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Abstract

Executives are not permitted to hedge their options directly but

can increase the certainty-equivalent value of their ESOs by hedging

with an imperfectly correlated asset, even in the presence of transac-

tion costs. The size of the gain depends on the correlation of the hedg-

ing asset’s and firm’s share price returns, the size of the option grant,

the executive’s risk aversion and the time to vesting. We characterise

the optimal hedging strategy and show that sub-optimal hedging can

have little benefit. Optimal private hedging increases both executive

value and shareholder cost; the difference (net cost of option-based

compensation) generally decreases.
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1 Introduction

In recent years stock options have increasingly been used as a means

of executive compensation, of which they now represent a significant

component1. In some cases these options may also represent a sizeable

proportion of the executive’s wealth2. The value placed by executives

on the options they own may, however, be affected by the strategy they

adopt to manage the risk of their overall portfolio (including the op-

tion grant). This is the main issue we address in this paper: whether

an executive should hedge his options, and, if so, how. We charac-

terise the optimal hedging strategy by the executive in the presence of

realistic trading frictions and restrictions and obtain numerically the

resulting valuation placed by the executive on his option grant. We

then compare option values if the executive does not hedge, hedges op-

timally and hedges sub-optimally, considering the viewpoints of both

the executive and the non-executive shareholders.

The question of finding the optimal hedging and exercise strategies

for the holder of the options (the executive) is complicated by features

which distinguish Executive Stock Options (ESOs) from standard

traded financial options3. ESO grants are typically non-transferable

with long maturities and are exercisable only after an initial vesting

period. In addition the executive faces restrictions on his ability to

trade (and specifically to sell short) stock in his firm, making the as-

1For the U.S., Hall & Murphy (2000, 2002) report that in fiscal 1999 94% of S&P500

companies granted options to their top executives (compared with 82% in 1992), with

grant date value on average 47% of total pay (using Black-Scholes estimates of option

values) (21% in 1992) and that 45% of a broad sample of U.S. companies awarded options

to exempt salaried employees in 1998 (12% to non-exempt and 10% to hourly paid respec-

tively). Again using Black-Scholes estimates of option values, Conyon & Murphy (2000)

find that, on average, options granted represent 10% of executive compensation for the

largest (by market capitalisation) U.K. companies in fiscal 1997.
2Details of executives’ outside wealth are difficult to obtain, however Hall & Murphy

(2000) report that, in 1999, 56% of CEO pay for S&P Industrials arose from stock options

(using Black-Scholes estimates of option values).
3See Rubinstein (1995) for a more comprehensive list.
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set underlying the option grant essentially non-tradeable4. The effect

of these features is that perfect market valuation methods (e.g. Black-

Scholes) cannot be used to value ESOs; the executive’s valuation will

take account of the risk imposed by the option position.

Academic interest in the valuation of ESOs has increased consid-

erably over recent years. Early models used a perfect markets setting

(‘Black-Scholes world’) to value ESOs incorporating features such as

dilution effects, delayed vesting, and non-standard options contracts.

More recent valuation models5 have recognised that the inability to

trade (either the option or the underlying asset) results in the execu-

tive placing a private value on the option grant, which is lower than

the perfect markets price determined in a Black-Scholes world. The

difference between private (certainty equivalent) and perfect-market

values is generally found to increase with the executive’s risk aversion

and the level of risk (volatility of the firm’s share price returns). How-

ever, whilst these models use a certainty equivalent formulation to

obtain the value of the option to the executive, they generally either

do not consider the investment strategy for the executive’s outside

wealth or they specify it exogenously (e.g. on early exercise of the op-

tion) and generally do not alter (and do not consider optimising) the

investment strategy to take account of the additional non-tradeable

and non-transferable option position6.

4Executives in the US, as insiders, are prohibited by Section 16-c of the Securities

Exchange Act from selling short the shares of their firm (Carpenter (1998)). Black Scholes

delta hedging using the shares of the firm would involve holding a negative number of

shares to hedge the option grant. As noted by amongst others Core & Guay (2003), if the

executive owns sufficient saleable stock prior to the option grant to be able to hedge the

option grant whilst maintaining a non-negative number of shares, then the option value

(in the absence of transaction costs) equals the Black-Scholes perfect market value. We

do not consider this possibility and instead assume the executive initially holds no shares

in the company. Holding a positive number of shares and not adjusting dynamically for

the option grant would affect option values; we do not however quantify this effect.
5For example Lambert, Larcker & Verrecchia (1991), Huddart (1994), Kulatilaka &

Marcus (1994), Carpenter (1998), Hall & Murphy (2000, 2001)
6Huddart (1994) and Marcus & Kulatilaka (1994) assume non-option wealth is invested
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One exception to this is Henderson (2005), who values European

style ESOs under CARA utility, assuming the executive can trade

costlessly to maintain an optimal investment strategy in the riskless

asset and the market portfolio (which is imperfectly correlated with

the firm’s stock returns), taking into account the position in the op-

tions. In her model, the executive thus partially hedges the (market)

risk associated with the option grant. Henderson investigates the rela-

tionship between different types of risk (market and firm-specific) and

finds that executive valuations increase as the proportion of market to

firm-specific risk increases. However, she does not address the effects

of hedging per se and maintains other perfect market assumptions

such as the ability to trade costlessly in the partially-correlated hedg-

ing asset. In practice, there are transaction costs involved in adjusting

asset holdings which should be taken into account in determining both

the hedging strategy and the valuation placed on option positions by

executives: this we do.

The incorporation of transaction costs into the valuation of finan-

cial options and the associated hedging strategy has been extensively

studied and even low levels of transaction costs have been found to

have significant effects on both hedging strategies and option values7.

in the riskless asset. Carpenter (1998) assumes non-option wealth (and proceeds of early

exercise) are invested optimally in the stock of the firm and the riskless asset but does

not adjust the investment strategy to take account of the option holding. Hall & Murphy

(2000, 2001) assume non-option wealth and the proceeds of early exercise are invested in

the riskless asset but that the executive also holds a constant number of shares in the

firm. Again, no adjustment is made due to the option holding. Ingersoll (2002) finds the

marginal value of an option grant assuming the executive is constrained to hold a non-

zero constant fraction of his wealth in the firm’s stock. Since the model is valid for option

grants which are marginal and hence small relative to overall wealth, the adjustment would

also be marginal. Our model is valid for a range of sizes of option grant; indeed we find

the size of the option grant has a significant effect on the executive’s (and non-executive

shareholders’) per-option values (in Ingersoll’s terminology, the subjective and objective

per-option values).
7Leland (1985) first recognised that hedging options using the Black-Scholes delta-

hedging strategy in the presence of non-zero transaction costs led to potentially unbounded
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Optimal hedging strategies and certainty equivalent option values in-

corporating transaction costs in trading the underlying asset in a

utility-based framework have been considered by in a number of pa-

pers8, which find the optimal hedging strategy is to trade only when

the option’s Delta moves outside a given band. Recently Whalley

(2005) has derived formulae approximating the optimal hedging strat-

egy in the presence of transaction costs and equations for the value of

portfolios of European options on a non-traded asset using a partially

correlated hedging asset. However all of the above transaction cost

models consider only European style financial options9. Incorporating

early exercise in an optimising utility-based model necessitates careful

modelling of the optimal investment strategy after exercise; however

this feature is important for ESOs as they generally vest at some time

before maturity. Our model allows for optimal early exercise in a

time-consistent framework, (i.e. assuming optimal investment by the

executive both before and after exercise).

We follow the formulation in Whalley (2005) for hedging using a

partially correlated asset with proportional transaction costs, adding

conditions for optimal early exercise after the option has vested. This

gives a set of partial differential equations and, importantly, associated

boundary conditions, for the certainty equivalent option value to the

executive, which we solve numerically.

We find that hedging activity by the executive alters his valuation

of the option grant. Executives hedge to reduce the risk associated

costs. He proposed a discrete hedging strategy of transacting at fixed points in time

and derived the value of plain-vanilla European options under this hedging strategy in

closed form. This was extended to value portfolios of options by Hoggard, Whalley &

Wilmott (1992) other models incorporating exogenous hedging strategies include Henrotte

(1993), Whalley & Wilmott (1993), Grannan & Swindle (1996), and Avellaneda & Paras

(1993), and, using a binomial framework, Boyle & Vorst (1992), Bensaid, Lesne, Pages &

Schienkman (1992) and Edirisinghe, Naik & Uppal (1993).
8Hodges & Neuberger (1989), Hodges & Clewlow (1997), Davis, Panas & Zariphopoulou

(1993), and Whalley & Wilmott (1997, 1999).
9Zakamouline considers numerical solutions to the problem of optimal valuation of

American style options under transaction costs.
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with the option grant. Optimal hedging increases the option value

to them by more, the greater the potential for risk reduction, i.e.

the greater the proportion of risk which can be hedged, measured

by the correlation between the returns of the firm’s stock and the

hedging asset, and the greater the effect of risk reduction, and hence

the greater the executive’s risk aversion and the larger the size of the

option grant.

Transaction costs introduce a tradeoff between the benefits of risk

reduction and costs of hedging. In the presence of transaction costs,

the executive’s valuation of the option grant decreases and the opti-

mal hedging strategy for the executive changes from holding a single

optimal amount10 in the hedging asset at any time (and thus trad-

ing continuously) to a strategy of allowing the amount held in the

hedging asset to vary within a band. Transactions occur only if the

amount actually invested in the hedging asset lies outside the band;

the effect of any transaction is to bring the amount invested in the

hedging asset back within the no-transaction band. The width of the

band reflects the tradeoff so executives hedge less with larger transac-

tion costs, lower risk aversion, and greater share price volatility. The

width of the band affects the certainty equivalent option value directly,

increasing with the (absolute) correlation between the returns of the

hedged and hedging assets, but decreasing on a per-option basis with

increases in both the size of the option grant and the executive’s risk

aversion.

Overall, we find hedging (optimally) is increasingly beneficial to

executives, the larger their option grants, and, for small transaction

costs, the more risk averse the executive and the greater the absolute

correlation between the returns on the hedged and hedging assets.

Next, we investigate the effects of suboptimal hedging by deriving

the equations satisfied by the certainty equivalent option value for an

executive following a sub-optimal hedging strategy and solving these

numerically. We find that using a sub-optimal ‘naive’ hedging strategy

10This amount varies with the firm’s share price and the Delta of the option grant.
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reduces certainty equivalent option values, potentially to less than the

executive’s valuation of the option if unhedged, consistent with the

increased risk of the executive’s overall portfolio11 .

Thus the ability of an executive to hedge dynamically using an

imperfectly-correlated hedging asset, and his choice of dynamic hedg-

ing strategy have significant effects on the value he places on the option

part of his compensation package. However, they may also affect the

value placed on that option grant by its writers, the non-executive

shareholders, because of the resulting change in the executive’s early

exercise policy. For the non-executive shareholders, the option grant

is valued in a Black-Scholes framework, taking account of the early ex-

ercise policy of the option holder (executive)12 . Since ESOs generally

vest before maturity, and the residual risk due to imperfect hedging by

the executive can induce optimal early exercise, even in the absence of

dividends, the (absolute value of the) cost to the shareholders of the

ESO is lower than the Black-Scholes value but higher than the execu-

tive’s valuation, and increases with increases in the exercise threshold.

Hedging by the executive increases his valuation of the option grant

and hence his optimal early exercise strategy, thus also increasing

the cost of the option grant to the shareholders. However, we find

that the net cost of the grant (executive’s value minus shareholder’s

value), whilst remaining negative, is generally lower if executives hedge

(except for options close to the exercise boundary). In particular, for

a standard option package granted at-the-money the net cost is lower

11Monoyios (2004) found suboptimal hedging of European-style traded options using an

imperfectly-correlated hedging asset increased the standard deviation of and decreased the

median hedging error (relative to optimal hedging), with greater effect for lower absolute

correlation and higher levels of risk aversion.
12This distinction between the value of the option grant to the executive and the

non-executive shareholders has been noted in earlier models which incorporated non-

tradeability and utility-based valuation, e.g. Muelbroek (2001), Rubinstein (1995), Car-

penter (1998) and Hall & Murphy (2000, 2001). However none of the above has investigated

the effects of the executive’s hedging strategy on the early exercise boundary and hence

the cost to the non-executive shareholders.
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if the executive hedges, particularly for short vesting periods.

The structure of the rest of the paper is as follows. Section 2

describes the model and discusses the nonlinearity of the problem.

Section 3 examines the implications for executives: whether to hedge,

and if they do, how their choices of hedging asset and hedging strategy

affect the value of the option grant to them. Section 4 considers some

of the resulting implications for the non-executive shareholders who

make the option grant. Section 5 concludes and considers further

work.

2 The model

2.1 Setup

We consider an executive who owns a single tranche of options on the

stock of the firm he manages. The option grant gives him the right to

buy n shares, each with a strike price K. The options have maturity

T and time to vest TV .

The firm’s stock price follows geometric Brownian motion

dS = (r + ξη − δ)Sdt + ηSdW

where ξ = µS−r
η is the Sharpe ratio for the stock and δ is its dividend

yield. We abstract from leverage and dilution considerations, which

should not affect our main results.

The executive is prohibited from trading in the shares of the firm,

but may trade in the riskless asset and also in an imperfectly correlated

risky hedging asset13, M , where

dM = (r + λσ)Mdt + σMdWM

with dWdWM = ρdt.

Trades in the hedging asset incur a cost proportional to the value

traded

kM |dy|
13This may but need not be viewed as the market
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where dy is the number of hedging assets traded.

The executive values the option grant by its certainty equivalent

value, assuming optimal investment of his non-firm related wealth.

For tractability, we assume CARA preferences14, so the executive has

negative exponential utility with absolute risk aversion γ:

U(x) = −1

γ
e−γx.

At each point in time the executive maximises his discounted ex-

pected utility of wealth at some date after the maturity of the option,

taking into account his choices over

1. how much of the hedging asset to hold, i.e. when and how much

to trade, and, if appropriate,

2. when to exercise the options once they have vested15.

We solve the optimal investment problems for the executive with

and without the option grant and hence find the certainty equivalent

value and the optimal trading strategy when holding the option grant.

14CRRA or power utility results in equations which depend on the executive’s wealth

level, thus increasing the dimension of the problem.
15We assume that options are exercised as a block and stock acquired on exercise is sold

immediately. In the absence of restrictions on such a sale, or additional implications for

the executive’s subjective utiltity, immediate sale will be optimal for the executive; indeed,

the reduction in the non-hedgeable risk obtained by selling provides the main rationale

for his early exercise of the option grant. Some firms may adjust the composition of the

executive’s compensation depending on his current exposure to the firm’s share price.

Different assumptions would have differing effects on the early exercise threshold. For

example, Sircar & Xiong (2003) assume that on exercise, executives receive a new grant of

the same number of at-the-money options. Characterisation of these differences is beyond

the scope of this paper. Simultaneous exercise is not the optimal exercise policy (Jain

& Subramanian (2003) consider the effects of partial early exercise), but may correspond

reasonably well to exercise decisions in practice. It is further assumed that the exercise

proceeds are subsequently invested optimally in the riskless and hedging assets, whenever

exercise occurs. This corresponds to time consistency of the subjective utility function and

allows for the time consistent valuation of American style options, which is an innovation

in this paper for the valuation of ESOs. See the Appendix for further discussion of time

consistency.
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In order to simplify the solution, we utilise the fact that transaction

costs are typically small (k ≈ 1−2% 16) to find asymptotic expansions

for the option value and the location of the no transaction band. In

principle these could be functions of S,M, y and t; however we find

that all quantities of interest are independent of the actual value of

the hedging asset, M , which simplifies their calculation significantly.

2.2 Solution

Per-option European option values when hedged with an imperfectly

correlated hedging asset incurring proportional transaction costs can

be approximated by17

hE ≈ hE
0 + tEb + tEf + tEi

where hE
0 is the value of the corresponding European style option in

the absence of transaction costs and tEb , tEf and tEi represent certainty

equivalent value of per-option transaction csots during the life of the

option (trading to remain within the no transaction cost band), and

at the final and initial dates respectively.

hE
0 , tEb and tEf satisfy respectively equations (2), (3) and (4) with

final conditions (5), (6) and (7) below; ti is given by tEi = −k ρη
σ S

∂hE

0
∂S .

We must allow additionally for optimal early exercise. Repeating

the analysis (see Whalley (2005) for details) with a time-consisitent

utility function leads to

h ≈ (h0 + tb + tf ) + ti.

with

ti = −k
ρη

σ
S

∂h0

∂S

and the same differential equations (2), (3) and (4), and final con-

ditions (5), (6) and (7) for h0, tb and tf respectively but with an

16De Jong, Nijman and Röell (1995) quote bid-ask spreads in Paris of between 0.15 −
0.45% and on SEAQ of 0.8−2.2%. Individuals will generally pay higher levels of transaction

costs per trade including commissions.
17See Whalley (2005)
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additional free boundary:

h0(S, t) + tb(S, t) + tf (S, t) ≥ max(S − K, 0) − k
ρη

σ
SI{S≥K}.(1)

where I is an indicator function, representing the fact that the cer-

tainty equivalent of the option value including future transaction costs

if unexercised is always at least as great as the payoff net of transac-

tion costs. Optimal early exercise occurs when (1) holds with equality;

in addition a smooth pasing condition will also hold:

h0S
+ tbS

+ tfS
= 1 − k

ρη

σ
.

This gives an approximation to the boundary which is independent of

the current amount held in the hedging asset, My18.

In summary, we solve

h0t
+ rSh0S

− rh0 +
η2

2
S2h0SS

− nγ̂(t)
η2

2
(1 − ρ2)S2h2

0S
= 0 (2)

tbt
+ rStbS

− rh2 +
η2

2
S2tbSS

− nγ̂(t)η2(1 − ρ2)S2h0S
tbS

−nγ̂(t)
σ2

2





(

MY +

n

)2

−
(

MY +
0

n

)2


 = 0 (3)

where (MY +)(S, t) and (MY +
0 )(t) are the half-widths of the no-transaction

bands in terms of the amount held of the hedging asset held at t with

and without the option position and are defined below, and

tft
+ rStfS

− rtf +
η2

2
S2tfSS

− nγ̂(t)η2(1 − ρ2)S2h0S
tfS

= 0 (4)

18We approximate the actual amount held in the hedging asset on exercise by its value

to leading order (the difference between the centre of the no-transaction band including

the option grant and the centre of the no-transaction band once the options have been

exercised). In practice the boundary will depend on the actual amount held, as in Za-

kamouline (2004) and thus on Y in our variables; however dependence on Y in the option

value first occurs at a higher order of magnitude (O(ε)) and the qualitative results should

not be affected by this.
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numerically, using finite difference methods, with final conditions

h0(S, T ) = max(S − K, 0) (5)

tb(S, T ) = 0 (6)

and19

tf (S, T ) = −k
|ρ|η
σ

SI{S≥K} (7)

respectively, and for options which have vested, ensuring at each step

that the value is at least as great as the payoff on exercise net of

transaction costs, i.e. (1).

Note (2) is the same as that satisfied by a costlessly partially

hedged option as derived in Henderson (2005) (though the option value

will differ due to the early exercise condition); if trading in the un-

derlying shares is possible for the executive (so ρ = 1 and σ = η)

this reduces to the Black-Scholes equation. tb < 0 represents the costs

which are incurred during the life of the option by transactions made

to bring the value actually held in the hedging asset within the no-

transaction band. The effect per option of unwinding the hedge on

exercise is captured by the tf term which is also negative.

The optimal trading strategy consists of a no transaction region,

within which the number, y, of the hedging aset hold remains con-

stant. If the prices of the hedged (underlying share price) or hedging

asset move so the value held in the hedging asset, My, is outside

this band, transactions are made to bring My back within the band.

The locations of the boundaries between the regions (the edges of the

no-transaction band), determined endogenously, are given by .

My+ = My∗ + MY + + . . . ; My− = My∗ − MY − + . . . ,

before the executive has exercised and

My+
0 = My∗0 + MY +

0 + . . . ; My−0 = My∗ − MY −
0 + . . . ,

19Assuming My∗(S, T ) > 0
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The leading order difference between the amounts held in the hedg-

ing asset, i.e. the extra amount held due to the option grant,

My∗ − My∗0 ≈ −ρηS

σ
h0S

,

is proportional to the firm’s stock price multiplied by the option’s

delta. Note however that, since h0 does not satisfy the Black-Scholes

equation, h0S
is not the Black-Scholes delta and must be calculated

numerically.

The no-transaction band is symmetrical to leading order. The semi

bandwidth per option, MY +/n, depends on the level of transaction

costs, the entrepreneur’s risk aversion and the Delta and Gamma (first

and second derivatives) of the option value and is given by the solution

to
(

MY +

n

)3

=
3kη2

2σ2nγ̂(t)

[

ρ2
(

λ

nγ̂(t)η
+

(

η

σ
− ρ

)

Sh0S
+

η

σ
S2h0SS

)2

+ (1 − ρ2)

(

λ

nγ̂(t)η
− ρSh0S

)2
]

(8)

For a portfolio without exposure to the firm’s stock price, there is also

a bandwidth of

MY +
0 =

(

3k

2σ2γ̂(t)

)
1
3
(

λ

γ̂(t)

)
2
3

which is independent of n. Note if ρ = 1 and σ = η, (8) reduces to

the perfect hedging bandwidth of Whalley & Wilmott (1997) which

depends only on the option’s Gamma, hSS :

MY +

n
=

(

3k

σ2nγ̂(t)

)
1
3

(

η2

2

∣

∣

∣

∣

λ

nγ̂(t)η
+ S2h0SS

∣

∣

∣

∣

2
) 1

3

Imperfect correlation between the underlying and hedging asset intro-

duces dependence also on the option’s Delta, hS in the bandwidth and

hence the certainty equivalent value of transaction costs.

2.3 Discussion

The equations satisfied by the certainty equivalent per option value for

the executive are nonlinear and, in particular, depend on the size of
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the option grant, n, and the executive’s risk aversion, γ. There are two

sources of deviation from the perfect markets valuation method (the

Black-Scholes equation): ‘cost of unhedged risk’ terms, which arise in

the equations for all orders of magnitude, and transaction cost terms,

which occur in the equations/boundary conditions for h2 and h3.

The ‘cost of unhedged risk’ terms in the equations for the per-

option value are of the form (for tb and tf )

−
(

nγ̂(t)η2(1 − ρ2)Sh0S

)

StS

As the number of options in the option grant increases or the execu-

tive’s risk aversion increases the magnitude of this term in the equa-

tion per option increases, thus reducing the value per option further

relative to the Black-Scholes value. The magnitude of this effect is

proportional to nγη2(1 − ρ2) and thus increases with the size of the

option grant, the executive’s risk aversion and the undiversifiable risk.

It is also greater for options with higher h0S
, i.e. which are further in

the money, and its cumulative effect increases with time to maturity.

For options which have not yet vested this can reduce the option

value below the payoff, with greater effect the greater the remaining

time until vesting. For options which have already vested, it may be

optimal to exercise before maturity even if the firm pays no dividends if

the option is sufficiently in-the-money (the payoff is sufficiently large).

The effect of a larger grant, by increasing the magnitude of the value

reducing ‘cost of risk’ term, is to reduce option values and hence re-

duce the early exercise threshold Since the value per option is then

bounded below by the payoff, the reduction in value due to lack of di-

versification is lessened (relative to the unvested case). These effects

are documented for unhedged options in Carpenter (1998) and Hall &

Murphy (2000, 2001).

The leading order transaction cost term (in the equation for tb) is

−nγ̂(t)
σ2

2





(

MY +

n

)2

−
(

MY +
0

n

)2




which is proportional to the difference in the squared semibandwidths
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for the executive’s portfolio with and without the option position.

Overall, this decreases in magnitude as nγ increases, reflecting the

economies of scale in hedging larger option grants. As nγ increases,

the overall semibandwidth increases less than proportionately with

nγ with the effect of reducing the certainty equivalent of expected

transaction costs per option. The top panel in Table 1 shows how the

semibandwidth per option and at-the-money total certainty equivalent

value of transaction costs per option and per option value at inception

vary with ν = nγK20.

Insert Table 1 here.

All these terms have the effect of reducing option values overall. As

nγ increases, the economies of scale in the dynamic hedging strategy

have the greatest effect so the per option certainty equivalent of ex-

pected transaction costs decreases. The exception is for low values

of nγ, for which the cost of unhedged risk terms dominate and the

expected transaction costs increase with nγ. For the per-option valu-

ation overall the cost of unhedged risk terms dominate and per-option

values decrease with nγ.

20Note the per option value depends on n and γ only via nγ. Hence we shall present

results for different values of ν = nγK, where we have also normalised by the strike price

of the option grant.
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3 Implications for executives

3.1 Whether to hedge

The executive’s per-option certainty equivalent valuation of an un-

hedged option grant21 is shown in the Appendix to satisfy

ft + rSfS − rf +
η2

2
S2fSS − nγ̂(t)

η2

2
S2f2

S = 0 (9)

with final condition

f(S, T ) = max(S − K, 0)

and early exercise condition f(S, t) ≥ max(S − K, 0) for t > TV .

Similarly, as in Henderson (2005), the equation satisfied by the per-

option certainty equivalent valuation of a costlessly partially hedged

option grant is

gt + rSgS − rg +
η2

2
S2gSS − nγ̂(t)

η2

2
(1 − ρ2)S2g2

S = 0 (10)

with the same final condition

g(S, T ) = max(S − K, 0)

and, as shown for the unhedged option in the Appendix, an early

exercise condition for t > TV of g(S, t) ≥ max(S − K, 0).

Note the only difference between equations (9) and (10) is in the

final term, which is proportional to the square of the options’ respec-

tive Deltas. Since this term is always negative in both equations, it

has the effect of unambiguously reducing option values relative to the

Black-Scholes value. As it involves the square of the option’s Delta,

21The certainty equivalent option values in Marcus & Kulatilaka (1994), Carpenter

(1998) and Hall & Murphy (2000, 2001), none of which adjust the investment of the exec-

utive’s wealth as a result of the option grant, are closest to the option values in this section.

The different assumptions they make about the investment strategies for non-option wealth

and discount rates will however affect values to some extent, in particular relative to the

early exercise condition. See the Appendix for a discussion of time consistency of utility

functions.
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the resulting equations are nonlinear, which implies non-additivity of

solutions so that the certainty equivalent value to the executive per

option depends on the total number of options held.

Insert Figure 1 here

The reduction in certainty equivalent option value to the executive

resulting from this extra term in both differential equations represents

the effect of the additional risk the executive is forced to bear as a re-

sult of the option grant. Thus the magnitude of the term increases

with the executive’s risk aversion, γ, and with the size of the option

grant, n. In the case of no hedging, this term is proportional to the

squared total volatility, η2, of the underlying shares; with partial hedg-

ing, the squared volatility in the term is instead the undiversified22

volatility, η2(1− ρ2). For any |ρ| < 1, the magnitude of the reduction

in the partial hedging case is lower. This is illustrated in Figure 1,

which shows the solutions to (9) and (10) in terms of values per op-

tion for the base case option grant at inception T = 10 and on vesting

T = TV = 5 for ρ = 0.8. The certainty equivalent option values with

partial hedging are greater than the option values with no hedging in

all cases; however the magnitude of the effect of undiversifiable risk

on option values is attenuated if that risk can be eliminated by ex-

ercising the option (which becomes worthwhile for well in-the-money

options), so the difference between the certainty equivalent values is

smaller for options which have vested (the T = 5 lines in Figure 1).

The option values at inception (T = 10), which have 5 years before

the option vests and early exercise is possible are much lower and the

difference between the partial hedging and no hedging option values

is much greater, particularly for high share prices, the longer the time

until the option vests.

Thus in the absence of costs it is unambiguously in the executive’s

best interests to hedge for any value of ρ 6= 0.

Insert Figure 2 here

22In a CAPM world, this is the share price return’s idiosyncratic standard deviation.
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For realistic parameter values23, this result continues to hold in

the presence of transaction costs and optimal hedging. This is shown

in Figure 2 and can be seen by considering the magnitude of the terms

that reduce the certainty-equivalent per-option value relative to the

Black-Scholes value. The effect of hedging with an asset with cor-

relation ρ is to reduce the magnitude of the cost of unhedged risk

term in the equation from −η2γ̂(t)S2f2
S/2 to −η2(1−ρ2)γ̂(t)S2h2

0S
/2,

thus increasing the value to the executive by an amount per option

of approximately O(γρ2n); however the costs associated with hedging

introduce an additional term of order max(O(k
2
3 , O((k2γn)

1
3 ) which

reduces the option value. If the transaction costs are sufficently small

then the increase in value due to the reduction in unhedged risk dom-

inates, as can be seen in the right panel of 1.

The net increase in value to the executive is greater

• the larger the option grant

• the greater the reduction in risk due to hedging

• the more risk averse the executive

• the greater the time until maturity and the time until vesting of

the option

3.2 Choice of hedging asset

An executive may have a choice of partially-correlated tradeable assets

with which to hedge including e.g. index futures and stocks or baskets

of stocks in similar industries24. Potential assets will differ in their

volatility, correlation with the stock price being hedged and level of

transaction costs incurred in making a trade.

23As long as O(ρ2) � max(O(k
2

3 /(γn)))
24We assume that the executive invests only in a single risky hedging asset and chooses

his investment strategy optimally over time. Allowing for multiple risky assets in a non-

CAPM framework would complicate the analysis, specifically of the strategy in the absence

of the option, but would contribute little to the valuation or hedging of the option itself.
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We have seen that it is only the correlation between the hedging

and hedged assets which affects the benefits of hedging due to the

reduction in the unhedged risk, whereas all three (correlation, the

volatility of the hedging asset and the transaction cost level) affect

the certainty-equivalent value of expected transaction costs associ-

ated with the hedge. The magnitude of the reduction in certainty-

equivalent per option value due to unhedged risk decreases as the

absolute level of correlation increases, whereas the reduction in per-

option value due to expected transaction costs increases with abso-

lute correlation and the transaction cost level.Numerical simulation

shows transaction costs have a greater impact for close to the money

options, whereas changes in correlation have the greatest effect for in-

the-money options which have not yet vested and for large changes in

1 − ρ2, i.e. for high |ρ|. From the equations we can also see that the

magnitude of the effect of unhedged risk on per-option value increases

with nγ, whilst the effect of transaction costs decreases with nγ due to

economies of scale. There is thus a trade-off between higher absolute

correlation and higher transaction costs which varies with nγ.

Insert Table 2 here

Table 2 lists the per-option values assuming partial hedging for

hedging assets with varying levels of correlation and transaction costs

for at-the-money and in-the-money (S/K = 2) option grants at in-

ception and on vesting for base case parameters (so nγK = ν = 1).

This can be used to compare benefits of alternative hedging assets. In

general higher option values are achieved by selecting hedging assets

with higher absolute correlation (keeping the transaction cost level

fixed) and lower transaction costs (keeping ρ fixed). For at-the-money

options at inception25 for nγK = 1, the effects of doubling the transac-

tion cost level are approximately equivalent to decreasing the absolute

correlation by 0.1. For deeper in-the-money options (at inception, so

25This is the most relevant panel, since hedging asset decisions will be made at inception

of the grant and the majority of options are issued at-the-money (see e.g. Murphy (1999)).
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with 5 years until vesting), the effects of unhedged risk increase by

more than the increase in expected transaction costs, so hedging as-

sets with higher values of absolute correlation give higher option values

for a greater range of transaction cost levels. For options which have

vested, the possibility of early exercise decreases the magnitude of the

reduction in option values due to unhedged risk; thus for at-the-money

options, transaction costs are (slightly) relatively more important in

the choice of hedging asset, and this effect is more pronounced for

in-the-money options.

Insert Table 3 here

Table 3 lists equivalent per-option values for varying ρ and k and

for different effective sizes of option grant (ν = nγK = 0.1 and 10)

for at-the-money options at inception. Smaller option grants or less

risk-averse executives (ν = 0.1) reduce the effects of both unhedged

risk and transaction costs on per-option values but the decrease is

greater for the unhedged risk component. Hence, for at-the-money

options at inception with ν = 0.1, low transaction costs are relatively

more important in choosing a hedging asset than absolute correlation.

(The option value for hedging assets with ρ = 0.5 and k = 0.005 is

greater than that for ρ = 0.9 and k = 0.01.) Conversely, for larger op-

tion grants and/or more risk-averse executives (ν = 10), high absolute

correlation is relatively more important. Note that for ν = 0.1, as ρ de-

creases from 1 for non-zero transaction costs, the certainty-equivalent

per-option value first decreases and then increases, thus demonstrat-

ing directly the trade-off between risk reduction and transaction cost

effects. This trade-off arises because the effects of decreasing absolute

correlation on the unhedged risk component of per-option values de-

creases as |ρ| decreases from 1 (thus increasing the benefits to hedging

and option values) whereas the certainty equivalent of expected trans-

action costs decreases as |ρ| decreases. The effect arises for small ν

because the magnitude of the unhedged risk component varies more

with ν than the transaction cost component.
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Thus, whilst better hedging assets have high absolute correlation

and low transaction costs, the choice between alternative hedging as-

sets depends on the size of the option grant and the executive’s risk

aversion. Choosing a better hedging asset will increase the executive’s

value by more, the more risk-averse the executive, the longer the time

until maturity and until vesting, and the larger the option grant.

3.3 Hedging strategy

Both transaction costs and the imperfect correlation between hedged

and hedging assets change the optimal hedging strategy from the

Black-Scholes hedging strategy, which for an option with value V BS(S, t)

involves holding a number −∆BS = ∂V BS/∂S, or equivalently an

amount with value

−S
∂V BS

∂S

in the hedging asset, which in this case would be perfectly correlated

with the shares of the firm.

Optimal partial hedging with an imperfectly correlated hedging as-

set in the absence of transaction costs involves continuously adjusting

the amount held in the hedging asset, My, to ensure the extra amount

held in the hedging asset because of the option grant26 is:

−n
ρη

σ
S

∂g

∂S

where g(S, t) satisfies (10). This expression is similar to that for cost-

less perfect hedging, in that it involves the share price multiplied by

the option’s Delta, but this is now multiplied by a factor27 ρη/σ, with

magnitude28 which may be greater than or less than 1.

26The total amount held with the option position is −n(ρη/σ)SgS + (λ/(σγ̂(t))); the

amount held in the absence of the option position is (λ/(σγ̂(t))).
27Note both the option value and the hedging strategy reduce to their Black-Scholes

equivalents for perfect hedging, for which ρ = 1 and σ = η.
28In theory ρη/σ has the same sign as ρ, which can thus be either positive or negative,

although in practice for e.g. the market as a hedging asset, ρ > 0.
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In the presence of transaction costs, the optimal hedging strategy

is to hold an amount My in the hedging asset such that

My∗(S, t) − MY +(S, t) ≤ My ≤ My∗(S, t) + MY +(S, t)

i.e. so that the additional holding due to the option grant, My−My0,

remains within a no-transaction band centred, to leading order, on

−n
ρη

σ
S

∂h0

∂S
.

The semibandwidth per option for the full investment problem includ-

ing the option grant is given by

MY +

n
=

(

3k

2σ2γ̂(t)n

)
1
3

∣

∣

∣

∣

∣

∣

ρ2

(

λ

γ̂(t)n
+

(

η

σ
− ρ

)

ηSh0S
+

η2

σ
S2h0SS

)2

+ (1 − ρ2)

(

λ

γ̂(t)n
− ρηSh0S

)2
∣

∣

∣

∣

∣

1
3

. (11)

For k = 0 the bandwidth is zero and the equations reduce to the

costless hedging case above. As transaction costs increase, the band-

width, and hence the level of risk incurred in the investment strategy,

increases, decreasing the total number of transactions during the life

of the option. Different levels of transaction costs give different solu-

tions to the tradeoff between reducing risk and incurring additional

costs of hedging.

Imperfect correlation thus changes the magnitude of the optimal

amount held in the hedging asset, whereas transaction costs change the

nature of the hedging strategy from continuous to bandwidth hedging.

Insert Figure 3 here

Figure 3 shows the per option delta for options with 10 years to

maturity and 5 years to vesting for different correlations with the hedg-

ing asset. Note the magnitude of the optimal amount which should

be held in the hedging asset per option on a partially correlated share

(= (ρη/σ)Sh0S
) is less than the Black-Scholes magnitude and de-

creases as 1−ρ2 increases for two reasons: because of the direct effect

on the multiplier ρη/σ and also because h0S
decreases as 1 − ρ2 in-

creases.
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Insert Figure 4 here

Figure 4 shows the additional amount held in the hedging asset

due to the option grant for our base case. Note the perfect hedging

amount can lie outside the hedging band for risk averse executives with

large option grants and low correlation and transaction cost levels.

We now consider the impact on in certainty-equivalent value from

using the wrong hedging strategy in the partially correlated asset.

Any deviation from the optimal hedging strategy29will reduce value.

In the Appendix we show that if an executive follows a non-optimal

policy of holding an amount

−nD(S, t)

in the hedging asset (or D(S, t) per option), then the per-option value

d(S, t) satisfies:

dt + rSdS − rd +
η2

2
S2dSS − nγ̂(t)

η2

2
(1 − ρ2)S2d2

S

− nγ̂(t)
σ2

2

(

D(S, t) − ρη

σ
SdS

)2

= 0 (12)

with final condition

d(S, T ) = max(S − K, 0)

Note there are now two terms that reduce the option value: the

first represents the effects of the level of unhedged risk under an opti-

mal hedging strategy, as in equation (10) for costless partial hedging,

whereas the second term represents the effects of the additional risk in-

duced by sub-optimal hedging on the option value and is proportional

to the square of the difference between the optimal ((−ρη/σ)SdS) and

actual (D(S, t)) amounts of the hedging asset held at time t. Thus

positive and negative deviations have an equally negative effect on the

option value.

29For this section we consider only the leading order term and hence ignore the effect

of differences in total transaction costs between the two strategies.
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We have seen that the difference between the Black-Scholes amount

and the optimal amount increases as 1−ρ2 increases, particularly when

the option has not yet vested, so the effect of incorrectly hedging using

the Black-Scholes delta would be more likely to destroy value for low

values of ρ with long times to vesting.

Insert Figure 5 here

We illustrate the magnitude of the effects of mishedging in Figure

5 for a hedging strategy of

D = SN(d1),

where

d1 =
ln
(

S
K

)

η
√

T
+

1

2
η
√

T

i.e. the stock price multiplied by the Black-Scholes European call

option delta30.

Using a naive hedging strategy can thus significantly reduce the

value of the option grant to the executive. The value of a sub-optimally

hedged option can be lower than that of an unhedged option because

of the extra risk resulting from the sub-optimal investment strategy31.

3.4 Early exercise thresholds

Hedging thus increases the certainty equivalent option value for the

executive, decreasing the discount from the perfect markets value.

For options which have not yet vested, the certainty equivalent option

30In order to isolate the effects of the sub-optimal hedging, we considered the value if the

option is exercised according to the exercise threshold associated with optimal hedging.

Allowing for optimal exercise given the sub-optimal hedging strategy gave only a negligible

difference in value. For assets which do not pay any dividends during the life of the option,

the consistent choice for an executive hedging using the Black-Scholes European call option

delta would be to exercise only at maturity; however this exercise strategy for a partially-

hedged option would result in significant loss in value due to the sub-optimal exercise

strategy.
31For example, comparing (12) and (9), this will be true if D(S, t) > 2(ρη/σ)SdS ∀S, t.
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value can fall below the payoff for options which are sufficiently in-

the-money, because of the unhedged risk which the options impose

on the executive’s overall wealth, which increases with the value of

the options. Similarly, for options which have already vested and are

sufficiently in the money, it will be worthwhile exercising the options

before maturity32 even if the stocks pay no dividends over the life of

the options33.

Table 1 gives exercise thresholds on vesting for different values

of ν and ρ34 and shows that hedging increases the optimal exercise

threshold and that the effect is greater for higher |ρ|, larger option

grants and more risk averse executives.

4 Implications for shareholders

Shareholders are assumed to value the options granted to the executive

at their perfect market value (value in a Black-Scholes world)35. How-

ever, for options which vest before maturity, the value is not equal to

the equivalent Black-Scholes option value because the exercise strat-

egy is determined by the executive.

Thus shareholders solve

qt + rSqS − rq +
η2

2
S2qSS = 0 (13)

32Recall we assume all options are exercised simultaneously. Allowing for optimal partial

exercise will not change the comparative statics of our results.
33Equations (9) and (10) can be viewed as Black-Scholes equations with effective divi-

dend yields of nγ̂(t)η2Sh0S
/2 and nγ̂(t)η2(1 − ρ2)Sh0S

/2 respectively, i.e. with dividend

yields which increase with the stock price.
34The results shown are for costless hedging; incorporating transaction costs reduces

early exercise thresholds, but as with the effects on option values, the magnitude of the

dfference is small.
35The shareholders may be sufficiently well-diversified, or able to trade costlessly in

assets which span the risks associated with the share price, or risk-neutral. Note that,

although the shareholders act as if they were risk-neutral, they need not be. In the subse-

quent discussion we shall use the term ‘effectively risk-neutral’ to describe the shareholders

because their behaviour is consistent with risk-neutrality; however, our results are valid

for a wider range of scenarios than one in which shareholders are risk-neutral.
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for the per-option value, q, of the grant, subject to

q(S, t) = −max(S − K, 0) if S ≥ S∗(t) (14)

where S∗(t), t > TV is the early exercise boundary for the relevant

option valuation problem for the executive

S∗(t) = inf{St : h(St) = max(St − K, 0) − k
ρη

σ
SI{S≥K}}

Risk-averse executives exercise earlier than would be optimal for

the shareholders, who behave as if they are risk-neutral. This early

exercise decreases the cost of the grant (increasing total shareholder

value) due to the early cash receipt of the options’ strike price. This

is illustrated in Figure 6 for options on a non-dividend paying share.

In the bottom panel we show option values on vesting. The solid line

represents the Black-Scholes option value, which would be the absolute

value of the cost to the shareholders if the executive did not exercise

early. The dashed line represents the certainty-equivalent value of

the option to the executive, assuming he exercises it optimally (note

that this value smooth-pastes to the payoff at the optimal exercise

threshold, S∗). The dotted line represents the absolute value of the

actual cost to the shareholders of the option, given the executive’s

actual exercise strategy. This has lower absolute value than the Black-

Scholes value because of the forced early exercise, but higher absolute

value than the executive’s certainty-equivalent value, because of the

unhedged risk that the risk-averse executive is forced to bear, which

lowers his CE value relative to the effectively risk-neutral shareholders’

value. In particular, since it is the executive and not the shareholders

who determines the early exercise threshold, the shareholders’ option

value does not smooth paste at the exercise threshold.

Insert Figure 6 here

In the top panel we show option values at inception, i.e. with

5 years to vesting. Note how the value to the executive lies below

the payoff for deeply in-the-money options whereas the cost to the

non-executive shareholders is strictly greater than the payoff.
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Insert Figure 7 here

In Figure 7 we show the difference between the shareholders’ and

executive’s valuations of the same option grant. This represents the

deadweight cost of forcing the risk-averse executive to bear unhedged

risk through his compensation, and is the ‘inefficiency cost’ discussed

by Hall & Murphy (2000, 2001). Note that the values coincide only

once the option is exercised; since the shareholders’ option value does

not smooth paste at the exercise threshold, the cost is strictly negative

for all share prices below this level. For options which have not yet

vested, the difference increases further due to the cost to the risk-

averse executive of the unhedged risk which cannot be eliminated by

exercising the option. The total deadweight cost is thus larger for

options with greater times to vesting, particularly for deeply in-the-

money options; earlier vesting reduces this net deadweight cost.

If executives hedge their option grant with a partially-correlated

hedging asset, they increase their value of the option grant but also

increase the cost of the option grant to the shareholders (principals).

For options which have vested, the executive’s early exercise de-

cision is based on a trade-off between his cost of bearing unhedged

risk if he does not exercise and the cost (in lost interest on the strike

price) if he does exercise. Shareholders, on the other hand, bear only

the cost of the executive’s early exercise. Partial hedging reduces the

executive’s cost of unhedged risk for all stock prices, thus resulting in a

new, higher, exercise threshold. Thus for in-the-money options where

either hedged or unhedged options are close to being exercised36, the

increase in the cost to the shareholders if the executive hedges can be

greater than the increase in value to the executive, i.e. the net cost can

be greater for hedged options (see the top lines in Figure 7). However,

for lower stock prices, the effect of the decrease in option values due to

non-diversified risk, which is greater for unhedged options, dominates

36By ‘close to being exercised’, we mean options which either have already vested or

have a short time to vesting, and for share prices close to the early exercise threshold;

these options will have a low expected time until exercise.

27



and the net cost of the option grant is greater for unhedged options.

Note that, for European-style options, the cost to the sharehold-

ers is unchanged by partial hedging by the executive (since the non-

executive shareholder value is affected only by changes in early exercise

patterns), so the increase in value to the executive is always greater

than the increase in cost to the shareholders. More generally, dur-

ing the vesting period (when the executive is not allowed to exercise)

the net difference (cost) will increase more slowly for hedged than for

unhedged option grants and overall the net difference is reduced by de-

creasing the time until vesting of the options. Thus, ex ante contracts

which minimise the deadweight loss involve short vesting periods.

5 Conclusions and further work

We have derived the optimal hedging strategy for risk-averse execu-

tives endowed with an option grant which they are unable to hedge

using the firm’s shares which they can hedge only with a partially-

correlated hedging asset, incurring proportional transaction costs at

every trade. We show that hedging their options is generally ben-

eficial to executives, increasing their private valuation of the option

grant, and also that hedging decreases the ‘inefficiency cost’ to the

firm of using options to compensate risk-averse executives. The ef-

fects of optimal hedging on option values are greater, the larger the

option grant, the greater the executive’s risk aversion, the longer the

time to vesting and to maturity, and the greater the hedgeable risk

(ρ2η2). For relatively large option grants and/or risk-averse execu-

tives, it is worthwhile for executives to hedge as much of the risk as

possible, i.e. using the hedging asset which has maximal correlation.

For smaller option grants and/or less risk-averse executives, transac-

tion costs become relatively more important and may also influence

the choice of hedging asset. However it is important for executives

to use the correct hedging strategy for the particular hedging asset:

use of a sub-optimal strategy reduces the value of the option grant,
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potentially to lower than its value if left unhedged.

In common with many other models of executive stock options

which involve risk-averse executives, essentially risk-neutral sharehold-

ers, partial hedging and exogenous distribution of future share prices,

the net cost of option compensation in this model is always negative,

i.e. the value to the executives of option-based compensation is always

strictly lower than the cost to the shareholders of providing that com-

pensation, because of the unhedged risk it forces executives to bear.

This means that there is no rationale for the use of option (or more

generally stock-based) compensation in such a model. The widespread

use of option (or more generally stock based) compensation is consis-

tent with a belief by firms that the benefits of stock options outweigh

their costs, potentially due to the incentive effect arising from an in-

crease in the dependence of the executive’s wealth on the firm’s share

price, which would induce effort and so increase the share price whilst

this dependence continued to hold. Modelling such incentive effects in

a continuous time model, as recently started in Cadenillas et al (2003)

Agliardi & Andergassen (2003) and Whalley (2005b), could thus be a

fruitful area of future research.
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6 Appendix

6.1 Time consistent utility functions

We wish to maximise the expected utility of terminal wealth at some

date on or after the maturity of the options, assuming non-option

wealth is invested optimally.

Firstly recall the Merton problem for optimising investment in a

riskless and single risky asset, M , where

dM = (r + λσ)Mdt + σMdz,

investing an amount θ in the risky asset and the remainder in the

riskless asset so wealth, W evolves as

dW = (rW + λσθ)dt + σθdz.

Optimising the expected utility of terminal wealth,

J0(W, t;T ) = sup
θs,t≤s≤T

Et[U(WT )],
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J0 satisfies

0 = J0t
+ rWJ0W

+ sup
θ
{λσθJ0W

+
1

2
σ2θ2J0WW

}

Optimising over the amount invested in the risky asset, we obtain the

optimal investment strategy,

θ∗0 = − λJ0W

σJ0WW

,

and the equation satisfied by J0(W, t;T )

0 = J0t
+ rWJ0W

− λ2

2

J2
0W

J0WW

which must be solved subject to J0(W,T ) = U(WT ).

To obtain a time consistent solution to the early exercise problem

for the option grant, we must solve

J(W,S, t;T ) = sup
τ :TV ≤τ≤T

sup
θs,t≤s≤τ

Et[J0(Wτ + Λ(Sτ ), τ ;T )], (15)

which is not necessarily equal to supτ supθ Et[U(Wτ + Λ(Sτ )]. This

effectively assumes the option payoff is invested optimally (in the risk-

less and market assets) immediately on exercise. Henderson (2005)

[21] calls J0 the time consistent utility function for cashflows at T .

For exponential utility, U(WT ) = −A
γ e−γWT , the time consistent

utility is

J0(W, t;T ) = −A

γ
e−

λ
2

2
(T−t)e−γer(T−t)W

J0 is time consistent because utilities at different times before the

terminal date are valued consistently (with wealth being invested op-

timally up to the terminal date). Henderson demonstrates this consis-

tency directly for exponential utility functions to obtain (15) for the

exponential utility function.

6.2 Optimal costless hedging

We derive equations satisfied by time consistent utility based valuation

of option grants given an arbitrary investment/hedging strategy in the
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hedging asset. The certainty equivalent value of unhedged and subop-

timally hedged options arise naturally as special cases. We then derive

the optimal holdings for costless hedging and the resulting equations

satisfied by the certainty equivalent option value.

As above, we maximise discounted expected time consistent utility

of wealth over the early exercise and investment strategies

J(W,S, t;T ) = sup
τ :TV ≤τ≤T

sup
θs,t≤s≤τ

Et[J0(Wτ + Λ(Sτ ), τ ;T )]

where Λ(S) is the payoff to the option, which depends on the firm’s

stock price S.

S evolves as

dS = (r + ξη)Sdt + ηSdZS

with dZdZS = ρdt.

In the early exercise region J(W,S, t) = J0(W + Λ(S), t). In the

continuation region for general investment strategy of holding θ in the

hedging asset, J satisfies

0 = Jt + rWJW + (r + ξη)SJS +
1

2
η2S2JSS

+λσθJW + ρσηθSJSW +
1

2
σ2θ2J0WW

or, specialising to the case of exponential utility so

J(S,W, t;T ) = −A

γ
e−

λ
2

2
(T−t)e−γer(T−t)(W+X(S,t)),

X(S, t), the certainty equivalent value of the option grant, satisfies

0 = − λ2

2γer(T−t)
− rX + Xt + (r + ξη)SXS +

1

2
η2S2(XSS − γer(T−t)X2

S)

+θ(λσ − ρσηγer(T−t)SXS) − 1

2
σ2γer(T−t)θ2

subject to X(S, T ) = Λ(S), X(S, t) ≥ Λ(S) for t ≥ TV .

In the case of no hedging (no adjustment for the option position),

so θ = θ∗0 = λ
σγ̂(t) with γ̂(t) = γer(T−t),

σ2γ̂(t)θ

(

λ

σγ̂(t)
− ρη

σ
SXS

)

− θ2

2
=

λ2

2γ̂(t)
− ρηλSXS
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and X satisfies

0 = −rX + Xt + (r + η(ξ − ρλ))SXS +
1

2
η2S2(XSS − γ̂(t)X2

S)

subject to X(S, T ) = Λ(S), X(S, t) ≥ Λ(S) for t ≥ TV . Writing

X = nf we obtain (9)

More generally, if the extra amount held in the hedging asset as a

result of the option grant is −nD(S, t) so θ = θ∗0 − nD(S, t) then X

satisfies

0 = −rX + Xt + (r + η(ξ − ρλ))SXS +
1

2
η2S2(XSS − γ̂(t)X2

S)

+ρσηγ̂(t)S(nD)XS − 1

2
σ2γ̂(t)S2(nD)2

subject to X(S, T ) = Λ(S), X(S, t) ≥ Λ(S) for t ≥ TV . Setting

X = nd and rearranging, we obtain (12)

Finally, the optimal hedging strategy is given by

θ∗ = argmax{θ(λσ − ρσηγer(T−t)SXS) − 1

2
σ2γer(T−t)θ2}

=
λ

σγ̂(t)
− ρη

σ
SXS

with optimised certainty equivalent option value given by

0 = −rX + Xt + (r + η(ξ − ρλ))SXS +
1

2
η2S2(XSS − γ̂(t)(1 − ρ2)X2

S)

subject to X(S, T ) = Λ(S), X(S, t) ≥ Λ(S) for t ≥ TV . Writing

X = ng we obtain (10)

6.3 Optimal partial hedging with transaction

costs

The executive solves

J(S,M,B, t, y) = sup
τ,t≤τ≤T

sup
dys,t≤s≤τ

Et [J0(Mτ , Bτ + Λ(Sτ ), τ, yτ )]

(16)

where J0(M,B, τ, y) is the time consistent utility function, which in

this case is the solution of the optimal investment problem (in the
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riskless and market assets only) i.e, without exposure to the firm’s

stock price:

J0(M,B, τ, y) = sup
dy

Eτ [U(WT )] ,

Λ(S) represents the net cash payoff to the option,

Λ(S) = n max(S − K, 0)

and terminal wealth, WT , is also assumed to be net of transaction

costs

WT = BT + MT yT − k(MT , yT ).

The state variables are assumed to evolve as:

dB = rB − Mdy − k(M,dy)

dM = (r + λσ)Mdt + σMdZ

dS = (r + ξη)Sdt + ηSdZS

with λ = µM−r
σ and ξ = µS−r

η the Sharpe ratios of the market and the

firm’s share price respectively.

Note S and M are assumed to be imperfectly correlated: dZdZS =

ρdt with |ρ| ≤ 1 and if CAPM holds we have

ξη = µS − r = βS(µM − r) = βSλσ =
ρησ

σ2
λσ = ρηλ

so ξ = ρλ.

Expanding (16) and writing

J(S,M,B, t, y) = −1

γ
e−

λ
2

2
(T−t)e−γer(T−t)(B+hw(S,M,t,y))

J0(M,B, t, y) = −1

γ
e−

λ
2

2
(T−t)e−γer(T−t)(B+h0(M,t,y))

we have that either it is optimal to exercise and

hw(S,M, t, y) = Λ(S) + h0(M, t, y),

or, in the continuation region, there are three subregions:
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• a no transaction region, within which y, the number of units of

the market held, remains constant. Thus dy = 0 and hw satisfies:

0 = − λ2

2γ̂(t)
+ hw

t − rhw + (r + ξη)Shw
S + (r + λσ)Mhw

M

+
η2

2
S2(hw

SS − γ̂(t)hw
S

2) + ρησSM(hw
SM − γ̂(t)hw

S hw
M )

+
σ2

2
M2(hw

MM − γ̂(t)hw
M

2) (17)

where γ̂(t) = γer(T−t) and subject to:

hw(S,M, t, y) ≥ Λ(S,M) + h0(M, t, y)

In this region the decrease in utility from holding a suboptimal

number of units of the market is lower than the marginal utility

loss arising from the transaction costs of adjusting the position.

M(1 − k) ≤ hw
y ≤ M(1 + k)

Thus y is close to its ”optimal” value, y∗(S,M, t), i.e. the num-

ber of units of the market which would be held in the absence of

transaction costs.

• a buy region in which

hw
y − M(1 + k) > 0

holds and thus utility is maximised by choosing dy as large as

possible (as long as (St,Mt, t) remains in this region) Hence if

(St,Mt, t) moves into this region, a transaction is made (y is

increased) until y lies within the no transaction region again.

• a sell region in which

hw
y − M(1 − k) > 0

holds and thus utility is maximised by choosing dy as negative

as possible (as long as (St,Mt, t) remains in this region) Again,

if (St,Mt, t) moves into this region, a transaction is made (y is

decreased) until y lies within the no transaction region again.
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h0 similarly satisfies:

0 = − λ2

2γ̂(t)
+ h0

t − rh0 + (r + λσ)Mh0
M +

σ2

2
M2(h0

MM − γ̂(t)h0
M

2)

(18)

subject to:

M(1 − k) ≤ h0
y ≤ M(1 + k)

h0(M,T, y) = yM − kM |y|

The certainty equivalent value of the option is then hw(S,M, t, y)−
h0(M, t, y).

These non-linear three or four dimensional problems must be solved

numerically. We simplify them, exploiting the fact that transaction

costs, k � 1 are generally very small, by expanding in powers of

k using an asymptotic expansion in order to obtain the leading or-

der behaviour. This simplifies the problem considerably, reducing the

dimension by one, and producing straightforward trading rules for

executives who wish to hedge their option exposure using tradeable

assets. For details of the asymptotic expansion see Whalley (2005).

The leading order behaviour gives the equation for h0, and successive

non-zero terms in the expansion give tb and tf respectively, which are

O(k1/2) and O(k3/4) respectively.
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MY +/n CETC h V ∗(TV )

ν = 0.1 1.75 0.0276 0.438 ≥ 4

ν = 0.5 0.43 0.0271 0.378 3.06

ν = 1.0 0.25 0.0259 0.330 2.40

ν = 2.0 0.15 0.0234 0.272 1.95

ν = 10.0 0.04 0.0141 0.122 1.34

MY +/n CETC h V ∗(TV )

ρ = 1.0 0.33 0.0458 0.448 ·∗

ρ = 0.9 0.28 0.0326 0.367 2.95

ρ = 0.8 0.25 0.0259 0.330 2.40

ρ = 0.7 0.23 0.0207 0.307 2.18

ρ = 0.6 0.21 0.0165 0.291 2.05

Table 1: Hedging semibandwidth per option at inception, per-option cer-

tainty equivalent values of transaction costs and per-option values at incep-

tion and early exercise threshold on vesting for different sizes of option grants

(ν) and hedging assets (ρ). ·∗ = no optimal early exercise. Parameter values

where not stated: T = 10, TV = 5, η = 0.3, r = 0.04, γ = 1 × 10−6, ρ = 0.8,

nK = 1 × 106, σ = 0.2.

*
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Per-option values at inception

S/K = 1 S/K = 2

k = 0.005 k = 0.01 k = 0.02 k = 0.005 k = 0.01 k = 0.02

ρ = 0.9 0.382 0.367 0.339 1.052 1.024 0.972

ρ = 0.8 0.342 0.330 0.309 0.921 0.899 0.859

ρ = 0.7 0.316 0.307 0.290 0.836 0.820 0.789

ρ = 0.6 0.298 0.291 0.278 0.778 0.765 0.741

ρ = 0.5 0.285 0.280 0.270 0.737 0.727 0.709

Per-option values on vesting

S/K = 1 S/K = 2

k = 0.005 k = 0.01 k = 0.02 k = 0.005 k = 0.01 k = 0.02

ρ = 0.9 0.290 0.280 0.263 1.059 1.042 1.010

ρ = 0.8 0.271 0.264 0.250 1.017 1.003 0.976

ρ = 0.7 0.259 0.253 0.242 0.999 0.988 0.965

ρ = 0.6 0.251 0.246 0.237 0.993 0.983 0.965

ρ = 0.5 0.245 0.241 0.234 0.993∗ 0.985∗ 0.970∗

Table 2: Per-option values for costly hedging with different hedging assets

(varying ρ and k). Parameter values where not stated: T = 10, TV = 5,

η = 0.3, r = 0.04, γ = 1 × 10−6, ν = nK = 1 × 106, σ = 0.2, ·∗ option

exercised; value = payoff net of costs.
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At-the-money per-option values at inception

ν = nKγ = 0.1 ν = nKγ = 10

k = 0.005 k = 0.01 k = 0.02 k = 0.005 k = 0.01

ρ = 0.9 0.458 0.442 0.411 0.183 0.173

ρ = 0.8 0.450 0.437 0.412 0.128 0.122

ρ = 0.7 0.444 0.434 0.414 0.102 0.098

ρ = 0.6 0.441 0.433 0.417 0.088 0.085

ρ = 0.5 0.439 0.432 0.421 0.079 0.077

Table 3: Per-option at-the-money option values with costly hedging at incep-

tion. Parameter values where not stated: T = 10, TV = 5, η = 0.3, r = 0.04,

σ = 0.2.

*
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Figure 1: Value per option as a function of moneyness, S/K, for unhedged

and costless hedging cases. Parameter values where not stated: T = 10,

TV = 5, η = 0.3, r = 0.04, γ = 1× 10−6, nK = 1× 106, σ = 0.2 and ρ = 0.8.
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Figure 2: Certainty equivalent value per option as a function of moneyness,

S/K, under optimal hedging with transaction costs for different choices of

hedging asset (ρ) and no hedging ρ = 0. Parameter values where not stated:

T = 10, TV = 5, η = 0.3, r = 0.04, γ = 1× 10−6, nK = 1× 106, σ = 0.2 and

k = 0.01.
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Figure 3: Per option delta as a function of moneyness for costless partial

hedging with different hedging assets (varying ρ). Parameter values where

not stated: T = 10, TV = 5, η = 0.3, r = 0.04, γ = 1 × 10−6, nK = 1 × 106,

and σ = 0.2.
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Figure 4: Centre and edges of no-transaction band per option as a function

of moneyness, S/K. Parameter values: T = 10, TV = 5, η = 0.3, r = 0.04,

γ = 1 × 10−6, nK = 1 × 106, σ = 0.2, ρ = 0.8 and k = 0.01.
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Figure 5: Certainty equivalent value per option as a function of money-

ness, S/K, under optimal and suboptimal hedging for different volatilities of

hedging asset. Parameter values where not stated: T = 10, TV = 5, η = 0.3,

r = 0.04, γ = 1 × 10−6, nK = 1 × 106, ρ = 0.5, and σ = 0.2.
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Figure 6: Values of option grant to shareholders and executive at incep-

tion (upper panel) and on vesting (lower panel) Parameter values where not

stated: TV = 5, η = 0.3, r = 0.04, γ = 1 × 10−6, nK = 1 × 106, σ = 0.2,

ρ = 0.8 and k = 0.01.
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Figure 7: Difference between option valuations by shareholders and execu-

tives at inception and on vesting. Parameter values where not stated: TV = 5,

η = 0.3, r = 0.04, γ = 1×10−6, nK = 1×106, σ = 0.2, ρ = 0.8 and k = 0.01.
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