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Abstract

This paper presents a real options approach to the valuation of modu-
lar projects, focusing on the value of splitting. Building upon the Baldwin
and Clark (2000) approach to modularity, it proposes a more general model,
which includes the possibility of delaying the option to split, the effect of
the correlations, between the system and the modules, on the value of mod-
ularity. It also assumes a multi-staged product development. We study
the impact of some of the variables which influence the optimal modular
strategy, showing that value can be increased by modularisation depending
on the relative values, costs and risk of each modular configuration. When
the modules are perfectly correlated with each other and with the system
and have an identical risk, there is no incentive to modularise, unless there
is a ”size” advantage, related to lower costs or higher values of the mod-
ules. The effects of the correlations on the value of modularity, depends on
the relative risks of the system and the portfolio of modules. A significant
part of the value added by modularity is related to the option to choose
the best of an interconnected system and a portfolio of modules: when they
are all required to be implemented, this is similar to the option to choose
the best of two alternative systems. In our view, this cannot be attributed
to modularity and, thus, we analyse the ”net value” of splitting, which is
the difference between the value of a modular project and the value of the
project with the option mentioned above.
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The Valuation of Modular Projects: a Real Options

Approach to the Value of Splitting

1 Introduction

Complex investment projects might be decomposed into smaller units - mod-
ules - which may have a certain degree of independence: ”A module is a unit
whose structural elements are powerfully connected among themselves and
relatively weakly connected to elements in other units... In other words,
modules are units in a large system that are structurally independent of one
another, but work together” (Baldwin and Clark, 2000, p. 63). Informa-

tion hiding is one of the key issues of modularisation: once modularisation
is achieved, the complexity of the module can be hidden, provided that an
interface establishs the parameters of interdependence with other modules
of the system.

Modularity can be achieved in three stages of the product development:
design, production and consumption. The modularisation of designs, by
the creation of ”design rules” has been one of the main driving forces of
innovation and growth of some industries, namelly the computer industry.
Although it is difficult to distinguish between the design and the produc-
tion phases of a product, there are some differences: (1) the output of a
design process is a description of a product, whereas the output of a pro-
duction process is the product itself; (2) the design and production phases
are sometimes simultaneous, but when they are separated, design precedes
production (Baldwin and Clark, 2000). The separation of the two phases
is clearer when R&D is required to develop a product. Modularity is used
also to simplify complex production processes, dividing the product into
different manufacturing modules or ”cells”. One example of modularisa-
tion in production is the automobile industry: the car is divided into com-
ponents/modules that can be manufactured in different sites or in ”cells”
within the same factory and then assembled. Finally, consumers can ”mix
and match” modules that work together to satisfy their desires/needs. For
example, each consumer can ”build” a computer with different components
to meet his individual needs. There are numerous other examples of modu-
larity in consumption like furniture and houses.

The valuation of modularity with a real options approach was addressed
by Baldwin and Clark (1994, 1997, 2000) who developed a detailed model to
value design modularity. Modularisation creates a portfolio of options which
is more valuable than an option on a portfolio, provided that the aggregate
distribution of value remains the same (Merton, 1973). That model relies
on simple and convenient assumptions, which allows closed form solutions.
Although they claim that the valuation of modularity should be market val-
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ued, the options valuation is made without any assumption about the market
price of risk: it is a statistical approach rather than a classical real options
approach. The main contribution of the model is, however, the detailed
description of the potential options created by modularisation. A similar
approach has been used by Gaynor and Bradner (2001) to value technology
standardisation. They suggested modularity facilitates the staged develop-
ment of the standards.

Sullivan, Griswold, Cai and Hallen (2001), adapted the Baldwin and
Clark (2000) model to value modularity in software development. Their
valuation approach is also very similar and the main difference relates to
the methodology of partitioning a system into independent modules. The
uncertainty creates an incentive to delay modularisation, while the main
difficulty is precisely related to the estimation of the technical uncertainty
associated with each module.

Sullivan, Chalasani, Jha and Sazawal (1999) argue that the Baldwin and
Clark (1997) model is constructed from the perspective of the modularity,
task structure and information hiding theory and not from a real options
investment approach. The assumptions about the random walk and addi-
tivity of the modules’ values does not enable the model to deal with more
general modular systems. In their real options approach to the valuation of
software design, the possibility of phased projects, which creates compound
options, is addressed but a valuation model is not provided.

Keppo and Samila (2004) have valued the option to substitute and up-
grade modular products from the perspective of the consumer, assuming
that each upgrade is a Poisson jump in the value of the product.

In the real options theory literature the valuation of product develop-
ment, R&D projects and staged projects, give some insights to the valuation
of modular projects. Childs, Ott and Triantis (1998) compared parallel and
sequential development of correlated projects. Childs and Triantis (1999)
valued R&D projects with multiple products, incorporating learning-by-
doing, collateral learning between different projects and interactions between
project values. The technical and market uncertainty associated with R&D
projects have been modelled with different approaches and remains a crucial
parameter of the valuation of the options embedded in such projects. Lint
and Pennings (2001) studied the impact of uncertainty and ”moneyness” in
a two-staged product development project of a single product. Uncertainty
about the project value creates an incentive to delay investment, which is
less valuable when the opportunity is shared by other competitors in the
market. The value of waiting was first introduced by McDonald and Siegel
(1986).

Modularity creates a portfolio of options contingent on several assets,
whose valuation is not an easy task, unless simplified assumptions are made
about the stochastic behaviour of the state variables. Furthermore those
options can be exercised several times before maturity, i.e. they have Bermu-
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dan/American features. The value of a portfolio of options with interacting
features can be significantly different from the sum of the individual options.
A general model to price multiple interacting options was proposed by Ku-
latilaka and Trigeorgis (Kulatilaka, 1995; Kulatilaka and Trigeorgis, 1994) .
An investment project with multiple embedded options can be decomposed
into different ”interacting modes”. The options are the transitions between
the modes with an exercise price equal to the cost of switching. This general
real options model is only practicable in low dimensions.

A portfolio of options can also be valued using lattices1. However, if
those options are contingent on multiple state variables, the valuation with
lattices becomes impractical due to the curse of dimensionality.

Simulation has been a promising alternative in the last decade to value
path-dependent options, American options and options with multiple state
variables and under general stochastic processes. Unlike in the lattice meth-
ods, the computational effort increases only linearly in the number of stochas-
tic factors. The main advantage of the Monte Carlo simulation methods is
that the convergence depends only on the number of simulations and is
independent of the dimension of the problems.

Monte Carlo simulation was first used to value options by Boyle (1977).
Traditionally simulation was presented as a forward-looking technique, so
it was seen as inadequate to deal with American options. In recent years,
several authors proposed different methods to match simulation and dy-
namic programming which is a backward-looking technique. Among those
methods, some use an estimation of the continuation value obtained by the
projection of discounted payoffs onto a set of basis functions (Carrière, 1996;
Tsitsiklis and Van Roy, 1999; Longstaff and Schwartz, 2001; Tsitsiklis and
Van Roy, 2001; Carrière, 2001). Maybe due to its simplicity Longstaff and
Schwartz (2001) Least-Squares Method (LSM) gained an increasing atten-
tion.

Gamba (2003) proposed a model that decomposes complex multiple real
options problems (with interacting options) into simple hierarchical sets of
individual options. Extending the LSM approach this model deals also with
American and Bermudan real options, which are frequent in capital bud-
geting projects. The decomposition principle can be used in combination
with any kind of methodology based on dynamic programming and the Bell-
man equation. Gamba presents the following types of possible interactions
between real options: independent options, compound options, mutually
exclusive options and switching problems.

Rodrigues and Armada (2005) have assessed empirically the accuracy of
the estended LSM method, showing that, with a carefull choice of parame-
ters, it is a very accurate method to value real options.

1Gamba and Trigeorgis (2001) proposed an extension to the Trigeorgis (1991) log-
transformed binomial lattice to value a portfolio of interacting options.
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This paper focuses on the value of splitting a system into a modular
product, extending the Baldwin and Clark (2000) model, in several ways,
using a real options perspective. In Section 2 we present the Baldwin and
Clark (2000) model and point out some of its limitations. In Section 3, the
model to value splitting of modular projects is presented, using a Monte
Carlo simulation approach, as proposed by Longstaff and Schwartz (2001)
and Gamba (2003). Section 4 presents some numerical results and sensi-
tivity analysis. An analysis of the sources of the value of modularity and
the proposed ”net value of splitting” are presented in section 5. Section 6
concludes.

2 The Baldwin and Clark (2000) model to value
modularity

Baldwin and Clark (1994, 1997, 2000) have developed a model to value
modularity in design, with some insights from real options theory. The
process of design modularisation is assumed to have three stages and the
final design is created by six modular operators.

In the first stage, the design rules are formulated and the six opera-
tors can be used to create a design structure and the corresponding task
structure, defining the number, boundaries and interfaces of the modules:

1. If the initial design is interdependent, the splitting operator can be
used to create a modular design;

2. Substituting one module for another;

3. Augmenting the number of modules, adding new modules to the sys-
tem;

4. Excluding a module from the system;

5. Inverting to create new design rules;

6. Porting a module to another system.

The choice of a design, and its task structure, corresponds to the choice of
a random payoff function. This means that the outcome (value) of the design
is not deterministic: it has a probability distribution. The formulation of
the design rules is not free: to create a modular task structure some costs
are incurred and they increase with the complexity of the design.

In the second stage, the task structure created in the previous stage is
implemented and experimented. After this stage the design is ready to be
tested and integrated with the system. In the final stage the value of the
design is known and the options associated with the design can be exercised.
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The advantages of a modular design are essentially related to its greater
flexibility, and have to be weighted against the costs that it implies: they
are associated with the formulation of the design rules and also with the
possibility of underperformance of the new modular design compared with
an interconnected system.

Splitting creates a portfolio of options that must be valued to find the
optimal strategy, i.e. the optimal number of modules. If the module values
are not perfectly correlated2, modularisation increases value, and higher
degrees of modularisation enhance this result. This is also the case when
modularisation makes the aggregate distribution better. When the opposite
occurs, the final result is unknown, and can be a design with lower value.
This could be the case where splitting is done without sufficient knowledge
of modules interdependencies. However, the decision of splitting a design
should not be delayed until it produces the same aggregate distribution.
Some deterioration of aggregate value will be compensated by the options
created by modularisation.

The model can deal with both symmetric an asymmetric modules (i.e.
modules with different size, costs and uncertainties) and explains different
rates of investment across the asymmetric modules.

The model makes some convenient assumptions about the uncertainty
of the value of modules:

• The value of each module has a normal distribution with a variance
proportional to its complexity, measured by the number of tasks, and
they are uncorrelated with each other. This makes possible to add the
values of the modules, since the sum of normally distributed random
variables has also a normal distribution.

• The risk (variance) of the module value depends on the complexity
associated with its size, i.e. , with the number of tasks. It is assumed
that larger designs have a higher risk of failure/success.

• Modularisation does not change the probability distribution of the
value of the design, if the number of tasks is held constant.

These assumptions are designed to make the model tractable and simple,
but some of them are not realistic.

The assumption that the module values are uncorrelated and normally
distributed is a convenient choice, which allows the value of the portfolio
of modules to be just simply the sum of the individual values. However, in
reality, the values of the modules are correlated with each other and with
the system value. The effect of such correlations is not neglegible.

The uncertainty of the modules value is modeled as being independent
from time. The length of each stage is, on the other hand, not considered.

2The model assumes that the modules are uncorrelated.
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Although the authors admit that the design process is a sequence of exercises
of the options associated with each modular operator, the model seems to
suggest that the exercise of those options is confined to the moment of the
valuation. The number of modules is chosen, at that moment, to maximise
the net option value. However, they suggest that the compoundeness and
recursiveness of the design process can only be valued with a more complex
valuation framework.

3 A real options approach to the value of splitting

We propose a model which extends the Baldwin and Clark (2000) valuation
model in several ways:

• The options embedded in the modular operators can be exercised at
different moments in time. The option to split, the option develop and
the option to implement can be delayed (the options are American or,
at least, Bermudan).

• The optimal modular configuration is endogenous and optimally given
by the model.

• The design process is a staged process and this is addressed in the
valuation model.

• The variables on which the decision to split (modularise) is contingent
are not independent. Therefore the correlation between the stochastic
variables is addressed explicitly.

We assume that the options are finite lived: the value of the business
erodes with time and, eventually, disappears as a result of either the entrance
of competitors or the market value of the assets becoming worthless.

Let us assume that the modular investment project under valuation has
the following stages and options embedded:

Stage 1 - Design formulation: at this stage the option to split can
be exercised. The optimal number of modules - including the possibility of
an one-module (interconnected) system - is the outcome of this stage. The
costs incurred in this stage are dependent on the number of modules. We
assume that the option to split can be delayed until the beginning of the
next stage.

Sage 2 - R&D: the option to develop the modules can be exercised with
a capital outlay. This stage requires a certain amount of time, after which
the module is ready to be launched in the market. The option to develop
can be delayed until the maturity of the project less the required time to
develop the module.
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Stage 3 - Production and marketing: once the model is devel-
oped, the option to implement can be exercised, starting the production
and launching the product in the market. We assume, fo the sake of sim-
plicity, that this stage is instantaneous.

Let us also assume that the value of an interconnected design (a system
with a single module) follows the following stochastic process:

dS (t) = (µ − δ) S (t) dt + σS (t) dW S (0) = S (1)

where S (t) > 0, µ and σ are, respectively, the drift parameter and the
instantaneous volatility, δ is the rate of lost cash flows. Finally, dW is the
increment of a Wiener process.

Assuming market completeness, there is a unique risk-neutral probability
measure under which the asset price stochastic process is:

dS (t) = (r − δ) S (t) dt + σS (t) dW S (0) = S (2)

where r is the riskless interest rate.
Each of the individual m module values evolves also according to a geo-

metric Brownian motion process:

dM
(m)
i (t) =

(

µ
(m)
i − δ

(m)
i

)

M
(m)
i (t) dt+σiM

(m)
i (t) dW

(m)
i M

(m)
i (0) = M

(m)
i

(3)

where M
(m)
i denotes the value of the i-th module in a system with m mod-

ules, and dW
(m)
i are increments of Wiener processes.

For notational convenience equation 1 can be expressed as:

dM
(1)
1 (t) = µ

(1)
1 M

(1)
1 (t) dt + σM

(1)
1 (t) dW

(1)
1 (4)

These processes are correlated: the module values within each modular

configuration
(

E

[

dW
(m)
i dW

(m)
j

]

= ρ
(m)
ij dt

)

; the module values in different

configurations
(

E

[

dW
(m)
i dW

(n)
j

]

= ρ
(m)(n)
ij dt

)

and the module and system

values
(

E

[

dW
(m)
i dW

(1)
1

]

= ρ
(1)
i dt

)

.
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If a given system can only be split into three modules, we have six state
variables:

dM
(1)
1 (t) =

(

µ
(1)
1 − δ

(1)
1

)

M
(1)
1 (t) dt + σ

(1)
1 M

(1)
1 (t) dW

(1)
1

dM
(2)
1 (t) =

(

µ
(2)
1 − δ

(2)
1

)

M
(2)
1 (t) dt + σ

(2)
1 M

(2)
1 (t) dW

(2)
1

dM
(2)
2 (t) =

(

µ
(2)
2 − δ

(2)
2

)

M
(2)
2 (t) dt + σ

(2)
2 M

(2)
2 (t) dW

(2)
2

dM
(3)
1 (t) =

(

µ
(3)
1 − δ

(3)
1

)

M
(3)
1 (t) dt + σ

(3)
1 M

(3)
1 (t) dW

(3)
1

dM
(3)
2 (t) =

(

µ
(3)
2 − δ

(3)
2

)

M
(3)
2 (t) dt + σ

(3)
2 M

(3)
2 (t) dW

(3)
2

dM
(3)
3 (t) =

(

µ
(3)
3 − δ

(3)
3

)

M
(3)
3 (t) dt + σ

(3)
3 M

(3)
3 (t) dW

(3)
3

For each of these state variables, we need to estimate the variance and
covariances with the other variables. In the case of 3 modules, we would
have 6 variances and 15 covariances, which can have different values. For
illustration purposes we assume the following simplifications:

• The variance of the modules within each configuration is the same,

i.e. σ
(m)
i = σ

(m)
j , and is a multiple (β) of the variance of the system:

σ
(m)
i = βσ

(1)
1 ;

• The correlations between the module values, within each configuration,
are constant (ρ);

• The correlations between the module values of different configurations
are constant (ρm);

• The correlations between the module values and system value are con-
stant (ρs);

These assumptions reduce the correlation matrix to:

M
(1)
1 M

(2)
1 M

(2)
2 M

(3)
1 M

(3)
2 M

(3)
3

M
(1)
1 1 ρs ρs ρs ρs ρs

M
(2)
1 ρs 1 ρ ρm ρm ρm

M
(2)
2 ρs ρ 1 ρm ρm ρm

M
(3)
1 ρs ρm ρm 1 ρ ρ

M
(3)
2 ρs ρm ρm ρ 1 ρ

M
(3)
3 ρs ρm ρm ρ ρ 1

The valuation of a modular project with several state variables and a
portfolio of American or Bermudan options is impracticable with lattices
or finite differences schemes, due to the curse of dimensionality of such
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methods. Monte Carlo simulation becomes the only feasible alternative. The
valuation of the portfolio of Bermudan or American options, embedded in a
modular project, can be easily handled with the LSM method of Longstaff
and Schwartz (2001) and extended by (Gamba, 2003).

To make the model tractable for simulation, the maximum number of
modules (M) must be defined a priori3.

Option to implement

Starting backwards from the maturity of the project (T ), we have, for
each configuration (number of modules chosen in previous steps), m 6 M

independent options to implement, at the cost of K
(m)
i . Each individual

option has the following payoff4:

Π
I
(m)
i

(

t, M
(m)
i (t)

)

= max
[

M
(m)
i (t) − K

(m)
i ; 0

]

i = 1, ..., m; m = 1, ..., M
(5)

and the following value:

F
I
(m)
i

(

t, M
(m)
i (t)

)

i = 1, ..., m; m = 1, ..., M (6)

Each individual option value and optimal stopping time is computed
independently, using the LSM method. Since the module is required to be
developed in the previous stage, which has a duration of td, and after T ,
the opportunity to implement is no longer available, the option has no value
(

Π
I
(m)
i

(

t, M
(m)
i (t)

)

= 0
)

for t > T and t < td.

Option to develop

The option to develop (start R&D stage) is a compound option since it
gives the right to exercise, in a later stage, the option to invest. Again, we
have for each configuration, m 6 M independent options to develop, paying

the development cost, D
(m)
i . Each individual option has the following payoff:

Π
D

(m)
i

(

t, M
(m)
i (t)

)

= max
[

F
I
(m)
i

(

t, M
(m)
i (t)

)

− D
(m)
i ; 0

]

i = 1, ..., m; m = 1, ..., M
(7)

3The number of assets (n) depends on the maximum number of modules (M) into

which the system can be split: n = M(M−1)
2

.
4See Table 1 for a description of the variables.
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and Bellman equation:

F
D

(m)
i

(

tn, M
(m)
i (tn)

)

= max
{

Π
D

(m)
i

(

tn, M
(m)
i (tn)

)

,

e−r(tn+1−tn)
E
∗

tn

[

F
D

(m)
i

(

tn+1, M
(m)
i (tn+1)

)]}

i = 1, ..., m; m = 1, ..., M

(8)

The following decision rule is used to find the optimal stopping time
(τ

D
(m)
i

) at tn, for the ω-th path:

if: Φ
D

(m)
i

(

tn, M
(m)
i (tn) (ω)

)

≤ Π
D

(m)
i

(

tn, M
(m)
i (tn) (ω)

)

then: τ
D

(m)
i

(ω) = tn

i = 1, ..., m; m = 1, ..., M

(9)

The continuation value, Φ
D

(m)
i

is obtained using the LSM approach:

Φ
D

(m)
i

(

tn, M
(m)
i (tn) (ω)

)

= E
∗

tn

[

N
∑

i=n+1

e−r(ti−tn)Π
D

(m)
i

(tn, ti, τ, ·)

]

i = 1, ..., m; m = 1, ..., M

(10)

Φ
D

(m)
i

is approximated by a finite number of basis functions, ΦJ

D
(m)
i

,

which is estimated by a least squares regression. The value of the option to
invest has been already computed at tn as:

F
I
(m)
i

(

tn, M
(m)
i (tn)

)

= max
[

Π
I
(m)
i

(

tn, M
(m)
i (tn)

)

,

Φ
I
(m)
i

(

tn, M
(m)
i (tn) (ω)

)] (11)

However, this is only valid when the R&D stage is instantaneous. If the
R&D stage has a duration of td, the value of the option to invest must be
estimated by least squares regression, using the present value of the option

to invest as the dependent variable
(

e−rtdF
I
(m)
i

(

tn + td, M
(m)
i (tn + td)

))

,

and basis functions of the state variables at tn as independent variables.

Option to split

The option to split is a mutually exclusive option: once exercised the
option to split into m modules the other splitting options are killed. The
control is a couple variable (τ, ζ), where τ is a stopping time in T (t, T − td)
and ζ ∈ {1, 2, ..., M} is the optimal number of modules.
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As Rodrigues and Armada (2005) have suggested, the algorithm pro-
posed by Gamba (2003), to value this kind of options, is improved, skiping
the calculation of the optimal stopping time of the development option, if
we were valuing the best of single options. This improvement allows a faster
convergence of the option value and a correct choice of the best alternative.
The algorithm proposed by Gamba (2003) can produce an incorrect choice of
the best alternative in the out-the-money region, where the estimated con-
tinuation value should be zero, but the least squares estimate can be slightly
positive. This means that the algorithm assumes the choice of an option,
when the correct choice would be another option or none of the options.

In the present case, the best of the modular configurations corresponds
to the choice between a single option to develop the system and a portfolio
of independent options to develop modules within each modular configura-
tion. After modularisation, one does not have to start simultaneously the
development of all the modules (in which case the improvement could be
used) but, at least, one of the modules will have its development started.
Otherwise it would be optimal to delay splitting.

Splitting requires the definition of the design rules, which enables the
partitioning of the task structure of the system and the definition of the
interfaces between the modules. It implies, therefore, that the value of each
modular configuration - the sum of the m independent compound options
- must be balanced with the costs needed to define the design rules. The
payoff of a configuration with m modules is given by:

ΠC(m)

(

t, M
(m)
i (t)

)

= max

[

m
∑

i=1

F
D

(m)
i

(

t, M
(m)
i (t)

)

− R(m), 0

]

i = 1, ..., m; m = 1, ..., M

(12)

The cost of the design rules is zero when the system is chosen (R1 = 0).
In the case of the option to develop the system, we can skip the calculation
of its optimal stopping time, replacing F

D
(1)
1

by the payoff of the option to

develop, since, if we chose the system configuration, we will start developing
it immediately5:

ΠC(1)

(

t, M
(1)
1 (t)

)

= F
D

(1)
1

= Π
D

(1)
1

(

t, M
(1)
1 (t)

)

(13)

The value of option to choose the best modular configuration is given
by:

FS

(

t, M
(m)
i (t)

)

= max
(τ,ζ)

{

e−r(τ−t)
E
∗

t

[

FC(ζ)

(

τ, M
(ζ)
i (τ)

)]}

i = 1, ..., m; m = 1, ..., M

(14)

5Thus, using the improvement suggested by Rodrigues and Armada (2005).
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The Bellman equation for this option is given by:

FS

(

tn, M
(m)
i (tn)

)

= max
{

FC(1)

(

tn, M
(1)
1 (tn)

)

, · · · , FC(M)

(

tn, M
(M)
i (tn)

)

,

e−r(tn+1−tn)
E
∗

tn

[

FS

(

tn+1, M
(m)
i (tn+1)

)]}

i = 1, ..., m; m = 1, ..., M

(15)

The following decision rule is used to find the optimal control (τ, ζ) at
tn for the ω-th path:

if: ΦS

(

tn, M
(m)
i (tn) (ω)

)

≤ max
m

{

FC(m)

(

tn, M
(m)
i (tn) (ω)

)}

then: (τ, ζ) (ω) = (tn, m)
(16)

where:
m = arg max

m

{

ΠC(m)

(

tn, M
(m)
i (tn) (ω)

)}

To avoid the incorrect choice of the best modular configuration in the
out-of-money regions, the optimal configuration (m) must only be updated
if, at least, one of the options to develop (of the m-th portfolio) is exercised,
i.e. the exercise value given by equation 7 is greater than the continuation
value given by equation 10.

The continuation value is obtained using the LSM method:

ΦS

(

tn, M
(m)
i (tn)

)

= E
∗

tn

[

N
∑

i=n+1

e−r(ti−tn)ΠS (tn, ti, τ, ζ, ·)

]

with:

ΠS (tn, s, τ, ζ, ·) =

{

FCm

(

t, M
(m)
i (s) (ω)

)

if s = τ (ω) and m = ζ (ω)

0 otherwise

The continuation value (ΦS) is computed by a least squares regression.
It is contingent on all the assets (system and modules of each configuration)
which must be used as basis functions for the least squares regression.

4 Numerical results

The implementation of the model, using simulation, requires some choices
about the simulation method. Low-discrepancy sequences (quasi-Monte
Carlo methods - QMC) tend to produce more accurate results with fewer
paths as was shown by Rodrigues and Armada (2005). Among the alterna-
tive low-discrepancy sequences generators we have used the improvement of

12



Sobol sequences proposed by Silva and Barbe (2003), which is more efficient
for high-dimensional problems. Brownian bridges are used to reduce the
problems associated with the poorer performance of the QMC methods in
high dimensional problems.

The value obtained by the LSM method converges to the true value of
an American option increasing the number of basis functions, the number
of paths and the number of exercise dates. Since the computational effort
increases significantly with any of these parameters, we have chosen to value
Bermudan options, which can be exercised 10 times per year. As basis func-
tions we use the weighted Laguerre polynomials suggested by Longstaff and
Schwartz (2001), which outperform other polynomial families (Rodrigues
and Armada, 2005). For the options to implement and develop, which are
contingent on a single state variable (the underlying system/module value),
we use a constant and polynomials up to the 5th degree. For the option to
split, which is contingent on all of the assets (six in the base case) we use a
constant, weighted Laguerre polynomials up to the third degree for each of
the underlying assets and pairs of cross-products of the assets (this means
40 basis in the base case).

The base case parameters are presented in Table 1.

Table 1: Base case parameters

Symbol Value Description

M 3 Maximum number of modules

M
(1)
1 100 System present value

M
(m)
i

M
(1)
1

m
Present value of module i when the system is
splitted into m modules
i = 1, ...,m; m = 2, ...,M

K
(1)
1 75 System investment cost

D
(1)
1 25 System development cost

D
(m)
i

γ
D

(1)
1

m
Development cost of the module i when the system
is splitted into m modules
i = 1, ...,m; m = 2, ...,M

K
(m)
i

γ
K

(1)
1

m
Investment cost of the module i when the system is
splitted into m modules
i = 1, ...,m; m = 2, ...,M

γ 1.2 Cost multiplier
R 5 Design formulation cost per module

Rm γ × R × m Design formulation cost when the system is splitted
into m modules m = 2, ...,M

σ
(1)
1 0.3 Standard deviation (risk) of the system returns

σ
(m)
i

βσ
(1)
1 Standard deviation (risk) of the i-th module returns

i = 1, ...,m; m = 2, ...,M
continues on next page
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continued from previous page

Symbol Value Description

β 1.0 Risk multiplier
ρ 0.5 Correlation between module returns within each

modular configuration
ρm 0.5 Correlation between module returns of different

modular configurations
ρs 0.5 Correlation between module returns and system

returns
T 5 Time horizon (years) of the project
td 1 Duration (years) of the R&D stage
r 0.05 Risk-free interest rate

δ
(m)
i

0.03 ”Dividend yield” (lost cash-flows
rate) i = 1, ...,m; m = 1, ...,M

Table 2 presents some numerical results for the value of the modular
project. The first thing to note is that the early exercise premium is not very
significant, as expected, when the project is ”out-the-money” (low module
and system value) and when the cash flows lost by delaying the option are
low. All the options described before are call options, which do not have an
early exercise premium when the dividend yield is null. When the firm does
not face any competition (which erodes the business value), or does not lose
any cash flows, it is always optimal to delay the investment until the last
available moment.

Table 2: Value of a modular project

S δ T σ ρ European American Prob.

not

invest

Prob.

system

Prob.

Modu-

larisa-

tion

90 0.05 5.0 0.20 0.25 6.024 6.377 0.69 0.15 0.16
90 0.05 5.0 0.20 0.75 6.981 7.436 0.69 0.15 0.16
90 0.05 5.0 0.30 0.25 15.375 16.734 0.55 0.18 0.27
90 0.05 5.0 0.30 0.75 17.427 19.087 0.57 0.18 0.24
90 0.10 5.0 0.20 0.25 1.554 2.082 0.88 0.07 0.05
90 0.10 5.0 0.20 0.75 1.808 2.481 0.88 0.07 0.05
90 0.10 5.0 0.30 0.25 6.716 8.711 0.72 0.12 0.15
90 0.10 5.0 0.30 0.75 7.611 9.970 0.74 0.13 0.14

100 0.05 5.0 0.20 0.25 9.771 10.266 0.56 0.21 0.23
100 0.05 5.0 0.20 0.75 11.296 11.922 0.57 0.21 0.22
100 0.05 5.0 0.30 0.25 20.872 22.517 0.47 0.22 0.31
100 0.05 5.0 0.30 0.75 23.662 25.609 0.49 0.22 0.29
100 0.10 5.0 0.20 0.25 2.859 3.844 0.80 0.11 0.09
100 0.10 5.0 0.20 0.75 3.325 4.520 0.80 0.11 0.09
100 0.10 5.0 0.30 0.25 9.701 12.360 0.64 0.16 0.19
100 0.10 5.0 0.30 0.75 10.993 14.127 0.66 0.16 0.18

110 0.05 5.0 0.20 0.25 14.506 15.123 0.44 0.27 0.29
110 0.05 5.0 0.20 0.75 16.716 17.522 0.46 0.26 0.28
110 0.05 5.0 0.30 0.25 26.997 28.924 0.39 0.26 0.35
110 0.05 5.0 0.30 0.75 30.596 32.949 0.42 0.26 0.33
110 0.10 5.0 0.20 0.25 4.722 6.318 0.70 0.17 0.13
110 0.10 5.0 0.20 0.75 5.479 7.401 0.70 0.17 0.13

continues on next page
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continued from previous page

S δ T σ ρ European American Prob.

not

invest

Prob.

system

Prob.

Modu-

larisa-

tion

110 0.10 5.0 0.30 0.25 13.214 16.723 0.57 0.21 0.23
110 0.10 5.0 0.30 0.75 14.975 19.087 0.58 0.21 0.21

The riskless interest rate is 0.05, the system investment cost is 75, the system development cost is
25 and the design rules costs per module is 5. The multipliers of the volatility and costs are 1 and
1.2 respectively. The underlying system value s, the volatility σ, the correlation coefficient between
the modules returns ρ, the shortfall rate of return δ, and the time to maturity of the option T are
as indicated in the table. The simulation was done with 50000 paths. The random number generator
MRG31k3p routine of (L’Ecuyer and Touzin, 2000) was re-initialised for every option with the seed
12345 and Moro normal variates were used. The regression was performed using Numerical Recipes
SVDFIT (Press, Teukolsky, Vetterling and Flanney, 1992), with weigthed Laguerre polynomials.

The higher the value of the system (and of the modules, since we assume
a linear relation), the higher the value of the modular project and the higher
the early exercise premium (Figure 1(a)). When the project is deep in-the-
money, i.e. the business value exceeds significantly the investment costs, the
probability6 of investment is higher, both in the interconnected system and
modular configurations: for some of the cases where it would be optimal
no to invest when the option to split is not available, we should invest in a
modular configuration or in an interconnected system (Figure 1(b)). Since
we are assuming that the costs of the modular configurations are higher than
those of the system (cost multiplier of 1.2), the investment in the system
increases more than the investment in the modular configuartions.

Figure 2 shows the impact of the cost multiplier. As the costs of invest-
ment, devolpement and design formulation increase, the value of option to
delay investment in a modular project converges to the value of the option to
delay investment in an interconnected system (Figure 2(a)). The investment
in a modular project can double the investment in an interconnected system
without eroding totally the value of the modular project. Other variables
can affect this ”allowance” to increase costs with modularisation, namely the
risk of the modules compared to the risk of the system (Figure 4). A small
reduction of the costs implied by modularisation (which is an unlikely situ-
ation) increases significantly the probability of choosing a modular project
and, in contrast, the costs of modularisation must increase significantly to
eliminate any probability of choosing a modular project (Figure 2(b)).

The value of the option to delay becomes worthless (as any option) if un-
certainty disappears (Figure 3(a)). As uncertainty increases, the probability
of choosing a modular project also increases (Figure 3(b)). Although the
portfolio of modules has, for the parameters chosen, a lower volatility than
the system, for correlations lower than one, a higher risk leads to a higher
investment in a modular configuration, not only due to a higher probability
of investment but also because it can be worthwile to invest in a modular
configuration rather than in an interconnected system. Even in the case

6All the probabilities presented are risk neutral probabilities.
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where the uncertainty of each module is lower than the system uncertainty,
there is some incentive to modularise unless it is significantly lower (Figure
4).

The correlations have also some effect in the optimal modular strat-
egy (Figure 5). The first thing to note is that the correlation between the
modules within each configuration increases the value of a modular project
(Figure 5(a)). When the aggregate value of the system is unchanged by
modularisation, as in the model of Baldwin and Clark (2000), modularisa-
tion benefits from a lower correlation between the modules. In our model, if
we assume that the volatility of the portfolios of the modules is equal to the
volatility of the system, we find a similar result (Figure 6). Is this case, a
lower correlation implies that, due to the diversification effect, each module
has a higher volatility. As we will show later, if we consider the net value of
splitting, the relation suggested by Baldwin and Clark (2000) is found in our
model. Even in the case when of perfect correlation between the modules of
the same configuration, the modular project still has an higher value than
the non-modular project (Figure 6). Aditional assumptions are needed to
make modularisation worthless.

The correlations between modules of different configurations have a small
impact on the project value (Figure 5(b)), whereas a higher correlation be-
tween the modules and the system reduces the value of the modular project
(Figure 5(b)). The higher this correlation, more similar are the modular
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configuration and the interconnected system, thus decreasing the value of
modularity.

In the extreme case where all the (system and modules) volatilities are
equal and all the underlying assets (system and modules in all possible
configurations) are perfectly correlated, the incentive to choose a modular
project vanishes, unless there is a ”size” advantage, i.e. higher relative values
or lower relative costs of the modules induce some incentive to modularise
(Figure 8).

Although there are cases where modularisation does not increase value
(higher relative costs, lower relative values or perfectly correlated assets,
for example), usually the possibility of higher degrees of modularisation
provides a higher project value (Figure 7). For the base case parameters,
where it is assumed that splitting costs increase linearly with the number
of modules, it happens at a decreasing rate (Figure 7(a)). After a certain
point (in our case with four potential modules) the probability of investing
in an interconnected system increases, without making the project worst,
because there is a wider choice of modular configurations (Figure 7(b)).

5 The net value of splitting

When we analyse carefully the sources of the value of the modular project,
we come to the conclusion that one of the main sources is not related to the
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modular nature of the project. The option to abandon those modules which
reveal to have a lower value than the investment cost, by not exercising the
option to implement or develop it, has been identified as the main source
of modular value. In the case of an interconnected system, there is a single
option available: to develop the system or abandon it. The real value source
is, then, the difference between these two: the difference between the value
of a portfolio of options and the value of a single option.

In the proposed model, and in the results presented until now, the value
of the modular project has an additional component. In a modular con-
figuration, the development and implementation of all modules, may be
required to make the system work and have value, i.e. , a single module
would only have value if all the others of the configuration are implemented.
If the aggregate value of modules is different from the interconnected system
value or, although being equal, are not perfectly correlated, there is another
value source related to the option to choose the best of two products: a
non-modular product and a product, although modular, only has value as a
hole. This is similar to the option to chose the best of two alternatives for
the same non-modular product7. In this context, this type of project can
be named as ”quasi-modular”. This source of value does not relate to the
modular nature of the project, and thus can not be attributed to modularity.

The ”net value of splitting” can, then, be computed as the difference
between the modular project value and the value of the same project when
the implementation of all the modules is required.

As we mentioned above, the main source of the value of a modular project
is, sometimes, the option to choose between a modular project and a ”quasi-
modular” project (Figures 9 and 10). As expected, the value of modularity
increases with the moneyness of the project (Figure 9). It is worthwhile to
note that, even for the assumptions made about the relationship between the
risk (variance) of the system and the risk of the portfolio of modules, we can
observe the same effect as the one suggested by Baldwin and Clark (2000): a
higher correlation of the modules within each configuration leads to a lower
modular value, which is null for perfectly correlated modules (Figure 10).

6 Concluding remarks

In this paper, we have studied the benefits of splitting a project into mod-
ules from a real options perspective. Building upon the Baldwin and Clark
(2000) approach to modularity, we proposed a more general model which
includes the possibility of delaying the option to split, incorporated variable
correlations between the system and the modules, and assumed a multi-
staged product development. This is a more realistic model, which can only

7The model of Childs, Ott and Triantis (1998) values this type of projects, comparing
parallel and sequential development.

24



Figure 9: Net value of splitting - the effect of the modules/system value
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Figure 10: Net value of splitting - the effect of the correlation within
each modular configuration
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be valued by simulation, due the curse of dimensionality of other alterna-
tive methods. Using the LSM method proposed by Longstaff and Schwartz
(2001) and extended by Gamba (2003) to value portfolio of real options, we
have studied the impact of changing some of the variables which influence
the optimal modular strategy.

The probability of choosing a modular project rather than an intercon-
nected system depends on the relative values, costs and risk of each modu-
lar configuration. Any of these variables can, for extreme values, eliminate
any advantage of modularisation. Even if it is plausible that modularisation
implies higher costs of investment, they can increase significantly until mod-
ularisation becomes worthless. When the modules are perfectly correlated
with each other and with the system and have an identical risk, there is no
incentive to modularise, unless there is a ”size” advantage, related to lower
costs or higher values of the modules. The effects of the correlations on
the value of modularity, depends on the relative risks of the system and the
portfolio of modules. Higher degrees of modularisation increases the value
of the project but at a decreasing rate.

A significant part of the value added by modularity is related to the
option to choose the best of an interconnected system and a portfolio of
modules: when they are all required to be implemented, this is similar to
the option to choose the best of two alternative systems. In our view, this
cannot be attributed to modularity and, thus, we analysed the ”net value”
of splitting, which is the difference between the value of a modular project
and the value of the project with the option mentioned above.

Our approach can be extended in many ways, without significant difficul-
ties. This is, indeed, one of the major advantages of a simulation approach.
The effect of other modular operators, namely the possibility of running sev-
eral experiments for each module (the substitution operator), the effect of
competition and the analysis of some particular cases, like the asymmetric
modules or the case when some of the modules are ”required” to make the
system work, are some the extensions that can be added.

Finally, we believe that this paper also shows the power and flexibility
of the LSM method in the valuation of portfolio of real options contingent
on multiple underlying assets.
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