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Abstract
In this paper I derive an ICAPM model based on an augmented definition of market wealth by
incorporating bonds, and by decomposing excess stock return news into bond premia news and
the remainder, news in the "true" equity premia. This model which represents an extension of the
Bad Beta Good Beta (BBGB) from Campbell and Vuolteenaho (2004), has three factors: Cash
flow news, equity premia news and bond premia news. The betas associated with bond premia
news are relatively stable across individual assets, in opposition to the equity premia betas. The
risk prices estimates of cash flow news (bad beta) are higher relative to equity premia news
(good beta) and this one has higher risk prices than bond premia news (excellent beta). Several
versions of the model outperform the CAPM and the BBGB models in pricing the
size/book-to-market portfolios. An augmented model which incorporates scaled factors related
with time-varying risk aversion, shows that risk aversion is negatively correlated with bond
premia news. This model has very low pricing errors and is also able to price the value premium,
in addition to other ICAPM specifications. Preliminary results show that the momentum factor
(UMD) factor is mostly insignificant in the presence of the ICAPM factors, and this suggests
that at least partially the ICAPM with time-varying bond premia and risk aversion can take into
account momentum.

Keywords: Asset pricing; Asset pricing models; Conditional pricing models;
Consumption-based models; Equity premia; ICAPM; Bond risk premia; Linear
multifactor models; Predictability of returns; Risk aversion; Time-varying risk
aversion; Stock and bond returns; Time-varying returns;
JEL classification: G11; G12; G14

*New University of Lisbon, Faculdade de Economia, Ph.D. program, Campus
de Campolide, 1099-032 Lisboa. E-mail1: pmaio@fe.unl.pt. E-mail2:
paulo.maio@netvisao.pt. Part of this paper was written when I was a visiting
scholar at Anderson School of Management-University of California Los
Angeles (UCLA) in 2005. I thank my advisors Pedro Santa Clara and Joao
Amaro de Matos for helpful discussions and suggestions. I have benefited from
comments by Daniel Ferreira, Quinglei Dai, Jose Tavares, Francesco Franco,
Chu Zhang, Laura Liu, Mungo Wilson, Paul Ehling, Richard Priesley and
seminar participants at the Informal Research Workshop at Nova, Norwegian
School of Management and Hong Kong University of Science and Technology.
I especially thank Bernard Dumas and John Campbell, for detailed comments
and suggestions. I thank the financial support from Fundacao para a Ciencia e
Tecnologia (Portuguese Government). All errors are mine.

1



Following the Merton (1973) ICAPM, state variables that predict market returns, should act

as risk factors that price the cross-section of ex-post average returns. Despite this prediction -

and the existence of a vast literature showing that the market equity premium is time-varying

and predictable at several horizons by a set of state variables linked to short term interest

rates, bond yields and financial ratios - there have been not many attempts to test the ICAPM,

even in the presence of the CAPM failure to explain the cross section of average returns.

Among the papers that implemented empirically testable versions of the original ICAPM, are

Campbell (1993, 1996), and more recently Chen (2003), Brennan et al (2004), Guo (2002)

and Campbell and Vuolteenaho (2004) (CV hereafter). Using the same framework employed

by Campbell (1993, 1996), with an Epstein and Zin utility function, and employing the

decomposition for unexpected market returns, CV derive an ICAPM with only two factors:

covariance with discount-rate news (good factor) and covariance with cash flow news (bad

factor). A decline in future cash flows leads to a decline in current wealth, and investment

opportunities are unchanged, thus representing a permanent decrease in wealth. On the other

hand, an increase in future discount rates leads to a decline in the current value of wealth, but

future investment opportunities improve, since current wealth will be invested at higher future

returns, thus we have a transitory decline in wealth. In this sense, CV argue that the risk price

(premium) of cash flow news should be higher than the risk price of discount rate news, i.e.,

investors will demand a higher premium to hold assets that are correlated with cash flow

news, than to hold assets that covary with discount rate news. In their model, this relation is

valid for the case of a risk-averse investor, with relative-risk aversion coefficient greater than

1. CV have found that growth stocks have higher discount-rate betas and lower cash flow

betas than value stocks, in their modern sub-sample. Their model is not rejected, leading CV

to conclude that the first order condition of a long-term investor that holds the market portfolio

is not violated, and the difference in average returns between value stocks and growth stocks

is explained by their different composition of cash flow and discount rate betas, and thus such
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an investor does not have incentives to overweight value stocks in his portfolio.

In this paper, I extend CV paper in four critical points. First, in response to the Roll (1977)

critique that the stock market index is an imperfect measure for total financial wealth, I use a

measure of the market portfolio as a weighted average of a stock index and a long maturity

government bond. Under this assumption, and using the same framework as in Campbell

(1993, 1996) and CV, I derive an ICAPM model with three factors: Cash flow news, excess

stock return news and excess bond return news.

Second, I decompose expected excess stock returns into expected excess stock-bond

returns and expected bond premia. Since the cash flows associated with stocks are uncertain

- as opposed to bonds which have fixed cash flows that are known beforehand - in order to

compensate for the risk associated with cash-flows, stocks earn a risk premium over

long-term bonds originating higher expected returns, in average. Thus, we can reinterpret

excess stock return as being composed by two components: Bond risk premia, used to

discount the "certain" part of future stock cash flows, and the stock-bond risk premia used to

discount the random or "risky" part of future cash flows, which represents the "true" equity risk

premia. Using this decomposition for excess stock returns, news about future excess stock

returns can be decomposed into news about future equity premia and news about bond

premia. A rise in both news components is associated with an improvement in investment

opportunities, since current wealth will be reinvested at higher returns, but while future bond

returns are known a priori, since they are used to discount certain cash-flows, future stock

returns are uncertain given that they are used to discount uncertain future cash-flows. Thus, a

rise in future bond returns represent a "certain" increase in future investment opportunities,

whereas the expected increase in future excess stock returns, represents an "uncertain"

increase in future financial wealth. Using the "bad beta, good beta" terminology from CV, we

can speak of a bad beta, a good beta and an "excellent" beta, which is the covariance with

bond premia news. Thus apart from the fact that the risk price (premium) of cash flow news
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should be higher relative to both equity premia and bond premia news, news on stock-bond

excess returns should have a higher risk price (premium) than news on future excess bond

returns, due to the uncertainty involved in reinvested wealth. I calculated betas associated

with the two components of excess stock return news, and find that bond premia news have

relatively stable betas across the book-to-market quintiles, as expected since the type of risk

involved as to due with changes in long-term interest rates used to discount riskless cash

flows. On the other hand, in the case of the equity premia factor, growth stocks have

significantly higher (magnitude) betas than value stocks. I derive the ICAPM associated with

this decomposition for news in excess stock returns, and find that the risk price (premium) for

stock-bond excess returns is higher relative to the risk price associated with bond premia

news. In addition, the model improves slightly the pricing ability for the size/book-to-market

portfolios, relative to both the bad beta, good beta (BBGB) model from CV and the CAPM.

These results are robust for alternative characteristic portfolios and alternative bond returns.

An extension of the benchmark ICAPM that allows for time-varying covariances greatly

improves the explanatory power over the cross section, in comparison with the BBGB and

benchmark models.

In third place, I derive an unrestricted ICAPM with bond premia - in a heteroskedastic

context - which allows the risk prices to be freely estimated, and find that i) bond premia news

is a priced factor and ii) the model improves the pricing ability relative to the homoskedastic

ICAPM. A heteroskedastic ICAPM with revisions in real interest rates also fits well the cross

section of returns and in particular the size/book-to-market portfolios.

In forth place, I derive and estimate a generalized ICAPM that allows for time-varying risk

aversion, assuming that risk aversion is explained by the business cycle (dividend yield) and

bond premia news. The results show that a rise in bond risk premia is associated with lower

current risk aversion, which can be explained by an association between changes in risk

aversion and rebalances between bonds and stocks in investors’ portfolios. The ICAPM with
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both time-varying bond premia and risk aversion produces very low average pricing errors for

the size/book-to-market portfolios, and the average pricing errors across the book-to-market

quintiles are also very small, and similar to those from the Fama-French (1993) model. Thus,

several specifications of the ICAPM with bond premia are able to price the value premium. In

addition, the momentum factor UMD when added to the ICAPM model, it is only partially

significant, and thus the ICAPM takes into account, at least partially, the momentum observed

in stock prices.

I. Theoretical framework

A. Measuring the market wealth

Roll (1977) argues that we can not test the CAPM with a noisy proxy for the market

portfolio, and that the stock market index is an imperfect measure of the market portfolio. To

minimize this concern, I assume that the representative investor holds bonds in addition to

stocks in his portfolio. Therefore, the market portfolio is a weighted average of a stock market

index and a proxy for the bond market, where the weights are given by the respective market

values. Data from the NYSE show that the total capitalization of the three Exchanges - NYSE,

NASDAQ and AMEX - at the end of the first semester 2005 is around 16.5 trillion usd. In

addition, data from the FRED II database available from the St. Louis FED’s website indicate

that the value of US Treasury debt at the end of first quarter, 2005 is around 8 trillion usd.

Given the existence of corporate bonds in addition to government bonds, I assume that stocks

represent 70% of the market portfolio, while bonds represent 30%. This will be the benchmark

weights used in the paper.

B. A four factor ICAPM

The ICAPM model developed in this paper will make use of the decompositions for excess

stock market returns and excess bond returns, derived in the Appendix. Following Campbell

and Shiller (1988a), Campbell (1991) and Campbell and Ammer (1993) (CA thereafter) the
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unexpected excess stock market return can be decomposed as

Et1 − Etrm,t1 − rf,t1  rt1
CF − rt1

H − rt1
R∗ 1

where rt1
CF ≡ Et1 − Et∑j0


jΔdt1j, rt1

H ≡ Et1 − Et∑j1


jrm,t1j − rf,t1j and

rt1
R∗ ≡ Et1 − Et∑j0


jrr,t1j represent news about future cash flows, news about future

excess stock returns and news about future real interest rates, respectively. This equation

says that innovations in current excess stock returns are associated with an increase in

expected future cash-flows, a decrease in expected future excess returns or a decrease in

expected future real interest rates.

On the other hand, the current unexpected excess bond return can be decomposed as

Et1 − Etrb,t1 − rf,t1  −rt1
B − rt1

R − rt1
 2

where rt1
R ≡ Et1 − Et∑j1


jrr,t1j is the same as rt1

R∗ above, (up to the first term in the

summation Et1 − Etrr,t1), rt1
B ≡ Et1 − Et∑j1


jrb,t1j − rf,t1j represents news about

future excess bond returns, and rt1
 ≡ Et1 − Et∑j1


jt1j denotes expectations of future

inflation rates. This equation is similar to the bond return decomposition presented in CA, and

it shows that a rise in current unexpected excess bond returns is the result of either a

decrease in expected future excess bond returns or a decline in future nominal interest rates.

Both equations 1 and 2 represent accounting dynamic identities that arise from the

definition of stock and bond returns, as shown in the Appendix. Since stocks represent claims

on real cash flows, then they should be "neutral" to changes in inflation expectations, and

hence, future inflation rates should not help to price the cross section of stock returns. In

response to that, I approximate equation 2 by ignoring expectations of future inflation,

Et1 − Etrb,t1 − rf,t1 ≈ −rt1
B − rt1

R 3

To derive the equilibrium asset pricing model, I Follow Campbell (1993, 1996) and

Campbell and Vuolteenaho (2004) (CV thereafter) and use an Epstein and Zin utility function,

6



Ut  1 − Ct

1−
   Et Ut1

1− 1



1−

4

where  ≡ 1−
1− 1


,  is the elasticity of intertemporal substitution,  is the relative risk aversion

parameter,  is a time discount factor, and Ct denotes consumption. This utility function has

the advantage of allowing to separate  and , contrary to the power utility function where  is

the reciprocal of .

In this context, the intertemporal budget constraint is given by

Wt1  Rp,t1Wt − Ct 5

where Wt represents total market wealth and Rp,t1 is the simple return on the "market"

portfolio. The market portfolio return finances the stream of consumption, and is equal to a

weighted average of the returns on a stock market index and a long-maturity bond which

represents a proxy for the bond market,

Rp,t1  Rm,t1  1 − Rb,t1 6

where Rm,t1 denotes the simple return on the stock market portfolio and Rb,t1 denotes the

simple return on a long-maturity bond. As shown in the Appendix, the log market return can

be approximated as

rp,t1 ≈ rm,t1  1 − rb,t1 7

with rp,t1  lnRp,t1 representing the log market return and similarly rm,t1 and rb,t1 denoting

the log returns on stocks and bonds, respectively.2 Given equation 7 the conditional

expected return on total wealth, is given by

Etrp,t1 ≈ Etrm,t1  1 − Etrb,t1 8

Following Epstein and Zin (1989, 1991), the objective function 4 has an associated pricing

equation in simple returns given by

1  Et  Ct1
Ct

− 
 1

Rp,t1
∗

1−
Ri,t1
∗ 9

where the asterisk stands for real returns. The corresponding stochastic discount factor

(SDF) is equal to
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Mt1   Ct1
Ct

− 
 1

Rp,t1
∗

1−
10

and a corresponding log SDF given by,

mt1   ln − 
 Δct1 − 1 − rp,t1

∗ 11

where Δct1 ≡ ln Ct1
Ct

denotes log consumption growth.

Summing and subtracting both 
 EtΔct1 and 1 − Etrp,t1

∗  yields,

mt1   ln − 
 EtΔct1 − 1 − Etrp,t1

∗  − 
 Δct1 − EtΔct1

−1 − rp,t1
∗ − Etrp,t1

∗ 

 Etmt1 − 
 ct1 − Etct1 − 1 − rp,t1

∗ − Etrp,t1
∗  12

where the second equality makes use of the fact that Δct1 − EtΔct1  ct1 − Etct1.

Substituting ct1 − Etct1 by its expression derived in the Appendix, it follows

mt1  Etmt1 − 
 rp,t1

∗ − Etrp,t1
∗   1 − Et1 − Et∑j1


jrp,t1j

∗

−1 − rp,t1
∗ − Etrp,t1

∗ 

 Etmt1 − rp,t1
∗ − Etrp,t1

∗   1 − Et1 − Et∑j1


jrp,t1j

∗ 13

where the last equality follows from substituting the expression for  above. By adding and

subtracting the real risk-free rate rr,t1, and using the fact that excess nominal returns are

equal to excess real returns, one has

mt1  Etmt1 − Et1 − Etrp,t1 − rf,t1 − Et1 − Etrr,t1

1 − Et1 − Et∑j1


jrp,t1j − rf,t1j  1 − Et1 − Et∑j1


jrr,t1j 14

where the absence of asterisk indicates nominal returns, and rf,t1 is the nominal risk-free

rate.

By using equation 8, it follows

mt1  Etmt1 − Et1 − Etrm,t1 − rf,t1 − 1 − Et1 − Etrb,t1 − rf,t1

−Et1 − Etrr,t1  1 − Et1 − Et∑j1


jrm,t1j − rf,t1j

1 − 1 − Et1 − Et∑j1


jrb,t1j − rf,t1j  1 − Et1 − Et∑j1


jrr,t1j 15
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If we employ the decompositions for current unexpected stock and bond excess returns in

equations 1 and 3 above, we have,

mt1  Etmt1 − rt1
CF − rt1

H − rt1
R  − 1 − −rt1

B − rt1
R   1 − rt1

H

1 − 1 − rt1
B  1 − rt1

R − 1 − Et1 − Etrr,t1

 Etmt1 − rt1
CF  rt1

H  1 − rt1
B  rt1

R 16

where in the last equality, I assume 1 − Et1 − Etrr,t1 ≈ 0, or in alternative that the

current real interest rate has a negligible role in pricing the cross section of returns.

Making ft1 ≡ rt1
CF , rt1

H , rt1
B , rt1

R  ′ and b ≡ −,, 1 − , 1 ′ and using Theorem 1 in the

Appendix, we have finally the pricing equation,

Eri,t1 − rf,t1 
i

2

2   i,CF −  i,H − 1 −  i,B −  i,R 17

where  i,CF ≡ Covri,t1, rt1
CF,  i,H ≡ Covri,t1, rt1

H ,  i,B ≡ Covri,t1, rt1
B , and

 i,R ≡ Covri,t1, rt1
R  denote the asset covariance with cash flow news, excess stock return

news, excess bond return news and real interest rate news, respectively, and i
2

2 is a

Jensen’s Inequality adjustment arising from working with log returns.

In the ICAPM model represented in equation 17, there are four factors which help to price

assets, and the covariances risk prices are theoretically constrained. The only free parameter

to be estimated in the cross-section is the relative risk aversion parameter  which affects the

risk price of covariance with cash flow news. For a risk-averse investor   1 the risk price

associated with cash-flow news should be higher than (minus) the risk price of excess stock

return news1. In addition for   0.5, the risk price of covariance with excess stock return

news should be higher (in magnitude) than the risk price of covariance with bond premia

news. Equation 17 represents a generalization of the bad beta, good beta model (BBGB)

from CV. If we allow   1, i.e. financial wealth is composed only by a stock index, then the

BBGB model arises as a special case of 17,

Eri,t1 − rf,t1 
i

2

2   i,CF −  i,H −  i,R 18

9



This is equivalent to the model in CV, with the only difference being the inclusion of  i,R,

which is ignored in their paper since they assume that the log real risk-free rate is

approximately constant, and therefore revisions in future real interest rates are zero.

C. ICAPM with time-varying bond premia: Benchmark model

The specification in 17 ignores the relation between stock and bond returns. In fact, both

stocks and bonds share common characteristics, since in both cases the current asset value

is the discounted sum of a long stream of future cash flows. Nevertheless, stocks exhibit two

key differences relative to long maturity bonds: First, there is an infinite stream of future

cash-flows, thus stocks have higher duration risk than bonds, which have fixed maturities.

Therefore, given a common discount rate, stocks are more sensible to changes in future

discount rates. Second, and most important, the cash flows associated with stocks are

uncertain, as opposed to bonds which have fixed cash flows that are known beforehand. To

compensate for the risk associated with cash-flows, stocks earn a risk premium over

long-term bonds, originating higher returns in average. Thus, we can reinterpret stock excess

returns as being composed by two components: Bond risk premia, used to discount the

"certain" part of future equity cash flows, and the stock-bond risk premia (stock returns in

excess of bond returns) used to discount the "risky" part of future equity cash flows, which

represents the "true" equity risk premia.

If we assume a time-varying stock-bond risk premia kt1, then expected stock market

returns can be represented as,

Etrm,t1  Etrb,t1  Etkt1 19

As shown in the Appendix, this originates that excess stock return news can be split into

stock-bond premia news, and excess bond return news,

rt1
H  rt1

K  rt1
B 20

where rt1
K ≡ Et1 − Et∑j1


jkt1j denotes news about future stock-bond premia, which

represent the true equity premia news. These two components have a distinct fundamental
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interpretation: Bond premia news represent revisions in future discount rates used to discount

certain future cash-flows, whereas stock-bond premia news represent revisions in future

expected discount rates used to discount uncertain future cash flows.

Substituting 20 in equation 16 above, and ignoring the real interest rate news factor -

which has a marginal role in pricing the cross section of returns - the log SDF is given by

mt1  Etmt1 − rt1
CF  rt1

K  rt1
B 21

Making ft1 ≡ rt1
CF , rt1

K , rt1
B  ′ and b ≡ −,, 1 ′ and using Theorem 1 in the Appendix, one

has,

Eri,t1 − rf,t1 
i

2

2   i,CF −  i,K −  i,B 22

where  i,K ≡ Covri,t1, rt1
K  represents covariance with excess stock-bond return news. The

model in 22 will be the benchmark ICAPM analyzed in this paper, and the difference to the

ICAPM in equation 17, is that now the covariance with excess stock return news  i,K is

replaced by the covariance with stock-bond premia news  i,K, which has the same risk price

given by −. Thus, for a conservative investor   1, the risk price associated with cash-flow

news should be higher than (minus) the risk price of "true" equity premia news. The second

difference to model 17 is that the covariance with bond premia news receives a risk price of

−1 compared with −1 −  previously. In consequence, since   1 the risk price of

covariance with stock-bond premia news is lower (in magnitude) than the risk price of

covariance with bond premia news.

Since most asset pricing models are estimated and evaluated in terms of factor betas’ risk

prices, we can restate equation 22 in terms of single regression betas, originating the

following model,

Eri,t1 − rf,t1 
i

2

2  CF
2  i,CF − K

2 i,K − B
2 i,B 23

where CF
2 , K

2 and B
2 represent the variances of rt1

CF , rt1
K and rt1

B , respectively. The risk

prices for betas can be derived by   CF,K,B ′  − fb, where  f is a diagonal matrix with

the factor variances on its main diagonal. In terms of betas risk prices, it will be the variances
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of rt1
K and rt1

B that will determine whether  i,K has a higher (magnitude) risk price than  i,B or

not.

In addition, the model in covariances 22, can be represented in an expected return-beta

form with multiple-regression coefficients, as shown in Theorem 1 in the Appendix,

Eri,t1 − rf,t1 
i

2

2  ∗′ i  CF
∗  i,CF  K

∗ i,K  B
∗ i,B 24

where ∗ ≡ CF
∗ ,H

∗ ,B
∗ ′  −Varft1b denote the vector of factor risk prices, and

 i ≡ Varft1
−1Covri,t1, ft1 represents the 3x1 vector of multiple-regression betas for asset

i. The ’s represent the risk prices of multiple-regression beta risk for each of the factors. The

risk prices depend on the SDF coefficients  - as in the case of risk prices of both covariances

and single regression betas - but also on the variances and covariances between the factors,

since we are working with multiple regression betas. Given  ≡ − fb,  f ≡ Varft1, standard

errors for the factor risk price estimates can be calculated as,

Var   fVarb f 25

since  f   f
′, and given

Varb 
Varb∗ 01X2

02X1 02X2
26

with b∗ ≡ − representing the SDF parameters to be estimated in the cross-section. Since

some of the risk prices are fixed a priori by the model, and hence are not estimated,

estimating the model with multiple regression betas, allow us to derive t-statistics for all the

individual factors, in order to evaluate whether they are priced.

II. Asset pricing tests

A. Data

The testing assets used in the tests and evaluations of the asset pricing models are the

Fama-French (1993) 25 portfolios sorted on size and book-to-market (SBV25), and

Fama-French (1997) 38 industry sorted portfolios (IND38), all obtained from Prof. Kenneth
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French’s website. Due to missing observations, the returns associated with five industries -

Sanitary Services (GARBG), Public Administration (GOVT), Steam Supply (STEAM), Irrigation

Systems (WATER) and the residual class of industries (OTHER) - are excluded from the

sample, leading to a total of 33 industry portfolios. The 1 month Treasury bill rate used to

calculate excess returns, and data on the book-to-market ratios and returns of small value and

small growth portfolios, are also obtained from Prof. French’s website. Return data on the

value-weighted market index and 10 year Treasury bond are from CRSP, while monthly data

on prices and earnings associated with the Standard & Poor’s (S&P) Composite Index are

obtained from Professor Robert Shiller’s website. Macroeconomic and interest rate data,

including the Federal funds rate, 10 year and 1 year Treasury bond yields, 3 month Treasury

bill rate, and the consumer price index are all obtained from the FRED II database, available

from the St. Louis FED’s website.

B. Estimating the news components of stock and bond excess returns: a VAR approach

Following Campbell (1991) and CA, I rely on a first-order VAR to estimate the news

components for both unexpected stock and bond returns - rt1
CF , rt1

H , rt1
B and rt1

R . The VAR3

equation assumed to govern the behavior of a state vector X t, which includes the excess

stock market return, excess bond return and other variables known in time t - that help to

forecast changes in expected stock and bond returns - is given by

X t1  AX t   t1 27

I Follow Campbell (1991) and CA in estimating the revisions in expected excess bond

returns and real interest rates,

rt1
R ≡ Et1 − Et∑j1


jrr,t1j  e3 ′AI − A−1 t1   ′ t1 28

rt1
B ≡ Et1 − Et∑j1


jrb,t1j − rf,t1j  −Et1 − Etrb,t1 − rf,t1 − rt1

R

 −e2   ′ t1 29

Here  is a discount coefficient linked to the average log consumption to wealth ratio 
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≡ 1 − expEct − wt, or average dividend yield, e2 and e3 are indicator vectors that take a

value of one in the cell corresponding to the position in the VAR of the excess bond return and

real interest rate, respectively, A is the VAR coefficient matrix, and  ′ ≡ e3 ′AI − A−1 is the

function that relates the VAR shocks with real interest rate news. The estimate of rt1
R differs

from Campbell (1991) and CA in that the term Et1 − Etrr,t1 is not included, whereas rt1
B

represents an infinite sum. The existence of a infinite sum in both 28 and 29, relies on the

assumption that the representative investor has a very long term horizon, and rolls-over the

long maturity bonds on his portfolio. One can think of this assumption in relation to some

pension funds which need to have some minimal proportion of bonds in their portfolios, in

order to satisfy their payout obligations. In addition, equation 29 is an approximation rather

than a exact relation, and includes the parameter  contrary to Campbell and Ammer (1993).

The difference in my results arises from using a coupon bond as opposed to zero-coupon

bonds as in their paper, and from ignoring the inflation component of bond excess returns.

This decomposition threats the news in bond excess returns as the residual component of

unexpected bond returns, which has the advantage of avoid giving too much weight to interest

rate news.

The equity premia news and cash flow news, are estimated in a similar way to Campbell

(1991) and CA,

rt1
H ≡ Et1 − Et∑j1


jrm,t1j − rf,t1j  e1 ′AI − A−1 t1   ′ t1 30

rt1
K  rt1

H − rt1
B  e2     ′ t1 31

rt1
CF ≡ Et1 − Et∑j0


jΔdt1j  Et1 − Etrm,t1 − rf,t1  rt1

K  rt1
B  rt1

R

 e1     ′ t1 32

where e1 is the indicator vector that assigns a value of one in the cell corresponding to the

position of the excess stock market return in the VAR, and  ′ ≡ e1 ′AI − A−1 is the function

that relates the VAR shocks with revisions in expected future excess stock returns. Treating

14



cash-flow news as the residual component of unexpected stock returns has the advantage

that one does not have to model directly the dynamics of dividends. Both stock and bond

return decompositions are dynamic accounting identities that arise from the definition of stock

and bond returns, and thus are not behavioral models for asset returns. In order to be

consistent, with previous work (CV), I assume   0.95 1
12 , which corresponds to an average

consumption to wealth ratio of approximately 5% per year.

The state-vector associated with the first-order VAR is given by

X t ≡ rrt,FFPREMt,TERMt,VSt,EYt, rbt, rmt ′, which follows the representations used in CA and

CV. The 1 month real Treasury bill rate, rr,t is an indicator of short-term interest rates and it is

used to estimate the real interest rate news component. FFPREM represents the spread

between the Federal Funds rate and the 3 month Treasury bill rate, and thus it is a measure

of both monetary policy actions and short-term interest rates. Its inclusion in the VAR is

justified by previous evidence that both monetary policy (Jensen, Mercer and Johnson (1996),

Patelis (1997), Bernanke and Kuttner (2005)) and short-term interest rates (Campbell (1991),

Hodrick (1992), Ang and Bekaert (2003)) do forecast future expected equity market returns, at

least for short term forecasting horizons. In an alternative specification using the relative bill

rate (RREL) - employed by Campbell (1991) and Hodrick (1992) - instead of FFPREM, the

respective coefficient estimate in the equation for the market return was non significant

(t-statistic of -1.384). TERM represents the term structure spread - measured as the

difference between the 10 and 1 year Treasury bond yields - which represents a proxy for the

yield curve slope, and has been widely used in the predictability of returns literature, since

Fama and French (1989) have found that TERM tracks the business cycle. EY denotes the

log earnings yield (calculated as the log of the earnings to price ratio associated with the S&P

Composite index), used instead of the market dividend yield (Fama and French (1988)), in

light of recent evidence that the forecasting power of the dividend yield has decreased since

the 90’s, which might be related to a possible structural break in firms’ dividend policies,
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causing more firms to paying less dividends (Fama and French (2001)). The value spread,

VS, defined as the difference between the log book-to-market ratios of small value and small

growth stocks, is used in the VAR system employed by CV, which argue that this spread

being related with the value premium - an anomaly not priced by the CAPM - should help to

predict market returns, if the ICAPM is true. In a dynamic context, if growth (value) stocks

have lower (higher) expected returns than predicted by the CAPM, then it must be the case

that the returns of growth (value) stocks forecast lower (higher) expected market returns, or

shifts in the investment opportunity set. Thus, a decrease in the book-to-market ratio of growth

stocks (equivalent to an increase in the current returns of growth stocks) forecasts lower stock

market returns, or equivalently, a increase in the value spread forecasts lower stock market

returns. Finally, the sample used in estimating the VAR is 1954.07-2003.12.

Descriptive statistics for the VAR state variables are presented in table I. The first-order

autocorrelation coefficients show that TERM, VS and especially EY are very persistent

variables, whereas, to a lower degree both FFPREM and the real interest rate exhibit some

short term momentum. Furthermore, the VAR state variables are not significantly correlated,

with the most relevant correlation occurring between VS and EY (-0.614).

The VAR coefficient estimates and associated Newey-West (1987) t-statistics (calculated

with 5 lags) are presented at Table II, Panel A. The bottom row of Panel A shows that

FFPREM, EY and rb have short-term forecasting power over the stock market return:

FFPREM predicts negative market excess returns 1 month ahead, consistent with previous

evidence (Patelis (1997), Bernanke and Kuttner (2005)), and both EY and rb predict positive

market returns, also consistent with previous evidence (CV, Maio (2005b)). FFPREM and EY

are statistically significant at the 1% level, whereas rb is significant at the 5% level, which is

remarkable in the case of EY, given previous evidence that the forecasting power of financial

ratios is greater for long-horizon returns (beyond 1 year) (Fama and French (1988, 1989),

Hodrick (1992)). On the other hand VS forecasts positive stock returns, but the effect is not
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statistically significant. In the equation for bond returns, both rr and TERM predict positive

bond returns, in line with previous evidence (CA), whereas VS and EY have also positive

predictive power over bond returns. In addition, stock returns strongly forecast negative bond

returns. The adjusted R2 for the stock and bond forecasting regressions are 3.8% and 4.3%,

respectively, in line with the values for monthly predictive regressions existent in the literature.

Regarding the other equations in the VAR, rr is close to an AR(1) process, but it is also

negatively forecasted by both FFPREM and rb, and positively forecasted by VS; FFPREM is

mainly explained by its lagged value, but both TERM and rm also have negative forecasting

power on it, and rb positively forecasts FFPREM. TERM and VS are close to AR(1)

processes, although EY helps to predict (negatively) VS, and rb positively forecasts TERM. In

the equation for EY, the lagged values for EY and FFPREM forecast a rise in EY, whereas

lagged VS, TERM and rr are negatively correlated with EY. In addition, both bond and stock

market returns forecast negatively EY, which in the latter case might be related to mean

reversion observed in stock prices.

The results for the estimated "news" components associated with bond and stock excess

returns are presented in Table II, Panels B and C respectively, which are similar to the Table

3 presented in CV. News about bond excess returns contribute the most for the variance of

unexpected bond returns (0.915), whereas news about future real interest rates have a small

contribution to the overall bond variance (0.094). These results confirm previous evidence

(CA, Cochrane and Piazzesi (2005)), that the "Expectation theory" of the term structure -

which states that bond risk premia should be constant trough time - is not validated by the

data.

In respect to the stock return decomposition, equity premia news have the largest weight on

the total stock market return variance (0.803), compared to the variance of cash-flow news

(0.341), a result that goes in line with previous evidence (Campbell (1991), CA, CV) which

emphasizes the fact that excess return news is the main determinant of unexpected equity
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market return’s volatility. In addition, cash flow news is almost uncorrelated with equity premia

news, with their covariance having a very small weight on the overall market variance. On the

other hand, the covariance between bond premia and equity premia news represents -0.397

of the stock variance. News about future real interest rates have a negligible contribution,

representing less than 3% of the stock market variance, also in line with previous evidence

(CA), whereas the variance of bond premia news represent more than 20% of the market

variance, hence, expectations of future bond premia represent an important component of

innovations in current stock returns.

By analyzing the correlations of shocks in the individual VAR state variables with both rt1
B

and rt1
R , the most relevant results are that innovations in the real interest rate are strongly

positively correlated with rt1
R , which is a signal that real short-term interest rates exhibit some

persistency. On the other hand, shocks on excess bond returns are strongly negatively

correlated with rt1
B , indicating that bond prices exhibit long term mean reversion, i.e., high

bond returns today are followed by lower expected bond returns in the future, a confirmation

of the dynamic identity stated in 2 and 3.

From the correlations between individual shocks and both rt1
K and rt1

CF , we can verify that

the innovations on VS are weakly negatively correlated with equity premia news, in line with

the results obtained in CV. Innovations on EY are strongly positively correlated with rt1
K ,

confirming that EY forecasts positive stock market returns - in part due to the mean reversion

in stock prices - whereas innovations in bond returns are weakly positively correlated with rt1
K ,

confirming the previous result that bond returns help to predict positive stock market returns.

Finally, innovations in stock market returns are strongly negatively correlated with equity

premia news, reflecting the existence of long term mean reversion in stock prices, in line with

the results produced in CV, and confirming the dynamic identity in 1. Shocks in current

market returns are also positively correlated with cash flow news, indicating that the rise in

current stock prices, are at least partially, justified by an improvement in future cash-flows or
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earnings.

C. Estimating factor betas

In table III, I present single regression betas for the news components associated with stock

and bond returns, for the case of the 25 size/book-to-market portfolios. The cash-flow betas

are positive, while the betas associated with both equity premia and bond premia news are

negative. Thus, an increase in future aggregate cash-flows and a decrease in both future

excess stock market and bond returns lead to higher individual stock returns today, as

expected. Comparing the two betas related with discount rate news, equity premia news have

higher (magnitude) betas than bond premia news, i.e., the individual assets are more sensible

to rises in future excess stock-bond returns than rises in future bond premia. The average

betas across the 25 portfolios for the cash flow, equity premia and bond premia factors are

1.062, -0.763 and -0.275 respectively.

In Panels B and C, I present the average betas across book-to-market (BM) and size

quintiles. The average betas within the book-to-market quintiles indicate that growth stocks

have slightly higher cash-flow betas than value stocks (1.222 for BV1 versus 1.055 for BV5,

representing a difference of 0.168), and there is a monotonic relation between book-to-market

and cash flow betas. On the other hand, growth stocks have higher (absolute) equity premia

news betas, relative to value stocks (-1.008 for BV1 versus -0.678 for BV5), with the relation

between betas and book-to-market being close to monotonic. The findings for cash-flow

contradict the results in CV, which have found in their modern sub-sample that value stocks

have higher cash flow betas relative to growth stocks, although the relation between

book-to-market and equity premia betas confirm their results that growth stocks have higher

(magnitude) discount rate betas than value stocks. The difference in results to CV regarding

the cash flow betas might be related to the longer sample employed in their VAR. The bond

premia betas for growth stocks have slightly higher magnitudes relative to value stocks

(-0.291 for BV1 versus -0.238 for BV5), but the relation between betas and book-to-market is
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not monotonic in this case. An important finding in these results, is that there is much more

dispersion across the quintiles, for the equity premia betas than the bond news betas

(absolute difference between BV1 and BV5 of 0.330 for equity premia beta versus 0.052 for

the bond premia beta), thus the betas associated with bond news are much more stable

across portfolios. This result shows that the risk premium (beta times risk price) associated

with news in future bond excess returns is approximately the same across the individual

stocks, while the risk premium associated with news in future equity premia presents sharp

differences within the cross-section. This goes in line with the proposition that the type of risks

measured by bond premia news - changes in discount rates used to discount certain

cash-flows in the future - should be similar across individual stocks. The fact that growth

stocks have marginally higher bond betas than value stocks has to due with their higher

duration risk, i.e., since they discount more distant cash flows into the future, they are more

sensible to rises in future long term interest rates. On the other hand, the risky component of

future cash flows represents a larger share of the total cash flows for growth stocks in

comparison with value stocks - which have more stable cash flows - and hence growth stocks

should be more sensible to changes in discount rates (equity premia) used to discount those

risky cash flows, in comparison to value stocks.

The average betas associated with size quintiles, indicate that small stocks have slightly

higher cash-flow betas than large stocks (1.058 for S1 versus 0.993 for S5). In what concerns

the equity premia beta, small stocks have higher absolute betas than big caps (-0.892 for S1

versus -0.601 for S5), while the opposite relation holds for bond premia news betas (-0.158 for

S1 versus -0.321 for S5). Therefore, and contrary to the case of growth relative to value

stocks - where growth stocks were riskier than value stocks, in terms of cash flow, equity

premia and bond premia betas - small caps are not unambiguously riskier than big caps, since

small stocks have lower (absolute) bond premia betas. The absolute difference between S1

and S5 for bond premia beta is 0.163, but still significantly lower than the dispersion for equity
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premia beta (0.291), and thus the bond premia betas are relatively more stable than equity

premia betas, across the size quintiles.

The single regression betas associated with the industry portfolios, presented in Table IV

show that there is also wide dispersion in betas across industries. In general, the betas of

equity premia news have higher magnitudes than the betas for bond premia news, with the

exception of Telephone and Telegraph communication (PHONE), Tobacco products

(SMOKE), Electric, Gas and Water supply (UTILS) and Finance, Insurance and Real estate

(MONEY) industries. The average betas across the industry portfolios for the cash flow, equity

premia and bond premia factors are 1.049, -0.728 and -0.296, respectively, which represent

similar values relative to the average betas across the book-to-market portfolios.

ELCTR (UTILS) have the highest (lowest) cash flow beta (1.401 versus 0.617), whereas

Services (SRVC) have the highest (magnitude) equity premia beta (-1.001) compared to

-0.218 for UTILS on the other extreme. In terms of bond premia betas, and excluding 3

outliers which have positive betas, MONEY has the largest (magnitude) beta (-0.601)

compared to -0.107 for Petroleum and Coal products (PTRLM), and this spread is lower than

the dispersion for the equity premia beta. Therefore, the bond premia betas are more stable

across industries than the equity premia beta.

D. Estimating the factor risk premia

The natural econometric framework to estimate and test the asset pricing models presented

in the previous section, is the two stage GMM procedure, which uses as weighting matrixes,

the identity matrix in the first stage and the inverse of the spectral density matrix, S−1 in the

second stage. The N sample moments correspond to the pricing errors for each of the N test

assets at hand,

gTb∗ ≡ 1
T ∑t1

T
ri,t1 − rf,t1 

i
2

2 −  i,CF   i,K   i,B  0

i  1, . . . ,N 33

where the covariances and variances were previously estimated, and b∗ ≡  represent the
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parameter to be estimated. This GMM system - which will be denoted by GMM I - does not

account for the measurement error in the variances of returns and covariances between

returns and factors. To address this issue, an additional GMM system is used - denoted by

GMM II -

gTb∗ ≡

1
T ∑t1

T
ri,t1 − rf,t1  1

2 ri,t1 −  i2 − ri,t1 −  irt1
CF  ri,t1 −  irt1

K  ri,t1 −  irt1
B   0

i  1, . . . ,N 34

where  i ≡ Eri,t1, represents the average return for asset i.4 Both systems 33 and 34

produce the same point estimates for b∗, although the respective standard errors in system

34 are corrected from the measurement error in covariances, which is not accounted for in

system 33.

The standard errors for the parameter estimates and moments are presented in the

Appendix, and the asymptotic test that the pricing errors are jointly zero, with ̂ ≡ gTb̂
∗
, is

given by

̂ ′var̂−1̂~2N − 1 35

with N − 1 denoting the number of overidentifying conditions.

Following Cochrane (1996, 2001), and given the fact that var̂ is singular in most of the

cases, I perform a eigenvalue decomposition of the moments’ variance-covariance matrix,

var̂ QQ′, where Q is a matrix containing the eigenvectors of var̂ on its columns, and 

is a diagonal matrix of eigenvalues, and then only the non-zero eigenvalues of  are inverted,

producing a generalized inverse of var̂.

In Table V (Panel A), I present the estimation and evaluation results for the ICAPM model

of equations 22 and 23 above, estimated with first stage GMM, and for three alternative

values for  (  0.7,0.6,0.5).

Following Lo and Mackinlay (1990), who argue against testing asset-pricing models by

using returns on portfolios sorted on some characteristic associated with returns themselves, I
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use the combination of size/book-to-market and industry portfolios (SBV25IND38) as an

additional group of test assets. I also present the risk prices for multiple regression betas in

addition to single regression betas.

In terms of single regression betas, the estimates for both K and B are the same across

the two classes of portfolios, since they are constrained a priori by the model. K have higher

magnitudes than B as a result of the higher variance of equity premia news relative to bond

premia news. CF is much higher than the negative of K across the two classes of test

assets, confirming that cash-flow news has a higher risk price than equity premia news. In

terms of average risk premium (average beta times risk price), cash flow news have a higher

risk premium than the equity premia factor (0.647 versus 0.078 for SBV25 and 0.570 versus

0.076 for SBV25IND38), and this factor in turn has a higher average premium than the bond

premia factor (0.011 and 0.012 for SBV25 and SBV25IND38, respectively). Thus, as

predicting by the model, cash flow news (bad beta) have a higher risk price (premium) than

(minus) equity premium news (good beta), and the equity premia factor has a higher risk price

(premium) than bond premia news (excellent beta).

The risk aversion parameter  is clearly greater than 1 - indicating that the average "real"

investor is risk averse - and assumes higher values for SBV25 than for SBV25IND38 (13.961

versus 12.387). In terms of statistical significance,  is highly significant for SBV25 and the

combined portfolios - at 1% and 5% levels with GMM I and GMM II standard errors,

respectively. The ICAPM model is not rejected by the asymptotic 2 test, for both classes of

test assets.

The average pricing error (root mean square error) given by

RMSE  1
N ∑i1

N
̂ i

2 36

is higher for SBV25 than for the combined portfolios (0.272 versus 0.237), due to the high

volatility in the returns of the size/book-to-market portfolios relative to the industry portfolios.
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Following Lettau and Ludvigson (2001), the cross-sectional R2 is computed as,

R2  1 −
∑

i1

N
̂i

2

∑
i1

N
r̄i

2
37

where r̄i ≡ Eri,t1 − rf,t1 
i

2

2 . This goodness of fit measure assumes reasonable high

values - 0.881 for SBV25 and 0.887 for SBV25IND38.

By looking at the risk prices associated with multiple regression betas, B is strongly

significant in both classes of portfolios (1% level), whereas K is not significant in the test with

SBV25 portfolios.

The estimation results for alternative weights of the stock index in the market portfolio are

reported in Panels B (  0.6) and C (  0.5). Given the lower value of , the risk price of

equity premia news decreases in magnitude relative to Panel A (–0.088 and -0.073 versus

-0.103). Nevertheless, the equity premia factor still has higher (magnitude) risk prices than the

bond premia factor, given the higher variance of equity premia news relative to bond premia

news. The estimates of  increase relative to Panel A - 16.573 and 20.228 for   0.6 and

  0.5 respectively, in the case of SBV25 - and in consequence the estimates of CF are now

higher, for both classes of portfolios. The risk price of the bond premia factor continues to be

significant in terms of multiple regression betas, whereas K is not priced. Overall, the

average pricing errors are sensibly the same than for the benchmark case with   0.7.

The estimation results associated with second stage GMM - where the weighting matrix is

the inverse of the spectral density matrix S−1 - are presented in Table VI. The estimates of 

have slightly lower values relative to the first stage estimates, and hence the cash flow risk

price is lower than in Panel A. Nevertheless, the statistical significance improves relative to

Panel A, with  and the risk prices of cash flow and bond premia factors being significant at

the 1% level. In addition, K is significant at the 10% (SBV25) and 5% (SBV25IND38) levels,

in the case with   0.6.

E. Alternative portfolios
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I perform the estimation of model 22 for alternative sets of portfolios sorted on individual

characteristics - 10 portfolios sorted on the earnings to price ratio (E/P); 10 portfolios sorted

on the cash flow to price ratio (CF/P) and 10 portfolios sorted on the dividend to price ratio

(D/P) - from Fama and French (1996).

The factor loading estimates presented in Table VII, show that cash flow betas are positive

and both equity and bond premia betas are negative, similarly to the SBV25 and IND38

portfolios. Furthermore, both cash flow and bond premia betas are almost flat across the

extreme deciles, for both E/P and CF/P portfolios. On the other hand, the equity premia betas

are significantly higher (in magnitude) for the lowest decile in comparison with the highest

decile portfolio (absolute differences of 0.283 and 0.253 for E/P and CF/P, respectively). In

respect to the D/P portfolios, the portfolio containing stocks with the lowest dividend yield has

higher cash flow betas than stocks with the highest dividend yield (difference of 0.532). In

addition, the lowest decile portfolio has lower absolute bond premia betas than the largest

decile, although the difference is not as significant as for the equity premia betas (0.168

versus 0.643). Overall, these results confirm that the equity premia betas have much higher

dispersion across assets, than bond premia betas.

The risk price estimates (from efficient GMM) for the alternative portfolios - reported in

Table VIII - show that the estimates for both  and CF increase relative to the estimates

associated with the SBV25 and industry portfolios, reported in Table VI. In terms of statistical

significance, both the RRA parameter and the beta risk prices are significant in most cases,

the exception being the equity premia risk price, which is significant only at the 10% level, for

the CF/P and D/P portfolios. On the other hand, the cross sectional R2 indicate higher values

in comparison with both SBV25 and SBV25IND38 in Table VI, thus confirming that the

ICAPM with bond premia has a greater explanatory power over the returns of the

characteristic-sorted portfolios, and in particular for the D/P portfolios (R2 of 0.922).

The results for the combined portfolios (SBV25 plus the 30 characteristic portfolios) show
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that the R2 is higher relative to all SBV25, SBV25IND38 and E/P, but lower than for CF/P and

D/P. In addition, all the beta risk prices are strongly significant. In the case of the 55

characteristic portfolios, the average risk premium associated with the cash flow, equity

premia and bond premia factors are 0.624, 0.071 and 0.013 respectively, similar to the values

obtained for the SBV25 portfolios.

F. Alternative bond returns

The model 22 is also tested by using alternative proxies for the bond return in addition to

the 10 year Treasury bond. The additional bond returns are the Moody’s seasoned AAA and

BAA corporate bond returns and the return on an equally weighted portfolio containing the 3,

5 and 10 year Treasury bonds. Following Campbell, Lo and Mackinlay (1997) and Campbell,

Chan and Viceira (2003), the log bond returns are calculated from the respective yields to

maturity, using the following log linear approximation,

rn,t1 ≈ Dntynt − Dnt − 1yn,t1 38

with the duration of a n maturity bond being approximated as

Dnt ≈ 1−1Ynt −n

1−1Ynt −1
39

where yn,t1  ln1  Ynt denotes the log bond yield5. In the case of corporate bonds (AAA

and BAA), n is set to 20 (years), and in the case of the Treasury bonds, n is set to 3, 5 and 10

years.

The estimation results for these alternative returns are presented in Table IX. We can see

that the estimates for the RRA parameter and cash flow risk price are very similar across the

three types of bond returns. In comparison with Table VI, Panel A, the estimates for  and CF

are only slighter higher for the alternative returns, whereas the R2 achieves similar values

relative to the benchmark bond return.

In sum, the results for the three alternative bond returns are sensibly the same to those

obtained previously with the 10 year Treasury bond.

G. Time-varying covariances
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A conditional representation of model 22 can be presented as

Etri,t1 − rf,t1 
i

2

2   i,CF −  i,K,t −  i,B,t 40

where  i,K,t ≡ Covtri,t1, rt1
K  and  i,B,t ≡ Covtri,t1, rt1

B  represent the conditional covariances

with equity premia and bond premia news, respectively, whereas the variance of individual

returns and the covariance with cash flow news, are assumed to be conditionally

homoskedastic.6

In order to obtain an analytic expression for the time-varying covariances, I assume that the

product of individual returns with a factor ft1, is governed by the following AR(1) process,

ri,t1ft1  ritft  britftxt  ui,t1 41

where ui,t1 represents an error term with Etui,t1  0, and xt denotes a state variable

known in period t. Given 41, the conditional covariances in 40 are equal to

 i,K,t ≡ ritrt
K  bKritrt

Kxt

 i,B,t ≡ ritrt
B  bBritrt

Bxt 42

Substituting 42 in 40 originates the following conditional model

Etri,t1 − rf,t1 
i

2

2   i,CF − ritrt
K − bKritrt

Kxt − ritrt
B − bBritrt

Bxt 43

By applying the law of iterated expectations and noting that

Eritrt
jxt  Covrit, rt

jxt ≈ Covri,t1, rt1
K xt, j  K,B

we have the following approximated unconditional model

Eri,t1 − rf,t1 
i

2

2 ≈  i,CF −  i,K −  i,B − bK i,K,x − bB i,B,x 44

where  i,K,x ≡ Covri,t1, rt1
K xt and  i,B,x ≡ Covri,t1, rt1

B xt represent the covariances with the

scaled factors that measure time variation in the covariances with equity and bond premia

news. By imposing bK  bB  0, one obtains model 22 as a special case of 44.

The results for the augmented ICAPM with time-varying covariances are displayed in Table

X. The scaling variables that determine the covariances, are the market dividend yield (DY),

the smoothed log earnings yield (EY*) and the default spread (DEF)7. These variables have

been used in the literature as forecasters of future market returns (Keim and Stambaugh
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(1986), Fama and French (1988, 1989), Hodrick (1992), CV, among others). Panels A and D

present the results for DY, Panels B and E display the results for EY*, and Panels C and F for

DEF. In the models with DY and EY*, the estimates for both bK and bB are positive, indicating

that the scaling variables DY and EY* forecast positive covariances of individual returns with

both equity and bond premia news. While bB is in general non significant, bK is statistically

significant for both DY and EY* models and for the SBV25 portfolios (both first and second

stage estimation) and SBV25IND38 (only with efficient GMM estimates). In the specification

scaled by DEF, the estimates for both bK and bB are negative, hence DEF forecasts negative

covariances between individual returns and both equity and bond premia news. In the model

scaled by EY* and DEF, the estimates of the RRA parameter and cash flow risk price

produced by SBV25 are significantly higher than the corresponding estimates in Tables V and

VI, Panel A.

Overall, the average pricing errors compare favorably with the benchmark model of Tables

V and VI, in special for the SBV25 portfolios - in the DY model, RMSE (R2) achieve values of

0.223 (0.913) compared with 0.272 (0.881) in Table V.

III. A heteroskedastic ICAPM with bond risk premia

A. An ICAPM with revisions in the variances of returns

The ICAPM models of equations 22 and 23 are derived under the assumption that log

consumption growth and log market returns are jointly homoskedastic, an assumption that

allows to substitute log consumption growth from the log SDF, as shown in the Appendix. I

show in the Appendix G.1 that with jointly heteroskedastic log consumption growth and market

returns, the pricing equation 22 becomes,

Eri,t1 − rf,t1 
i

2

2   i,CF −  i,K −  i,B  0.522 i,Vm  1 − 2 i,Vb 45

where  i,Vm ≡ Covri,t1,Vt1
m ,  i,Vb ≡ Covri,t1,Vt1

b . Vt1
m ≡ Et1 − Et∑j1


jrm,t1j

2 and
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Vt1
b ≡ Et1 − Et∑j1


jrb,t1j

2 represent proxies for revisions in future stock and bond return

volatilities, respectively. This model says that upward revisions in the variance of future stock

and bond returns, earn a positive risk price, which increases with  ≡ 1−
1− 1


. In addition, the risk

price associated with  i,Vm should be higher than the risk price for  i,Vb, with   0.5.

The estimation results of model 45 are reported in Table XI, Panels A and B. The

parameter estimated in the cross section, V  0.52, and the risk prices associated with the

stock and bond volatility news factors VM  2V, VB  1 − 2V, are not robust in sign,

presenting either positive and negative estimates. Furthermore, the estimates of those

parameters are not significant, being only marginally significant (10%) for SBV25IND38 and

the 55 characteristic portfolios, with efficient GMM.

Panels C and D present the results for the reduced model

Eri,t1 − rf,t1 
i

2

2   i,CF −  i,K −  i,B  0.522 i,Vm 46

which assumes that the variance of bond returns is homoskedastic, and hence only

revisions in the variance of stock market returns are priced. Again, the results are not robust,

with V being positive and significant in the case of SBV25 and first stage GMM, and negative

and significant for the combined portfolios in the second stage estimation. We can also see

that the RMSE and R2 are almost the same as in the benchmark model presented in Tables

V, VI and VIII, so the model with news in variances does not add significant additional

explanatory power for the cross section. These results seem to suggest that changes in

volatility are less persistent than changes in expected returns, and thus have a minor pricing

power for the cross-section of returns, in the context of a dynamic model.

B. An unrestricted ICAPM with bond risk premia

Following Campbell (1993), I derive an alternative model in the presence of joint

heteroskedasticity for consumption and market returns, with the time-varying intercept of

consumption being linearly related with the expected returns on both stocks and bonds,
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EtΔct1  p,t  Etrp,t1 47

p,t ≡ 0  1Etrm,t1  21 − Etrb,t1 48

The assumption 48 is the same as the condition in Campbell (1993), p,t ≡ 0  Etrp,t1,

with the difference that the expected returns on stocks and bonds have different impacts on

the time-varying intercept.8 p,t reflects the influence of time-varying risk - variance of

consumption growth relative to the return on the market - on saving decisions (Campbell

(1993)).

In the Appendix I show that the ICAPM pricing equation in this framework is given by

Eri,t1 − rf,t1 
i

2

2  bCF i,CF  bK i,K  bB i,B 49

with the 3 parameters bCF,bK,bB freely estimated by the GMM system, being related with

the original preference parameters in the following way,

bCF ≡ 

bK ≡ − 1  1−
−1 1

bB ≡ −1 − 1−
−1 1  21 − 

50

By making 1  2  0, one obtains the homoskedastic ICAPM 22 as a special case of the

unrestricted ICAPM 49. The inclusion of the additional terms − 1−
−1 1 and − 1−

−1 1 − 2

that appear on the covariance risk prices, relies on the fact that a 1% increase in equity and

bond premia news translates into a reduction in consumption (due to the effect of changing

risk on saving) of 1 and 1  1 − 2, respectively, as shown by the following

decomposition for innovations in consumption, derived in the Appendix,

Et1 − Etct1  Et1 − Etrm,t1  1 − Et1 − Etrb,t1  1 −  − 1rt1
K

1 −  − 1 − 1 − 2 rt1
B 51

as a function of innovations on stock and bond returns, and future equity and bond premia

news. Given that the risk price of log consumption growth is given by 
  1−

−1 , it follows that

the covariance risk prices of equity and bond premia news are adjusted by the terms − 1−
−1 1
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and − 1−
−1 1  21 − .9

The estimation results for model 49 are presented in Table XII for both first stage (Panel

A) and second stage GMM (Panel B). The covariance risk prices for both equity and bond

premia news, bK,bB, are both positive and statistically significant - especially in the case of

bB - for SBV25 and the 55 characteristic portfolios. The estimates of bB are higher in

magnitude compared to bK, given the lower variance of bond premia news. On the other hand,

the estimates of the RRA parameter - and hence the beta risk price of cash flow news - are

higher than in the benchmark ICAPM in Tables V, VI and VIII, for the case of the characteristic

portfolios. The average risk premium in the case of SBV25 associated with the cash flow,

equity premia and bond premia factors are 2.502, -1.217 and -0.543, respectively, whereas for

the 55 portfolios, the same average risk premiums are 2.450, -1.251 and -0.503. The

heteroskedastic ICAPM is not rejected by the asymptotic 2 test, and both the RMSE and

cross sectional R2 indicate a higher explanatory power over the returns of SBV25, E/P, CF/P

and D/P portfolios, relative to the benchmark ICAPM.

The implied estimates of 1 and 2 are obtained from the following equalities,

  bCF


1 
−1

bCF−
bK  

2 
−1
bCF−

bB−bK
1−  1

52

by imposing   0.7 and   0.9. Standard errors for both 1 and 2 can be obtained by

using the delta method.10 The estimates of both 1 and 2 are negative and statistically

significant for the models estimated with SBV25 and SBV25E/PCF/PD/P portfolios. In

addition, the estimates of 2 are higher in magnitude than 1, given the higher values of bB

relative to bK. This means that a rise of the same magnitude in equity and bond premia news

produces a bigger decline in expected consumption growth due to future bond excess returns,

as illustrated by equations 47 and 48.
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C. An ICAPM with revisions in the VAR state variables

A third possible specification for the heteroskedastic ICAPM, is to assume that the

time-varying intercept of consumption is a linear function of the expectation of the remaining

state VAR variables - which help to forecast future stock and bond returns -,

p,t ≡ 0  Etyt1 53

where yt1 ≡ rrt1,FFPREMt1,TERMt1,VSt1,EYt1. Following Campbell (1993) and Guo

(2002), the condition 53 can be verified if the variances of both asset returns and discount

rate news (and the covariance between the two) are linear functions of the expectation of

each state variable. Given 53, the following pricing equation is derived in the Appendix,

Eri,t1 − rf,t1 
i

2

2   i,CF −  i,K −  i,B  Y i,y 54

where  i,y ≡ Covri,t1, rt1
y  represents the covariance with revisions in the state variable,

rt1
y ≡ Et1 − Et∑j0


jyt1j. The risk price of news in the state variable, Y ≡ − 

  represents

the second parameter to be estimated in the cross section.

Following the reasoning given in the previous subsection, a 1% increase in revisions on the

state variable yt1 corresponds to a reduction in consumption (due to the effect of changing

risk on saving) of , and given the risk price of consumption equal to 
 , the risk price of  i,y is

given by − 
 .

The estimation results (from efficient GMM) for model 54 are presented in Table XIII. The

parameter of interest Y is positive for the FFPREM and EY models, being negative for the

models with revisions on TERM, VS and rr. In terms of statistic significance, Y is in general

significant in the estimation with the SBV25E/PCF/PD/P portfolios, whereas in the case of

SBV25, Y is significant in the models with revisions in TERM, VS and rr. In the case of

SBV25IND38, Y is significant only in the ICAPM with news in the real interest rate. Given

these estimates for Y, the implied original coefficient  is negative for both FFPREM and EY,

and positive for the ICAPM with TERM, VS and rr, and the statistic significance is similar to
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the corresponding estimates of Y.11 Hence, a rise in the revisions associated with both

FFPREM and EY, and a decline in the news for TERM, VS and rr, lead to a decline in

expected consumption growth, as indicated by equation 53.

The average pricing errors in the case of both SBV25 and the 55 characteristic portfolios,

are lower than the corresponding values in Tables VI (Panel A) and VIII, and this is especially

relevant for the ICAPM with revisions in the real interest rate (RMSE of 0.196 versus 0.310 for

the benchmark ICAPM, in the case of SBV25). Similarly, the adjusted cross sectional R2 are

slightly higher than in the benchmark ICAPM, in the case of the characteristic portfolios.

IV. Time-varying risk aversion

A. An ICAPM with cyclical risk aversion

Campbell and Cochrane (1999) present a theoretical model where risk aversion is

countercyclical, being negatively correlated with the surplus consumption ratio, which

represents the difference between current and past consumption. Time-varying risk aversion

can also prevent investors of timing the market (for example overweighting value stocks given

their higher expected return), thus allowing the general equilibrium interpretation of the asset

pricing model. Maio (2005a) explores this idea within the framework of Campbell (1993) and

CV, by imposing a time-varying relative risk aversion coefficient  t and derive an ICAPM

model containing a factor related with cyclical risk aversion. This model is exact if the elasticity

of intertemporal substitution  is close to 1. By using a number of different scaling variables

related with the business cycle, the estimation results for the ICAPM show that  t is strongly

countercyclical. The economic intuition is that in recessions or in times of sustained declining

stock prices (bear stock market) the investors’ risk tolerance should be low, and the converse

should happen in economic expansions or within a bull equity market. Hence, time-varying

risk aversion can be interpreted as a recession risk factor that causes marginal utility and

required returns to be high in recessions and low in economic expansions. Thus, risk aversion
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is a deterministic function of a state variable zt linked to the business cycle or financial wealth,

 t  0  1zt 55

By substituting equation 55 in the log SDF of equation 21 above, with  t in place of , we

have

mt1  Etmt1 − 0rt1
CF − 1rt1

CFzt  rt1
K  rt1

B 56

Making ft1 ≡ rt1
CF , rt1

CFzt, rt1
K , rt1

B  ′ and b ≡ −0,−1,, 1 ′ and using Theorem 1 in the

Appendix, one has the following ICAPM model with time-varying risk aversion,

Eri,t1 − rf,t1 
i

2

2  0 i,CF  1 i,CFz −  i,K −  i,B 57

where  i,CFz ≡ Covri,t1, rt1
CFzt represents the covariance with the scaled factor. The

innovation in 57 relative to the "static" ICAPM in equation 22 is the presence of  i,CFz, the

covariance with the factor associated with time-varying risk-aversion.

One of the state variables used in Maio (2005a) to explain time-varying risk aversion is the

market dividend yield (DY), which is negatively correlated with the business cycle - being high

in recession and low in economic expansions. The specification in 57 becomes

Eri,t1 − rf,t1 
i

2

2  0 i,CF  1 i,CFDY −  i,K −  i,B 58

where  i,CFDY ≡ Covri,t1, rt1
CFDYt represent the covariance with the scaled factor rt1

CFDYt that

measures time-varying risk aversion.

The estimation results for the asset pricing model 58 are given in Table XIV, with both first

stage (Panel A) and second stage estimation (Panel B). The results in Panel A show that 1 is

positive and statistically significant for all the portfolios, and especially for both SBV25 and the

55 characteristic portfolios, thus confirming the results in Maio (2005a), that the market

dividend yield is positively correlated with risk aversion. The estimates of the constant

component of risk aversion, 0, and the beta risk price of cash flow news are slightly below the

corresponding estimates in Table V, but still significant. The average pricing errors are

significantly lower than in the benchmark ICAPM of Table V (0.161 versus 0.272 for SBV25),

whereas the cross sectional R2 increases (0.956 versus 0.881 in the case of SBV25). These
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findings confirm the results in Maio (2005a), that by incorporating time variation in  that is

related with the dividend yield, the ICAPM performance improves substantially.

The results for efficient GMM in Panel B indicate lower estimates for 1 compared to first

stage GMM estimates, although the estimates of both 0 and 1 even increase in terms of

statistical significance - 1 is now significant at the 1% level, for the 3 classes of portfolios.

The average pricing error and adjusted R2 also compare favorably with the corresponding

values for the benchmark ICAPM in Tables VI and VIII.

B. Risk aversion linked with bond premia

Apart from being influenced by lagged state variables, current risk aversion can be

correlated with the current period unknown returns. In fact, the risk aversion of the

representative investor, affects both his demand and valuation for stocks and bonds, thus

affecting expected and unexpected stock and bond returns and their implied news

components, including expectations about future excess bond returns rt1
B . This relation might

be reinforced, as a consequence of the interaction between portfolio rebalances and risk

aversion: A decrease in risk aversion in the beginning of period t  1 - as a result of a positive

impact on either labor income or financial wealth, in period t - is associated with an investment

flow from bonds to all stocks in general, in investors’ portfolios, since stocks are riskier than

bonds. This leads to a decrease in the demand for bonds, leading to lower current bond prices

and returns. Given the mean reversion of bond returns stated in equation 2 above, lower

current bond returns are associated with higher future excess bond returns, originating a

negative correlation between current risk aversion and news on future bond premia.

Hence, I assume that the relative risk aversion coefficient is governed by,

 t  0  1rt1
B 59

leading to the following model,

Eri,t1 − rf,t1 
i

2

2  0 i,CF  1 i,CFB −  i,K −  i,B 60

where  i,CFB ≡ Covri,t1, rt1
CFrt1

B  represents the covariance with the scaled factor, and we
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postulate 1 to be negative.

The estimation results for the asset pricing model 60 are given in Table XV. In the first

stage GMM estimation, 1 is negative and statistically significant for SBV25 and

SBV25E/PCF/PD/P portfolios, whereas it is not significant for SBV25IND38, given the

poor fitting of the model for the industry portfolios. The model is not rejected by the asymptotic

2, and the average pricing error for the SBV25 portfolios is lower than for the benchmark

ICAPM (0.228 versus 0.272). The estimates of the constant element of RRA decrease relative

to the benchmark model, with 0 presenting a slightly negative estimate in the estimation with

SBV25. The second stage estimation results (Panel B) show that 1 declines in magnitude

relative to the first stage estimates, but nevertheless it is still highly significant, for SBV25 and

the 55 characteristic portfolios. In addition, the estimate associated with 0 for SBV25 is now

positive. Furthermore, as in the case of the ICAPM scaled by DY, the average pricing error

and adjusted R2 co with the corresponding values in Table VI and VIII, in respect to the

SBV25 and SBV25E/PCF/PD/P portfolios.

Hence, at least for the SBV25 and 55 characteristic portfolios, a rise in bond risk premia

news is associated with lower risk aversion. With these results, bond premia news are not

only a better "beta" relative to news in future excess stock-bond returns - due to representing

a certain increase in reinvested future wealth - but it also has a second order effect associated

with declining risk aversion, which is a consequence of the interaction between risk aversion

and portfolio rebalance between stocks and bonds.

C. The unrestricted ICAPM with time-varying risk aversion

If we allow time-variation in RRA in the context of the unrestricted ICAPM 49, we obtain

the following unrestricted ICAPM with time-varying RRA,

Eri,t1 − rf,t1 
i

2

2  bCF i,CF  bCFDY i,CFDY  bK i,K  bB i,B 61

Eri,t1 − rf,t1 
i

2

2  bCF i,CF  bCFB i,CFB  bK i,K  bB i,B 62

where the two parameters bCF,bCFz are related with the RRA parameters by the following
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equalities,

bCF ≡ 0

bCFz ≡ 1
, z  DY,B 63

The results (from first stage GMM) for models 61 and 62 are displayed in Table XVI,

Panels A (DY) and B (bond premia news). In the case of the ICAPM scaled by DY, 1 is

significantly positive in all sets of portfolios, similar to Table XIV, whereas the risk price of

bond premia news bB is significant in the case of SBV25 and the 55 characteristic portfolios.

In the ICAPM scaled by bond premia news, 1 is negative and significant for SBV25 and the

characteristic portfolios with standard errors from GMM I, although the standard errors from

GMM II are large. In addition, bond premia news is priced in the presence of the scaled factor

rt1
CFrt1

B . The average pricing errors for both ICAPM scaled by DY and bond premia, are lower

than in the corresponding "reduced" scaled ICAPM of Tables XIV and XV, and also lower than

in the unrestricted ICAPM of Table XII. In addition, the adjusted R2 is higher in comparison

with the values in Tables XIV, XV and XII. In the second stage estimation (Panels C and D),

both 1 and bB improve in terms of statistical significance relative to first stage estimation, for

both models - DY and rt1
B .

V. Discussion

A. Assessing individual pricing errors

The ICAPM models estimated in the previous two sections were not rejected using the

asymptotic 2 test of joint nullity of the pricing errors. As emphasized before (Cochrane (1996,

2001), Hodrick and Zhang (2001)), inference using this test can be misleading due to the

singularity of var̂, and the inherent problems in inverting it. As a consequence I have opted

for a generalized inverse as described in Section II. Nevertheless, it could be that the low test

values, are not so much the result of individual low pricing errors - what we want - but rather

the economic uninteresting result of low values for var̂−1. To address this issue, it is helpful
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to pursue an analysis of the individual pricing errors.

In addition, I compare the ICAPM individual pricing errors with those associated with the

CAPM. Following Campbell (1993), I show in Appendix H that in the framework of Section I

and for the case of a investor with log utility   1, a logarithmic version of the CAPM arises

as a special case of the ICAPM in equation 17,

Eri,t1 − rf,t1 
i

2

2   i,m  1 −  i,b 64

where  i,m ≡ Covri,t1, Et1 − Etrm,t1 and  i,b ≡ Covri,t1, Et1 − Etrb,t1 denote the

covariances with stock market and bond returns, respectively. Equation 64 represents a

generalized CAPM for the case where the market portfolio is composed of both stocks and

bonds, and I will denote it as the 2 beta CAPM (CAPM2). The standard CAPM can be

recovered as a special case of 64 by imposing   1,

Eri,t1 − rf,t1 
i

2

2   i,m 65

Often in the empirical implementation of the CAPM and multifactor models, the market risk

price is freely estimated in the cross-section, then the 2 beta CAPM in equation 64 becomes,

Eri,t1 − rf,t1 
i

2

2  bp i,m  bp1 −  i,b 66

and the standard unrestricted CAPM is obtained by making   1,

Eri,t1 − rf,t1 
i

2

2  bp i,m 67

Figure 1 presents a picture of the pricing errors for the SBV25 portfolios, associated with

the bad beta, good beta (BBGB) model in equation 18, the CAPM and 2 beta CAPM of

equations 64, 65, 66 and 67, and several ICAPM specifications. ICAPM I denotes the

homoskedastic benchmark ICAPM of equation 22; ICAPM II and III denote the benchmark

ICAPM with time-varying covariances of equation 44, scaled by DY and EY*, respectively;

ICAPM IV is the unrestricted ICAPM of equation 49; ICAPM V denotes the ICAPM with

revisions in the real interest rate of equation 54; ICAPM VI and VII refer to the standard

ICAPM with time-varying RRA of equations 58 and 60, respectively; and finally, ICAPM VIII
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and IX refer to the unrestricted ICAPM with time-varying RRA presented in equations 61 and

62.

The graphs in Panels A and B, show that all ICAPM models have lower pricing errors than

both (unrestricted) CAPM and 2 beta CAPM. The out performance of the several ICAPM

models is even more accentuated relative to the restricted CAPM and 2 beta CAPM, as

shown in Panels C and D. On the other hand, most of the ICAPM models with bond risk

premia have lower pricing errors than the BBGB model.

Furthermore, the CAPM individual errors have a robust pattern across size quintiles: within

each size quintile, the growth portfolio has large negative pricing errors and the value portfolio

has large positive errors. This has been referred as the value premium, and has been

originally documented for the CAPM (Fama and French (1992, 1993)). This pattern is strongly

attenuated, and in some cases non-existent for the several specifications of the ICAPM, which

in addition present significantly lower individual errors when compared with both versions of

the CAPM within each size quintile.

These findings also seem to suggest, that by augmenting the definition of market wealth -

by adding a long maturity bond an deriving a 2 beta CAPM - one does not improve the CAPM

pricing ability for the cross section of returns, confirming the results in Shanken (1987). Thus,

we need a dynamic model like the ICAPM, to price the SBV25 portfolios more accurately and

in particular growth and value stocks.

In Table XVII, Panel A, I complement this analysis by presenting the average pricing errors

(on a monthly and annual basis) and the cross sectional adjusted R2 associated with the

BBGB model, the unrestricted CAPM and 2 beta CAPM, and the various ICAPM

specifications.

We can see that all ICAPM models, including BBGB, have lower RMSE and higher R2 than

both CAPM models, whereas both CAPM and CAPM2 have similar RMSE. In addition,

whereas the benchmark homoskedastic ICAPM I does not improve relative to the BBGB
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model, all the other ICAPM specifications with bond premia, have both lower RMSE and

higher adjusted R2 than the BBGB model.

I also present the goodness-of-fit measures associated with the Fama and French (1993) 3

factor model (FF3) that earned great acceptance and can be rationalized in an APT context

(Cochrane (2001)). Although the FF3 model has lower pricing errors, some of the ICAPM

models - ICAPM V, VI and VIII - have very approximate values for both RMSE and R2 relative

to the FF3 model (the RMSE of ICAPM V and VII are 0.146 and 0.152 respectively, compared

to 0.137 for FF3).

B. The Value Premium

As mentioned above, the value premium refers to the anomaly associated with the CAPM in

that growth (value) stocks have significantly lower (higher) pricing errors than predicted by the

model. In Table XVII Panel B, I analyze how the several ICAPM models derived in this paper

are able to price the book-to-market quintiles associated with the SBV25 portfolios. For each

model, I present the average pricing errors per quintile.

The results let us to conclude that the 2 beta CAPM does not improve the traditional CAPM

in pricing the book-to-market quintiles. For both models, the extreme quintiles (BV1 and BV5)

still have large negative and positive errors, respectively. The results for the BBGB model and

the homoskedastic ICAPM with bond risk premia (ICAPM I) show some improvement in the

pricing ability of the extreme book-to-market quintiles, although growth stocks (BV1) still have

an annualized pricing error of -4.69%, which is economically large. On the other hand, the

ICAPM with covariances scaled by the dividend yield and smoothed earnings yield (ICAPM II

and III) have low pricing errors across all the quintiles. The unrestricted ICAPM (ICAPM IV)

and especially the ICAPM with revisions in the real interest rate (ICAPM V), are also able to

price the value premium. The ICAPM with risk aversion scaled by the dividend yield (ICAPM

VI and VIII) and bond premia news (ICAPM VII and IX), also present a large reduction in the

pricing errors associated with all book-to-market quintiles, and especially for the extreme
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quintiles, in comparison with the CAPM and BBGB models.

All the models ICAPM II-IX have economically low pricing errors for all quintiles and in

particular for both growth and value stocks, and this is especially relevant in the case of

ICAPM V, VI and VIII. The annual average pricing errors for BV1 are -0.82%, -1.22% and

-1.00% for ICAPM V, VI and VIII respectively, compared to -5.12% for the CAPM. In the case

of BV5, the annual average pricing errors are -0.45%, 0.43% and -0.33% for ICAPM V, VI and

VIII, respectively, in comparison with 3.41% for the CAPM. The pricing errors associated with

those 3 models are approximately as low as those arising from the Fama and French (1993)

model.

Overall, these results show that several alternative specifications for the ICAPM with bond

premia - the homoskedastic ICAPM with time-varying RRA (as in Maio (2005a)), a

heteroskedastic ICAPM with revisions in the real interest rate, and a heteroskedastic ICAPM

with and without time-varying RRA - can price the value premium. This provides a

fundamental alternative explanation relative to the less theoretical based FF3 model, which

uses the HML factor (return on value stocks minus the return on growth stocks) in order to

explain the CAPM negative (positive) pricing errors for growth (value) stocks.

C. Addressing momentum

Momentum or short term positive autocorrelation in stock prices (Jegadeesh and Titman

(1993)) represents one of the biggest challenges for existing asset pricing models, and is not

explained by the FF3 model (Fama and French (1996)).

A possible test to be made is to analyze whether the momentum factor UMD (returns on

past winners minus the returns on past losers) (Carhart (1997)) is still significant after

accounting for the factors present in the ICAPM. I extend the ICAPM specifications of

equations 49, 61 and 62 by adding UMD, leading to

Eri,t1 − rf,t1 
i

2

2  bCF i,CF  bK i,K  bB i,B  bUMD i,UMD 68

Eri,t1 − rf,t1 
i

2

2  bCF i,CF  bCFDY i,CFDY  bK i,K  bB i,B  bUMD i,UMD 69
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Eri,t1 − rf,t1 
i

2

2  bCF i,CF  bCFB i,CFB  bK i,K  bB i,B  bUMD i,UMD 70

with  i,UMD ≡ Covri,t1,UMDt.

The results reported in Table XVIII, show that bUMD is not robust in terms of sign and

statistical significance for all three specifications above. In the case of SBV25, bUMD is

statistically significant in the first stage GMM estimation, although not significant with efficient

GMM, whereas for SBV25IND38, it is strongly insignificant. In the case of

SBV25E/PCF/PD/P portfolios, bUMD is significant for models 68 and 70, but not

significant in the case of model 69.

Hence, these results suggest that the momentum observed in stock returns, might be at

least partially explained by an ICAPM model with either bond risk premia or time-varying risk

aversion.

VI. Conclusion

In this paper, using an identical framework to Campbell (1993) and Campbell and

Vuolteenaho (2004), I derive an ICAPM model which expands the definition of market wealth

by incorporating bonds and in addition decomposes news on future excess stock returns into

news on future excess stock-bond returns and bond premia news. The ICAPM model has

three factors: Cash flow news, excess stock-bond return (or equity premia) news and excess

bond return news. A rise in both equity and bond premia news components is associated with

an improvement in investment opportunities, since current wealth will be reinvested at higher

returns, but while future bond returns are known a priori since they are used to discount

certain cash-flows, future stock returns are uncertain given that they are used to discount

uncertain future cash-flows. Using the "bad beta good beta" terminology from CV, we can

speak of a bad beta, a good beta and an "excellent" beta, which is the covariance with bond

premia news. Thus, apart from the fact that the risk price and risk premium of cash flow news

should be higher relative to both equity premia and bond premia news, news on future equity
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premia should have a higher risk price (premium) than news on future excess bond returns,

due to the uncertainty involved in reinvested wealth. I calculated betas associated with the two

components of excess stock return news, and find that bond premia news have relatively

stable betas across the book-to-market quintiles, as expected since the type of risk involved

has to due with changes in long-term interest rates used to discount certain future cash flows,

which have no cash-flow risk involved. On the other hand, in the case of the equity premia

factor, growth stocks have significantly higher (magnitude) betas than value stocks. The test

of the asset pricing model show that the risk price for equity premia news is higher relative to

the risk price associated with bond premia news, and in addition, the model slightly improves

the pricing ability of the size/book-to-market portfolios, relative to the traditional CAPM. These

results are robust for alternative characteristic portfolios and alternative bond returns. An

extension of the benchmark ICAPM that allows for time-varying covariances greatly improves

the explanatory power over the cross section, in comparison with the BBGB and benchmark

models.

In addition, I derive an unrestricted ICAPM with bond premia - in a heteroskedastic context -

which allows the risk prices to be freely estimated, and find that i) bond premia news is a

priced factor and ii) the model improves the pricing ability relative to the homoskedastic

ICAPM. A heteroskedastic ICAPM with revisions in real interest rates also fits well the cross

section of returns and in particular the size/book-to-market portfolios.

Furthermore, I estimate a generalized ICAPM that allows for time-varying risk aversion,

assuming that risk aversion is explained by the market dividend yield and bond premia news.

The results show that a rise in bond risk premia is associated with lower current risk aversion,

which can be explained by an association between changes in risk aversion and rebalances

between bonds and stocks in investors’ portfolios. The ICAPM with both time-varying bond

premia and risk aversion produces very low average pricing errors for the size/book-to-market

portfolios, and the average pricing errors across the book-to-market quintiles are also very
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small. Thus, several specifications of the ICAPM with bond premia are able to price the value

premium, almost as well as the Fama and French (1993) 3 factor model. In addition, the

momentum factor UMD, when added to the ICAPM model, it is only partially significant, and

thus the ICAPM takes into account at least partially, the momentum observed in stock prices.

Given these results some interesting extensions and robustness checks for the current

paper are in place for future research. First, one should investigate, with more detail, whether

changes in risk aversion are associated with an investment flow between bonds and stocks,

as suggested by the results. A second possible extension for this model is to analyze in more

detail, whether the ICAPM with both bond risk premia and time-varying risk aversion can

explain momentum. Third, one can calculate cash flow, equity premia and bond premia betas

for individual stocks and analyze how they correlate with aggregate betas, following Campbell,

Polk and Vuolteenaho (2005).
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Notes

1 The difference to CV is that  iH appear with a minus sign in the pricing equation, since

they use the negative of discount-rate news, i.e. "good" news in future discount rates.

2 I use the convention that lowercase letters denote the logs of uppercase letters.

3 Any P order VAR, with P  1, can be restated as a first order VAR, if the state vector is

expanded by including lagged state variables, with A denoting the VAR companion matrix.

4 One can use an alternative system where the means of the returns are parameters to be

jointly estimated within the GMM system, as in Cochrane (2001, chapter 13),

gTb∗ ≡
1
T ∑t1

T
ri,t1 − rf,t1  1

2 ri,t1 −  i2 − ri,t1 −  irt1
CF  ri,t1 −  irt1

K  ri,t1 −  irt1
B 

1
T ∑t1

T
ri,t1 −  i


0
0

i  1, . . . ,N

although the results should be similar, and in addition this system is non-linear.

5 Following Campbell, Chan and Viceira (2003), yn−1,t1 is approximated by yn,t1.

6 Given that cash flow news represent the residual component of market returns, and

hence are not so sensitive to innovations in the VAR state variables, it is likely that the

covariance with cash flow news is more stable.

7 The Default spread (DEF) represents the difference between BAA and AAA corporate

bond yields and the smoothed log earnings yield (EY*) is the log ratio of a 10 year

moving-average of S&P 500 earnings relative to the index, as in CV.

8 Campbell (1993) argues that the condition p,t ≡ 0  Etrp,t1 holds if the variances of

both market returns and discount rate news (and the covariance between the two) are linear

functions of the expected market return.

9 Given the original log SDF
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mt1  Etmt1 − 
 ct1 − Etct1 − 1 − rp,t1 − Etrp,t1

and the corresponding pricing equation

Eri,t1 − rf,t1 
i

2

2  
  i,c  1 −  i,p

where  i,c ≡ Covri,t1,ct1 − Etct1,  i,p ≡ Covri,t1, rp,t1 − Etrp,t1, the price of risk for log

consumption is given by 
 .

10 More specifically,

Var j 
∂jb
∂b ′ Varb ∂jb

∂b , j  1,2

with b ≡ bCF,bK,bB.

11 The implied parameter is equal to   −1
−1 Y.

a1 In alternative we can assume joint log-normality for the SDF and asset return.
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Appendices

A. Decomposition for unexpected excess stock return

Following Campbell and Shiller (1988a) and Campbell (1991), the decomposition for

unexpected real stock returns is given by

Et1 − Etrm,t1
∗  Et1 − Et∑j0


jΔdt1j − Et1 − Et∑j1


jrm,t1j

∗ A. 1

By adding and subtracting the real risk free interest rate, it follows

Et1 − Etrm,t1
∗ − rr,t1  Et1 − Et∑j0


jΔdt1j

−Et1 − Et∑j1


jrm,t1j

∗ − rr,t1j − Et1 − Et∑j0


jrr,t1j A. 2

By noting that excess nominal returns are equal to excess real returns, since the inflation

rate cancels out, we have,

Et1 − Etrm,t1 − rf,t1  rt1
CF − rt1

H − rt1
R∗ A. 3

with rt1
CF ≡ Et1 − Et∑j0


jΔdt1j, rt1

H ≡ Et1 − Et∑j1


jrm,t1j − rf,t1j and

rt1
R∗ ≡ Et1 − Et∑j0


jrr,t1j, denoting the revisions in future cash-flows, excess stock returns

and real interest rates, respectively, and rm,t1 − rf,t1 representing the excess nominal stock

market return relative to the nominal risk-free rate.

B. Decomposition for unexpected excess bond return

Following Campbell (1993) and CA, the log nominal return on a perpetuity bond with

nominal coupon C and price Pb,t at time t is given by

rb,t1  ln CPb,t1

Pb,t
 lnC  exppb,t1 − pb,t  kb  bpb,t1 − pb,t B. 1

where the last equality follows from a first order Taylor expansion around the mean of

lnC  exppb,t1, with

kb ≡ lnC  expEpb,t1 − Epb,t1
expEpb,t1

CexpEpb,t1
B. 2

being a linearization constant that plays no role on the analysis, and

b ≡
expEpb,t1

CexpEpb,t1
≈ EPb,t1

CEPb,t1
≈ EPb,t

CEPb,t1
 1

ERb,t1
B. 3
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is approximately equal to the inverse of the average simple bond return, Rb,t1 ≡
CPb,t1

Pb,t
.

Equation B. 1 is a difference equation on the log bond price pb,t. Solving forward, imposing

a transversality condition limj b
j pb,tj  0, and taking conditional expectations at time t leads

to,

pb,t ≡ −Et∑j0


b

j rb,t1j B. 4

By substituting equation B. 4 back into equation B. 1, it follows that unexpected current

returns are negatively linked to revisions in future expected bond returns. If in addition we

assume that b  , i.e., the linearization coefficient for bonds is approximately equal to the

linearization coefficient for the intertemporal budget constraint - which is linked to the average

consumption to wealth ratio or market dividend yield - then it follows

Et1 − Etrb,t1  −Et1 − Et∑j1


jrb,t1j B. 5

In order to work with excess bond returns, I add and subtract the risk free interest rate and

making use of Et1 − Etrf,t1  0, one has the decomposition for innovations in current excess

bond returns,

Et1 − Etrb,t1 − rf,t1  −rt1
B − rt1

Y B. 6

where rt1
B ≡ Et1 − Et∑j1


jrb,t1j − rf,t1j denotes the revisions in future excess bond

returns, and rt1
Y ≡ Et1 − Et∑j1


jrf,t1j represents expectations of future nominal interest

rates. By decomposing nominal interest rates into real interest rates and inflation,

rf,t1  rr,t1  t1, one has

Et1 − Etrb,t1 − rf,t1  −rt1
B − rt1

R − rt1
 B. 7

where rt1
 ≡ Et1 − Et∑j1


jt1j denotes expectations of future inflation rates and

rt1
R ≡ Et1 − Et∑j1


jrr,t1j is the same as rt1

R∗ above, up to the first term in the summation

Et1 − Etrr,t1.

C. The log market return
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The return on financial wealth is a weighted average of the return on stocks and bonds,

Rp,t1  Rm,t1  1 − Rb,t1 C. 1

The simple market return can be approximated as Rp,t1 ≈ 1  rp,t1, and similarly for the

return on stocks and bonds, and thus we can write the log market return as a weighted

average of the log returns on the stock index and benchmark bond,

rp,t1 ≈ rm,t1  1 − rb,t1 C. 2

Given C. 2, the conditional expected log return on the market portfolio is equal to

Etrp,t1  Etrm,t1  1 − Etrb,t1 C. 3

and the conditional variance is given by

p,t
2 ≡ Vartrp,t1  Vartrp,t1 − Etrp,t1  2m,t

2  1 − 2b,t
2  21 − m,b,t C. 4

with m,t
2 ≡ Vartrm,t1 − Etrm,t1, b,t

2 ≡ Vartrb,t1 − Etrb,t1 and

m,b,t ≡ Covtrm,t1 − Etrm,t1, rb,t1 − Etrb,t1.

D. Theorem 1

Given the asset pricing model

1  EtMt1Ri,t1 D. 1

and with the assumption that the log SDF mt1 ≡ lnMt1 is a linear function of K risk factors

ft1,

mt1  a  b′ft1 D. 2

the unconditional model in expected return-covariance form for log returns ri,t1 ≡ lnRi,t1

can be represented as,

Eri,t1 − rf,t1  0.5 i
2  −b′Covri,t1, ft1 D. 3

which corresponds to the following expected return-beta representation

Eri,t1 − rf,t1  0.5 i
2   ′ i D. 4

where  ≡ −Varft1b and  i ≡ Varft1
−1Covri,t1, ft1.

Proof:

By taking logs of D. 1 one gets the pricing equation in the log form,
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0  lnEtexpmt1  ri,t1 D. 5

Since the log is a non-linear function, one can use a second-order Taylor expansion to the

right hand side of D. 5, leading to the following approximationa1

0  Etmt1  ri,t1  0.5Vartmt1  ri,t1 D. 6

By expanding and rearranging D. 6 one obtains,

Etri,t1  0.5Vartri,t1  −Etmt1 − 0.5Vartmt1 − Covtmt1, ri,t1 D. 7

Applying the pricing equation D. 7 to the risk-free rate rf,t1 and noting that

Vartrf,t1  Covtmt1, rf,t1  0, one has,

rf,t1  −Etmt1 − 0.5Vartmt1 D. 8

Subtracting D. 8 from D. 7 we obtain,

Etri,t1 − rf,t1  0.5Vartri,t1  −Covtmt1, ri,t1 D. 9

Given the assumption that the log SDF is linear in the risk factors mt1  a  b′ft1, and

substituting in D. 9, we have the following conditional pricing equation for excess returns,

Etri,t1 − rf,t1  0.5Vartri,t1  −b′Covtri,t1, ft1 D. 10

By applying the law of iterated expectations to equation D. 10, one has the following

unconditional pricing model

Eri,t1 − rf,t1  0.5 i
2  −b′Covri,t1, ft1 ∑k1

K
−bk i,k D. 11

where  i
2 ≡ Varri,t1,  i,k ≡ Covri,t1, fk,t1,k  1, . . . ,K and fk,t1 denotes the kth factor.

The equation in the expected return-covariance form D. 11 can be translated into an

equivalent expected return-beta model in the following way,

Eri,t1 − rf,t1  0.5 i
2  −b′Covri,t1, ft1

 −b′Varft1Varft1
−1Covri,t1, ft1   ′ i D. 12

where  ≡ −Varft1b denote the vector of factor risk prices, and

 i ≡ Varft1
−1Covri,t1, ft1 is a vector containing the K betas for asset i.

Equation D. 12 can be restated in a vector form for the vector of N excess log returns r t1,
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Er t1 − rf,t11N  0.5diagVarr t1   D. 13

where  ≡ Covr t1, ft1Varft1
−1 is a NxK factor beta matrix with row i containing the K

factor loadings for asset i, and 1N is a N-dimension vector of ones.

Theorem 1 represents a straightforward generalization of the theorem in section 6.3 of

Cochrane (2001), for the case in which the SDF is nonlinear but the log SDF is a linear

function of the factors.

E. Substituting out consumption as in Campbell (1993)

Using the Epstein and Zin utility function,

Ut  1 − Ct

1−
   Et Ut1

1− 1



1−

E. 1

where  ≡ 1−
1− 1


,  is the elasticity of intertemporal substitution,  is the relative risk aversion

coefficient, and Ct denotes consumption. The corresponding SDF is given by

Mt1   Ct1
Ct

− 
 1

Rp,t1

1−
E. 2

where Rp,t1 is the simple return on the market portfolio or total wealth. The corresponding

log SDF is equal to

mt1   ln − 
 EtΔct1 − 1 − Etrp,t1

− 
 Δct1 − EtΔct1 − 1 − rp,t1 − Etrp,t1 E. 3

By applying the conditional log pricing equation D. 7 to the market portfolio log return rp,t1,

leads to

Etrp,t1  0.5Vartrp,t1  −Etmt1 − 0.5Vartmt1 − Covtmt1, rp,t1 E. 4

By substituting the expressions for Etmt1, Vartmt1 and Covtmt1, rp,t1, and using the

fact that Covtmt1, rp,t1  Covtmt1, rp,t1 − Etrp,t1 and Vartrp,t1  Vartrp,t1 − Etrp,t1, we

have

Etrp,t1  0.5p,t
2  − ln  

 EtΔct1  1 − Etrp,t1

−0.5  
 

2c,t
2  1 − 2p,t

2  2 
 1 − c,p,t  

 c,p,t  1 − p,t
2 E. 5
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where c,t
2 ≡ VartΔct1 − EtΔct1, p,t

2 ≡ Vartrp,t1 − Etrp,t1 and

c,p,t ≡ CovtΔct1 − EtΔct1, rp,t1 − Etrp,t1 represent the variance of consumption growth,

variance of market return and covariance between consumption growth and market return,

respectively.

Solving for EtΔct1, it follows,

EtΔct1   ln  0.5 1
 c,t

2  p,t
2 − 2c,p,t   Etrp,t1 E. 6

If in addition, we impose joint conditional homoskedasticity for log consumption growth and

log market returns, then we have

EtΔct1   ln  0.5 1
 c

2  p
2 − 2c,p   Etrp,t1

 p  Etrp,t1 E. 7

where c
2 ≡ VarΔct1 − EtΔct1, p

2 ≡ Varrp,t1 − Etrp,t1,

c,p ≡ CovΔct1 − EtΔct1, rp,t1 − Etrp,t1, and p ≡  ln  0.5 1
 c

2  p
2 − 2c,p.

Building on a relation similar to equation E. 7, Campbell (1993) shows that innovations in

log consumption and log market returns are related by the following expression,

ct1 − Etct1  rp,t1 − Etrp,t1  1 − Et1 − Et∑j1


jrp,t1j E. 8

F. Separating bond premia from excess stock returns

Giving the relation between expected stock and bond returns,

Etrm,t1  Etrb,t1  Etkt1 F. 1

and substituting F. 1 in the expression for excess stock return news, we have

rt1
H ≡ Et1 − Et∑j1


jrm,t1j − rf,t1j

 Et1 − Et∑j1


jkt1j  Et1 − Et∑j1


jrb,t1j − rf,t1j  rt1

K  rt1
B F. 2

where rt1
K ≡ Et1 − Et∑j1


jkt1j represents news about future stock-bond premia. Given

F. 2 one can rewrite the innovations in current stock returns presented in A. 3 as

Et1 − Etrm,t1 − rf,t1  rt1
CF − rt1

K − rt1
B − rt1

R∗ F. 3

G. Relaxing joint conditional homoskedasticity assumption for consumption and market

58



returns

G.1. A model with news in variances

We can rewrite equation E. 6 as

EtΔct1  p,t  Etrp,t1 G. 1

with

p,t ≡  ln  0.5 1
 c,t

2  p,t
2 − 2c,p,t  G. 2

Given equation G. 1, the log consumption growth can be represented as,

Δct1  p,t  rp,t1  vt1 G. 3

with Etvt1  0, Vartvt1  v
2 and Covtrp,t1,vt1  0. Using these assumptions and the

definition for the market return in equation C. 2, we can derive the following conditional

covariances and variances,

c,b,t ≡ CovtEt1 − EtΔct1, Et1 − Etrb,t1  CovtEt1 − Etrp,t1, Et1 − Etrb,t1

 m,b,t  1 − b,t
2 G. 4

c,m,t ≡ CovtEt1 − EtΔct1, Et1 − Etrm,t1  m,t
2  1 − m,b,t G. 5

Substituting C. 2, C. 4, G. 4 and G. 5 into G. 2, leads to

p,t ≡  ln  0.5 1
 c,t

2  2m,t
2  1 − 2b,t

2  21 − m,b,t

−2m,t
2  1 − m,b,t − 21 − m,b,t  1 − b,t

2  G. 6

Assuming that consumption growth is conditionally homoskedastic, c,t
2  c

2, and that the

covariance between stock market and bond returns is also constant trough time, m,b,t  m,b,

and by rearranging, p,t can be represented as

p,t ≡ 0 − 0.52m,t
2  1 − 2b,t

2  G. 7

with 0 ≡  ln  0.5 1
 c

2 − 21 − m,b.

Since m,t
2  Etrm,t1

2 , b,t
2  Etrb,t1

2 , equation G. 7 can be restated as

p,t ≡ 0 − 0.52Etrm,t1
2   1 − 2Etrb,t1

2  G. 8

Giving an expression similar to G. 1, Campbell (1993) shows that innovations in

consumption are related with innovations in the market return, in the following way,
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Et1 − EtΔct1  Et1 − Etrp,t1  1 − Et1 − Et∑j1


jrp,t1j

−Et1 − Et∑j1


jp,tj G. 9

where the last term refers to revisions in the future values of the time-varying intercept p,t.

Substituting G. 8 in G. 9, it follows,

Et1 − EtΔct1  Et1 − Etrp,t1  1 − Et1 − Et∑j1


jrp,t1j 

0.52Et1 − Et∑j1


jrm,t1j

2  0.51 − 2Et1 − Et∑j1


jrb,t1j

2 G. 10

Substituting G. 10 in the log SDF of equation 12,

mt1  Etmt1 − 
 ct1 − Etct1 − 1 − rp,t1 − Etrp,t1, and using the identities A. 3, 3,

F. 2 and F. 3 we have

mt1  Etmt1 − rt1
CF  rt1

K  rt1
B − 0.522Vt1

m − 0.521 − 2Vt1
b G. 11

with Vt1
m ≡ Et1 − Et∑j1


jrm,t1j

2 and Vt1
b ≡ Et1 − Et∑j1


jrb,t1j

2 representing news

about the volatility of stock and bond returns, respectively.

Making ft1 ≡ rt1
CF , rt1

K , rt1
B ,Vt1

m ,Vt1
b  ′ and b ≡ −,, 1,−0.522,−0.521 − 2 ′ and using

Theorem 1 above, one has,

Eri,t1 − rf,t1 
i

2

2   i,CF −  i,K −  i,B  0.522 i,Vm

0.521 − 2 i,Vb G. 12

where  i,Vm ≡ Covri,t1,Vt1
m ,  i,Vb ≡ Covri,t1,Vt1

b , represent the covariances with the

volatility news.

As stated in Campbell (1993),  is infinite when  is near one, and hence the expression

containing variances and covariances in G. 2 must be zero, in order to have finite expected

consumption growth. If we make the assumption that  ≈ 1, then it follows that p,t ≈ 0, and

the relation EtΔct1  p  Etrp,t1 continues to hold, so that the standard ICAPM remains

valid in the presence of heteroskedasticity.

In order to identify Vt1
m and Vt1

b , I use the following approximations,
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Vt1
m  e1 ′AI − A−1 t1

2

Vt1
b  e2 ′AI − A−1 t1

2 G. 13

G.2. An unrestricted ICAPM

Given the assumption that the time-varying intercept is related with the expected returns on

the stock index and benchmark bond,

p,t ≡ 0  1Etrm,t1  21 − Etrb,t1 G. 14

and using equation G. 9, innovations in log consumption are given by the following

expression,

Et1 − Etct1  Et1 − Etrp,t1  1 − Et1 − Et∑j1


jrp,t1j − 1Et1 − Et∑j1


jrm,t1j

−21 − Et1 − Et∑j1


jrb,t1j G. 15

By employing the identities C. 3, 3, F. 2 and F. 3 and simplifying, it follows

Et1 − Etct1  Et1 − Etrp,t1  1 −  − 1rt1
K

1 −  − 1 − 1 − 2 rt1
B G. 16

Substituting G. 16 in the log SDF of equation 12,

mt1  Etmt1 − 
 ct1 − Etct1 − 1 − rp,t1 − Etrp,t1, and simplifying, we have

mt1  Etmt1 − rp,t1 − Etrp,t1 −  
 1 −  − 1rt1

K

− 
 1 −  − 1 − 1 − 2 rt1

B G. 17

By adding and subtracting the real risk-free rate rr,t1, using the fact that excess nominal

returns are equal to excess real returns and ignoring the terms related with real interest rates,

we have

mt1  Etmt1 − Et1 − Etrp,t1 − rf,t1 −  
 1 −  − 1rt1

K

− 
 1 −  − 1 − 1 − 2 rt1

B G. 18

Using equation C. 3 above leads to

mt1  Etmt1 − Et1 − Etrm,t1 − rf,t1 − 1 − Et1 − Etrb,t1 − rf,t1

− 
 1 −  − 1rt1

K − 
 1 −  − 1 − 1 − 2 rt1

B G. 19
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Using again the identities A. 3, 3, F. 2 and F. 3 and simplifying, it follows

mt1  Etmt1 − rt1
CF   1  1−

−1 1 rt1
K  1  1−

−1 1  21 −  rt1
B G. 20

Making ft1 ≡ rt1
CF , rt1

K , rt1
B  ′ and b ≡ −bCF,−bK,−bB ′ and using Theorem 1, one has the

following pricing equation,

Eri,t1 − rf,t1 
i

2

2  bCF i,CF  bK i,K  bB i,B G. 21

with the risk prices estimated in the cross section being related with the original parameters

in the following way,

bCF ≡ 

bK ≡ − 1  1−
−1 1

bB ≡ −1 − 1−
−1 1  21 − 

G. 22

G.3. An ICAPM with news in the VAR state variables

Given the assumption that the time-varying intercept is related with the expectation of the

VAR state variables,

p,t ≡ 0  Etyt1 G. 23

and substituting G. 23 in G. 9, we get

Et1 − Etct1  Et1 − Etrp,t1  1 − Et1 − Et∑j1


jrp,t1j

−Et1 − Et∑j1


jytj G. 24

Substituting G. 24 in the log SDF of equation 12,

mt1  Etmt1 − 
 ct1 − Etct1 − 1 − rp,t1 − Etrp,t1, and simplifying, we have

mt1  Etmt1 − rp,t1 − Etrp,t1  1 − rt1
H  1 − 1 − rt1

B  
 rt1

y G. 25

with rt1
y ≡ Et1 − Et∑j0


jyt1j representing the revisions in the state variable yt1. By

using the identities A. 3, 3, C. 3, F. 2 and F. 3, ignoring the real interest rate terms and

simplifying, it follows

mt1  Etmt1 − rt1
CF  rt1

K  rt1
B  

 rt1
y G. 26

Making ft1 ≡ rt1
CF , rt1

K , rt1
B , rt1

y  ′ and b ≡ −,, 1,−Y ′ and using Theorem 1, one has the
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following pricing equation,

Eri,t1 − rf,t1 
i

2

2   i,CF −  i,K −  i,B  Y i,y G. 27

with  i,y ≡ Covri,t1, rt1
y  and Y ≡ − 

  denotes the second parameter to be estimated in

the cross section.

The revisions in the state variable yt1 are identified in a similar way to equity and bond

premia news,

rt1
y  ey′AI − A−1 t1 G. 28

where ey denotes the indicator vector associated with state variable yt1.

H. The CAPM as a special case of the ICAPM

For the case of a log-investor   1, the CAPM arises as a special case of the ICAPM in

equation 17. Using equation 13 and imposing   1, we have

mt1  Etmt1 − Et1 − Etrp,t1

 Etmt1 − Et1 − Etrm,t1 − 1 − Et1 − Etrb,t1 H. 1

where the second equality makes use of the expected market return in equation C. 3. By

Imposing ft1 ≡ Et1 − Etrm,t1, Et1 − Etrb,t1 ′ and b ≡ −,−1 −  ′ and using Theorem 1,

one has,

Eri,t1 − rf,t1 
i

2

2   i,m  1 −  i,b H. 2

where  i,m ≡ Covri,t1, Et1 − Etrm,t1 and  i,b ≡ Covri,t1, Et1 − Etrb,t1 denote the

covariances with stock market return and bond return, respectively. Equation H. 2 represents

an generalized CAPM for the case where the market portfolio is composed of both stocks and

bonds. The standard CAPM can be recovered as a special case of H. 2 by imposing   1,

Eri,t1 − rf,t1 
i

2

2   i,m H. 3

If we allow the market risk price to be freely estimated in the cross-section, then the 2 beta

CAPM in equation H. 2 becomes,

Eri,t1 − rf,t1 
i

2

2  bp i,m  bp1 −  i,b H. 4
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and the standard unrestricted CAPM is obtained by making   1,

Eri,t1 − rf,t1 
i

2

2  bp i,m H. 5

I. GMM standard errors formulas for parameter estimates and moments

The parameter estimates b̂∗ associated with GMM systems in Section II.D, have variance

formulas for first stage and second stage given respectively by,

Varb̂∗  1
T d

′INd−1d′INŜINdd′INd−1 I. 1

Varb̂∗  1
T d

′Ŝ−1d−1 I. 2

where IN is a N order Identity matrix, d ≡ ∂gTb∗
∂b∗′

represents the matrix of moments’

sensitivities to the parameters, and Ŝ is a estimator for the spectral density matrix S, derived

under the Newey-West procedure with 5 lags. The variance-covariance matrix for the

moments is given by,

Var̂ 1
T IN−dd′INd−1d′INŜIN−INdd′INd−1d′ I. 3

Var̂ 1
T IN−dd′Ŝ−1d−1d′Ŝ−1ŜIN−Ŝ

−1dd
′
Ŝ−1d−1d′ I. 4

for first-stage and second-stage GMM, respectively.
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Table I
Descriptive statistics for the VAR state variables
This table reports descriptive statistics for the state variables used to predict stock market and
bond returns in the VAR presented in Section II. The VAR state variables are the log real 1
month Treasury bill rate (rr), FED funds premium (FFPREM), term structure spread (TERM),
value spread (VS), log earnings yield (EY), log excess bond return (rbt), and the log excess stock
market return (rmt). The original sample is 1954:07- 2003:12. Autocorr. designates the first order
autocorrelation. The correlations between the state variables are presented in Panel B. For details
on the construction of the variables refer to Section II.

Panel A
Mean Stdev. Min. Max. Autocorr.

rr,t 0.013 0.020 -0.062 0.075 0.914
FFPREMt 0.005 0.008 -0.011 0.054 0.878
TERMt 0.008 0.011 -0.031 0.033 0.967
VSt 1.563 0.158 1.200 2.231 0.938
EYt -2.783 0.378 -3.660 -1.950 0.997
rb,t 0.001 0.022 -0.078 0.089 0.066
rm,t 0.005 0.044 -0.261 0.148 0.073

Panel B
rr,t FFPREMt TERMt VSt EYt rb,t rm,t

rr,t 1.000 0.049 -0.083 0.025 -0.108 0.112 -0.038
FFPREMt 1.000 -0.441 -0.074 0.434 0.028 -0.129
TERMt 1.000 0.189 -0.368 0.115 0.137
VSt 1.000 -0.614 0.046 0.042
EYt 1.000 -0.005 -0.005
rb,t 1.000 0.159
rm,t 1.000
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Table II
Estimating the news components of stock and bond excess returns: a VAR
approach
Panel A presents the estimated coefficients (first row of each variable) and associated
Newey-West t-statistics calculated with 5 lags (second row) for the first-order VAR estimated in
Section II. The VAR state vector is given by rrt,FFPREMt,TERMt,VSt,EYt, rbt, rmt ′ where
rr is the log real 1 month Treasury bill rate, FFPREM is the FED funds premium, TERM is the
term structure spread, VS is the value spread, EY is the log earnings yield, rbt is the log excess
bond return, and rmt is the log excess stock market return. The original sample is 1954:08-
2003:12. Underlined (bold) t-statistics denote statistical significance at the 5% (1%) level. Adj.
R2 is the adjusted R2.
Panel B shows the variance decomposition associated with bond excess returns, where rt1

B and
r t1

R denote the excess bond return news and real interest rate news, respectively, which are
implied by the VAR model of panel A. The upper-right section shows the correlations between
r t1

B and r t1
R (above the diagonal), whereas the respective variances and covariances are

presented in the diagonal and below the diagonal. Below each correlation and covariance
coefficient, it is reported the respective standard error. The upper-left section reports the
variance decomposition of excess bond returns, in terms of both news components. The lower
section shows the correlations between shocks in each of the variables used in the VAR, with
both r t1

B and r t1
R , with s.e. denoting the respective standard errors.

Panel C shows the variance decomposition associated with excess stock market returns, where
r t1

K and r t1
CF denote the equity premia news and cash flow news, respectively, implied by the

VAR model of panel A. The upper-right section shows the correlations between r t1
CF , r t1

K ,
r t1

B and r t1
R (above the diagonal), whereas the respective variances and covariances are presented

in the diagonal and below the diagonal. Below each correlation and covariance coefficient, it is
reported the respective standard error. The upper-left section reports the variance decomposition
of excess stock market returns, in terms of all news components. The lower section shows the
correlations between shocks in each of the variables used in the VAR, with both r t1

K and r t1
CF ,

with s.e. denoting the respective standard errors. All the standard errors are computed in Panels
B and C from 10,000 bootstrapping simulations of the VAR. For further details refer to Section
II.

Panel A (VAR coefficient estimates)
rr,t FFPREMt TERMt VSt EYt rb,t rm,t Adj. R2

rr,t+1 0.931 -0.185 -0.027 0.006 0.003 -0.090 0.002 0.845
55.281 -2.332 -0.863 2.235 1.900 -4.011 0.200

FFPREMt+1 0.012 0.798 -0.078 0.001 0.001 0.021 -0.010 0.786
1.231 17.425 -3.381 0.884 1.563 2.495 -2.227

TERMt+1 0.014 0.021 0.971 0.001 0.000 0.029 -0.003 0.934
1.711 0.586 74.513 0.897 0.456 2.370 -1.231

VSt+1 -0.122 0.516 0.061 0.904 -0.025 -0.166 -0.017 0.882
-1.013 1.249 0.260 35.313 -2.057 -1.757 -0.387

EYt+1 -0.142 0.602 -0.377 -0.038 0.977 -0.183 -0.401 0.993
-1.990 2.438 -2.378 -2.578 147.446 -2.954 -13.092

rb,t+1 0.124 -0.245 0.215 0.017 0.009 0.065 -0.081 0.043
2.278 -1.531 1.977 2.262 2.383 1.392 -3.740

rm,t+1 0.049 -0.942 0.326 0.013 0.022 0.206 0.025 0.038
0.536 -2.822 1.818 0.805 2.595 2.237 0.572
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Panel B (Bond return decomposition)

Variance decomposition Correlations
Var(rB

t+1) 0.915 rB
t+1 rR

t+1

Var(rR
t+1) 0.094 rB

t+1 0.0004 -0.017
2Cov(rB

t+1,rR
t+1) -0.010 0.00005 0.144

Sum 1.000 rR
t+1 -0.000002 0.00004

0.00003 0.00002

Shock correlations
rB

t+1 s.e. rR
t+1 s.e.

rr,t+1 -0.333 0.071 0.859 0.099
FFPREMt+1 -0.051 0.067 -0.246 0.146
TERMt+1 -0.016 0.099 -0.298 0.256
VSt+1 -0.080 0.094 0.189 0.250
EYt+1 0.067 0.093 0.056 0.238
rb,t+1 -0.952 0.024 -0.291 0.109
rm,t+1 -0.145 0.093 -0.021 0.230

Panel C (Equity return decomposition)

Variance decomposition Correlations
Var(rK

t+1) 0.803 rK
t+1 rCF

t+1 rR
t+1 rB

t+1

-2Cov(rK
t+1,rCF

t+1) -0.046 rK
t+1 0.001 0.044 -0.067 -0.471

2Cov(rK
t+1,rR

t+1) -0.018 0.0005 0.178 0.231 0.129
2Cov(rK

t+1,rB
t+1) -0.397 rCF

t+1 0.00004 0.001 0.107 -0.172
Var(rCF

t+1) 0.341 0.0003 0.0002 0.229 0.118
-2Cov(rCF

t+1,rR
t+1) -0.019 rR

t+1 -0.00002 0.00002 0.00004 -0.017
-2Cov(rCF

t+1,rB
t+1) 0.094 0.0001 0.0001 0.00002 0.144

Var(rR
t+1) 0.023 rB

t+1 -0.0004 -0.0001 0.00000 0.0004
2Cov(rB

t+1,rR
t+1) -0.002 0.0001 0.0001 0.00003 0.00005

Var(rB
t+1) 0.221

Sum 1.000

Shock correlations
rK

t+1 s.e. rCF
t+1 s.e.

rr,t+1 0.157 0.120 0.043 0.164
FFPREMt+1 -0.064 0.098 -0.304 0.117
TERMt+1 0.098 0.169 0.283 0.222
VSt+1 -0.364 0.146 -0.143 0.255
EYt+1 0.749 0.098 0.016 0.224
rb,t+1 0.471 0.103 0.132 0.099
rm,t+1 -0.639 0.102 0.609 0.198
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Table III
ICAPM with bond risk premia: Single-regression beta estimates for the 25
size/book-to-market portfolios
This table reports in Panel A the single regression beta estimates associated with the Benchmark
ICAPM with bond premia estimated in sub-section II.D, for the 25 size/book-to-market
portfolios (SBV25). r t1

K , r t1
CF and r t1

B denote the revisions in future equity premia, cash-flows
and bond premia, respectively. SBVij denotes the portfolio with ith size and jth book-to-market
quintiles. Average betas across the book-to-market and size quintiles are reported in Panels B
and C, respectively. S1 and BV1 denote the lowest size and book-to-market quintiles,
respectively. The sample is 1954:08-2003:12. For further details, refer to Section II.

Panel A (SBV25) Panel B (BM quintiles)
rCF

t+1 rK
t+1 rB

t+1 rCF
t+1 rK

t+1 rB
t+1

SBV11 1.298 -1.154 -0.198 BV1 1.222 -1.008 -0.291
SBV12 1.120 -0.985 -0.118 BV2 1.084 -0.810 -0.276
SBV13 0.962 -0.809 -0.209 BV3 0.989 -0.686 -0.297
SBV14 0.931 -0.749 -0.155 BV4 0.961 -0.632 -0.276
SBV15 0.980 -0.764 -0.111 BV5 1.055 -0.678 -0.238
SBV21 1.318 -1.136 -0.256
SBV22 1.101 -0.885 -0.278 Panel C (Size quintiles)
SBV23 0.985 -0.743 -0.279 rCF

t+1 rK
t+1 rB

t+1
SBV24 0.967 -0.694 -0.244 S1 1.058 -0.892 -0.158
SBV25 1.062 -0.763 -0.231 S2 1.087 -0.844 -0.258
SBV31 1.253 -1.057 -0.313 S3 1.076 -0.761 -0.299
SBV32 1.071 -0.796 -0.281 S4 1.097 -0.714 -0.341
SBV33 1.011 -0.670 -0.304 S5 0.993 -0.601 -0.321
SBV34 0.964 -0.620 -0.296
SBV35 1.079 -0.664 -0.300
SBV41 1.209 -0.945 -0.336
SBV42 1.103 -0.730 -0.360
SBV43 1.046 -0.653 -0.334
SBV44 1.007 -0.590 -0.365
SBV45 1.121 -0.650 -0.312
SBV51 1.034 -0.747 -0.351
SBV52 1.025 -0.652 -0.340
SBV53 0.941 -0.554 -0.359
SBV54 0.934 -0.505 -0.317
SBV55 1.031 -0.548 -0.238
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Table IV
ICAPM with bond risk premia: Single-regression beta estimates for the the 38
industry portfolios
This table reports the single regression beta estimates associated with the Benchmark ICAPM
estimated in sub-section II.D, for the 38 industry portfolios (IND38). r t1

K , r t1
CF and r t1

B denote the
revisions in future equity premia, cash-flows and bond premia, respectively. The sample is
1954:08-2003:12. For further details, refer to Section II.

rCF
t+1 rK

t+1 rB
t+1 rCF

t+1 rK
t+1 rB

t+1

AGRIC 0.996 -0.703 -0.337 OIL 1.136 -0.730 -0.194
APPRL 1.073 -0.871 -0.275 PAPER 1.023 -0.682 -0.289
CARS 1.098 -0.695 -0.220 PHONE 0.897 -0.427 -0.456
CHAIR 0.996 -0.663 -0.420 PRINT 0.948 -0.716 -0.435
CHEMS 0.888 -0.649 -0.343 PTRLM 0.775 -0.548 -0.107
CNSTR 1.318 -0.843 -0.586 RTAIL 0.997 -0.725 -0.346
ELCTR 1.401 -1.000 -0.203 RUBBR 1.093 -0.813 -0.220
FOOD 0.739 -0.480 -0.417 SMOKE 0.715 -0.406 -0.549
GLASS 1.201 -0.878 -0.258 SRVC 1.347 -1.001 -0.400
INSTR 1.035 -0.805 -0.227 STONE 0.850 -0.839 0.151
LETHR 1.033 -0.744 -0.229 TRANS 1.236 -0.730 -0.305
MACHN 1.213 -0.942 -0.118 TV 1.188 -0.836 -0.393
MANUF 0.987 -0.850 -0.320 TXTLS 0.957 -0.775 -0.122
METAL 1.387 -0.884 0.039 UTILS 0.617 -0.218 -0.587
MINES 0.980 -0.761 0.103 WHLSL 1.123 -0.764 -0.407
MONEY 1.085 -0.571 -0.601 WOOD 1.269 -0.782 -0.378
MTLPR 1.001 -0.694 -0.316
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Table V
ICAPM with bond risk premia: Estimating factor risk prices
This table reports the estimation and evaluation results of the ICAPM presented in sub-section
II.D,

Er i,t1−r f,t1  i
2

2   i,CF− i,K− i,B

Panels A, B and C presents the results for the cases with 0.7, 0.6 and 0.5, respectively. There
are 2 sets of test assets - the 25 size/book-to-market portfolios (SBV25) and the combination of
these with 38 industry portfolios (SBV25IND38). Each panel reports the risk prices for both
single regression betas (rows 1 and 3) and multiple regression betas (rows 2 and 4), arising from
first stage GMM estimation. CF, K and B denote the beta risk prices estimates for the
cash-flow news, equity premia news and bond premia news, respectively.  denotes the relative
risk aversion coefficient. Below the parameter estimates are reported the associated Newey-West
t-statistics calculated with 5 lags, and standard errors I and II, respectively. Test values (first
row) and respective p-values (second row) for the asymptotic 2 test are presented for each
GMM estimation. RMSE is the square root of the average pricing error (in %). R2 refers to the
cross sectional adjusted R2. The sample is 1954:08-2003:12. Italic, underlined and bold numbers
denote statistical significance at the 10%, 5% and 1% levels respectively. The beta risk prices
() are reported in %. For further details, refer to Section II.

Panel A (ω=0.7)
Row λCF λK λB γ α'Σ-1α RMSE R2

SBV25
1 0.610 -0.103 -0.040 13.961 22.480 0.272 0.881

2.951 2.951 0.551
2.500 2.500

2 0.615 -0.026 -0.099 33.887
2.978 -1.865 -3.474 0.087
2.524 -1.581 -2.943

SBV25 + IND38
3 0.541 -0.103 -0.040 12.387 63.221 0.237 0.887

2.727 2.727 0.266
2.360 2.360

4 0.547 -0.030 -0.090 60.569
2.756 -2.290 -3.272 0.348
2.385 -1.981 -2.831
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Panel B (ω=0.6)
Row λCF λK λB γ α'Σ-1α RMSE R2

SBV25
1 0.620 -0.088 -0.040 16.573 22.444 0.271 0.882

3.002 3.002 0.553
2.542 2.542

2 0.626 -0.010 -0.104 33.794
3.032 -0.751 -3.652 0.088
2.567 -0.636 -3.092

SBV25 + IND38
3 0.551 -0.088 -0.040 14.730 63.263 0.237 0.887

2.779 2.779 0.265
2.404 2.404

4 0.557 -0.015 -0.095 60.485
2.810 -1.130 -3.457 0.351
2.430 -0.977 -2.989

Panel C (ω=0.5)
Row λCF λK λB γ α'Σ-1α RMSE R2

SBV25
1 0.631 -0.073 -0.040 20.228 22.410 0.271 0.882

3.054 3.054 0.555
2.583 2.583

2 0.637 0.005 -0.110 33.698
3.085 0.364 -3.831 0.090
2.610 0.308 -3.241

SBV25 + IND38
3 0.562 -0.073 -0.040 18.009 63.306 0.237 0.887

2.832 2.832 0.264
2.448 2.448

4 0.568 0.000 -0.100 60.399
2.865 0.030 -3.641 0.354
2.476 0.026 -3.147
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Table VI
ICAPM with bond risk premia: Estimating factor risk prices by efficient GMM
This table reports the estimation and evaluation results of the ICAPM presented in sub-section
II.D,

Er i,t1−r f,t1  i
2

2   i,CF− i,K− i,B

Panels A, B and C presents the results for the cases with 0.7, 0.6 and 0.5, respectively. There
are 2 sets of test assets - the 25 size/book-to-market portfolios (SBV25) and the combination of
these with 38 industry portfolios (SBV25IND38). Each panel reports the risk prices for both
single regression betas (rows 1 and 3) and multiple regression betas (rows 2 and 4), arising from
second stage GMM estimation (GMM II system). CF, K and B denote the beta risk prices
estimates for the cash-flow news, equity premia news and bond premia news, respectively. 
denotes the relative risk aversion coefficient. Below the parameter estimates are reported the
associated Newey-West t-statistics calculated with 5 lags. Test values (first row) and respective
p-values (second row) for the asymptotic 2 test are presented for each GMM estimation.
RMSE is the square root of the average pricing error (in %). R2 refers to the cross sectional
adjusted R2. The sample is 1954:08-2003:12. Italic, underlined and bold numbers denote
statistical significance at the 10%, 5% and 1% levels respectively. The beta risk prices () are
reported in %. For further details, refer to Section II.

Panel A (ω=0.7)
Row λCF λK λB γ α'Σ-1α RMSE R2

SBV25
1 0.471 -0.103 -0.040 10.779 34.154 0.310 0.846

2.698 2.698 0.082
2 0.476 -0.035 -0.080

2.730 -3.006 -3.317

SBV25 + IND38
3 0.421 -0.103 -0.040 9.642 60.940 0.270 0.854

2.915 2.915 0.336
4 0.427 -0.038 -0.073

2.954 -3.974 -3.663
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Panel B (ω=0.6)
Row λCF λK λB γ α'Σ-1α RMSE R2

SBV25
1 0.480 -0.088 -0.040 12.831 34.064 0.310 0.846

2.750 2.750 0.084
2 0.486 -0.020 -0.085

2.785 -1.690 -3.519

SBV25 + IND38
3 0.431 -0.088 -0.040 11.511 60.838 0.270 0.854

2.982 2.982 0.339
4 0.437 -0.023 -0.078

3.024 -2.385 -3.912

Panel C (ω=0.5)
Row λCF λK λB γ α'Σ-1α RMSE R2

SBV25
1 0.490 -0.073 -0.040 15.704 33.974 0.310 0.846

2.803 2.803 0.085
2 0.496 -0.004 -0.090

2.840 -0.377 -3.721

SBV25 + IND38
3 0.441 -0.073 -0.040 14.128 60.736 0.270 0.854

3.049 3.049 0.343
4 0.447 -0.008 -0.083

3.094 -0.796 -4.160
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Table VII
ICAPM with bond risk premia: Single-regression beta estimates for additional
characteristic-sorted portfolios
This table reports the single regression beta estimates associated with the Benchmark ICAPM
with bond premia, for the 10 portfolios sorted on earnings to price ratio (Panel A), 10 portfolios
sorted on cash flow to price ratio (Panel B) and 10 portfolios sorted on dividend to price ratio
(Panel C). r t1

K , r t1
CF and r t1

B denote the revisions in future equity premia, cash-flows and bond
premia, respectively. EP1, CFP1 and DP1 denote the portfolios containing stocks with financial
ratios in the lowest decile, whereas EP10, CFP10 and DP10 denote the portfolios containing
stocks with the highest financial ratios. DIF. denotes the difference in betas across extreme
deciles. The sample is 1954:08-2003:12. For further details, refer to Section II.

Panel A (E/P) Panel B (CF/P) Panel C (D/P)
rCF

t+1 rK
t+1 rB

t+1 rCF
t+1 rK

t+1 rB
t+1 rCF

t+1 rK
t+1 rB

t+1
EP1 1.175 -0.938 -0.274 CFP1 1.151 -0.912 -0.327 DP1 1.215 -0.922 -0.282
EP2 1.041 -0.735 -0.312 CFP2 1.040 -0.726 -0.320 DP2 1.057 -0.825 -0.274
EP3 0.965 -0.649 -0.375 CFP3 0.985 -0.638 -0.435 DP3 1.027 -0.733 -0.296
EP4 0.969 -0.616 -0.381 CFP4 1.041 -0.665 -0.381 DP4 1.049 -0.653 -0.368
EP5 1.014 -0.622 -0.402 CFP5 0.990 -0.632 -0.314 DP5 0.993 -0.577 -0.412
EP6 0.952 -0.604 -0.307 CFP6 0.955 -0.567 -0.452 DP6 0.957 -0.556 -0.378
EP7 0.967 -0.569 -0.356 CFP7 0.927 -0.607 -0.303 DP7 0.951 -0.552 -0.342
EP8 0.912 -0.574 -0.368 CFP8 0.902 -0.560 -0.312 DP8 0.931 -0.511 -0.319
EP9 1.013 -0.593 -0.291 CFP9 0.925 -0.572 -0.239 DP9 0.834 -0.447 -0.341
EP10 1.113 -0.654 -0.332 CFP10 1.091 -0.659 -0.229 DP10 0.683 -0.279 -0.451
DIF. 0.062 -0.283 0.058 DIF. 0.060 -0.253 -0.099 DIF. 0.532 -0.643 0.168
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Table VIII
ICAPM with bond risk premia: Estimating factor risk prices for alternative
characteristic portfolios
This table reports the estimation and evaluation results of the ICAPM presented in sub-section
II.D,

Er i,t1−r f,t1  i
2

2   i,CF− i,K− i,B

for additional characteristic portfolios. The test assets are the 10 portfolios sorted on earnings to
price ratio (E/P, Panel A), 10 portfolios sorted on cash flow to price ratio (CF/P, Panel B) and 10
portfolios sorted on dividend to price ratio (D/P, Panel C), and the combination of these 30
portfolios with the 25 size/book-to-market portfolios (Panel D). Each panel reports the risk
prices for both single regression betas (row 1) and multiple regression betas (row 2), arising
from second stage GMM estimation (GMM II system). CF, K and B denote the beta risk
prices estimates for the cash-flow news, equity premia news and bond premia news,
respectively.  denotes the relative risk aversion coefficient. Below the parameter estimates are
reported the associated Newey-West t-statistics calculated with 5 lags. Test values (first row)
and respective p-values (second row) for the asymptotic 2 test are presented for each GMM
estimation. RMSE is the square root of the average pricing error (in %). R2 refers to the cross
sectional adjusted R2. The sample is 1954:08-2003:12. Italic, underlined and bold numbers
denote statistical significance at the 10%, 5% and 1% levels respectively. The beta risk prices
() are reported in %. For further details, refer to Section II.

Panel A (E/P)
Row λCF λK λB γ α'Σ-1α RMSE R2

1 0.548 -0.103 -0.040 12.560 14.930 0.251 0.882
2.812 2.812 0.093

2 0.554 -0.030 -0.091
2.841 -2.290 -3.366

Panel B (CF/P)
Row λCF λK λB γ α'Σ-1α RMSE R2

1 0.639 -0.103 -0.040 14.626 12.548 0.212 0.905
3.108 3.108 0.184

2 0.644 -0.024 -0.103
3.136 -1.734 -3.634

Panel C (D/P)
Row λCF λK λB γ α'Σ-1α RMSE R2

1 0.651 -0.103 -0.040 14.907 8.043 0.175 0.922
3.253 3.253 0.530

2 0.657 -0.023 -0.105
3.282 -1.720 -3.794

Panel D (SBV25+E/P+CF/P+D/P)
Row λCF λK λB γ α'Σ-1α RMSE R2

1 0.608 -0.103 -0.040 13.936 33.505 0.238 0.895
4.232 4.232 0.987

2 0.614 -0.026 -0.099
4.272 -2.688 -4.984
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Table IX
ICAPM with bond risk premia: Estimating factor risk prices with alternative
bond returns
This table reports the estimation and evaluation results of the ICAPM presented in sub-section
II.D,

Er i,t1−r f,t1  i
2

2   i,CF− i,K− i,B

using alternative bond returns. The bond returns are the corporate bond AAA average (Panel A),
corporate bond BAA average (Panel B), and an equal weighted portfolio of 3, 5 and 10 year
maturity Treasury bonds (Panel C). There are 3 sets of test assets - the 25 size/book-to-market
portfolios (SBV25); the combination of these with 38 industry portfolios (SBV25IND38), and
the combination of SBV25 with 30 characteristic portfolios (SBV25E/PCF/PD/P). Each
panel reports the risk prices for both single regression betas (rows 1, 3, 5) and multiple
regression betas (rows 2, 4, 6), arising from second stage GMM estimation (GMM II system).
CF, K and B denote the beta risk prices estimates for the cash-flow news, equity premia news
and bond premia news, respectively.  denotes the relative risk aversion coefficient. Below the
parameter estimates are reported the associated Newey-West t-statistics calculated with 5 lags.
Test values (first row) and respective p-values (second row) for the asymptotic 2 test are
presented for each GMM estimation. RMSE is the square root of the average pricing error (in
%). R2 refers to the cross sectional adjusted R2. The sample is 1954:08-2003:12. Italic,
underlined and bold numbers denote statistical significance at the 10%, 5% and 1% levels
respectively. The beta risk prices () are reported in %. For further details, refer to Section II.

Panel A (AAA)
Row λCF λK λB γ α'Σ-1α RMSE R2

SBV25
1 0.489 -0.097 -0.027 11.484 33.644 0.305 0.850

2.709 2.709 0.091
2 0.493 -0.019 -0.080

2.731 -0.924 -3.126

SBV25 + IND38
3 0.455 -0.097 -0.027 10.700 60.523 0.259 0.866

3.093 3.093 0.350
4 0.459 -0.023 -0.075

3.119 -1.359 -3.604

SBV25+E/P+CF/P+D/P
5 0.633 -0.097 -0.027 14.865 33.002 0.231 0.900

4.143 4.143 0.989
6 0.636 -0.003 -0.100

4.167 -0.149 -4.635
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Panel B (BAA)
Row λCF λK λB γ α'Σ-1α RMSE R2

SBV25
1 0.480 -0.091 -0.021 11.247 34.530 0.304 0.851

2.681 2.681 0.076
2 0.485 -0.033 -0.077

2.708 -2.105 -3.031

SBV25 + IND38
3 0.438 -0.091 -0.021 10.275 60.806 0.262 0.862

2.996 2.996 0.341
4 0.443 -0.036 -0.071

3.030 -2.857 -3.424

SBV25+E/P+CF/P+D/P
5 0.617 -0.091 -0.021 14.458 33.309 0.232 0.900

4.039 4.039 0.988
6 0.622 -0.021 -0.096

4.071 -1.569 -4.449

Panel C (GB)
Row λCF λK λB γ α'Σ-1α RMSE R2

SBV25
1 0.498 -0.090 -0.013 11.536 34.334 0.305 0.850

2.752 2.752 0.079
2 0.501 -0.034 -0.064

2.771 -2.109 -2.983

SBV25 + IND38
3 0.456 -0.090 -0.013 10.566 60.879 0.261 0.864

3.083 3.083 0.338
4 0.460 -0.038 -0.059

3.106 -2.863 -3.365

SBV25+E/P+CF/P+D/P
5 0.631 -0.090 -0.013 14.615 33.517 0.234 0.898

4.117 4.117 0.987
6 0.634 -0.022 -0.080

4.140 -1.624 -4.390
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Table X
ICAPM with bond risk premia: Estimating factor risk prices with time-varying
covariances
This table reports the estimation and evaluation results of the ICAPM with time-varying
covariances presented in sub-section II.G,

Er i,t1−r f,t1  i
2

2   i,CF− i,K−bK i,K,x− i,B−bB i,B,x

The scaling variables are the market dividend yield (DY), smoothed log earnings yield (EY*)
and default spread (DEF). Panels A, B and C present the results from first stage GMM, whereas
Panels D, E and F show the results from second stage GMM. There are 2 sets of test assets - the
25 size/book-to-market portfolios (SBV25) and the combination of these with 38 industry
portfolios (SBV25IND38). Each panel from A to C reports the risk prices for single regression
betas in the first row, and the associated Newey-West t-statistics (with 5 lags) arising from
GMM I and II standard errors in the second and third row, respectively. CF, K, B, Kx and
Bx denote the beta risk prices estimates for the cash-flow news, equity premia news, bond
premia news, and the scaled factors, respectively.  denotes the relative risk aversion coefficient.
In panels D to F, the first two rows show the efficient parameter estimates and the associated
Newey-West t-statistics (with 5 lags) arising from system GMM I, whereas the following two
rows report the results for the GMM II system. Test values (first row) and respective p-values
(second row) for the asymptotic 2 test are presented for each GMM estimation. RMSE is the
square root of the average pricing error (in %). R2 refers to the cross sectional adjusted R2. The
sample is 1954:08-2003:12. Italic, underlined and bold numbers denote statistical significance at
the 10%, 5% and 1% levels respectively. The beta risk prices () are reported in %. For further
details, refer to Section II.
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Panel A (DY)
λCF λK λB λKDY λBDY γ bK bB α'Σ-1α RMSE R2

SBV25
0.590 -0.103 -0.040 -0.031 -0.009 13.519 2312.776 1975.638 20.276 0.223 0.913
2.513 -2.816 -1.591 2.513 2.816 1.591 0.566
1.822 -1.784 -1.215 1.822 1.784 1.215

SBV25 + IND38
0.533 -0.103 -0.040 -0.009 -0.002 12.214 689.795 485.824 58.309 0.226 0.894
2.441 -1.576 -0.339 2.441 1.576 0.339 0.355
2.213 -1.530 -0.318 2.213 1.530 0.318

Panel B (EY*)
λCF λK λB λKEY λBEY γ bK bB α'Σ-1α RMSE R2

SBV25
1.000 -0.103 -0.040 -1.081 0.290 22.913 49.054 -32.524 19.640 0.223 0.913
3.207 -2.121 0.938 3.207 2.121 -0.938 0.606
1.968 -1.186 0.616 1.968 1.186 -0.616

SBV25 + IND38
0.513 -0.103 -0.040 -0.363 -0.110 11.753 16.445 12.364 60.130 0.227 0.893
2.253 -1.499 -0.442 2.253 1.499 0.442 0.295
2.048 -1.449 -0.426 2.048 1.449 0.426

Panel C (DEF)
λCF λK λB λKDEF λBDEF γ bK bB α'Σ-1α RMSE R2

SBV25
1.356 -0.103 -0.040 0.013 0.016 31.068 -6814.873 -12370.164 16.682 0.249 0.891
3.821 2.337 2.934 3.821 -2.337 -2.934 0.781
2.152 1.187 1.697 2.152 -1.187 -1.697

SBV25 + IND38
0.547 -0.103 -0.040 0.001 0.000 12.533 -546.407 12.181 56.428 0.237 0.883
2.695 0.227 -0.006 2.695 -0.227 0.006 0.421
2.368 0.207 -0.005 2.368 -0.207 0.005
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Panel D (DY, efficient GMM)
λCF λK λB λKDY λBDY γ bK bB α'Σ-1α RMSE R2

SBV25
0.461 -0.103 -0.040 -0.017 -0.006 10.551 1262.218 1279.552 23.660 0.262 0.879
2.392 -2.520 -1.382 2.392 2.520 1.382 0.365
0.317 -0.103 -0.040 -0.020 -0.010 7.266 1524.091 2255.709 30.631 0.279 0.863
1.277 -2.236 -2.094 1.277 2.236 2.094 0.104

SBV25 + IND38
0.435 -0.103 -0.040 -0.007 -0.002 9.974 538.177 423.450 65.278 0.247 0.873
2.903 -2.409 -0.705 2.903 2.409 0.705 0.162
0.390 -0.103 -0.040 -0.008 -0.003 8.937 579.780 616.666 59.926 0.257 0.863
2.504 -2.433 -1.074 2.504 2.433 1.074 0.302

Panel E (EY*, efficient GMM)
λCF λK λB λKEY λBEY γ bK bB α'Σ-1α RMSE R2

SBV25
0.579 -0.103 -0.040 -0.432 0.019 13.257 19.611 -2.095 24.342 0.276 0.866
2.779 -1.569 0.096 2.779 1.569 -0.096 0.330
0.251 -0.103 -0.040 -0.548 -0.300 5.743 24.850 33.675 26.636 0.364 0.768
0.785 -1.447 -1.197 0.785 1.447 1.197 0.225

SBV25 + IND38
0.394 -0.103 -0.040 -0.258 -0.126 9.019 11.697 14.153 65.693 0.249 0.871
2.634 -1.953 -1.129 2.634 1.953 1.129 0.153
0.335 -0.103 -0.040 -0.273 -0.156 7.666 12.405 17.473 61.144 0.270 0.849
2.107 -1.962 -1.473 2.107 1.962 1.473 0.265

Panel F (DEF, efficient GMM)
λCF λK λB λKDEF λBDEF γ bK bB α'Σ-1α RMSE R2

SBV25
0.795 -0.103 -0.040 0.011 0.007 18.209 -5625.731 -5227.675 25.467 0.313 0.828
3.795 4.169 2.158 3.795 -4.169 -2.158 0.275
0.364 -0.103 -0.040 0.009 0.001 8.336 -4730.567 -744.737 14.510 0.460 0.629
1.016 1.647 0.170 1.016 -1.647 -0.170 0.882

SBV25 + IND38
0.434 -0.103 -0.040 0.002 0.000 9.942 -1106.425 -73.308 64.943 0.272 0.846
3.125 1.113 0.062 3.125 -1.113 -0.062 0.169
0.402 -0.103 -0.040 0.003 0.000 9.218 -1290.482 -70.220 59.705 0.292 0.823
2.680 1.224 0.060 2.680 -1.224 -0.060 0.309
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Table XI
ICAPM with news in variances
This table reports the estimation and evaluation results for the ICAPM with news in variances
presented in Section III,

Er i,t1−r f,t1  i
2

2   i,CF− i,K− i,B0.522 i,Vm  1 − 2 i,Vb 1

Er i,t1−r f,t1  i
2

2   i,CF− i,K− i,B0.522 i,Vm 2
Panels A and B present the results for model 1 from first and second stage GMM,
respectively, whereas Panels C and D show the results for model 2, from first and second
stage GMM, respectively. There are 3 sets of test assets - the 25 size/book-to-market portfolios
(SBV25); the combination of these with 38 industry portfolios (SBV25IND38), and the
combination of SBV25 with 30 characteristic portfolios (SBV25E/PCF/PD/P). Panels A and
C report the risk prices for single regression betas in the first row, and the associated
Newey-West t-statistics (with 5 lags) arising from GMM I and II standard errors in the second
and third rows, respectively. In panels B and D, the first two rows show the efficient parameter
estimates and the associated Newey-West t-statistics (with 5 lags) arising from system GMM I,
whereas the following two rows report the results for the GMM II system. CF, K and B
denote the beta risk prices estimates for the cash-flow news, equity premia news and bond
premia news, respectively. VM and VB denote the risk prices associated with news in the
volatilities of stock and bond returns. V represents the common component of both VM and
VB, and it is estimated in the cross-section.  denotes the relative risk aversion coefficient. Test
values (first row) and respective p-values (second row) for the asymptotic 2 test are presented
for each GMM estimation. RMSE is the square root of the average pricing error (in %). R2

refers to the cross sectional adjusted R2. The sample is 1954:08-2003:12. Italic, underlined and
bold numbers denote statistical significance at the 10%, 5% and 1% levels respectively. The beta
risk prices () are reported in %. For further details, refer to Section III.
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Panel A (first stage GMM)
λCF λK λB λVM λVB γ λV α'Σ-1α RMSE R2

SBV25
0.376 -0.103 -0.040 0.108 0.023 8.612 273.837 32.690 0.270 0.877
1.776 0.979 0.979 1.776 0.979 0.087
1.516 0.795 0.795 1.516 0.795

SBV25 + IND38
0.658 -0.103 -0.040 -0.051 -0.011 15.076 -129.887 59.134 0.236 0.886
3.333 -0.744 -0.744 3.333 -0.744 0.362
3.014 -0.682 -0.682 3.014 -0.682

SBV25+E/P+CF/P+D/P
0.680 -0.103 -0.040 -0.042 -0.009 15.586 -106.409 31.770 0.237 0.894
3.194 -0.446 -0.446 3.194 -0.446 0.991
2.886 -0.416 -0.416 2.886 -0.416

Panel B (second stage GMM)
λCF λK λB λVM λVB γ λV α'Σ-1α RMSE R2

SBV25
0.397 -0.103 -0.040 0.047 0.010 9.089 120.499 22.891 0.295 0.854
2.378 1.092 1.092 2.378 1.092 0.467
0.413 -0.103 -0.040 0.040 0.008 9.454 101.178 27.396 0.295 0.854
2.061 0.534 0.534 2.061 0.534 0.239

SBV25 + IND38
0.531 -0.103 -0.040 -0.041 -0.009 12.162 -103.717 64.837 0.261 0.861
3.768 -1.445 -1.445 3.768 -1.445 0.196
0.544 -0.103 -0.040 -0.051 -0.011 12.459 -128.747 59.781 0.265 0.856
3.632 -1.753 -1.753 3.632 -1.753 0.340

SBV25+E/P+CF/P+D/P
0.679 -0.103 -0.040 -0.036 -0.008 15.550 -92.265 38.003 0.237 0.893
4.898 -1.104 -1.104 4.898 -1.104 0.940
0.697 -0.103 -0.040 -0.057 -0.012 15.972 -144.725 33.126 0.237 0.893
4.475 -1.728 -1.728 4.475 -1.728 0.985
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Panel C (first stage GMM)
λCF λK λB λVM γ λV α'Σ-1α RMSE R2

SBV25
0.386 -0.103 -0.040 0.106 8.830 269.291 31.025 0.270 0.878
1.895 2.291 1.895 2.291 0.122
1.155 0.943 1.155 0.943

SBV25 + IND38
0.669 -0.103 -0.040 -0.056 15.332 -141.175 59.078 0.236 0.887
3.183 -1.093 3.183 -1.093 0.364
2.856 -0.985 2.856 -0.985

SBV25+E/P+CF/P+D/P
0.694 -0.103 -0.040 -0.048 15.896 -122.179 31.812 0.237 0.894
3.408 -1.258 3.408 -1.258 0.991
2.946 -1.063 2.946 -1.063

Panel D (second stage GMM)
λCF λK λB λVM γ λV α'Σ-1α RMSE R2

SBV25
0.404 -0.103 -0.040 0.045 9.247 114.916 23.280 0.295 0.854
2.486 1.275 2.486 1.275 0.444
0.423 -0.103 -0.040 0.034 9.686 87.487 35.080 0.297 0.852
2.112 0.491 2.112 0.491 0.051

SBV25 + IND38
0.540 -0.103 -0.040 -0.045 12.378 -113.038 64.538 0.260 0.862
3.894 -1.997 3.894 -1.997 0.203
0.562 -0.103 -0.040 -0.059 12.880 -149.446 59.704 0.266 0.856
3.774 -2.161 3.774 -2.161 0.343

SBV25+E/P+CF/P+D/P
0.681 -0.103 -0.040 -0.036 15.601 -90.926 37.987 0.237 0.893
5.014 -1.336 5.014 -1.336 0.940
0.709 -0.103 -0.040 -0.063 16.237 -159.446 33.236 0.237 0.893
4.537 -2.111 4.537 -2.111 0.985
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Table XII
An unrestricted ICAPM with bond risk premia
This table reports the estimation and evaluation results for the unrestricted ICAPM presented in
Section III,

Er i,t1−r f,t1  i
2

2  bCF i,CFbK i,KbB i,B

Panels A and B present the results from first and second stage GMM, respectively. There are 3
sets of test assets - the 25 size/book-to-market portfolios (SBV25); the combination of these with
38 industry portfolios (SBV25IND38), and the combination of SBV25 with 30 characteristic
portfolios (SBV25E/PCF/PD/P). Panel A reports the risk prices for single regression betas in
the first row, and the associated Newey-West t-statistics (with 5 lags) arising from GMM I and
II standard errors in the second and third rows, respectively. In panel B, the first two rows show
the efficient parameter estimates and the associated Newey-West t-statistics (with 5 lags) arising
from system GMM I, whereas the following two rows report the results for the GMM II system.
CF, K and B denote the beta risk prices estimates for the cash-flow news, equity premia news
and bond premia news, respectively.  denotes the relative risk aversion coefficient. 1 and 2
represent the implied preference parameters, which are derived in Section III. Test values (first
row) and respective p-values (second row) for the asymptotic 2 test are presented for each
GMM estimation. RMSE is the square root of the average pricing error (in %). R2 refers to the
cross sectional adjusted R2. The sample is 1954:08-2003:12. Italic, underlined and bold numbers
denote statistical significance at the 10%, 5% and 1% levels respectively. The beta risk prices
() are reported in %. For further details, refer to Section III.

Panel A (first stage GMM)
λCF λK λB bCF bK bB γ Φ1 Φ2 α'Σ-1α RMSE R2

SBV25
2.356 1.596 1.970 37.775 10.864 48.796 53.964 -0.031 -0.241 19.742 0.233 0.905
4.135 2.638 2.862 4.135 2.638 2.862 4.135 -4.897 -3.121 0.599
2.673 1.701 1.907 2.673 1.701 1.907 2.673 -2.889 -2.014

SBV25 + IND38
0.467 -0.103 -0.321 7.485 -0.700 -7.947 10.693 0.000 0.239 59.168 0.233 0.887
1.309 -0.205 -1.059 1.309 -0.205 -1.059 1.309 0.000 0.701 0.326
1.248 -0.190 -1.018 1.248 -0.190 -1.018 1.248 0.000 0.679

SBV25+E/P+CF/P+D/P
2.390 1.801 1.623 38.315 12.257 40.208 54.735 -0.034 -0.175 23.668 0.192 0.929
4.747 3.079 3.368 4.747 3.079 3.368 4.747 -6.079 -2.989 1.000
3.165 2.013 2.342 3.165 2.013 2.342 3.165 -3.654 -1.975
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Panel B (second stage GMM)
λCF λK λB bCF bK bB γ Φ1 Φ2 α'Σ-1α RMSE R2

SBV25
1.396 0.703 1.088 22.385 4.786 26.955 31.979 -0.025 -0.242 26.874 0.261 0.880
3.821 1.563 2.976 3.821 1.563 2.976 3.821 -2.737 -2.763 0.216
1.311 0.747 0.693 21.022 5.081 17.154 30.032 -0.028 -0.142 20.493 0.268 0.874
2.315 1.115 1.328 2.315 1.115 1.328 2.315 -1.989 -1.111 0.552

SBV25 + IND38
0.263 -0.367 -0.245 4.223 -2.497 -6.069 6.032 0.051 0.217 66.754 0.239 0.881
1.246 -1.223 -1.379 1.246 -1.223 -1.379 1.246 0.508 0.603 0.133
0.325 -0.263 -0.234 5.214 -1.790 -5.802 7.448 0.024 0.192 61.836 0.241 0.879
1.500 -0.844 -1.270 1.500 -0.844 -1.270 1.500 0.389 0.694 0.245

SBV25+E/P+CF/P+D/P
1.727 0.982 1.243 27.685 6.685 30.792 39.550 -0.027 -0.211 46.648 0.203 0.920
7.098 3.029 6.038 7.098 3.029 6.038 7.098 -5.031 -4.947 0.684
1.332 0.350 0.852 21.359 2.383 21.105 30.512 -0.015 -0.215 26.189 0.281 0.847
3.395 0.750 2.789 3.395 0.750 2.789 3.395 -1.234 -2.886 0.999
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Table XIII
ICAPM with revisions in the VAR state variables
This table reports the estimation and evaluation results for the ICAPM with revisions in the
VAR state variables, presented in Section III,

Er i,t1−r f,t1  i
2

2   i,CF− i,K− i,BY i,y

The state variables used are FFPREM (Panel A), TERM (Panel B), VS (Panel C), EY (Panel D)
and the real interest rate (Panel E). There are 3 sets of test assets - the 25 size/book-to-market
portfolios (SBV25); the combination of these with 38 industry portfolios (SBV25IND38), and
the combination of SBV25 with 30 characteristic portfolios (SBV25E/PCF/PD/P). In each
panel, the first two rows show the efficient parameter estimates and the associated Newey-West
t-statistics (with 5 lags) arising from system GMM I, whereas the following two rows report the
results for the GMM II system. CF, K, B and Y denote the beta risk prices estimates for the
cash-flow news, equity premia news, bond premia news and state variable news, respectively. 
denotes the relative risk aversion coefficient.  represents the implied preference parameter,
which is derived in Section III. Test values (first row) and respective p-values (second row) for
the asymptotic 2 test are presented for each GMM estimation. RMSE is the square root of the
average pricing error (in %). R2 refers to the cross sectional adjusted R2. The sample is
1954:08-2003:12. Italic, underlined and bold numbers denote statistical significance at the 10%,
5% and 1% levels respectively. The beta risk prices () are reported in %. For further details,
refer to Section III.

Panel A (FFPREM)
λCF λK λB λY γ γY Φ α'Σ-1α RMSE R2

SBV25
0.653 -0.103 -0.040 0.448 14.964 3.393 -0.0243 25.931 0.290 0.859
3.049 0.759 3.049 0.759 -0.9096 0.304
0.644 -0.103 -0.040 0.364 14.753 2.757 -0.0200 33.655 0.283 0.865
2.573 0.551 2.573 0.551 -0.6398 0.070

SBV25 + IND38
0.402 -0.103 -0.040 -0.163 9.211 -1.232 0.0150 64.794 0.255 0.867
2.614 -0.442 2.614 -0.442 0.3989 0.197
0.412 -0.103 -0.040 -0.015 9.438 -0.117 0.0014 61.537 0.272 0.850
2.483 -0.041 2.483 -0.041 0.0404 0.285

SBV25+E/P+CF/P+D/P
0.873 -0.103 -0.040 0.901 19.992 6.823 -0.0359 38.643 0.231 0.899
5.231 2.190 5.231 2.190 -2.7183 0.930
0.929 -0.103 -0.040 0.945 21.273 7.158 -0.0353 35.256 0.236 0.894
4.683 1.973 4.683 1.973 -2.4614 0.971

86



Panel B (TERM)
λCF λK λB λY γ γY Φ α'Σ-1α RMSE R2

SBV25
0.528 -0.103 -0.040 -2.385 12.102 -6.208 0.0559 26.082 0.281 0.867
3.458 -2.488 3.458 -2.488 1.9509 0.297
0.549 -0.103 -0.040 -2.775 12.574 -7.225 0.0624 35.446 0.273 0.875
2.673 -2.132 2.673 -2.132 1.6508 0.047

SBV25 + IND38
0.440 -0.103 -0.040 -0.795 10.070 -2.070 0.0228 65.661 0.261 0.862
3.315 -1.373 3.315 -1.373 1.2191 0.177
0.443 -0.103 -0.040 -0.857 10.146 -2.232 0.0244 62.099 0.259 0.863
3.017 -1.367 3.017 -1.367 1.2242 0.268

SBV25+E/P+CF/P+D/P
0.462 -0.360 0.136 -2.633 14.101 -7.407 0.0565 36.094 0.221 0.907
4.694 -4.552 4.694 -4.552 3.1378 0.963
0.645 -0.103 -0.040 -3.223 14.768 -8.390 0.0609 33.554 0.224 0.904
4.165 -4.283 4.165 -4.283 3.0764 0.983

Panel C (VS)
λCF λK λB λY γ γY Φ α'Σ-1α RMSE R2

SBV25
0.888 -0.103 -0.040 -23.129 20.346 -0.177 0.0009 24.653 0.300 0.849
4.350 -2.423 4.350 -2.423 3.2092 0.368
0.955 -0.103 -0.040 -29.107 21.864 -0.223 0.0011 29.594 0.336 0.811
3.811 -2.465 3.811 -2.465 3.3263 0.161

SBV25 + IND38
0.574 -0.103 -0.040 -7.143 13.151 -0.055 0.0004 65.812 0.256 0.866
3.694 -0.974 3.694 -0.974 1.0992 0.174
0.621 -0.103 -0.040 -12.373 14.218 -0.095 0.0007 60.798 0.282 0.839
3.590 -1.462 3.590 -1.462 1.7082 0.307

SBV25+E/P+CF/P+D/P
1.038 -0.103 -0.040 -26.463 23.783 -0.202 0.0009 40.004 0.202 0.923
6.364 -3.421 6.364 -3.421 4.2469 0.906
1.115 -0.103 -0.040 -30.395 25.528 -0.232 0.0009 29.330 0.201 0.924
5.607 -3.025 5.607 -3.025 3.9548 0.997

87



Panel D (EY)
λCF λK λB λY γ γY Φ α'Σ-1α RMSE R2

SBV25
0.880 -0.103 -0.040 63.037 20.163 0.046 -0.0002 25.407 0.289 0.860
3.516 1.622 3.516 1.622 -2.3720 0.330
0.913 -0.103 -0.040 70.196 20.905 0.052 -0.0003 30.500 0.295 0.854
2.948 1.470 2.948 1.470 -2.2041 0.136

SBV25 + IND38
0.494 -0.103 -0.040 5.449 11.316 0.004 0.0000 65.168 0.252 0.871
2.805 0.194 2.805 0.194 -0.2034 0.188
0.548 -0.103 -0.040 21.438 12.544 0.016 -0.0001 62.272 0.271 0.850
2.869 0.696 2.869 0.696 -0.8141 0.263

SBV25+E/P+CF/P+D/P
1.126 -0.103 -0.040 90.422 25.792 0.067 -0.0003 39.122 0.211 0.916
5.902 3.029 5.902 3.029 -4.2411 0.922
1.188 -0.103 -0.040 94.736 27.213 0.070 -0.0003 31.339 0.212 0.915
4.883 2.420 4.883 2.420 -3.4855 0.992

Panel E (rr)
λCF λK λB λY γ γY Φ α'Σ-1α RMSE R2

SBV25
0.416 -0.103 -0.040 -6.398 9.534 -10.662 0.1249 13.798 0.196 0.935
2.743 -4.695 2.743 -4.695 2.2176 0.933
0.298 -0.103 -0.040 -6.043 6.816 -10.069 0.1731 22.392 0.284 0.864
1.095 -2.836 1.095 -2.836 0.9204 0.497

SBV25 + IND38
0.406 -0.103 -0.040 -3.680 9.308 -6.131 0.0738 61.338 0.218 0.903
3.058 -5.444 3.058 -5.444 2.6048 0.291
0.374 -0.103 -0.040 -3.218 8.571 -5.362 0.0708 56.035 0.238 0.885
2.419 -3.726 2.419 -3.726 2.2826 0.474

SBV25+E/P+CF/P+D/P
0.516 -0.103 -0.040 -7.040 11.822 -11.731 0.1084 37.676 0.165 0.948
3.849 -7.602 3.849 -7.602 3.3065 0.945
0.451 -0.103 -0.040 -5.474 10.323 -9.122 0.0978 28.781 0.177 0.941
2.112 -3.932 2.112 -3.932 1.8244 0.997

88



Table XIV
ICAPM with time-varying risk aversion: dividend yield
This table reports the estimation and evaluation results for the ICAPM with risk aversion scaled
by the dividend yield, presented in Section IV,

Er i,t1−r f,t1  i
2

2  0 i,CF1 i,CFDY− i,K− i,B

There are 3 sets of test assets - the 25 size/book-to-market portfolios (SBV25); the combination
of these with 38 industry portfolios (SBV25IND38), and the combination of SBV25 with 30
characteristic portfolios (SBV25E/PCF/PD/P). Panel A reports the risk prices for single
regression betas in the first row, and the associated Newey-West t-statistics (with 5 lags) arising
from GMM I and II standard errors in the second and third rows, respectively. In Panel B, the
first two rows show the efficient parameter estimates and the associated Newey-West t-statistics
(with 5 lags) arising from system GMM I, whereas the following two rows report the results for
the GMM II system. CF, K and B denote the beta risk prices estimates for the cash-flow
news, equity premia news and bond premia news, respectively. CFDY denote the risk prices
associated with the scaled factor related with time-varying risk aversion. 0 and 1 represent the
coefficients in the equation that governs time-varying risk aversion,  t. Test values (first row)
and respective p-values (second row) for the asymptotic 2 test are presented for each GMM
estimation. RMSE is the square root of the average pricing error (in %). R2 refers to the cross
sectional adjusted R2. The sample is 1954:08-2003:12. Italic, underlined and bold numbers
denote statistical significance at the 10%, 5% and 1% levels respectively. The beta risk prices
() are reported in %. For further details, refer to Section IV.
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Panel A (first stage GMM)
λCF λCFDY λK λB γ0 γ1 α'Σ-1α RMSE R2

SBV25
0.497 0.041 -0.103 -0.040 11.393 6356.789 19.612 0.161 0.956
2.404 4.537 2.404 4.537 0.665
0.947 2.181 0.947 2.181

SBV25 + IND38
0.510 0.011 -0.103 -0.040 11.675 1741.624 57.979 0.216 0.905
2.599 2.398 2.599 2.398 0.402
2.095 2.444 2.095 2.444

SBV25+E/P+CF/P+D/P
0.485 0.035 -0.103 -0.040 11.107 5385.066 29.548 0.172 0.944
2.537 3.948 2.537 3.948 0.996
1.092 2.195 1.092 2.195

Panel B (second stage GMM)
λCF λCFDY λK λB γ0 γ1 α'Σ-1α RMSE R2

SBV25
0.447 0.020 -0.103 -0.040 10.229 3155.084 12.947 0.226 0.914
2.940 4.180 2.940 4.180 0.953
0.497 0.018 -0.103 -0.040 11.376 2758.160 20.329 0.215 0.923
1.331 1.897 1.331 1.897 0.622

SBV25 + IND38
0.431 0.009 -0.103 -0.040 9.864 1364.577 62.704 0.235 0.887
3.214 4.052 3.214 4.052 0.251
0.362 0.009 -0.103 -0.040 8.290 1414.609 54.946 0.271 0.850
2.248 3.949 2.248 3.949 0.515

SBV25+E/P+CF/P+D/P
0.540 0.021 -0.103 -0.040 12.367 3204.052 39.211 0.185 0.935
4.101 6.382 4.101 6.382 0.921
0.568 0.019 -0.103 -0.040 13.003 2952.445 27.018 0.191 0.931
2.106 3.388 2.106 3.388 0.999
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Table XV
ICAPM with time-varying risk aversion: bond premia
This table reports the estimation and evaluation results for the ICAPM with risk aversion scaled
by bond premia news, presented in Section IV,

Er i,t1−r f,t1  i
2

2  0 i,CF1 i,CFB− i,K− i,B

There are 3 sets of test assets - the 25 size/book-to-market portfolios (SBV25); the combination
of these with 38 industry portfolios (SBV25IND38), and the combination of SBV25 with 30
characteristic portfolios (SBV25E/PCF/PD/P). Panel A reports the risk prices for single
regression betas in the first row, and the associated Newey-West t-statistics (with 5 lags) arising
from GMM I and II standard errors in the second and third rows, respectively. In Panel B, the
first two rows show the efficient parameter estimates and the associated Newey-West t-statistics
(with 5 lags) arising from system GMM I, whereas the following two rows report the results for
the GMM II system. CF, K and B denote the beta risk prices estimates for the cash-flow
news, equity premia news and bond premia news, respectively. CFB denote the risk prices
associated with the scaled factor related with time-varying risk aversion. 0 and 1 represent the
coefficients in the equation that governs time-varying risk aversion,  t. Test values (first row)
and respective p-values (second row) for the asymptotic 2 test are presented for each GMM
estimation. RMSE is the square root of the average pricing error (in %). R2 refers to the cross
sectional adjusted R2. The sample is 1954:08-2003:12. Italic, underlined and bold numbers
denote statistical significance at the 10%, 5% and 1% levels respectively. The beta risk prices
() are reported in %. For further details, refer to Section IV.
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Panel A (first stage GMM)
λCF λCFB λK λB γ0 γ1 α'Σ-1α RMSE R2

SBV25
-0.042 -0.103 -0.103 -0.040 -0.970 -3914.383 17.230 0.228 0.912
-0.133 -3.193 -0.133 -3.193 0.798
-0.047 -1.786 -0.047 -1.786

SBV25 + IND38
0.481 -0.009 -0.103 -0.040 11.020 -343.453 61.770 0.237 0.886
1.970 -0.558 1.970 -0.558 0.278
1.747 -0.533 1.747 -0.533

SBV25+E/P+CF/P+D/P
0.240 -0.056 -0.103 -0.040 5.493 -2101.218 26.543 0.226 0.903
0.972 -2.831 0.972 -2.831 0.999
0.536 -2.022 0.536 -2.022

Panel B (second stage GMM)
λCF λCFB λK λB γ0 γ1 α'Σ-1α RMSE R2

SBV25
0.209 -0.046 -0.103 -0.040 4.792 -1739.749 39.237 0.270 0.878
1.266 -3.559 1.266 -3.559 0.019
0.351 -0.027 -0.103 -0.040 8.043 -1008.154 19.212 0.271 0.877
0.963 -1.147 0.963 -1.147 0.689

SBV25 + IND38
0.373 -0.010 -0.103 -0.040 8.552 -378.405 65.768 0.260 0.862
2.693 -1.644 2.693 -1.644 0.175
0.358 -0.007 -0.103 -0.040 8.204 -275.545 62.063 0.277 0.844
2.373 -1.100 2.373 -1.100 0.269

SBV25+E/P+CF/P+D/P
0.388 -0.035 -0.103 -0.040 8.880 -1326.214 39.531 0.228 0.901
2.785 -4.685 2.785 -4.685 0.915
0.347 -0.038 -0.103 -0.040 7.958 -1437.906 27.555 0.227 0.902
1.683 -3.576 1.683 -3.576 0.999
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Table XVI
An unrestricted ICAPM with time-varying risk aversion
This table reports the estimation and evaluation results for the unrestricted ICAPM with
time-varying risk aversion presented in Section IV,

Er i,t1−r f,t1  i
2

2  bCF i,CFbCFDY i,CFDYbK i,KbB i,B

Er i,t1−r f,t1  i
2

2  bCF i,CFbCFB i,CFBbK i,KbB i,B

Panels A and B present the results from first stage GMM, for dividend yield and bond premia,
respectively, whereas Panels C and D report the second stage GMM estimation results. There are
3 sets of test assets - the 25 size/book-to-market portfolios (SBV25); the combination of these
with 38 industry portfolios (SBV25IND38), and the combination of SBV25 with 30
characteristic portfolios (SBV25E/PCF/PD/P). Panels A and B report the covariance risk
prices and the associated Newey-West t-statistics (with 5 lags) arising from GMM I and II
standard errors in the second and third rows, respectively. In Panels C and D, the first two rows
show the efficient parameter estimates and the associated Newey-West t-statistics (with 5 lags)
arising from system GMM I, whereas the following two rows report the results for the GMM II
system. 0 and 1 represent the coefficients in the equation that governs time-varying risk
aversion,  t. Test values (first row) and respective p-values (second row) for the asymptotic 2

test are presented for each GMM estimation. RMSE is the square root of the average pricing
error (in %). R2 refers to the cross sectional adjusted R2. The sample is 1954:08-2003:12. Italic,
underlined and bold numbers denote statistical significance at the 10%, 5% and 1% levels
respectively. For further details, refer to Section IV.
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Panel A (DY, first stage GMM)
bCF bCFDY bK bB γ0 γ1 α'Σ-1α RMSE R2

SBV25
18.360 4135.739 2.791 24.889 26.228 5908.198 20.682 0.152 0.957

2.553 4.827 0.747 1.742 2.553 4.827 0.478
1.372 2.610 0.411 0.952 1.372 2.610

SBV25 + IND38
7.220 1193.359 -0.661 -7.025 10.314 1704.799 57.190 0.212 0.905
1.272 2.329 -0.193 -0.925 1.272 2.329 0.358
1.133 2.378 -0.175 -0.839 1.133 2.378

SBV25+E/P+CF/P+D/P
26.536 3284.674 6.585 34.303 37.908 4692.391 29.983 0.149 0.956

4.142 4.073 1.842 3.143 4.142 4.073 0.992
2.535 2.455 1.193 1.745 2.535 2.455

Panel B (bond premia, first stage GMM)
bCF bCFB bK bB γ0 γ1 α'Σ-1α RMSE R2

SBV25
17.939 -2227.003 5.301 37.663 25.627 -3181.432 17.118 0.214 0.916

2.192 -3.877 1.361 2.329 2.192 -3.877 0.704
0.930 -1.154 0.495 1.193 0.930 -1.154

SBV25 + IND38
3.789 -404.998 -1.708 -10.308 5.413 -578.569 62.982 0.231 0.887
0.716 -1.096 -0.533 -1.408 0.716 -1.096 0.188
0.681 -0.986 -0.481 -1.377 0.681 -0.986

SBV25+E/P+CF/P+D/P
34.444 -535.075 11.381 38.095 49.205 -764.392 23.352 0.190 0.929

4.280 -1.688 2.939 3.135 4.280 -1.688 1.000
2.954 -0.797 1.826 2.261 2.954 -0.797
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Panel C (DY, second stage GMM)
bCF bCFDY bK bB γ0 γ1 α'Σ-1α RMSE R2

SBV25
14.010 2187.604 1.220 17.816 20.014 3125.148 15.624 0.204 0.923

2.448 3.996 0.407 1.871 2.448 3.996 0.790
20.947 2594.248 5.820 23.370 29.924 3706.068 22.190 0.259 0.877

2.202 2.811 1.114 1.820 2.202 2.811 0.389

SBV25 + IND38
4.479 903.825 -2.273 -4.948 6.398 1291.179 64.731 0.219 0.898
1.249 3.632 -1.076 -1.076 1.249 3.632 0.150
4.084 978.958 -1.973 -4.830 5.834 1398.512 53.246 0.235 0.883
0.973 3.782 -0.852 -0.988 0.973 3.782 0.503

SBV25+E/P+CF/P+D/P
20.501 1913.187 3.229 27.071 29.287 2733.124 39.076 0.172 0.942

5.486 5.675 1.518 5.305 5.486 5.675 0.889
19.598 2302.496 1.518 24.479 27.997 3289.280 33.690 0.244 0.882

3.152 4.355 0.519 3.243 3.152 4.355 0.971

Panel D (bond premia, second stage GMM)
bCF bCFB bK bB γ0 γ1 α'Σ-1α RMSE R2

SBV25
14.180 -905.446 2.423 23.030 20.258 -1293.495 25.811 0.253 0.883

2.334 -2.634 0.797 2.469 2.334 -2.634 0.214
16.351 -714.665 0.526 13.016 23.359 -1020.951 18.537 0.407 0.695

1.476 -1.053 0.089 0.962 1.476 -1.053 0.615

SBV25 + IND38
0.947 -389.052 -3.367 -8.146 1.353 -555.788 66.320 0.237 0.882
0.268 -2.382 -1.641 -1.825 0.268 -2.382 0.121
2.110 -343.723 -2.151 -8.378 3.015 -491.033 63.120 0.253 0.865
0.563 -1.840 -0.944 -1.812 0.563 -1.840 0.185

SBV25+E/P+CF/P+D/P
25.781 -231.336 6.162 30.162 36.830 -330.480 46.680 0.203 0.919

6.575 -1.187 2.815 5.744 6.575 -1.187 0.646
19.290 -495.299 1.467 19.575 27.557 -707.569 25.318 0.353 0.754

3.120 -1.852 0.458 2.722 3.120 -1.852 0.999
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Table XVII
Average pricing errors for book-to-market quintiles
This table reports In Panel A the square root of the average pricing error in % (RMSE), and the
cross sectional adjusted (R2), for several models. The models are the BBGB model in equation
(18); the CAPM and 2 beta CAPM with unrestricted risk prices of equations (66) and (67); the
ICAPM I, II, III and IV corresponding to equations (22), (44) and (49); the ICAPM V, VI, VII,
VIII and IX corresponding to equations (54), (58), (60), (61) and (62), respectively; and the
Fama-French 3 factor model (FF3). In Panel B are reported the average pricing errors across the
book-to-market quintiles. All the pricing errors are presented in percentage points. BV1 denote
the lowest book-to-market quintile. The sample is 1954:08-2003:12. For further details, refer to
section V of the paper.

Panel A

BBGB I II III IV V VI VII VIII IX CAPM CAPM2 FF3
RMSE 0.273 0.272 0.223 0.223 0.233 0.146 0.161 0.228 0.152 0.214 0.290 0.287 0.137

x12 3.281 3.260 2.671 2.676 2.796 1.757 1.936 2.741 1.826 2.565 3.478 3.449 1.647
R2 0.880 0.881 0.913 0.913 0.905 0.964 0.956 0.912 0.957 0.916 0.865 0.867 0.967

Panel B

BBGB I II III IV V VI VII VIII IX CAPM CAPM2 FF3
BV1 -0.396 -0.391 -0.172 -0.156 -0.229 -0.068 -0.102 -0.181 -0.083 -0.148 -0.427 -0.423 -0.026
BV2 -0.075 -0.074 -0.072 -0.095 -0.038 0.025 0.003 -0.142 0.007 -0.112 -0.073 -0.073 -0.010
BV3 0.105 0.103 0.031 0.047 0.138 0.040 0.043 0.060 0.076 0.109 0.121 0.116 0.039
BV4 0.233 0.231 0.108 0.153 0.180 0.072 0.059 0.205 0.069 0.199 0.263 0.258 0.057
BV5 0.240 0.236 0.149 0.099 0.025 -0.038 0.036 0.125 -0.028 0.019 0.284 0.282 -0.032
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Table XVIII
ICAPM with bond risk premia: Incorporating the UMD factor
This table reports the estimation and evaluation results for the ICAPM models presented in
Section V,

Er i,t1−r f,t1  i
2

2  bCF i,CFbK i,KbB i,BbUMD i,UMD 1

Er i,t1−r f,t1  i
2

2  bCF i,CFbCFDY i,CFDYbK i,KbB i,BbUMD i,UMD 2

Er i,t1−r f,t1  i
2

2  bCF i,CFbCFB i,CFBbK i,KbB i,BbUMD i,UMD 3
Panels A, B and C present the results for models (1), (2) and (3), respectively. There are 3 sets of
test assets - the 25 size/book-to-market portfolios (SBV25); the combination of these with 38
industry portfolios (SBV25IND38), and the combination of SBV25 with 30 characteristic
portfolios (SBV25E/PCF/PD/P). In each panel are reported the covariance risk prices and
the associated Newey-West t-statistics (with 5 lags) arising from first stage GMM (first 2 rows)
and second stage GMM (following 2 rows), where the standard errors are from system GMM I.
bUMD represent the covariance risk prices associated with the UMD factor. Test values (first
row) and respective p-values (second row) for the asymptotic 2 test are presented for each
GMM estimation. The sample is 1954:08-2003:12. Italic, underlined and bold numbers denote
statistical significance at the 10%, 5% and 1% levels respectively. For further details, refer to
Section V.

Panel A (unrestricted ICAPM)
bCF bK bB bUMD α'Σ-1α

SBV25
6.345 -2.253 9.520 -21.829 33.991
0.696 -0.439 0.776 -2.863 0.036

15.959 3.717 11.467 -0.570 25.649
2.348 0.972 1.311 -0.118 0.220

SBV25 + IND38
5.091 -1.707 -9.159 -3.318 60.633
0.823 -0.463 -1.159 -0.882 0.249
4.889 -1.882 -4.216 1.049 65.040
1.347 -0.866 -0.901 0.537 0.144

SBV25+E/P+CF/P+D/P
25.215 6.101 28.674 -10.453 34.473

3.686 1.443 3.334 -2.240 0.963
20.863 3.639 23.838 -4.460 42.987

5.469 1.652 4.801 -2.296 0.780
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Panel B (DY)
bCF bCFDY bK bB bUMD α'Σ-1α

SBV25
36.823 5417.602 10.507 48.072 17.003 21.699

3.880 6.647 2.018 3.668 2.767 0.357
35.380 3221.370 12.325 36.755 20.165 16.118

4.668 5.263 2.989 3.593 4.365 0.709

SBV25 + IND38
5.600 1159.549 -1.346 -7.875 -2.255 61.138
0.899 2.349 -0.363 -0.983 -0.626 0.207
5.419 808.514 -1.560 -3.153 1.711 63.648
1.433 3.205 -0.702 -0.655 0.880 0.150

SBV25+E/P+CF/P+D/P
21.430 2922.453 4.200 29.315 -5.111 37.834

3.195 4.717 0.992 3.384 -1.292 0.897
18.484 1657.116 2.454 23.986 -1.275 38.271

4.831 5.059 1.115 4.746 -0.697 0.887

Panel C (bond premia)
bCF bCFB bK bB bUMD α'Σ-1α

SBV25
-4.319 -1810.367 -4.497 7.294 -18.036 36.763
-0.414 -3.781 -0.844 0.584 -2.540 0.012
13.246 -579.045 3.276 12.544 1.383 26.876
1.754 -1.719 0.831 1.347 0.293 0.139

SBV25 + IND38
1.735 -380.512 -2.605 -11.318 -3.157 60.688
0.286 -1.046 -0.734 -1.459 -0.846 0.218
2.144 -316.897 -2.633 -6.023 1.024 64.569
0.554 -1.898 -1.192 -1.255 0.518 0.132

SBV25+E/P+CF/P+D/P
18.138 -828.604 4.236 24.448 -11.316 35.472

2.600 -2.442 1.012 2.821 -2.367 0.940
17.192 -391.312 2.568 22.064 -4.906 42.964

4.406 -1.957 1.173 4.293 -2.491 0.749

98



Figure 1
Average pricing errors: 25 size/book-to-market portfolios
This figure presents the average pricing errors (stated in percentage points) across the
book-to-market quintiles associated with the 25 size/book-to-market portfolios. Figure 1.A.
presents the BBGB model in equation (18), the CAPM and 2 beta CAPM with unrestricted risk
prices of equations (66) and (67), and the ICAPM I, II, III and IV corresponding to equations
(22), (44) and (49). In figure 1.B. the ICAPM models are V, VI, VII, VIII and IX, corresponding
to equations (54), (58), (60), (61) and (62), respectively. Figures 1.C. and 1.D. are the same as
Figures 1.A. and 1.B. respectively, with the difference that the CAPM and 2 beta CAPM
models, are those derived in equations (64) and (65) with restricted risk prices. ij denotes the
portfolio with ith size and jth book-to-market quintiles. The sample is 1954:08-2003:12. For
further details, refer to Section V.
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Figure 1.B
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Figure 1.C
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Figure 1.D
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