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Abstract

We study the relationship between return uncertainty and behavioral finance by combining

multiple return forecasts for a single asset into an estimate of its unknown expected return. The

uncertainty surrounding this expected return estimate is minimized by an optimal information

portfolio which aggregates the return forecasts. The expected return implied by this minimiza-

tion exhibits the appearance of overconfidence, biased self-attribution, representativeness, conser-

vatism and limited attention. However, these characteristics as well as return predictability result

from expected return uncertainty, and are induced by the information portfolio weights assigned

to an individual asset’s return forecasts rather than behavioral biases. Moreover, our optimal

information portfolio yields testable implications distinct from psychological theories which we

verify empirically using analyst earnings forecasts and revisions.
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1 Introduction

When testing market efficiency using historical data, the empirical asset pricing literature usually

assumes an asset’s expected return was agreed upon by all market participants. For example, the Fama-

French (1993) three factor model computes market, SMB and HML sensitivities from ex-post returns

to generate a single expected return estimate. However, a consensus regarding the correct formulation

of expected returns remains elusive since the number of required factors and their composition is

controversial. In addition, uncertainty regarding future factor returns and their beta coefficients for

individual assets imply expected returns are unknown ex-ante. Price targets as well as intrinsic value

measures, such as the residual income valuation model in Lee, Myers and Swaminathan (1999), also

provide expected return forecasts which are not necessarily in agreement with those from multifactor

asset pricing models.

Motivated by this uncertainty, we examine a combination of multiple return forecasts to estimate

an individual asset’s unknown expected return. Return forecasts are issued by information sources

who interpret state variables such as the firm’s projected earnings or industry conditions. Public

information sources include analysts and the firm itself, while the investor generates private return

forecasts. The historical accuracy of an information source is measured according to its time series

of prior forecast errors, which are defined as the difference between realized and forecasted returns.

Historical covariances between the forecast errors of different information sources are also analyzed.

The information portfolio combines the return forecasts for an individual asset into an estimate of

its expected return. This is accomplished by assigning each information source a portfolio weight. In

contrast to existing portfolio theory for multiple assets with known expected returns, our information

portfolio applies to multiple return forecasts for a single asset whose expected return is unknown.

Specifically, our optimal information portfolio minimizes the aggregate uncertainty of an asset’s es-

timated expected return by assigning higher portfolio weights to information sources with greater

historical accuracy.1 The expected return estimate implied by the optimal information portfolio is

labeled the investor’s perceived return.

1After imposing a common distributional assumption on the set of return forecasts, this minimization is equivalent

to solving for the best linear unbiased estimate (BLUE) of an asset’s true expected return. However, we refrain from

referring to the information portfolio weights as linear regression coefficients since their optimality is independent of any

distributional assumptions and does not require the return forecasts to be unbiased.
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With regards to behavioral finance, the perceived return exhibits the appearance of overconfi-

dence and biased self-attribution as well as representativeness and conservatism. These two pairs

of psychological biases have previously been incorporated into the behavioral finance literature by

Daniel, Hirshleifer and Subrahmanyam (1998) and Barberis, Shleifer and Vishny (1998) respectively.

For example, the optimal information portfolio emphasizes private sources of information which have

been historically accurate, while downplaying the investor’s less accurate private information sources.

Furthermore, even in the absence of any theoretical justification, state variables with trends in their

dynamics receive larger information portfolio weights. A property which mimics limited attention is

also instilled into the perceived return since return forecasts which are positively correlated with those

from more accurate information sources are underweighted by the investor’s information portfolio. All

of these perceived characteristics are induced by our optimal information portfolio weights rather than

psychology.

Unlike Bayesian models in behavioral finance which incorporate psychological biases by imposing

assumptions on the investor’s prior distribution, we examine the optimal combination of return fore-

casts when computing their expected return. Therefore, attributes of the investor’s perceived return

which mimic psychological biases are outputs from information portfolio theory rather than inputs.

This important distinction yields several testable implications unique to information portfolio theory.

In contrast, Brav and Heaton (2002) demonstrate the difficulty of distinguishing between behavioral

and rational explanations for return anomalies using Bayesian techniques.2

Periods of high uncertainty surrounding an asset’s expected return imply more disparate return

forecasts. Return predictability and return characteristics that mimic psychological biases both become

more pronounced when expected return uncertainty is high. To illustrate our notion of expected return

uncertainty, a BusinessWeek survey conducted at the end of 2005 reported year-end 2006 return

forecasts for the S&P 500 ranging between -29.5% and 31.0% with a standard deviation of 7.61%.

Provided the 76 forecasters included in the survey have unequal historical accuracies, the average

forecast of 7.87% is not the optimal expected return for the S&P 500. When forecasting returns

for individual stocks, idiosyncratic changes in a firm’s capital structure or investment strategy could

increase expected return uncertainty. However, our framework does not assume the return implications

of such events are immediately understood and agreed upon by all information sources. Indeed, every

2Section 4 contains further details on the distinction between information portfolio theory and the Bayesian approach.
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return forecast would be identical and without error under this simplifying assumption. Instead,

dispersion between the return forecasts results from parameter uncertainty, previously examined in

Lewellen and Shanken (2002), as well as disagreement surrounding the interpretation of available

information.

An information source’s historical accuracy is determined by the dynamics of an underlying state

variable along with its return implications. Predictability in either of these two components improves

an information source’s historical accuracy. Consequently, after controlling for state variable uncer-

tainty, information portfolio theory asserts that investors focus their attention on state variables which

have experienced the highest correlation with realized returns. Indeed, a state variable with perfectly

predictable dynamics and a deterministic relationship with the asset’s true expected return creates a

very accurate information source.

Empirically, Jackson and Johnson (2006) document that momentum and post-earnings announce-

ment drift both coincide with firm-specific events that alter a firm’s earnings, while the composite share

issuance variable of Daniel and Titman (2005) also indicates return predictability. In addition, Kumar

(2005) and Zhang (2005) report that behavioral biases appear stronger during periods of high uncer-

tainty. Besides event and time dependence, Baker and Wurgler (2005) report that cross-sectional firm

characteristics such as size and age explain a firm’s sensitivity to investor sentiment. These empirical

regularities are consistent with information portfolio theory as well as psychological biases. However,

information portfolio theory posits that even when an asset’s expected return is very uncertain, a

relative ranking of the information sources by their historical accuracies is equivalent to the existence

of an information portfolio. Thus, for a given level of uncertainty, the investor’s perceived return

focuses on the most accurate sources of information available. In contrast, this optimal weighting is

not predicted by psychological theories.

Empirically, we verify the main testable implications of information portfolio theory by studying

earnings momentum. For a given level of uncertainty, behavioral theory predicts stronger earnings

momentum when earnings are less informative regarding future returns, while information portfolio

predicts the opposite. The first aspect of our empirical study pertains to the return implications

of earnings. Specifically, we measure the sensitivity of returns to earnings revisions by computing

firm-specific correlations between these variables. We find earnings momentum profits increase mono-

tonically from low to high sensitivity stocks by 50%. This evidence is consistent with investors focusing
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on earnings when this state variable has been informative. The second aspect of our empirical study

considers the role of earnings uncertainty. As documented in Zhang (2005), momentum profits are

larger for stocks with higher earnings dispersion. Most importantly, portfolios derived from double

sorts on the sensitivity and uncertainty measures continue to display both relationships with earnings

momentum. Consequently, after controlling for earnings uncertainty, firms whose returns are more

sensitive to earnings revisions experience greater earnings momentum. This finding is consistent with

accurate information sources having greater influence over the perceived return, which is the central

prediction of information portfolio theory. Several robustness checks verify that our sensitivity and

uncertainty measures are not driven by factors such as book-to-market, size and analyst coverage.

Nonetheless, if knowledge of investor psychology increases the accuracy of return forecasts, then

information portfolio theory and psychology are compatible. Indeed, the exact decomposition of the

perceived return into the effects of psychology versus information portfolio theory is ultimately an

empirical question. Our empirical implementation demonstrates that the contribution of information

portfolio theory to the formation of expected returns cannot be ignored. Information portfolio theory

also enhances applications of utility maximization. For example, we prove an investor with exponential

utility reduces their exposure to the risky asset when uncertainty regarding its expected return is high.

The remainder of this paper begins with the introduction of the optimal information portfolio in

Section 2. Section 3 illustrates the impact of state variable predictability on the historical accuracy

of an information source and examines its ability to induce return predictability. Section 4 links the

optimal information portfolio with expected return characteristics that have previously been attributed

to psychology. Testable implications of information portfolio theory are provided in Section 5 along

with an empirical implementation. Our conclusions and suggestions for further research are contained

in Section 6.

2 Information Portfolio Theory

As in Daniel, Hirshleifer and Subrahmanyam (1998) as well as Barberis, Shleifer and Vishny (1998), we

consider a single-investor, single-asset model. Thus, we restrict our attention to an investor functioning

as a price-setter who does not “free-ride” on market prices.

Underlying our framework are state variables, examples of which include forecasts for the earnings
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or sales of an individual firm as well as macroeconomic and industry conditions among many other

possibilities. Each state variable forecast is interpreted by an information source who expresses its

estimated return implications for a particular asset.3 In practice, an individual analyst can issue

earnings forecasts and long term growth rate projections along with price targets and buy versus

sell recommendations, while firms often disclose their earnings and sales figures in conjunction with

“guidance” for these state variables. Therefore, multiple information sources can originate from an

individual analyst or the firm depending on the amount of information they release.

To simplify the exposition of our framework but without loss of generality, each return forecast

is generated by a single state variable.4 From an academic perspective, this structure enables our

framework to address issues related to which sources of information influence expected returns. For

example, Brav and Lehavy (2003) examine the marginal importance of analyst price targets to the

price formation process in the presence of earnings forecast revisions and stock recommendations.

Furthermore, this structure allows the information portfolio to aggregate over the widest possible array

of information sources. Specifically, the information portfolio aggregates across the return implications

of every state variable forecast. Although the economic intuition is identical if information sources

interpret multiple state variables before issuing return forecasts, this modification reduces the amount

of aggregation performed by the information portfolio.

Certain return forecasts possess private as well as public characteristics. For example, state vari-

ables such as earnings forecasts, while public when issued by sell-side analysts, require additional

interpretation by the investor to become return forecasts. Therefore, these return forecasts may be

considered private along with those originating from buy-side analysts. Conversely, the conversion

of analyst price targets into return forecasts is immediate, implying these sources of information are

public. Prior returns for the asset also constitute a source of public information. For emphasis, in-

formation sources are only assumed to issue return forecasts. The mechanism for computing their

historical accuracy is addressed in the next subsection.

In summary, we consider J > 1 return forecasts for a single asset originating from J unique

3Although sales are usually reported in millions of dollars and earnings stated on a per share basis, information

portfolio theory abstracts from these scale complications by aggregating across their return implications.
4The next section demonstrates that this structure is able to replicate the return forecasts from multifactor asset

pricing models such as Fama-French (1993).
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information sources who evaluate the return implications of K ≥ 1 unique state variable forecasts.5

The inequality J ≥ K enables information sources to disagree on the return implications of a state

variable forecast.

2.1 Historical Forecast Accuracy

The historical accuracy of each return forecast is critical to the information portfolio’s solution and is

computed from the previous forecast errors of an information source. Specifically, at time t − 1, the

time series of forecast errors for the jth information source consists of the following vector⎡
⎢⎢⎢⎣

εj
t−1

...

εj
t−n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

yt−1

...

yt−n

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

μj,t−1

...

μj,t−n

⎤
⎥⎥⎥⎦ for j = 1, 2, . . . , J (1)

over the previous n periods. At time t − 1, the jth information source issues the return forecast μj,t

for the (t − 1, t] horizon, while yt denotes the asset’s realized return at time t. The calendar time

corresponding to the (t− 1, t] interval is arbitrary.

At t − 1, the historical accuracy of the jth information source equals

σ2
j,t =

1

n

n∑
i=1

(
εj
t−i

)2
, (2)

according to their previous forecast errors εj
t−i over the last n periods. Let σ2

j,∗ denote the unknown

true variance associated with the return forecasts of the jth information source, which proxies for their

skill at forecasting an asset’s expected return. The historical accuracy in equation (2) is the investor’s

estimate of σ2
j,∗ based on the information source’s prior n forecast errors in equation (1). From the

investor’s perspective, this estimate represents the uncertainty of the μj,t return forecast issued at t−1.

Statistically, equation (2) calculates the mean-squared error (MSE) of the previous n forecast errors

for the jth information source.6

5When state variable dynamics are random, K represents the number of state variable forecasts rather than the

number of actual state variables with each of the former able to yield a distinct return forecast.
6This property follows from E

[
ε2
]

= V ar [ε] + (E [ε])2 with the bias in a forecast equaling E[ε]. Information sources

may employ Bayesian methods when generating their return forecasts with the usual tradeoff between variance and

bias arising from an informative prior. By computing the mean-squared error of prior forecast errors, the potential for

optimism to bias analyst earnings forecasts, price targets, and stock recommendations is addressed.
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Similarly, the covariance between the time series of forecast errors for the jth and kth information

source is estimated as

σj,k,t =
1

n

n∑
i=1

εj
t−i εk

t−i , (3)

for j �= k. Equation (3) represents the investor’s estimate of the true but unknown covariance σj,k,∗

between the return forecasts of two information sources at t− 1. For emphasis, since the estimates in

equations (2) and (3) are calculated using realized forecast errors over the last n periods, they should

be denoted as σ̂2
j,t and σ̂j,k,t respectively but the hats are omitted for notational simplicity. Moreover,

the historical accuracy of an information source pertains entirely to its time series of prior return

forecasts, with state variable forecasts serving an intermediate role.

The value of n in equations (2) and (3) is specific to an individual asset.7 Intuitively, established

firms in stable industries have a large n. Conversely, initial public offerings, firms undergoing a

significant corporate restructuring or undertaking a large investment and those operating in industries

that experience major technological innovations have a small n.

Overall, the μt vector of return forecasts at time t − 1 equals

μt =

⎡
⎢⎢⎢⎢⎢⎢⎣

μ1,t

μ2,t

...

μJ,t

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

A time series of these vectors μt−1, . . . , μt−n over the last n periods yields a Θt matrix summarizing

the historical accuracies of the J information sources as well as their historical covariances, described

by equations (2) and (3) respectively. The Θt matrix is a historical estimate of the true but unknown

variance-covariance matrix for the J return forecasts in equation (4).

The cross-sectional dispersion across the J forecasts of the μt vector at t − 1

σ2
μ,t =

1

J − 1

J∑
j=1

(μj,t − μ̄t)
2 , (5)

7When n is information source dependent, a j subscript would be added to form nj . For example, n could proxy

for the experience of an information source. Chen, Liu and Qian (2005) document the importance of experience to the

credibility of buy-side analyst forecasts, while Nicolosi, Peng and Zhu (2004) report that experienced individual investors

earn higher returns. However, for ease of exposition, all J information sources are evaluated using n previous forecast

errors since our initial focus is on a firm-specific information environment.
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where μ̄t is defined as the average return forecast

μ̄t =
1

J

J∑
j=1

μj,t , (6)

does not have an explicit role in our solution for the information portfolio. Nonetheless, the dispersion

in equation (5) has an important economic interpretation by offering a concise definition for expected

return uncertainty that is economically intuitive. Note that μ̄t in equation (6) is not the optimal

estimate for an asset’s expected return unless every information source has an identical true but

unknown forecast accuracy, implying σ2
j,∗ equals a common σ2

∗ value. To simplify our notation, we

suppress the t subscripts on μ and Θ for the remainder of this paper.

2.2 Optimal Information Portfolio

The investor minimizes the aggregate mean-squared error of the asset’s expected return when com-

bining the J return forecasts.8 Therefore, the optimization problem which solves for the optimal

information portfolio W is

min
W

1

2
W T ΘW

(7)

subject to: W T1 = 1 ,

where 1 denotes a J -dimensional vector of ones. As proven later in this section, after imposing a

common distributional assumption on every return forecast, the objective function in equation (7) is

equivalent to finding the best linear unbiased estimator (BLUE) of the asset’s expected return given

available forecasts. Therefore, equation (7) is consistent with linear regression models used throughout

the empirical finance literature. The optimal information portfolio is solved in the following proposition

whose proof is contained in Appendix A.

Proposition 1. The solution for the optimal information portfolio W in equation (7) equals

W =
Θ−11

1TΘ−11
. (8)

8This approach is related to Peng and Xiong (2004)’s minimization for the variance of beliefs regarding subsequent

dividends, while Hong, Scheinkman and Xiong (2005) invoke mean-variance preferences when analyzing different infor-

mation sources.
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When private information sources are evaluated by the investor, the information portfolio is

investor-specific in addition to being firm-specific.

2.3 Regression Interpretation of Optimal Information Portfolio

Denote the asset’s true return distribution as N (η, ν) with η being its unknown expected return.

Corporate or macroeconomic events that generate expected return uncertainty may also cause η to

vary over time but this parameter is written as a constant for notational simplicity.

The main result of this subsection is that after imposing a common distributional assumption on

every return forecast

μ
d∼ N (η1, Θ) , (9)

the objective function in equation (7) is equivalent to finding the best linear unbiased estimate of η.

Specifically, from a linear regression perspective, the true model for the asset’s return is described by

y = η + e , (10)

where the error terms e are i.i.d. random variables from a N (0, ν) distribution. Therefore, the asset’s

realized return y is emitted by the true N (η, ν) distribution. Appendix B considers a special case of

equation (10) which has η generated by a N -factor model

y =

[
β0 +

N∑
j=1

βj fj

]
+ e . (11)

However, regardless of η’s specification, its corresponding linear estimator ŷ equals

ŷ = W T μ . (12)

A linear regression procedure minimizes the mean-squared error of the y − ŷ deviations

y − ŷ = η − W Tμ + e , (13)

by choosing the optimal coefficients W given a set of independent variables which are the return

forecasts μ in our framework. The coefficients are required to produce an unbiased estimator which
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implies

0 = E [y − ŷ]

= η − E
[
W TN (η1, Θ)

]
= η − ηW T1 . (14)

The W T 1 = 1 constraint is an immediate consequence of equation (14) which follows from the dis-

tributional assumption in equation (9).9 With W Tμ being an unbiased estimate of η, minimizing the

mean-squared error in equation (13) is equivalent to minimizing

V ar [y − ŷ] = V ar
[
η −W T μ + e

]
= V ar

[
W TN (η1, Θ) + e

]
= W T ΘW + ν , (15)

since the N (0, ν) distribution for the error terms is independent of the normal distribution in equation

(9) while η is not random. Equation (15) implies the investor minimizes W TΘW since ν is not a

function of W . In summary, the best linear unbiased estimate of the asset’s expected return minimizes

W TΘW subject to the W T1 = 1 constraint.10 Consequently, statistical justification underlying linear

regression models also applies to our objective function in equation (7). To clarify, W T ΘW is not an

estimate of ν. Indeed, even if W T ΘW equals zero or η is known (as in classical portfolio theory), the

asset is not riskless provided ν is non-zero.

To determine the asset’s ex-ante return distribution next period, consider the prediction interval

for

ỹp = W Tμ + e , (16)

which is conditioned on a set of estimated W coefficients and return forecasts. Equation (16) is not

intended to calibrate the W coefficients since ỹp is the asset’s unobserved (random) return next period.

9Equation (9) implies WT μ is an unbiased estimator of η although the converse does not hold. The distributional

assumption in equation (9) ensures all of the return forecasts are not above or below η but does not imply that WT μ

equals the asset’s true expected return. Indeed, confidence intervals and hypothesis tests are required to evaluate point

estimates from linear regression models.
10Minimizing WT ΘW in equation (15) is equivalent to minimizing 1

2
WT ΘW in equation (7).
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Instead, conditional on estimated W coefficients, the asset’s ex-ante return distribution equals

ỹp
d∼ N (

W Tμ, ν + W TΘW
)

. (17)

Thus, ex-ante return uncertainty reflects the asset’s true variability denoted ν as well as the aggregate

uncertainty W T ΘW of the J forecasts. Consequently, equation (17) provides further justification for

the minimization of W TΘW in equation (7).

For emphasis, the objective function in equation (7) which defines the optimal information portfolio

is independent of the distributional assumption in equation (9) and does not require the forecasts to

be unbiased. Specifically, equations (2) and (3) evaluate the mean-squared error of an information

source. In addition, the time-varying information portfolio weights in Proposition 1 are crucial to our

interpretation of the investor’s perceived return in Section 4. Therefore, we refrain from referring to

our information portfolio weights as linear regression coefficients.

2.4 Perceived Return and Aggregate Return Uncertainty

By aggregating across the return forecasts, the optimal information portfolio immediately generates an

estimate for the asset’s expected return. This estimate is referred to as the investor’s perceived return,

and summarizes the information provided by the J return forecasts. Proposition 2 below computes

the perceived return and its aggregate uncertainty using the optimal information portfolio.

Proposition 2. The perceived return for an asset implied by the investor’s optimal information port-

folio weights in Proposition 1 equals

W Tμ =
1T Θ−1μ

1TΘ−11
, (18)

while

W TΘW =
1

1TΘ−11
, (19)

is the aggregate uncertainty of the expected return estimate in equation (18).

Proof: The perceived return follows immediately from equation (8) while the aggregate forecast error
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is computed as11

W TΘW =
1

1T Θ−11
1TΘ−1 ΘΘ−11

1

1T Θ−11

=
1

1T Θ−11
. (20)

Ex-ante, the investor is unaware of the asset’s true expected return denoted η. As a consequence,

the investor is compelled to aggregate the J return forecasts and rely on the perceived return in

equation (18) which has the lowest mean-squared error amongst all other alternative estimates.

2.5 Important Information Portfolio Properties

We begin with the following corollary of Proposition 2 which offers an explicit expression for the

information portfolio between two independent information sources.

Corollary 1. For J = 2 and Θ being the diagonal matrix⎡
⎣ σ2

1 0

0 σ2
2

⎤
⎦ ,

the information portfolio W equals ⎡
⎣ w1

w2

⎤
⎦ =

1

σ2
2 + σ2

1

⎡
⎣ σ2

2

σ2
1

⎤
⎦ . (21)

Therefore, the investor’s perceived return equals

σ2
2 μ1 + σ2

1 μ2

σ2
1 + σ2

2

, (22)

while

σ2
1σ

2
2

σ2
1 + σ2

2

, (23)

is the aggregate uncertainty of the asset’s estimated expected return in equation (22).

11A negative portfolio weight implies the investor reverses the sign of this information source’s return forecast when

the perceived return is computed.
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According to equation (22), the return forecast issued by a more accurate information source has a

larger portfolio weight and greater influence on the investor’s perceived return. Intuitively, historical

accuracy enhances the credibility of an information source. The utility maximization approach in

Cheng, Liu and Qian (2005) produces a pair of weights similar to equation (21) for signals issued by

sell-side versus buy-side analysts.

The next corollary of Proposition 2 extends Corollary 1 by examining correlated return forecasts.

Corollary 2. For J = 2, let Θ equal ⎡
⎣ σ2

1 σ12

σ12 σ2
2

⎤
⎦ .

Under this structure, the portfolio weights are⎡
⎣ w1

w2

⎤
⎦ =

1

σ2
2 + σ2

1 − 2σ12

⎡
⎣ σ2

2 − σ12

σ2
1 − σ12

⎤
⎦ . (24)

The perceived return for the asset equals

σ2
2 μ1 + σ2

1 μ2 − σ12 (μ1 + μ2)

σ2
1 + σ2

2 − 2σ12
, (25)

while

σ2
1σ

2
2 − (σ12)

2

σ2
1 + σ2

2 − 2σ12
, (26)

is the aggregate uncertainty of the asset’s estimated return in equation (25).

A negative covariance, σ12 < 0, between two information sources represents “offsetting” forecast

errors. Appendix C proves that a negative covariance reduces the aggregate uncertainty in equation

(26). We utilize this property in Section 4 to demonstrate that our optimal information portfolio

weights generate perceived returns which exhibit the appearance of several behavioral biases.

3 Historical Accuracy and Return Predictability

Recall that an information source’s historical accuracy encompasses forecast variability associated with

a state variable as well as uncertainty regarding its return implications. Thus, limited time series data
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corresponding to a small n would exacerbate disagreements between information sources regarding the

correct techniques for estimating a state variable’s dynamics as well as its relationship with a firm’s

expected return. These disagreements would also be compounded by parameter uncertainty in the

forecast procedures which is captured by the estimation errors in our analysis below.12

Expected return uncertainty is also higher when information sources interpret distinct state vari-

ables, have unique forecasting techniques for their state variable, and interpret its return implications

differently. Furthermore, an information source does not necessarily disclose these components of their

return forecast. Instead, at each point in time, the investor observes a collection of return forecasts.

Forecast errors over the last n periods in equation (1) for each information source define the Θ matrix

underlying our optimal information portfolio.

For simplicity, we begin by examining one information source to investigate the impact of n on its

accuracy. We then study a two-information source environment to examine return predictability.

3.1 Uncertainty in the Return Implications of a State Variable

Assume the jth information source utilizes a linear model for converting a known state variable Vt into

its associated return forecast

μj,t = α̂ + β̂Vt . (27)

The hats signify the unknown coefficients of the transformation, while the state variable Vt in equation

(27) is not random. As mentioned above, other information sources may employ a transformation

different than equation (27) or interpret a different state variable when issuing their return forecast.

According to equation (28) below, the jth information source calibrates the α and β coefficients in

equation (27) using realized returns and state variables

yt−i = α + βVt−i + ξt−i , (28)

over the previous i = 1, . . . , n periods where ξt−i is an i.i.d. error term distributed N (
0, σ2

ξ

)
. After

obtaining the estimates α̂ and β̂ from equation (28), the information source invokes equation (27) to

convert Vt into μj,t at t − 1 which simply equals the predicted value ŷt from this linear regression.

12Herding by information sources induces positive correlation between a subset of return forecasts, and further reduces

the optimal portfolio weights assigned to less accurate information sources according to Subsection 4.3. This property

mitigates the impact of herding on the investor’s perceived return.
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To illustrate the importance of n, the forecast error εj
t below contributes another observation to the

time series of historical forecast errors in equation (1) at time t. In particular, the realization of
(
εj
t

)2

at time t augments equation (2) when computing the jth information source’s historical accuracy. In

equation (29) below, the expectation of this squared forecast error at t − 1 is evaluated13

E
[
εj
t

]2
= V ar [yt − μj,t]

= V ar [ξt] +
{
V ar [α̂] + (Vt)

2 V ar
[
β̂
]

+ 2Vt Cov
[
α − α̂, β − β̂

]}
(29)

= Transformation Uncertainty + Estimation Error in Transformation .

For large n, the α̂ and β̂ estimates converge to α and β respectively, implying equation (29) reduces

to V ar [ξt]. Therefore, equation (29) converges to σ2
ξ which equals the unknown variance σ2

j,∗ of the

jth information source estimated by equation (2). Recall that the investor cannot compute equation

(29) at time t− 1 since the transformation in equation (27) is not disclosed by the information source.

Instead, they rely on the jth information sources’s historical accuracy computed by equation (2).

However, when n is small, estimation error in α̂ and β̂ is severe. Lewellen and Shanken (2002)

examine the asset pricing implications of parameter uncertainty and demonstrate that return pre-

dictability cannot necessarily be exploited by investors. In our framework, a small n may undermine

the credibility of a knowledgeable information source or a truly relevant state variable. For example,

Jagannathan and Wang (2005) find that consumption explains the role of the SMB and HML factors

in cross-sectional returns. However, SMB and HML dominate consumption in empirical applications

due to the limitations of consumption data.

Equation (29) also illustrates the importance of predictability in the return implications of a state

variable. If the conversion of Vt into μj,t is perfectly predictable, implying the ξt−i error terms in

equation (28) are identically zero, then the coefficients in equation (27) are known.14 Conversely,

13The μj,t return forecast is unbiased since E [yt − μj,t] = E
[
α − α̂ + Vt

[
β − β̂

]
+ ξt

]
is zero provided E [α̂] and

E
[
β̂
]

equal α and β respectively. These equalities follow from the linear regression in equation (28) providing unbiased

coefficient estimates. Thus, equations (27) and (28) imply the jth information source issues unbiased return forecasts.

However, this simplification is not a requirement of information portfolio theory since equation (2) evaluates the mean-

squared error of return forecasts.
14Transforming an analyst’s price target into a return forecast involves a perfectly predictable function, although not
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when the relationship between a stock’s expected return and a state variable is unpredictable, the

information source’s historical accuracy in equation (2) is likely to be poor.

Finally, even the idealized environment in equation (29) has two important complications. First,

the α and β parameters may be time-varying, which would complicate their estimation even for large

n values. Second, as discussed in the next subsection, Vt could be a forecast for the state variable.

For example, employing the Fama-French (1993) model to generate an asset’s expected return requires

forecasts for the SMB and HML returns as well as the market.

3.2 Uncertainty in State Variable Dynamics

Jackson and Johnson (2006) document a post-event drift in analyst forecasts following seasoned equity

offerings, stock re-purchases, equity-financed mergers and dividend initiations as well as omissions.

This persistence in analyst forecasts suggests the impact of such events on a firm’s earnings dynamics

are not immediately understood.

Suppose the jth return forecast is derived from an information source’s forecast for a state variable,

denoted Ṽt, which is a linear function of its previous realization

Ṽt = â + b̂Vt−1 . (30)

The dynamics of Vt are estimated by the information source at t− 1 as

Vt−i = a + bVt−i−1 + ζt−i , (31)

using data over the previous i = 1, . . . , n periods where ζt−i is another i.i.d. error term whose distri-

bution is N (
0, σ2

ζ

)
. Equation (31) is utilized to estimate the a and b coefficients, while the ζt−i error

terms signify the random evolution of the state variable. The Ṽt notation contains a tilde to emphasize

that the information source is forecasting this state variable, in contrast to equation (27) where Vt is

known.

When equation (27) with known α and β parameters is combined with equation (30), the following

return forecast is generated by the jth information source

μj,t = α + βṼt

= α + β
[
â + b̂Vt−1

]
. (32)

the linear relationship in equation (27).
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For clarification, the conversion of the state variable into its return forecast continues to be specified

by equation (27). However, for simplicity, the α and β coefficients are assumed to be known since our

attention is currently focused on the contribution of state variable uncertainty to the jth information

source’s historical accuracy. In addition, the j superscript applies to the α, β, a and b coefficients as

well as the ξ and ζ error terms but is omitted for notational simplicity.

Inserting the true dynamics of the state variable in equation (31) into equation (28) implies that

returns evolve as

yt = α + β [a + bVt−1 + ζt] + ξt . (33)

When combined, equations (32) and (33) at time t− 1 imply the following expectation15

E
[
εj
t

]2
= V ar [yt − μj,t]

= V ar [ξt] + β2V ar [ζt]

+
{
β2V ar [â] + β2 (Vt−1)

2 V ar
[
b̂
]

+ 2β2Vt−1Cov
[
a − â, b− b̂

]}
(34)

= Transformation Uncertainty + State Variable Uncertainty

+ Estimation Error in State Variable Dynamics .

To clarify, V ar [ζt] corresponds to state variable uncertainty, while V ar [ξt] represents randomness in

the return implications of the state variable. The estimation error in the second line of equation

(34) tends toward zero as n → ∞, implying the variance of next period’s forecast error converges to

σ2
ξ + β2σ2

ζ . This limit equals the jth information source’s true accuracy σ2
j,∗ which is estimated by the

investor using equation (2).

An important property of equation (34) invoked in the next subsection is that after controlling for

V ar [ξt], information sources which condition their return forecasts on predictable state variable are

15The linearity of equations (30), (32) and (33) imply μj,t is an unbiased return forecast. Specifically, E
[
εj
t

]
equals

zero since the linear regression in equation (31) ensures E [â] = a and E
[
b̂
]

= b under the assumptions imposed on

ζt−i and ξt−i. However, this property is not a requirement of information portfolio theory since equation (2) minimizes

mean-squared error. Note that an economy in which the α, β, a and b coefficients all require calibration produces a

complicated estimation error in equation (34) involving cross-products.
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likely to have historical accuracies which are superior to information sources who condition on unpre-

dictable state variables. For example, consider two state variables with the first being unpredictable

and the second highly predictable. Given identical V ar [ξt] terms, return forecasts conditioned on

highly predictable state variable are likely to be more accurate. More formally, suppose Vt is perfectly

predictable and follows a known deterministic process. For this special case, V ar [ζt] equals zero while

the a and b coefficients are known, implying equation (34) reduces to V ar [ξt].

In general, state variables and their return implications are not required to arise from linear rela-

tionships with mean zero i.i.d. error terms as in our previous illustrations. Indeed, no assumptions

are imposed on the conversion of state variables into return forecasts when solving for the information

portfolio.

3.3 Return Predictability

To examine return predictability, we consider a two-period economy with an optimistic and pessimistic

return forecast for a firm which has recently initiated a large investment. The profitability (earnings

/ cashflow) of this investment represents the relevant state variable that causes the investor to appear

as if they extrapolate from past returns.

At the initial timepoint t1, the high return forecast is denoted μH,1 while its low return counter-

part is denoted μL,1. For simplicity but without loss of generality, assume these return forecasts are

independent and issued by information sources with equal historical accuracies, implying σ2
H,1 equals

σ2
L,1. According to equation (22) in Corollary 1, the investor’s perceived return over the (t1, t2] horizon

is the average of the two forecasts, μ1 = 1
2
[μH,1 + μL,1].

During the (t1, t2] interval, information regarding the success of the investment is revealed, with

the firm’s realized return at t2 equaling r1,2. In particular, there are two scenarios, the first indicating

success and the second failure. The ex-ante probability attached to these scenarios is irrelevant when

the ex-post return sequence is studied at t3. Furthermore, over the (t2, t3] interval, assume μH,2

continues to exceed μL,2 with the disparity between these forecasts depending on the uncertainty

prevailing at time t2 surrounding the firm’s expected return.

To illustrate return extrapolation in our framework, consider the following two scenarios defined

by r1,2.
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Investment appears to be successful over (t1, t2] interval:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r1,2 is high

σ2
H,2 < σ2

L,2, high return forecast is more accurate since r1,2 is high

Perceived return μ2 over (t2, t3] horizon is closer to μH,2

μ2 reflects extrapolation from high r1,2

Investment appears to be a failure over (t1, t2] interval:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r1,2 is low

σ2
L,2 < σ2

H,2, low return forecast is more accurate since r1,2 is low

Perceived return μ2 over (t2, t3] horizon is closer to μL,2

μ2 reflects extrapolation from low r1,2

A small n would increase the disparity between σ2
H,2 and σ2

L,2 at t2 since there are few forecast errors

available to assess the skill of the two information sources. Consequently, a small n causes either μH,2

or μL,2 to exert more influence on μ2 for a given realized return r1,2. Thus, μ2 is more extreme when

n is small.

One may argue that the empirical evidence concerning long term reversals motivates a mean-

reverting prior distribution when issuing return forecasts. However, if the optimistic (pessimistic)

information source at t1 decreases (increases) its return forecast at t2, then expected return uncertainty

is reduced. Indeed, if μH,1 and μL,1 converge to a common return forecast μ∗ at t2, then the uncertainty

created by the investment is resolved during the (t1, t2] horizon and equation (5) is zero. Hence, return

extrapolation attributable to information portfolio theory continues as long as there is uncertainty

regarding the firm’s expected return. As a consequence, return predictability can be induced by

expected return uncertainty since the information portfolio weights assigned to return forecasts are

time-varying. In particular, the information portfolio is updated each period to reflect changes in the

historical accuracy of each information source which are larger when n is small.

Intuitively, an sequence of returns may exhibit predictability due to events whose return impli-

cations are not immediately understood and agreed upon by all information sources. This finding

does not prevent the return forecasts from being updated by the information sources at intermediate
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timepoints. Instead, only the continuation of forecast dispersion beyond one period is required.16 Fur-

thermore, greater predictability in the profitability of the investment implies the disparity between the

return forecasts would narrow more rapidly. In particular, our discussion in the previous subsection

implies predictability would reduce the firm’s expected return uncertainty. Nonetheless, provided the

investment’s profitability is not perfectly predictable, expected return uncertainty persists beyond the

initial (t1, t2] period.

In summary, high (low) return forecasts have greater historical accuracy following high (low) real-

ized returns. Therefore, according to information portfolio theory, return forecasts are assigned larger

information portfolio weights when they are similar to previous return realizations. Consequently, the

perceived return appears to be extrapolated from past returns. Intuitively, many return sequences exist

ex-ante, with the investment’s success determining a realized return sequence. Similarly, Bondarenko

and Bossaerts (2000) provide an excellent description of the return bias induced by conditioning on

an option’s eventual in-the-money or out-of-the-money status.

When conducting tests of market efficiency using historical return data, one must be careful that

evidence of return predictability accounts for the range of return forecasts underlying an asset’s esti-

mated expected return. High or low realized returns result from large state variable fluctuations or

high return sensitivities to state variable movements. Either of these effects can increase expected

return uncertainty if they undermine the ability of information sources to forecast state variables or

their return implications. In addition, when the return forecasts are unbiased, equation (17) implies

that assets with higher expected return uncertainty are riskier from the investor’s perspective.17

Finally, return reversals may coincide with lower variability in state variables forecasts and their

transformation into return forecasts. For example, prior returns can constitute the lowest variance

source of information when state variables such as earnings are difficult to forecast. However, as n

increases, the influence of prior returns would diminish if alternative information sources begin to offer

more accurate return forecasts.18

16The horizon between the issuance of forecasts is important. Longer intervals allow more uncertainty to be resolved

before the investor’s perceived return is adjusted.
17This property holds even when η is constant and is therefore uncorrelated with any risk factor. For emphasis, the

asset’s true expected return may be time-varying but is written as a constant for notational simplicity.
18A practical implication of this property is that conflicts of interest which compromise the accuracy of affiliated

analyst forecasts have a greater impact on an IPO’s return before non-affiliated analysts establish their credibility.
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3.4 Conditional Expectations and Forecast Heterogeneity

The law of iterated expectations is usually invoked to conclude that the “error” separating an expected

conditional return and its realization has zero mean. However, information portfolio theory allows dif-

ferent information sources to utilize distinct statistical methodologies when forecasting state variables

or ascertaining their return implications. Disparate return forecasts also originate from information

sources analyzing different state variables. Consequently, the law of iterated expectations does not

ensure homogenous return forecasts across the J information sources. The potential for disagreement

regarding future state variables and their impact on the asset’s return justifies the existence of multiple

information sources in our framework. From a practical perspective, we assume the asset’s expected

return is sufficiently complex to prevent information sources from obtaining identical estimates for η.

Our framework’s structure allows an asset’s return forecasts to be determined by multifactor asset

pricing models when factors such as the market return are interpreted as state variables. An individual

asset’s true expected return is unknown for several reasons in these formulations; randomness in the

dynamics of the factors, estimation error in the factor loadings for individual assets, and uncertainty

regarding the number of required factors as well as their composition.19 Alternative return forecasts

could be generated by price targets and intrinsic value measures which are studied in Brav and Lehavy

(2003) and Lee, Myers and Swaminathan (1999) respectively.

However, the standard econometric approach when testing market efficiency restricts itself to a

single expected return estimate, which fails to account for uncertainty surrounding the interpretation

of available information. Thus, the standard methodology ignores disagreement regarding forecasts

of the factor returns. In particular, the market’s expected return is assumed to be known ex-ante,

in contrast to the BusinessWeek survey mentioned in the introduction which has year-end return

forecasts for the S&P 500 ranging from -29.5% to 30.0%. Furthermore, the beta coefficient for each

factor is assumed to be known and agreed upon by all information sources, while each information

source is further assumed to employ the same multifactor model. Statistically, the beta coefficients in

multifactor models are estimated using time series data and fixed for a given horizon to produce a single

estimate for an asset’s expected return. In contrast, our information portfolio weights are time-varying

and consider a cross-section of return forecasts. Indeed, the optimal information portfolio is updated

19Alternatively, an information source could utilize a state variable to predict the market’s return next period.
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each period to reflect changes in the historical accuracy of each information source. Fluctuations in

the information portfolio weights are more pronounced when n in equation (1) is small. Appendix B

discusses these issues in more detail.

One concern regarding information portfolio theory may be the appearance of systematic expected

return biases that appear to indicate the presence of psychological biases. In the next section, we

demonstrate that our optimal information portfolio weights induce return characteristics that mimic

biases utilized in the behavioral finance literature.

4 Properties of the Perceived Return

This section connects our optimal information portfolio with several characteristics of the perceived

return previously attributed to investor psychology. In particular, we demonstrate that the appearance

of overconfidence, biased self-attribution, representativeness, conservatism and limited attention are

induced by the optimal information portfolio. However, none of the information sources nor the

investor are assumed to be influenced by psychological biases.

Several empirical studies link firm characteristics and periods of uncertainty with behavioral biases

originating from the psychology literature.20 In the context of information portfolio theory, return char-

acteristics induced by the optimal information portfolio which mimic behavioral biases are strongest

when expected return uncertainty is high. At the opposite end of the uncertainty spectrum, if all infor-

mation sources issue identical return forecasts for an asset, then the information portfolio is irrelevant

since any combination of these forecasts yields the same perceived return.

4.1 Appearance of Overconfidence and Biased Self-Attribution

To analyze the appearance of overconfidence in the perceived return, we examine two information

sources. This first information source is private and the second public, with their return forecasts

20These studies include Zhang (2005) and Kumar (2005). Baker and Wurgler (2005) report that young, small firms

are more sensitive to investor sentiment, while Jackson and Johnson (2006) find that momentum and post-earnings

announcement drift both result from events that significantly alter a stock’s earnings. The composite share issuance

variable of Daniel and Titman (2005) also indicates return predictability, while Vassalou and Apedjinou (2004) report

that momentum strategies are most profitable for firms with high levels of corporate innovation.
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and historical accuracies denoted by pr and pb subscripts respectively. The investor’s perceived return

appears to exhibit overconfidence whenever the information portfolio weight wpr for a private informa-

tion source exceeds the information portfolio weight wpb of a public information source. Later in this

subsection, we demonstrate that the appearance of overconfidence can occur even if the private and

public information sources have identical theoretical accuracies, especially when n is small.

Interpretation 1. Appearance of Overconfidence

Corollary 1 implies the following information portfolio weights for private and public information⎡
⎣ wpb

wpr

⎤
⎦ =

1

σ2
pr + σ2

pb

⎡
⎣ σ2

pr

σ2
pb

⎤
⎦ . (35)

Consequently, private information is overweighted with wpr exceeding wpb whenever σ2
pr < σ2

pb. Fur-

thermore, the perceived return equals

1

σ2
pr + σ2

pb

[
σ2

pr μpb + σ2
pb μpr

]
, (36)

which emphasizes μpr more than μpb.

According to equation (36), whenever a private information source is more accurate than its public

counterpart, the investor’s perceived return mimics overconfidence. Recall that several private in-

formation sources can originate from the investor since forecasts for state variables such as earnings

require further interpretation by the investor to become return forecasts. In contrast, price targets

yield explicit return forecasts which constitute public information sources. Overall, let the return

forecast μpr in equation (36) be associated with the investor’s most accurate source of private informa-

tion. Provided this private source is more accurate than the public information source over the last n

periods, the investor appears to exhibit overconfidence. We formalize this property after introducing

a characteristic of the perceived return which mimics biased self-attribution.

In the context of information portfolio theory, the investor exhibits the appearance of biased self-

attribution when one of their private information sources is more accurate than a public information

source according to equation (2), while another private information source is less accurate.21 Consider

21Intuitively, to connect historical accuracy with terminology in the psychology literature, confirming private informa-

tion sources are more accurate than a public information source according to equation (2), while disconfirming private

information sources have been less accurate than all public information sources over the last n periods.
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two private information sources along with the original public information source. The private infor-

mation source which is more accurate than the public information source is denoted by a c subscript,

while the less accurate private information source has a d subscript.

Interpretation 2. Appearance of Overconfidence with Biased Self-Attribution

Consider the variance-covariance matrix ⎡
⎢⎢⎢⎣

σ2
c 0 0

0 σ2
d 0

0 0 σ2
pb

⎤
⎥⎥⎥⎦ ,

with the property that σ2
d > σ2

pb > σ2
c . The corresponding information portfolio equals

[wc, wd, wpb] =
1

D

[
σ2

d σ2
pb, σ2

c σ2
pb, σ2

c σ2
d

]
,

where D is defined as D = σ2
d σ2

c + σ2
d σ2

pb + σ2
c σ2

pb. Therefore, the perceived return W T μ equals

[σ2
c μd + σ2

d μc] σ
2
pb + σ2

c σ2
d μpb

D
, (37)

which is influenced more by μc than μd.

The σ2
d > σ2

c property ensures the information portfolio weight for μc exceeds the information

portfolio weight of μd. Thus, historically accurate private information sources have more influence

over the investor’s perceived return. Interestingly, the investor’s perceived return may exhibit the

appearance of overconfidence even when their private information sources are inaccurate on average

since their less accurate private information sources receive smaller information portfolio weights. For

example, if the investor successfully predicts the return implications of industry characteristics, but

cannot reliably interpret a firm’s earnings, then the importance of industry data is accentuated by

the information portfolio at the expense of earnings. By implication, the investor pursues trading

strategies derived from private information sources which have provided them with individual success,

regardless of the technique’s generality.

Overall, the investor’s perceived return gravitates towards their most accurate private information

sources and away from those which are less accurate. This tendency causes the investor’s perceived

return to exhibit the appearance of overconfidence and biased self-attribution as a result of the optimal

information portfolio rather than psychology. These return characteristics are formalized below with
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two private information sources whose historical accuracies are denoted σ2
pr,1 and σ2

pr,2 respectively.

Let pj represent the probability that the jth private information source is less accurate than its public

counterpart, σ2
pr,j > σ2

pb, after n periods according to equation (2) which captures the relative skill of

the information sources from the investor’s perspective. Recall from the previous section that assessing

an information source’s skill is more difficult when n is small, implying pj ≈ 1
2
. The pj probabilities

are identically one-half when the return forecasts originate from a common distribution, with the

information sources having identical theoretical accuracies. The following four scenarios summarize

the comparative historical accuracies of the three information sources after n periods.

Scenario Historical Accuracies Probability Investor Appears to Exhibit

A σ2
pr,1 , σ2

pr,2 < σ2
pb < Neither (1 − p1) (1 − p2) Overconfidence from both private sources

B σ2
pr,1 < σ2

pb < σ2
pr,2 (1 − p1) p2 Overconfidence from 1st private source

and biased self-attribution

C σ2
pr,2 < σ2

pb < σ2
pr,1 p1 (1 − p2) Overconfidence from 2nd private source

and biased self-attribution

D Neither < σ2
pb < σ2

pr,1 , σ2
pr,2 p1 p2 No Overconfidence

Observe that the perceived return exhibits the appearance of overconfidence in scenarios A, B and

C , with a cumulative probability of 1− p1 p2. Therefore, when private and public information sources

are equally accurate, with p1 = p2 = 1
2
, the probability that the investor’s perceived return appears to

exhibit overconfidence is 75%. The investor appears to exhibit the greatest amount of overconfidence

in scenario A where both private information sources are more historically accurate than the public

information source. Furthermore, in scenarios B and C , a historically accurate (inaccurate) private

information source is assigned a larger (smaller) portfolio weight than the public information source.

Therefore, the probability that biased self-attribution appears to influence the investor’s perceived
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return equals 50%. Nonetheless, the appearance of overconfidence and biased self-attribution occurs

despite the two private and public information sources possessing identical levels of skill.

Finally, our results continue to apply when there are more public than private information sources.22

When two public information sources and one private information source are available, the following

four scenarios are relevant after n periods.

Scenario Historical Accuracies Probability Investor Appears to Exhibit

A σ2
pb,1 , σ2

pb,2 < σ2
pr < Neither p1 p2 No overconfidence

B σ2
pb,1 < σ2

pr < σ2
pb,2 p1 (1 − p2) Limited overconfidence from 2nd public source

and biased self-attribution

C σ2
pb,2 < σ2

pr < σ2
pb,1 p2 (1 − p1) Limited overconfidence from 1st public source

and biased self-attribution

D Neither < σ2
pr < σ2

pb,1 , σ2
pb,2 (1 − p1) (1 − p2) Overconfidence from both public sources

The concept of limited overconfidence in scenarios B and C reflects the private information source’s

larger portfolio weight relative to one of the two public information sources. Indeed, the investor’s

private information sources may be inaccurate on average. Only in scenario A when the private

information source is less accurate than both public information sources is there no evidence of over-

confidence.

22The relationship between the number of private information sources and their accuracy is ambiguous. More private

information sources could increase the likelihood of at least one private information source being more accurate than

the public information source. Conversely, additional private information sources may diminish the resources allocated

to generating each return forecast and thereby decrease their accuracy.
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4.2 Appearance of Representativeness and Conservatism

Recall from the previous section that the variance of an information source’s forecast error decreases

as a result of predictability in state variable dynamics as well as predictability in their return implica-

tions. These properties imply that trends are capable of increasing an information source’s portfolio

weight since trends imply predictability. For example, a strong trend in a binomial sequence consists

predominately of either up or down movements, implying the estimated binomial probability over the

last n observations would be near 0 or 1.

Consider two information sources, labeled consistent and inconsistent, with the former arising from

predictability in the dynamics of a state variable or its return implications. The return forecasts as well

as historical accuracies associated with consistent and inconsistent information sources are denoted by

c and d subscripts respectively, with the property σ2
I > σ2

C induced by predictability.

Interpretation 3. Appearance of Representativeness

Let μ =

⎡
⎣ μC

μI

⎤
⎦ and Θ =

⎡
⎣ σ2

C 0

0 σ2
I

⎤
⎦. From Corollary 1, the information portfolio equals

⎡
⎣ wC

wI

⎤
⎦ =

1

σ2
I + σ2

C

⎡
⎣ σ2

I

σ2
C

⎤
⎦ , (38)

which implies the perceived return

1

σ2
C + σ2

I

[
σ2

C μI + σ2
I μC

]
, (39)

is influenced more by μC than μI .

Hence, consistent information sources have more influence on the investor’s perceived return than

their inconsistent counterparts. However, trends can produce consistency without an information

source possessing any superior knowledge regarding the true dynamics of a state variable or its re-

lationship with future returns. Indeed, when n is small, the consistency of an information source

could be short-lived. For example, prior returns or industry characteristics may generate consistent

sources of information for an IPO until its earnings dynamics and return implications can be reliably

estimated.

Assume the return forecasts from two information sources both emanate from the true return

distribution, which is further assumed to be stationary. These two information sources have identical
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levels of theoretical accuracy. Therefore, any trend that causes one of the two information sources to

be more historically accurate after n periods is statistically insignificant. Nonetheless, for a finite n,

equation (2) implies one of the information sources is more accurate as in the following two scenarios.23

Scenario Consistent Inconsistent Probability Investor Appears to Exhibit

A σ2
1 < σ2

2
1
2 Representativeness; 1st source consistent, 2nd inconsistent

B σ2
2 < σ2

1
1
2

Representativeness; 2nd source consistent, 1st inconsistent

Observe that the appearance representativeness occurs in both scenarios, while its apparent mag-

nitude is proportional to the disparity |σ2
1 − σ2

2|. With both historical accuracies computed according

to equation (2), this distance decreases as n increases since the return forecasts from both information

sources arise from the same distribution.

Furthermore, the investor’s perceived return may appear insensitive to the release of new informa-

tion. As illustrated below, even for the simplest case where two information sources are available, the

perceived return has four degrees of freedom.

Interpretation 4. Appearance of Conservatism

According to Corollary 1, an infinite number of μC , μI , σ2
C and σ2

I combinations result in the same

perceived return,

σ2
C μI + σ2

I μC

σ2
C + σ2

I

.

Therefore, conservatism cannot be established without evaluating multiple sources of information since

the investor’s perceived return is an aggregate quantity.

As an example, suppose the return implications of earnings and sales are negatively correlated after

a large investment or period of price discounting. As demonstrated in the next subsection, negatively

23The return forecasts originate from a (normal) continuous distribution. Consequently, the probability that σ2
1 equals

σ2
2 after n periods is zero.
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correlated return forecasts receive larger information portfolio weights and have more influence on the

investor’s perceived return. Consequently, examining earnings or sales information in isolation creates

the impression that the investor’s perceived return exhibits conservatism.

4.3 Appearance of Limited Attention

The σ1,2 covariance term in Corollary 2 incorporates the appearance of limited attention into the

perceived return. Barber, Odean and Zhu (2003) present empirical evidence of this bias for individual

investors.

Figure 1 illustrates the response of the perceived return and its uncertainty in equations (25)

and (26) respectively as a function of the correlation between two forecasts. Observe that forecast

correlation has a dramatic impact on the investor’s aggregate uncertainty but less influence on their

perceived return. Appendix C formalizes this assertion by computing the partial derivatives of the

perceived return and its aggregate uncertainty in Corollary 2 with respect to σ12. Intuitively, the

investor ignores an information source whose return forecasts are positively correlated with more

accurate information sources. This behavior parallels the removal of independent variables in linear

regression models due to multicollinearity.

For example, if two analysts are simultaneously optimistic or pessimistic, then the investor may

limit their attention to a single representative information source, where optimism (pessimism) is

associated with positive (negative) forecast errors in equation (1). In contrast, if their return forecasts

offer alternative perspectives on the asset’s expected return, then the investor benefits from analyzing

both information sources. More formally, consider the portfolio weights in Corollary 2

w1 =
σ2

2 − σ12

σ2
2 + σ2

1 − 2σ12

(40)

w2 =
σ2

1 − σ12

σ2
2 + σ2

1 − 2σ12
.

If the two forecasts are independent, then σ12 equals zero and both portfolio weights are positive.

However, when σ12 equals σ2
1, the Cauchy-Schwartz inequality implies σ2

1 ≤ σ2
2 with the first information

source being more accurate than the second.24 From an economic perspective, when σ12 = σ2
1 , the

24The Cauchy-Schwartz inequality provides an upper bound on the covariance, (σ12)
2 ≤ σ2

1 σ2
2 . Therefore, when

σ12 = σ2
1 , this inequality implies σ2

1 ≤ σ2
2 .
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portfolio weights in equation (40) become

w1 =
σ2

2 − σ2
1

σ2
2 − σ2

1

= 1 (41)

w2 =
σ2

1 − σ2
1

σ2
2 − σ2

1

= 0 . (42)

Consequently, a large positive covariance between the two information sources eliminates the second

return forecast from the perceived return, with a visual illustration in Figure 2. Thus, investors tend

to ignore return forecasts which are positively correlated with more accurate information sources,

while negatively correlated forecasts have the greatest influence over the investor’s perceived return.

Therefore, when attempting to detect conservatism, it is essential to evaluate the aggregate impact of

contradictory information.25

In summary, the number of return forecasts the investor processes depends on their correlation

structure. Thus, the investor may rely on broadly defined sector information rather than firm-specific

characteristics if the latter are positively correlated within an industry. For example, during the

Internet bubble, the returns of dot-com firms appear to have been driven by industry characteristics.

In addition, earnings forecasts issued by analysts who herd are less likely to influence an asset’s

perceived return.

4.4 Rational versus Behavioral Interpretations

Although the perceived return is derived from the optimal information portfolio, this estimate of the

asset’s expected return is not referred to as being rational since the return forecasts may incorporate

investor psychology. In particular, the most accurate information sources could be those which incor-

porate investor psychology into their return forecasts. As a consequence, information portfolio theory

does not preclude behavioral biases from influencing the perceived return.

For example, suppose all J return forecasts are identical and equal to μ∗, with this common

expectation further assumed to be the result of at least one psychological bias. The investor’s perceived

25Moreover, limited attention can magnify the appearance of overconfidence since the investor focuses on a subset of

public signals which are negatively correlated. As a consequence, when n is small, if one of the public information sources

has been historically accurate, another public source of information is likely to have been inaccurate. At a minimum, a

private information source is assigned a larger portfolio weight than the inaccurate source of public information.
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return equals μ∗ regardless of the information portfolio and reflects investor psychology. Conversely,

the use of psychology could increase forecast dispersion due to disagreements over the exact nature

of the biases committed by investors. As a result, the relevance of information portfolio theory is

enhanced by differences of opinion regarding investor psychology. Overall, decomposing the perceived

return into the effects of psychology versus the optimal information portfolio is ultimately an empirical

question. Our objective in this paper is to demonstrate that expected return uncertainty instills the

appearance of psychological biases into an investor’s perceived return.

By estimating an investor’s expected return, information portfolio theory enhances rather than

contradicts utility maximization. Indeed, the investor’s perceived return and its aggregate uncertainty

are critical inputs in further asset pricing applications. Proposition 3 below, whose proof is in Appendix

D, provides a utility maximizing application of information portfolio theory.

Proposition 3. Assume the investor has a negative exponential utility function, U(M) = 1 − e−γM ,

with initial wealth M . Under the return distribution in equation (17), the optimal fraction of wealth f

invested in the risky asset equals

f =
1T Θ−1 (μ − rf1)

γ M [1 + ν1T Θ−11]
, (43)

where rf represents the riskfree interest rate.

As an explicit illustration, consider two correlated identical return forecasts issued by information

sources with identical historical accuracies (μ1 = μ2 = μ∗, σ2
1 = σ2

2 = σ2
∗) with σ12 describing the

off-diagonal sample covariance element as in Corollary 2. Under these specifications, the solution for

f in equation (43) reduces to

f =
2 (μ∗ − rf )

γ M

(
1

2ν + σ2∗ + σ12

)
. (44)

Observe that when information sources forecast higher returns or are more accurate historically, the

investor increases their exposure to the risky asset. When the return forecasts are negatively correlated,

the investor also purchases more of the risky asset. According to equation (44), accurate return

forecasts offset the investor’s risk aversion. Therefore, it is difficult to distinguish between the influence

of time-varying risk aversion from the asset’s expected return uncertainty.

As a special case of equation (44), the fraction of wealth allocated to the risky asset equals
η−rf

γ M ν

when there is no uncertainty regarding the asset’s expected return since σ2
∗ and σ12 are zero while

μ∗ = η.
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4.5 Contrast with Bayesian Methods

When an asset’s expected return is unstable, Brav and Heaton (2002) demonstrate that representa-

tiveness and conservatism result from Bayesian priors which underweight past or recent observations

respectively. In their model, these biases arise from uncertainty regarding a random change point

which initiates a different economic regime. Therefore, they highlight the difficulty posed by different

possible priors when attempting to disentangle rational from behavioral explanations of return pat-

terns. Furthermore, overconfidence may be inserted directly into the prior distribution of a private

return forecast by assuming the investor underestimates its variability. Alternatively, the attribution

bias in Gervais and Odean (2001) utilizes improper Bayesian updating to create overconfidence.

In contrast, perceived return characteristics induced by our optimal information portfolio arise from

aggregating across multiple return forecasts. As outputs of information portfolio theory, the enable us

to provide testable implications independent of any prior distribution. Although Bayesian updating is

applicable to multiple forecasts, a prior distribution(s) remains an integral part of the posterior and

therefore the investor’s expected return. In contrast, the weights assigned to information sources in

our framework are derived entirely from return forecasts and realizations.

5 Empirical Implementation

Information portfolio theory does not assume that investor beliefs are influenced by psychological

biases. Instead, uncertainty surrounding an asset’s expected return causes the optimal information

portfolio to induce these return characteristics. In this section, testable implications of information

portfolio theory distinct from psychological theories are discussed and verified empirically.

5.1 Testable Implications

There are several testable implications of information portfolio theory, including hypotheses that enable

us to distinguish our framework from psychology.

First, the return characteristics induced by information portfolio theory are more pronounced when

an asset’s expected return is uncertain. Therefore, in the aftermath of events which undermine the

relevance of previous return forecasts, the appearance of return characteristics that mimic overconfi-
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dence, biased self-attribution, representativeness, conservatism and limited attention in the perceived

return is more prevalent, as is return predictability. Corporate restructurings, significant investments

as well as technological innovations all reduce the relevance of previous observations and increase

the uncertainty surrounding a firm’s expected return. Second, predictable state variables which are

correlated with returns, regardless of their theoretical justification, influence the investor’s perceived

return. This tendency is also aggravated when expected return uncertainty is high. Third, negatively

correlated return forecasts reduce the investor’s aggregate forecast error. Consequently, contradictory

sources of information have greater influence over the investor’s perceived return.

Two testable hypotheses involving private return forecasts are also available. First, investors over-

weight their accurate private information sources (successes) at the expense of their less accurate pri-

vate information sources (failures). Consequently, the trading strategies implemented by an investor

are determined by the success of their private return forecasts. Second, less experienced investors

have a greater propensity to exhibit overconfidence and biased self-attribution since they have pro-

duced fewer forecast errors to assess their ability. This implication arises from n being specific to an

information source rather than being common to all information sources.

Overall, to distinguish between the implications of psychological theories versus information port-

folio theory, the accuracy associated with each information source is crucial. Evaluating information

sources by their historical accuracy facilitates empirical tests of information portfolio theory. Specifi-

cally, even in poor information environments, information portfolio theory posits that investors focus

on historically accurate sources of information.

However, psychological biases and information portfolio theory are not necessarily incompatible.

The extent to which they both influence the perceived return is ultimately an empirical question.

For example, if the most accurate information sources incorporate investor psychology into their re-

turn forecasts, then psychology undeniably impacts the investor’s perceived return. In this economy,

uncertainty surrounding the asset’s expected return causes the optimal information portfolio to aug-

ment, rather than completely explain, characteristics of the investor’s perceived return which mimic

behavioral biases.
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5.2 Hypotheses and Data

In our empirical implementation, there are implicitly two information sources; earnings and everything

unexplained by earnings. Testing information portfolio theory requires us to examine the transfor-

mation of earnings into returns and earnings variability. We examine the profitability of earnings

momentum strategies based on analyst forecast revisions to test both aspects of information portfolio

theory.

The relationship between returns and earnings forecasts generates our first hypothesis. Intuitively,

V ar [ξt] in equation (34) is being referenced. The first hypothesis is derived from the information

portfolio weights assigned to return forecasts that arise from earnings. Information portfolio theory

predicts that investors focus their attention on a firm’s earnings when this state variable has experi-

enced a stronger relationship with the stock’s realized returns.

Hypothesis 1. Earnings momentum is stronger for stocks when the return implications of their earn-

ings are more certain.

Our second hypothesis concerns earnings uncertainty and refers intuitively to V ar [ζt] in equation

(34). Higher earnings uncertainty translates into greater expected return uncertainty which causes

return predictability.

Hypothesis 2. Earnings momentum is stronger for stocks with higher earnings uncertainty.

The first hypothesis is critical to verifying information portfolio theory, while the second hypoth-

esis also has a behavioral interpretation (Zhang (2005)). Behavioral theory (e.g. Hirshleifer (2001))

posits that psychological biases are strongest in environments with high uncertainty as well as poor

information. Consequently, behavioral theory and our framework are both consistent with the second

hypothesis. However, for a given level of uncertainty, behavioral theory predicts stronger earnings

momentum when earnings are less informative (low sensitivity of returns to earnings), while informa-

tion portfolio predicts the opposite. Therefore, in contrast to the optimal information portfolio which

predicts investors attempt to find the “best” available sources of information, even during periods

of high expected return uncertainty, psychology does not predict that investors shun uninformative

state variables. Hence, the first hypothesis is crucial to distinguishing between our framework and

psychological explanations for return predictability.
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Our empirical tests consider all domestic primary stocks listed on the NYSE, AMEX and NASDAQ

with analyst coverage. The monthly stock return and market capitalization data are obtained from

CRSP while analyst forecasts are from the I/B/E/S Summary History dataset. The intersection of

the CRSP and I/B/E/S datasets over the January, 1976 to December, 2004 sample period is utilized.

The start date is determined by the beginning of the I/B/E/S Summary History dataset. Forecast

revisions are scaled by stock prices retrieved from I/B/E/S to account for adjustments such as stock

dividends and stock splits. Finally, we obtain book-to-market ratios (B/M) from Compustat.

We construct an uncertainty measure to proxy for the return dispersion in equation (5) as well

as a sensitivity measure to gauge the relative informativeness of earnings versus everything else when

forecasting returns.

5.3 Sensitivity of Returns to Forecast Revisions

Each month, we estimate stock price sensitivities to earnings information by computing the correlation

coefficient between stock returns and forecast revisions over the previous twelve months.26 These

correlations proxy for the return implications of analyst forecasts. In particlar, stocks with higher

correlations are more influenced by earnings since our sensitivity measure parallels the transformation

from earnings state variables into return forecasts.

I/B/E/S contains summary statistics on analyst forecasts for the third Thursday of each month

(referred to as the I/B/E/S compilation date hereafter). We define the forecast revision for firm i in

month t as

revi,t =
FY 1i,t − FY 1i,t−1

Pi,t
, (45)

where FY 1i,t and FY 1i,t−1 are the mean analyst forecast for fiscal year 1 in month t and t − 1

respectively, while Pi,t is the stock price provided by I/B/E/S on the compilation date in month t.27

26We also estimate the correlation coefficient using observations from the previous 6 and 24 months. Our results are

robust to these alternative estimates of the correlation coefficient.
27Additional adjustments on revi,t are performed in the month when a firm announces its fiscal year earnings since

analyst forecasts switch to the subsequent fiscal year after the announcement. Thus, the FY 1 estimates in two con-

secutive months could be forecasts for two different fiscal years. For example, suppose a firm announces its fiscal year

earnings in month t. If the announcement date is before the I/B/E/S compilation date in that month, revi,t is defined

as its mean FY 1 estimate in month t minus its mean FY 2 estimate in month t − 1. Conversely, if the announcement
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For each revi,t, we compute the contemporaneous stock return reti,t defined as the return of stock i

between two I/B/E/S compilation dates in month t− 1 and month t. Once again, the stock prices on

the I/B/E/S compilation dates are extracted from I/B/E/S.

Using the monthly forecast revisions and stock returns, we then find the return-forecast sensitivity

of stock i in month t by computing the correlation coefficient between revi and reti over the past

12 months. Based on this sensitivity measure, the stocks are sorted into three groups every month

consisting of the bottom 30%, middle 40% and top 30% respectively. For ease of illustration, these

three groups are labeled low sensitivity (S1), medium sensitivity (S2) and high sensitivity (S3) stocks.

5.4 Earnings Uncertainty

Our theory also asserts that return predictability is more pronounced when state variables are more

uncertain. The uncertainty of earnings information is measured using the standard deviation of analyst

forecasts scaled by stock price28

stdevi,t =
σi,t

Pi,t
. (46)

Along with the sensitivity classifications, we divide the stocks into three uncertainly groups each month

according to equation (46) which are comprised of the bottom 30%, middle 40% and top 30%. These

three groups are referred to as low uncertainty (U1), medium uncertainty (U2) and high uncertainty

(U3) stocks.

Table 1 provides an overview of the sensitivity and uncertainty portfolios. Furthermore, we in-

vestigate whether there are significant differences among the portfolios in terms of value/growth and

large/small characteristics as well as analyst coverage. The Spearman rank correlation coefficients

among the sensitivity measure, the uncertainty measure, B/M, size and the number of analysts are

computed each month, with their time series average reported in Panel A. Each month we also com-

pute the average rankings of B/M, size and number of analysts for the stocks in the sensitivity and

occurs after the I/B/E/S compilation date in that month, then revi,t remains defined as the difference in the mean FY 1

estimates between month t and t − 1. However, revi,t+1 is defined as the mean FY 1 estimate in month t + 1 minus the

mean FY 2 estimate in month t.
28As a robustness test, the mean analyst forecast is also used to normalize σi,t instead of the stock price. The results

under this alternative normalization are nearly identical to those using equation (46). Consequently, for brevity, they

are unreported but available upon request.
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uncertainty portfolios. The ranking is normalized to [0, 1]. Thus, a ranking of 0.5 is the median and

mean observation. Their time series averages are recorded in Panel B.

The statistics indicate low correlation between the sensitivity measure and the uncertainty measure

(0.062), B/M ratio (0.013) and size (0.016). The uncertainty measures correlation with size is also very

low (-0.018). On the other hand, the uncertainty measure has a positive correlation with B/M (0.265).

In other words, higher dispersion stocks tend to be high B/M or value stocks which is consistent with

the findings in Doukas, Kim and Pantzalis (2004). The correlation between the uncertainty measure

and B/M is confirmed in Panel B as the average ranking of B/M for the stocks in the low uncertainty

portfolio (U1) is 0.40, while the average ranking for the medium (U2) and high (U3) uncertainty

portfolios are 0.51 and 0.59 respectively. The pattern is also consistent in the double-sorted portfolios

(e.g. S1U1 is the portfolio of the stocks belonging to both S1 and U1). Besides this relationship,

the sensitivity and uncertainty portfolios are unrelated to B/M, size and analyst coverage factors.

The average rankings of the three variables (B/M, size and number of analysts) for the stocks in each

sensitivity and uncertainty portfolio are all close to 0.5 (with the exception of B/M and the uncertainty

portfolios). Therefore, the portfolios have similar B/M, size and analyst coverage characteristics, and

are well represented by an average stock.

5.5 Earnings Momentum Strategies

When the first two hypotheses are combined, the result is the following prediction for the profitability

of earnings momentum strategies. This third hypothesis states that these cross-sectional returns are

largest when earnings are informative during periods of high expected return uncertainty.

Hypothesis 3. Earnings momentum is strongest for stocks with high (previous) uncertainty and sen-

sitivity measures.

Earnings momentum is implemented as in Jegadeesh and Titman (1993), but with forecast revisions

over the past 6 months instead of stock returns. The forecast revision for firm i in month t is defined

as

REV 6i,t =
5∑

j=0

revi,t−j , (47)

38



where revi,t is defined in equation (45). We rank the stocks according to equation (47) and assign

them to one of five quintile portfolios each month. The bottom quintile portfolio contains stocks

with the most unfavorable earnings forecast revision, while the top quintile contains those with the

most favorable revision. Overlapping portfolios are then constructed to compute equally-weighted

returns each month. For instance, the portfolio having the most favorable revision (E5) consists of six

overlapping portfolios from the previous six ranking months. The return for this portfolio is the simple

average return of the six portfolios formed over the past six months. If a stock’s return is missing

during the holding period, it is replaced with the corresponding value-weighted market return. The

earnings momentum portfolio is the zero-investment portfolio that buys the most favorable revision

portfolio and sells the least favorable revision portfolio, E5-E1, each month.

Our earnings momentum strategy differs slightly from the standard price momentum strategy in

another respect. After ranking stocks according to their past returns, Jegadeesh and Titman (1993)

skip one month before buying stocks to avoid bid-ask spread and short-term stock price reversal.

This one month gap is not inserted into our strategies for two reasons. First, we rank stocks based

on their earnings which, unlike past returns, is not subject to the bid-ask spread problem. Second,

almost all earnings consensus estimates are available between the 10th and the 20th day of the month.

Consequently, about half a month has already been omitted before we start holding positions at the

beginning of next month.

5.6 Earnings Momentum Conditioned on Sensitivity and Uncertainty

Chan, Jegadeesh and Lakonishok (1996) document strong earnings momentum profits and suggest that

earnings momentum is caused by the slow response of market participants to earnings information.

If earnings momentum is caused by market under-reaction to earnings information, our theory would

predict that earnings momentum is stronger for stocks whose earnings information is more credible,

and those with more uncertain earnings. Thus, we hypothesize that earnings momentum strategies

are more profitable for stocks in the high sensitivity and high uncertainty portfolios.

Table 2 reports earnings momentum profits and illustrates the importance of return sensitivity to

earnings and earnings uncertainty. When the earnings momentum strategy is implemented using the

full sample, the strategy generates an average return of 0.69% per month with a t-statistic of 4.38.

Next, we implement the strategy separately for the three sensitivity groups (S1, S2 and S3). The
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momentum profit remains significant in each of the three groups. More interestingly, the profit increases

monotonically from the low sensitivity group (S1) to the high sensitivity group (S3), with the profit

of the latter being about 50% higher than the former (0.79% vs. 0.52%). To clarify, the grouping of

S1, S2 and S3 is determined before the stocks are assigned to the earnings momentum portfolios (E1

to E5), and thus before the buying or selling of stocks.

The momentum profit pattern is identical in the three uncertainty groups, increasing monotonically

from U1 to U3, the profit of U3 being approximately 70% higher than U1 (0.74% vs. 0.44%). When the

earnings momentum strategy is applied to double-sorted portfolios on sensitivity and uncertainty, the

monotonic increasing pattern of the momentum profits continues. Within each sensitivity group, the

profit increases monotonically from U1 to U3 (e.g. within the medium sensitivity group, the profit is

0.49%, 0.64% and 0.79% for S2U1, S2U2 and S2U3 respectively). In addition, within each uncertainty

group, the profit increases monotonically from S1 to S3 (e.g. within the medium uncertainty group,

the profit is 0.45%, 0.64% and 0.73% for S1U2, S2U2 and S3U2 respectively).

There is existing evidence that momentum profits are affected by factors such as the B/M ratio,

documented in Daniel and Titman (1999), along with size and analyst coverage, as reported in Hong,

Lim and Stein (2000). Our descriptive statistics in Table 1 indicate that our sensitivity and uncertainty

results are not manifestations of these factors.

In particular, our uncertainty measure is positively correlated with B/M, implying low uncertainty

stocks tend to be growth stocks. Daniel and Titman (1999) find stronger momentum among growth

stocks, and attribute this finding to investor overconfidence. If uncertainty is irrelevant, the positive

correlation between uncertainty and B/M would indicate higher momentum profit amongst low rather

than high uncertainty stocks. Therefore, our ability to find increasing momentum profits from U1 to

U3 attests to the importance of conditioning on uncertainty.

The sensitivity and uncertainty measures are also weakly positively correlated with analyst cov-

erage, although this feature is not found in Panel B of Table 1. Hong, Lim and Stein (2000) report

higher momentum profits for stocks with less analyst coverage, consistent with the slow diffusion of

information. Their findings also predict less momentum profits for the high sensitivity and high uncer-

tainty stocks, while we find increasing momentum profits from S1 to S3 and U1 to U3. Consequently,

the sensitivity and uncertainty measures both contain important conditional information that is not

captured by the existing literature.
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Overall, we can reasonably conclude that our earnings momentum results, which are derived from

sensitivity and uncertainty measures for the return implications of earnings and variability in earnings

respectively, are not driven by book-to-market, size and analyst coverage effects documented in the

existing literature.

6 Conclusions

To estimate an individual asset’s unknown true expected return, we introduce an optimal informa-

tion portfolio which minimizes the aggregate uncertainty of multiple return forecasts. Each return

forecast is issued by an information source after interpreting a relevant state variable forecast. The

information portfolio weight assigned to a return forecast depends on the historical accuracy of its

information source. The estimated expected return arising from our optimal information portfolio

exhibits the appearance of overconfidence, biased self-attribution, representativeness and conservatism

as well as limited attention. Therefore, the investor’s expected return displays characteristics that

have previously been attributed to investor psychology.

The return characteristics induced by our optimal information portfolio as well as return pre-

dictability are strongest when the uncertainty surrounding an asset’s expected return is high. How-

ever, testable implications of information portfolio theory distinct from psychology are available. In

contrast to Bayesian frameworks, these implications are independent of any assumed prior distribu-

tion. Specifically, even in poor information environments, investors focus on the most informative

state variables.

By examining the profits of earnings momentum strategies, we document the importance of return

sensitivity to earnings as well as earnings uncertainty. The two pillars of information theory are

verified since momentum profits increase monotonically from low to high sensitivity stocks, and from

low to high uncertainty stocks. More importantly, the sensitivity results continue after controlling

for the effects of information uncertainty. Thus, investors condition their beliefs in accordance with

information portfolio theory with historically accurate information sources having more influence on

expected returns. The significance of our sensitivity and uncertainty measures is not driven by factors

such as book-to-market, size and analyst coverage.

We also demonstrate that a utility maximizing investor reduces their exposure to the risky asset
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when uncertainty regarding its expected return increases, which complicates the distinction between

risk aversion and return uncertainty. Future applications of information portfolio theory could study

return volatility and trade volume arising from fluctuations in the information portfolio weights. Ex-

tending our framework to incorporate multiple assets would also enable its cross-sectional return

implications to be explored.
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Appendices

A Proof of Proposition 1

Denote the Lagrangian of equation (7) as

L(W, λ) =
1

2
W TΘW + λ(W T 1 − 1) , (48)

which generates two equations

∂L(W, λ)

∂W
= ΘW + λ1 = 0 (49)

∂L(W, λ)

∂λ
= W T1 − 1 = 0 (50)

involving two unknowns; W and the Lagrangian multiplier λ. Equation (49) is equivalent to

W = −λΘ−11 . (51)
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Multiplying the transpose of equation (51) by the 1 vector yields

W T1 = −λ1T Θ−11 (52)

which implies

1 = −λ1TΘ−11 , (53)

due to the W T1 = 1 constraint. Therefore, the λ parameter is solved as

−λ =
1

1TΘ−11
. (54)

Substituting equation (54) into equation (51) produces the final result

W =

(
1

1TΘ−11

)
Θ−11 , (55)

which satisfies the constraint

W T1 =

(
1

1TΘ−11

)
1T Θ−11 = 1 . (56)

B Multifactor Models and the Information Portfolio

A three factor version of equation (11) describes the asset’s true expected return as

η = β0 + β1 f1 + β2 f2 + β3 f3 , (57)

from which a vector μ of three return forecasts may be formed to represent the return implications of

each individual factor ⎡
⎢⎢⎢⎣

μ1

μ2

μ3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

α0,1 + α1,1 f1

α0,2 + α1,2 f2

α0,3 + α1,3 f3

⎤
⎥⎥⎥⎦ . (58)

The elements of μ in equation (58) arise from single factor versions of equation (11)

y = [α0,j + α1,j fj] + εj for j=1,2,3 (59)

= μj + εj , (60)
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where εj are mean zero error terms whose variances and covariances define the Θ matrix. The α0,j

intercepts ensure equation (59) provides three unbiased return estimates for η which conform to the

distributional assumption in equation (9). The three intercept terms are29

α0,j = β0 +
3∑

k=1

βk fk + [βj − α1,j] fj for k �= j . (61)

With the return forecasts in equation (59) conforming to equation (9), equation (14) implies W Tμ offers

an unbiased estimate of the asset’s true expected return η in equation (57). Therefore, regardless of N ,

multifactor models for an asset’s expected return are incorporated into information portfolio theory

when individual factor returns represent distinct state variables. The return forecasts μj associated

with each factor in equation (60) replace the single expected return arising from the multifactor model

in equation (11). For emphasis, the α0,j and α1,j coefficients are estimated using a time series regression,

along with the β0 and βj coefficients for j = 1, . . . , N . However, the information portfolio weights W

differ from the α coefficients in equation (59) as well as the β coefficients in equation (57). In particular,

the portfolio weights sum to one and are derived from the sample variances and covariances, computed

according to equations (2) and (3) respectively over the last n periods, for the εj errors in equation

(60) which define the Θ matrix.

In practice, the number of return forecasts J would exceed the number of factors N since their re-

turns are random and the asset’s factor loadings are estimated quantities. These sources of uncertainty

illustrate the generality of information portfolio theory which is not restricted to a single return forecast

for each asset. For example, if the Fama-French (1993) model is utilized to generate expected returns,

then information sources can disagree on the return prospects for small-cap and growth stocks as well

as the overall market. Thus, the cross-sectional dispersion in equation (5) is larger than the dispersion

across the three elements of equation (58) which assumes the random factor returns next period and

the asset’s factor loadings are known. This property applies to any specification for η and allows for

state variables that are not factor returns, including industry and macroeconomic trends, firm-specific

earnings forecasts and the projected profitability of their investments, among other possibilities.

29When the factors are orthogonal, estimates for the βj coefficients in equation (11) equal the α1,j regression estimates

in equation (59), which reduces equation (61) to α0,j = β0 +
∑3

k=1 βk fk for k �= j by eliminating the [βj − α1,j] fj term.
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C Covariances and the Perceived Return

The partial derivative of the investor’s perceived return in equation (25) with respect to σ12 equals

∂Perceived Return

∂σ12
=

− (μ1 + μ2) [σ2
1 + σ2

2 − 2σ12] + 2 [σ2
2 μ1 + σ2

1 μ2 − σ12 (μ1 + μ2)]

(σ2
1 + σ2

2 − 2σ12)
2

=
(μ2 − μ1) (σ2

1 − σ2
2)

(σ2
1 + σ2

2 − 2σ12)
2 . (62)

The sign of this derivative may be either positive or negative. According to the numerator of equation

(62), when either the return forecasts or their historical accuracies are identical, the investor’s perceived

return is invariant to σ12. Figure 1 illustrates the insensitivity of the perceived return to σ12 over a

range of values.

The partial derivative of the perceived return’s aggregate uncertainty in equation (26) with respect

to σ12 equals

∂Aggregate Uncertainty of Perceived Return

∂σ12
=

−2σ12 [σ2
1 + σ2

2 − 2σ12] + 2 [σ2
1σ

2
2 − (σ12)

2]

(σ2
1 + σ2

2 − 2σ12)
2

=
2σ12 [σ12 − (σ2

1 + σ2
2)] + 2σ2

1σ
2
2

(σ2
1 + σ2

2 − 2σ12)
2 . (63)

As illustrated in Figure 1, aggregate uncertainty is sensitive to the sign of the sample covariance. In

particular, when σ12 is negative, equation (63) is large and positive. Thus, uncertainty regarding an

asset’s expected return decreases as σ12 becomes more negative.

D Proof of Proposition 3

Recall from equation (17) that the asset’s ex-ante return is distributed N (
W Tμ, ν + W T ΘW

)
under

the distributional assumption in equation (9). To prove Proposition 3, the following utility maximiza-

tion problem is solved

max
f

E
{
U
[
M

(
(1 − f) (1 + rf ) + f

(
1 + W Tμ

))]}
= max

f
−E

[
exp

{−γ M
(
1 + rf + f

(
W Tμ − rf

))}]
= max

f
− exp

{
−γ M f W Tμ + γ M f rf +

γ2 M2 f2

2

[
ν + W T ΘW

]}
, (64)
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where the last equality results from the moment generating function of a normal distribution. This

maximization involves setting the partial derivative of equation (64) with respect to f

(−γ M W Tμ + γ M rf + γ2 M2 f
[
ν + W TΘW

])(−e

{
−γ M f WT μ+γ M f rf +γ2 M2 f2

2 [ν+WT ΘW ]
})

(65)

to zero. This requires the first term in the above product to be zero

−γ M W T μ + γ M rf + γ2 M2 f
[
ν + W T ΘW

]
= 0 . (66)

Therefore, the optimal investment in the risky asset equals

f =
W Tμ − rf

γ M [ν + W TΘW ]
, (67)

which becomes

f =
1

γ M

(
1T Θ−1μ
1T Θ−11

− rf

)
ν + 1

1T Θ−11

=
1T Θ−1 (μ − rf1)

γ M [1 + ν1T Θ−11]
, (68)

after substituting in the results of Proposition 2.

Observe that the optimal portfolio weights from Proposition 1 transform equation (67) into equation

(68). When there is no uncertainty regarding the asset’s true expected return, equation (67) implies

f =
η−rf

γ M ν
since W T μ = η and W TΘW = 0.
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Figure 1: Impact of correlation between two information sources on the perceived return and its

aggregate uncertainty according to equations (25) and (26) respectively. These plots are derived from

the following parameter values; μ1 = 0.07, μ2 = 0.10, σ1 = 0.40 and σ2 = 0.60. The σj parameter

denotes the square root of the jth information source’s historical accuracy computed in equation (2)

for j = 1, 2. These root mean-squared error (RMSE) estimates represent the uncertainty of the

corresponding return forecasts.
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Figure 2: Impact of correlation between two information sources on their corresponding information

portfolio weights. The plot above is derived from the following parameter values; μ1 = 0.07, μ2 = 0.10,

σ1 = 0.40 and σ2 = 0.60 (as in Figure 1). Observe that higher positive correlation reduces the portfolio

weight of the second information source which is less accurate than the first.



Sensitivity Uncertainty B/M Size # of Analysts
Sensitivity 1 0.062 0.013 0.016 0.111
Uncertainty 1 0.265 -0.018 0.129

B/M 1 -0.275 -0.091
Size 1 0.833

# of Analyst 1

B/M Size # of Analysts
S1 0.49 0.51 0.50
S2 0.50 0.50 0.50
S3 0.51 0.50 0.51

U1 0.40 0.50 0.48
U2 0.51 0.52 0.52
U3 0.59 0.48 0.50

S1U1 0.39 0.51 0.49
S1U2 0.51 0.52 0.51
S1U3 0.58 0.49 0.50
S2U1 0.40 0.50 0.48
S2U2 0.51 0.51 0.51
S2U3 0.59 0.48 0.49
S3U1 0.40 0.49 0.47
S3U2 0.50 0.51 0.52
S3U3 0.60 0.48 0.51

Panel A: Spearman Rank Correlation Coefficients

Table 1: Descriptive Statistics

Panel B: Characteristics of Sensitivity and Uncertainty Portfolios

This table describes our sensitivity and uncertainty measures as well as the characteristics of our dataset pertaining 
to B/M, size and number of analysts. The sensitivity measure is estimated monthly for each stock by computing the 
correlation coefficient between returns and price-scaled analyst forecast revisions over the previous 12 months. The 
uncertainty measure represents the price-scaled standard deviation of analyst forecasts for every stock each month. 
The sensitivity measure, uncertainty measure and number of analysts are derived from the I/B/E/S Summary 
History dataset, while B/M is the book-to-market ratio using the most recent quarterly data from Compustat. Size 
denotes the stock’s market capitalization as reported in CRSP. The Spearman rank correlation coefficients among 
the five variables are computed each month from January 1976 to December 2004. Panel A reports the time series
average of the Spearman correlation coefficients. Panel B reports growth/value, big/small and analyst coverage 
characteristics for the sensitivity and uncertainty portfolios. The sensitivity (uncertainty) portfolios denoted S1, S2 
and S3 (U1, U2 and U3) represent the bottom 30%, middle 40% and top 30% of stocks ranked according to their 
sensitivity (uncertainty) measures. Double-sorted portfolios are also formed (e.g., S1U1 consists of stocks that
belong to both S1 and U1). Each month, stocks are also ranked by B/M, size and number of analysts. This ranking 
is then normalized to the [0,1] interval. The average ranking for B/M, size and number of analysts in each 
sensitivity and uncertainty portfolio is computed monthly. The numbers in Panel B are the time series average for
these monthly rankings in each sensitivity and uncertainty portfolio. 



E1 E2 E3 E4 E5 E5-E1 t-stat
1.09 1.22 1.25 1.48 1.79 0.69 4.38

E1 E2 E3 E4 E5 E5-E1 t-stat
1.24 1.28 1.23 1.38 1.76 0.52 3.36
1.12 1.24 1.25 1.46 1.81 0.69 3.76
1.11 1.26 1.34 1.54 1.90 0.79 4.20

E1 E2 E3 E4 E5 E5-E1 t-stat
1.21 1.14 1.17 1.40 1.65 0.44 2.33
0.96 1.10 1.16 1.32 1.59 0.64 4.34
0.81 1.05 1.25 1.29 1.55 0.74 5.04

E1 E2 E3 E4 E5 E5-E1 t-stat
1.61 1.38 1.25 1.37 1.72 0.11 0.40
1.18 1.22 1.23 1.27 1.62 0.45 2.50
0.95 1.30 1.28 1.46 1.66 0.71 4.42
1.43 1.31 1.25 1.42 1.93 0.49 2.24
1.08 1.25 1.28 1.45 1.72 0.64 3.66
0.87 1.20 1.35 1.46 1.66 0.79 4.53
1.41 1.35 1.27 1.62 1.92 0.52 2.28
1.15 1.25 1.44 1.50 1.88 0.73 4.53
0.82 1.11 1.40 1.44 1.68 0.86 3.94

All

Panel C: Strategy conditional on uncertainty of earnings information

Table 2: Earnings Momentum Strategies

Panel A: Strategy using full sample

Panel B: Strategy conditional on sensitivity of stock price to earnings information

Panel D: Strategy conditional on both sensitivity and uncertainty

S1
S2
S3

U1
U2
U3

S1U1
S1U2
S1U3
S2U1

S3U3

S2U2
S2U3
S3U1
S3U2

This table describes the profitability of earnings momentum strategies applied to stocks with varying levels of earnings
uncertainty and return sensitivity to earnings. At the end of each month from July 1977 to December 2004, stocks 
from the intersection of the CRSP and I/B/E/S datasets are ranked on the basis of changes in consensus analyst 
earnings forecasts, measured by cumulative price-deflated revisions in the past six months. Stocks are assigned to five 
quintile portfolios, and equally weighted returns are computed for each portfolio. The bottom 20% is assigned to the 
E1 portfolio and the top 20% denotes the E5 portfolio. The trading strategy 6-0-6 in Jegadeesh and Titman (1993) is
then implemented. Each month, the portfolio containing the most favorable (unfavorable) past revisions is an 
overlapping portfolio consisting of the E5 (E1) portfolios during the previous six months. Returns for the favorable 
(unfavorable) overlapping portfolios are the average returns over the six E5 (E1) portfolios. If a stock's return is 
missing during the holding period, it is replaced with the corresponding value-weighted market return. The earnings 
momentum portfolio (E5-E1) is the zero-cost portfolio that buys the most favorable revision portfolio and sells the 
least favorable revision portfolio (E5-E1) every month. Panel A reports the results for the strategy using the full 
sample. Panel B reports the results for stocks sorted on their sensitivity to analyst forecast revisions (S1, S2 and S3). 
Stocks are assigned to these groups before the earnings momentum portfolios are formed. Panel C reports the results 
when stocks are grouped according to their price-scaled standard deviation of analyst forecasts (U1, U2 and U3). 
These uncertainty groups are also constructed prior to the formation of the earnings momentum portfolios. Panel D 
reports our results after double-sorting by the sensitivity and uncertainty measures (e.g. S1U1 represents the group of 
stocks belonging to S1 and U1).  




