized. 

Conversely, the market risk premium is now substantially higher, i.e. 3.6,1 =tλ  

percent per annum, and it represents almost 100 percent of the sample average of the 

excess return on the market. With these values of the factors risk premia, the R
2
 of 

the cross section of average excess returns is only 6.3 percent. Visual inspection of a 

scatter diagram of average excess returns against expected excess returns however 

reveals that the culprit for such a dismal performance is an outlier, corresponding to 

the average excess return on the Smoke industry index. Dropping this outlier 

increases the cross sectional fit to 25 percent.  

 

Imposing an upper bound on σ(m) equal to the SR of the stock market portfolio is 

unfair on the QMFM in a non mean variance setting, since it is plausible that there 

are strategies that the average investor considers unappetizing because they pay off 

poorly in particularly bad states of the world. I therefore increase 2b  from 6 to 12. 

The resulting σ(m) is 45.8 percent and thus approximately just 5 percent higher than 

the SR of the stock market portfolio. The corresponding annualized factor risk 

premia are 8.5,1 =tλ  percent and 6.0,2 −=tλ  percent. The correlation between 
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expected asset returns, computed plugging these λ  estimates in (10), and the sample 

averages of asset realized excess returns is 34.2 percent. The square of this figure, i.e. 

11.7 percent, is the cross-sectional coefficient of determination, i.e. the R
2
, of the 

QMFM with the volatility bound. Dropping the Smoke industry outlier increases 

cross sectional correlations of expected and average excess returns to 56 percent and 

the R
2
 of the QMFM to 32 percent. Looser values of the upper bound would yield a 

better cross-sectional fit. 

 

15. Main Findings and Conclusions 

 

In this paper, I update the evidence provided by Harvey and Siddique (2000) and by 

Dittmar (2002) on the ability of the coskewness and gamma premia to explain the 

cross-section of US industry returns. My sample spans 50 years from 1952 to 2002, 

whereas the sample period of the studies of Harvey and Siddique (2000) and Dittmar 

(2002) stops, respectively, in 1993 and 1995. I also employ cayt as a conditioning 

variable to model time variation in the parameters of the utility function. This 

variable had not been used by Dittmar (2002). Relative to Harvey and Siddique 

(2000), the main innovation of this study is an explicitly conditional empirical 

specification of the stochastic discount factor and the derivation of the beta-pricing 

representation of their model. More importantly, I show that this beta-pricing 

representation of the 3M-CAPM is a special case of a quadratic market factor model 

and I specify the restrictions that the former imposes on the latter. My beta pricing 

representation of Harvey and Siddique (2000) 3M-CCAPM is also different from 

Kraus and Litzenberger (1976) beta-gamma representation since neither their betas 
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nor their gammas are regression coefficients. Their beta and gamma premium must 

be recovered estimating the utility function parameters.  

 

While the parameter estimates of the unrestricted quadratic market factor model 

cannot be interpreted as the parameter estimates of the 3M-CAPM because they 

would imply some risk seeking over gains and an inverse S-shaped utility function, it 

is surprisingly successful at explaining the cross section of industry returns, with a 

coefficient of determination between 20 and 30 percent. These values are high for a 

model that does not include among the regressors portfolios returns that mimic 

additional and partially ad-hoc factors such as size and the book to market ratio.  

 

However, even after constraining the utility function to display a well behaved shape 

and thus limiting the size of the coskewness premium, I show that the latter is still 

important in explaining the expected return of assets such as hedge funds and, more 

importantly, strategies that mimic the momentum factor. Thus, while the 3M-CAPM 

cannot explain a large portion of the cross section of returns, it does improve the 

pricing of particular, highly non-linear strategies relative to the simple 2M-CAPM 

and even relative to the Fama and French (1995) 3-Factor model. 

 

Alternatively, in a state-preference framework, we can treat the market return and its 

square as factors that help explain the cross-section of asset returns and rule out 

arbitrage opportunity or unduly high Sharpe ratios by bounding the volatility of the 

implied stochastic discount factor. I show that the quadratic market factor model 

retains its cross-sectional explanatory power even after imposing this sensible 
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constraint. Further research might suitably expand the set of conditioning variables to 

better model variation in the utility function parameters. This, while improving the fit 

of the model, might even lead to find a specification that requires a milder violation 

of RA.  
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Appendix I 

 

The 3M-CAPM, in the formulation proposed by Kraus and Litzenberger (1976) and 

used, among others, by Post, Levy and van Vliet (2003), is an unconditional model 

based on the Euler equations for a cubic Taylor expansion of a standardised
7
 

admissible utility function 3

2

2

1)( WWWWu θθ ++≅ . In a conditional setting, the 

corresponding Euler equation for the determination of equilibrium expected rates of 

returns is the following:  

 

[ ] 0)|( 1,1, =′
++ tittmt rRuE θ        (I.1) 

where 

2

1,,21,,11, 321)|( +++ ++=′
tmttmtttm RRRu θθθ   

 

Here, the parameters of the utility function are potentially time varying. The 

orthogonality conditions in (I.1) are equivalent to (2) with 11 =a , 11 2θ=b  

and 22 3θ=b . This model imposes on the cross section of asset excess-returns a 

restriction similar to (10) but with time invariant utility function parameters. From 

(I.1): 
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Now, consider the following Taylor expansion of marginal utility around the 

point [ ])|( 1, ttmt REu θ+
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Using (I.3) and assuming that [ ] [ ])|()|( 1,1, ttmtttmt RuEREu θθ ++
′≅′ , we can rewrite 

(I.2) as follows: 
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7
 This utility function is standardized, following Post, Levy and Van Vliet (2003), such that u(0|θ) = 0 

and )|0( θu′ = 1. Since utility functions are unique up to a linear transformation, this standardization 

does not affect the results.  
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Finally, multiplying and dividing the first and second term on the right-hand side of 

this equation by [ ]2

1,1, )( ++ − tmttmt RERE  and [ ]3

1,1, )( ++ − tmttmt RERE , respectively, 

and re-arranging, we can write
8
: 
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Here, ti ,β is the CAPM asset beta, the gamma coefficient ti ,γ  is standardized 

coskewness and it is defined as 
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8
 I also assume that the second derivative of the utility function does not depend on the interaction 

between market and asset unexpected returns and that the third derivative does not depend on the 

interaction between squared market unexpected returns and asset unexpected returns, i.e. that 
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These are very useful and reasonable simplifications that, intuitively, correspond to the requirement 

that absolute risk aversion and preference towards skewness do not depend on the relation between a 

single asset and the market portfolio or its square (rather, they should depend only on the latter, i.e. the 

market return and its square). Essentially, only changes in overall wealth and in its volatility should 

determine moves along the utility function and, therefore, changes in the point at which its derivatives 

are evaluated. 
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