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Abstract: 

Hedge fund returns are not normally distributed. Hedge fund styles related to arbitrage 

strategies exhibit negative skewness while more directional styles like managed futures and 

global macro are more positively skewed. We implement and test a Bayesian framework for 

portfolio optimisation process, in order to take these characteristics as well as the estimation 

risk into account. Hedge fund returns are modelled using multivariate skew elliptical 

distributions. The first three predictive estimates are used in a truncated utility function to 

obtain sets of optimal portfolios. We show that the choice of the underlying distribution as well 

as the modelling of co-skewnesses has an important impact on the final optimal portfolios. 

 

Keywords: hedge funds, higher moments, estimation risk, skew elliptical distributions, Bayesian 

allocation. 

JEL code: C11, C61, G11. 
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1 Introduction 
The risks embedded in hedge funds are in essence much more complex than that of traditional 

investments, i.e. stocks and bonds. The absence of normal distribution and the skewed and 

leptokurtic behaviour of returns have been documented by several researches; see among 

others Schmidhuber and Moix (2001) and Brooks and Kat (2002). Following Fung and Hsieh 

(1999), a large body of contributions have been examining the validity of the traditional mean-

variance framework and have proposed alternative measures of risk to the volatility. Most of the 

researches have focused on the inclusion of the skewness and the kurtosis expressions in the 

risk definition. For example, Berenyi (2002) suggests using a Taylor series expansion of a 

general utility function linking the expected utility to the different moments of the distribution. 

Signer and Favre (2002) and Lamm (2003) favour the delta-gamma approximation via the 

Cornish-Fisher expansion. Davies, Kat and Lu (2004) propose a Polynomial Goal Programming 

optimisation in the mean-variance-skewness-kurtosis framework. 

 

While these new approaches represent a step forward in the construction of optimal portfolio of 

hedge funds, the addition of higher moments is overshadowed by the errors embedded in the 

estimation of the various statistics. Estimation risk is a well known problem leading to instability 

in the optimal portfolios; see among others Bawa, Brown and Klein (1979). In the context of 

hedge funds, the addition of higher moments exacerbates the instability problem as the 

estimation errors on higher moments are bigger than that of volatility. Indeed, the low number 

of data available for hedge funds, i.e. monthly returns, is responsible for the large confidence 

intervals observed for the skewness and kurtosis. The use of estimated skewness and kurtosis 

may also lead to an overemphasis of certain events, like the LTCM crisis, and may bias portfolio 

allocation with respect to these events. 

 

This article contributes to the growing literature on higher moment optimisation in two ways. 

Firstly, we apply a Bayesian framework previously advocated by Harvey, Liechty, Liechty, and 

Müller (2002) to the hedge fund context. This Bayesian framework permits the modelling of 

higher moments and of estimation risk via the derivation of a predictive distribution of hedge 

fund returns. The first three predictive moments are then incorporated in the optimisation of a 

truncated utility function. Secondly, we analyse the impact of the choice of the underlying 

distribution within the family of skew elliptical distribution. This family entails in particular the 

skew normal distribution used by Harvey et al. (2002) and the skew-t distribution. We also 

consider different parametrisation with respect to the skewnesses and co-skewnesses. 
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Our paper is organised as follows. Section 2 presents the model for hedge fund returns. In 

section 3, we discuss the estimation of a predictive distribution in a Bayesian context. The 

results of the empirical application to hedge funds are reported in section 4. Finally, section 5 

concludes this article. 

 

2 Modelling hedge fund returns 
Given the asymmetry and strong departure from normality exhibited by hedge fund returns, a 

skewed probability distribution is needed in order to model these return series. In recent years 

an increasing number of publications have proposed different methods for the definition of both 

univariate and multivariate skewed distributions. 

 

Azzalini (1985, 1986) was among the first to introduce and investigate the univariate skew-

normal distribution. This family of skewed distributions was later extended by Azzalini and 

Della Valle (1996) to the multivariate case. The approach used to obtain this kind of 

distributions is based on conditioning on a latent variable. Using this approach, different 

definitions and generalizations of skewed distributions have been proposed. A survey of these 

“hidden truncation” models is provided by Arnold and Beaver (2002). A class of multivariate 

skew-elliptical distributions was proposed by Branco and Dey (2001) and then improved by 

Sahu, Branco and Dey (2003) by extending the number of conditioning arguments to match the 

number of observed variables2. 

 

The analysis developed in this paper will focus on the class of Skew Elliptical Distributions 

introduced by Sahu et al. Up to now the use of skewed distribution has been mainly restricted 

to the skew-normal distribution and applications of more general skew-elliptical distributions 

have been quite seldom. 

 

General model 

Sahu et al. (2003) define a skew-elliptical class of distributions by transforming elliptically 

symmetric distributed random variables and then conditioning on some latent variables. 

The starting point is thus the family of elliptical distributions that can be defined as follows: 

);Σ,(~ )(
p

pgEl θX  

if the p-dimensional random vector X has multivariate density equal to 

( ) ( ){ }θxθxθx −Σ−Σ=Σ −− 1(p)2/1(p) 'g)g,,;(f
pEl  

                                                   
2 A more flexible family of skewed distributions has been suggested in Ferreira and Steel (2004). 
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where  

∫
∞ −

Γ
=

0

12/2/
(p)

);g(

);g()2/()(g
drprr

pupu
ppπ

, 0≥a  

is the so-called density generator function of the random variable x. 

and where );g( pu is a function from +ℜ  to +ℜ such that the integral ∫
∞

−

0

12/ );g( drpur p  

exists. 

The multivariate normal distribution is a special case of the previous model by setting 

2/:);g( u
Norm egpu −== . 

Similarly, when choosing  

2/)(

1:g);g(
pν

t ν
upu

+−









+==   with 0>ν   

the multivariate t distribution is obtained. 

 

Skew elliptical distribution (Sahu et al.) 

To obtain the skew-elliptical distribution defined in Sahu et al. (2003) we first consider the 

transformation: 

εZμX ++= D   

where Z is a vector of unobserved (latent) random variables whose distribution is elliptical with 

zero mean and identity covariance matrix Ip. 
pℜ∈μ , 

D is a p×p full matrix  

and )g,,(~ (p)
p Σ0ε El  

where pEl  identifies the elliptical distribution and (p)g  the corresponding density generator. 

 

As a consequence, the random variable )( 0ZXY >=  has a multivariate skew-elliptical 

distribution. The p-dimensional density of the random variable Y is given by 

)P()g,'Σ,;(f2)g,,Σ,;f( (p)(p)
p

0Vμyμy >+= DDD El
p  
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where 
p

f El  is the pdf of a p-dimensional elliptical distribution,  

)g;)'Σ('),()'Σ('(~ (p)11
p μ)q(y −

−− +−−+ DDDDIDDDEl pμyV , 

∫
∞ − +

+Γ
=

0

12/2/
)(

)2;g(

)2;g()2/()(g
drprar

puapu
pp

p
a π

, 0≥a  

and )()'()'()( 1 μyμyμy −+Σ−=− −DDq . 

 

An important feature of this class of distributions is that for any subset of components of Y the 

marginal distribution has the same form as the distribution of Y. This coherence property is very 

important in a portfolio optimisation process. In fact, it ensures that we will obtain the same 

solution for the portfolio weights even if we remove the assets for whom the weight was 

calculated to be zero. 

 

Skew-normal distribution 

The skew-normal distribution is obtained by defining 
2/:g);g( u

Norm epu −== .  

Thus 

),(~ p Σ0ε N  

Skew-t distribution 

The skew-t distribution is obtained by setting: 
2/)2(

1:g)2;g(
p

t ν
upu

+−







 +==

ν

 

where ν  is some integer representing the degrees of freedom. 

Thus 

),(~ p, Σ0ε νt  
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Figure 2-1. Bivariate skew-t distribution with ν  = 4 , μ  = (0, 0), Σ  ={(1, 0) ; (0, 1)} , D ={(5, 0) ; (0, 5)}; 

The contour plot of the skew-t (a) is compared to the contour plot of a skew-normal distribution (b) with 

same μ , Σ  and D . 

 

Bayesian Inference for Skew Elliptical models 
It is now possible to set up a Bayesian inferential procedure where the data is assumed to 

follow a skew-normal or a skew-t distribution. The specification of a model for the MCMC 

framework can be done by considering a hierarchical model where the likelihood for the i-th 

data observation Yi conditional on Zi = zi is given by 

);,(El~ )(
)(pi

p
qiii i

gD zΣzμzZY +=  

with iiq zzz ')( i =  

and where the marginal specification for Zi will be a truncated elliptical distribution3
 whose 

values are restricted to be positive, i.e. 

)();,(El~ )(
p 0Z10Z >i

p
pi gI . 

Taking  

2/)2(

1:g)2;g(
p

t ν
upu

+−







 +==

ν

,  

the skew-t model is obtained. Representing the t distribution as a scale mixture of normal 

distributions, the likelihood for each observation can be specified as  

),(~ pi
i

iii w
DN ΣzμzZY +=  

                                                   
3 In particular we will need )(),(N~ 0z1I0Z >⋅p  for the Skew Normal model and 

)(),(~ , 0z1I0Z >⋅+ ppt ν  for the Skew t model. For a proof see Sahu et al. (2003). 
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)(),(N~ 0Z10Z >⋅ i
i

p
pi w

I
 

where4 







Γ

2
,

2
~ ννwi  

and where we assume the following conjugate prior densities for the unknown parameters: 

),(N~ 0m Λβμ  

),(InvWishartm Kq~Σ  

),(N~)'( 0m Γδ δ≡Dvec  

( ) )2(,~ >ΣΓ νν ν 1γ  

where )'(⋅vec  returns the vector obtained by stacking the columns of a matrix. 

 

Note that this specification for the skew-t model includes the skew-normal as a special case. To 

obtain the setup for the latter we just need to set wi = 1, ∀ i and remove the last conjugate prior 

density.  

Diffuse priors on the parameters are set in the model by choosing 

00 =β , pI100=Λ  

00 =δ  , 2100
p

I=Γ  

pq 2= , ppI=K  

1=γ ,  1.0=Σν  

Bayesian estimation can be undertaken using Monte Carlo Markov chains (MCMC) methods 

such as the Gibbs sampler proposed by Geman and Geman (1984). This method allows 

producing a Markov chain whose output corresponds to a sample from the joint posterior 

distribution. In our case we will implement a Gibbs sampler returning samples of the model 

parameters D,,Σμ (and ν  in the skew-t case). In order to implement the sampler we need to 

draw samples from the full conditional distributions which are specified in Appendix A.  

With the same model specification both the skew normal and the skew-t models are fitted. In 

addition, two different settings are specified for each model using a diagonal D matrix and a full 

D matrix. The full D models are accommodating for co-skewnesses therefore they are expected 

to provide a better fit when the observed data exhibits significant levels of co-skewness.  

                                                   
4 The parameterisation used is such that E(wi) = 1. 
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3 Estimation of predictive distribution 

Addressing estimation risk 
A limitation of the traditional Markovitz (1952) asset allocation model is that the choice is 

made between alternative probability distributions where the parameters are assumed to be 

known. In practice, the distributions are assumed to belong to a certain family and, since the 

parameters characterizing the model are in general not known, the usual approach consists of 

replacing the true parameters with their sample estimates that are then plugged in the optimal 

portfolio formulas. This approach completely ignores the estimation risk that arises both from 

the parameter uncertainty and from the assumption made on the probability model5.  

 

Many studies addressing this issue have tried to incorporate estimation risk into the portfolio 

choice problem. Zellner and Chetty (1965) and Klein and Bawa (1976) are amongst the first to 

argue for the use of a Bayesian framework in order to improve the estimate using predictive 

distributions of portfolio returns6. Many other authors have focused on the use of the Bayesian 

predictive approach to account for parameter uncertainty (see Jobson and Korkie (1980), Jorion 

(1985) and Frost and Savarino (1986) among others). While the mentioned papers are all in the 

context of i.i.d. returns, Kandel and Stambaugh (1996) and Barberis (2000) point out the 

importance of recognizing parameter uncertainty also in the context of portfolio allocation with 

predictable returns and the implications for investors with different investment horizons. 

 

Black and Litterman (1990,1992) and Pástor (2000) improve the bayesian approach by mixing 

the equilibrium implications from an asset pricing model with the investor views. Pástor and 

Stambaugh (2000) compare different asset pricing models from the perspective of investors who 

center their prior beliefs on the models and then update those beliefs with data. 

 

Other authors address the estimation risk issue from different perspectives. Michaud (1998) 

suggests using of resampling from the estimated distribution in order to deal with estimation 

error7. Xia (2001) studies the effect of parameter uncertainty in a dynamic continuous time 

context. Kan and Zhou (2003) are providing an analytical comparison of alternative decision 

rules under estimation risk. 

 

                                                   
5 See Michaud(1989) for a detailed discussion on the problems arising in implementing mean-variance 

optimal portfolios. 
6 Bawa, Brown and Klein(1979) provide an extensive survey of the early work on the subject 
7 Scherer (2002) describes this approach and some of its limitations in detail. 
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The Bayesian approach 
The Bayesian approach based on the predictive distributions pioneered by Zellner and Chetty 

(1965) provides a general framework that integrates estimation risk into the analysis. In the 

Bayesian decision rule, uncertainty about the parameters is summarised by the posterior 

distribution of the parameters given the observed returns ),...,( 1 nyyy = . Integrating out the 

parameters over this distribution gives the predictive distribution for future asset returns. 

 

Let W0 be the initial investor’s wealth and 011 )'1(),( WωωW nn ++ += yy  the next period 

wealth. Denoting the investor’s utility function by [ ]),( 1+nωWu y  and the conditional 

distribution of the future returns by )f( 1 θy +n , the conditional expected utility of portfolio ω  is 

given by 

 [ ] [ ]∫
+

+ ++++ ≡





1
1 1111 )(),(),(

n
n nnnn dfωWuωWuE

yθy yθyyθy . 

Assuming that the sample parameters will exactly match the true parameters (i.e., θθ ˆ= ), the 

optimal portfolio weights ω̂ in the classical framework will be obtained as  

[ ]












 == +

∈ +
θθyθy
ˆ),(argmaxˆ 11 n

ω
ωWuEω

n
ωC

 

[ ]








≡ ∫
+

+++
∈ 1

111 )ˆ(),(argmax
nω

nnn
ω

dfωWu
y

yθyy
C

 

where ωC  is a given set of constraints on the portfolio weights. 

 

In contrast, the Bayesian approach considers the predictive distribution of future returns given 

the observed data: 

( )[ ] ∫ +++ =≡
θθ θyθθyθyyy dppfEp nnn )()()( 111  

where )( yθp  is the posterior distribution of θ . 

The investor’s optimal portfolio solution in the Bayesian framework is given by 

 

[ ]
























= +

∈ +
θyθyθ ),(argmaxˆ 11 n

ω
Bayes ωWuEEω

n
ωC
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[ ]∫ ∫
+

+++
∈

≡
1

111 )()(),(argmax
nω

nnn
ω

ddffωWu
y θ

yθyθθyy
C

 

[ ]∫
+

+++
∈

≡
1

111 )(),(argmax
nω

nnn
ω

dpωWu
y

yyyy
C

 . 

The investor which follows a Bayesian allocation decision is maximising expected utility of the 

future wealth by calculating the expectation with respect to the predictive distribution of the 

future returns. The Bayesian framework is explicitly considering the estimation risk since the 

parameters are modelled as random variables themselves. As shown by Bawa and Klein (1976) 

the introduction of estimation risk alters the optimal portfolio choice. Kan and Zhou (2003) 

show that in the mean variance framework, the Bayesian solution for the portfolio decision 

problem is more conservative for risk averse individuals than the case where the parameters are 

known. In the mean-variance framework a Bayesian approach will suggest investing more on 

the riskless asset. Intuitively, the Bayesian decision rule recognizes the estimation risk and 

hence is considering an additional source of risk on the risky assets. Thus, the riskless asset 

becomes more attractive.  

 

Predictive estimates. 

The predictive moments from the means of the posterior moments can be calculated as follows: 

mmp =  

)( ymVarVVp +=  





 −⊗−−⊗⋅−⊗⋅+= yyy )()()(3)(3 pppp mmmmEmVEmVESS  

where  

∫
∞

∞−
+++= 111 )( nnnp dpm yyyy , 

pV  and pS  are the second and third8 predictive central moments respectively and m , V , 

S are the means of the posterior moments m , V  and S . 

 

Truncated utility function 

In order to capture the effect of skewness, a proper utility function must be considered. The 

portfolio return for the period is defined as 1' += np ωr y . Setting the initial wealth equal to one 

                                                   
8 The same representation as in Athayde and Flores (2001) is used for the third central moment tensor. 
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gives for the next period investor’s wealth )1( prW += . The allocation problem for the investor 

maximizing his expected utility can be stated as 

))((max WuE
ωω C∈

  

under the constraint { }01 ≥== ωωω ,1'C . 

In order to describe the agents’ preferences a family of linear utility functions is considered, i.e. 

[ ] [ ] 3

1

2

111 )(')('')'1( pnpnnn mωγmωλωωu −+−−=+ ++++ yyyy  

where ∫
∞

∞−
+++= 111 )( nnnp dpm yyyy  is the predictive mean of future returns 1+ny . 

The expected utility calculated with respect to the predictive density is: 

ωωSγωωVλωmωWuE ppp ⊗+−= ''))((  

 

This can be estimated by generating a set of G draws )(~ 1
)(
1 yyy ++ n

g
n p  from the posterior 

predictive distribution and then estimating the predictive moments over the generated sample, 

i.e., 

∑∫
=

+

∞

∞−
+++ ≈=

G

g

g
nnnnp n

dpm
1

)(
1111

1)( yyyyy  

For an arbitrary utility function, the expected utility can be approximated via Monte Carlo 

simulation by averaging the utility over the predictive samples, i.e. 

[ ] )'1(1)()()'1()'1())(( )(
1

1
1111

g
n

G

g
nnnn ωu

n
dpωuωuEWuE +

=
+++

∞

∞−
+ +≈+=+= ∑∫ yyyyyy

The expected utility can then be optimised with numerical methods. 
 

Specifying additional information in the model 

One of the advantages of the Bayesian approach is that it allows reflecting subjective views or 

financial information about the future returns. Many studies have already taken advantage of 

this feature of the Bayesian approach by the inclusion of subjective information in the priors. In 

the framework described by Black and Litterman (1990, 1992) the investors combine individual 

views with market equilibrium to select their portfolios. Pástor (2000) proposes a portfolio 

selection methodology that includes in the priors the investor’s degree of confidence in an asset 

pricing model. 

 

In the hedge fund context this feature allows to include in the asset allocation procedure all the 

information arising from the analysis of the strategies adopted in the return-generating process 

by the hedge fund managers. In particular, information concerning the direction of the 

skewness of the returns generated by the different hedge funds styles is available from the 
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analysis of the various hedge fund strategies. By appropriately adjusting the prior on the 

parameter that regulates the skewness is then possible to include this information in the model. 

 

This feature is particularly valuable in a context where the data is scarce. Here, often, the full 

behaviour of the return generating process has not yet been disclosed to the data. Some of this 

undisclosed information can be read from the analysis of the process strategy and included in 

the asset allocation procedure. In a Bayesian framework, this prior information will be 

combined with the information arising from the data to produce the posterior predictive 

estimates for the parameters of the model. 

 

4 Application to hedge fund returns 

Data description 
We consider a set of returns on hedge funds indices provided by Hedge Fund Research, Inc. 

(HFRI). The data provided by HFRI is based on a database containing the returns of 3’700 

funds. The monthly data is composed by 4 non-overlapping HFRI strategy indices, representing 

the equally weighted returns, net of fees, of hedge funds classified in each strategy. The indices 

selected are: 

§ HFRI Equity Hedge Index (EH), 

§ HFRI Relative Value Arbitrage Index (RV), 

§ HFRI Event-Driven Index (ED), 

§ HFRI Macro Index (GM). 

In addition, to represent an investment opportunity in the managed futures strategy, the Stark 

300 Trader Index (MF) is included in the dataset. 

 

The data series consists of the monthly observations for the above indices between January 

1994 and March 2005. As a preliminary investigation of the data some summary statistics of the 

returns are provided in Table 1. 

 

Table 1. Summary statistics for the hedge fund monthly returns. 

Equity 
hedge

Relative 
value

Event 
driven

Global 
macro

Managed 
futures

Mean 1.17% 0.79% 1.09% 0.84% 0.63%
St.dev. 2.63% 0.91% 1.88% 2.14% 2.86%
Skewness 0.324 -2.663 -1.272 0.058 0.290
Kurtosis 1.875 18.960 5.468 0.861 -0.030  

 

Estimation results 
In the Bayesian framework, the predictive moments have been calculated for both the skew- 

normal and the skew-t distributions. For both models two different settings for the parameter D 
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are used. In the first setting the parameter is defined as a diagonal matrix and in the second 

setting as a full matrix. The Bayesian estimation is thus performed for four models:  

§ Skew-normal (diagonal D) 

§ Skew-normal (full D) 

§ Skew-t (diagonal D) 

§ Skew-t (full D) 

 

The models where the D parameter is defined as a diagonal matrix have the advantage that the 

definition of informative priors for the skewness of the distribution is easily implemented as the 

diagonal elements of D are the only parameters adjusting the amount of skewness of the 

distribution. When D is specified as a full matrix, the co-skewnesses are modelled more 

accurately although the definition of priors on the parameter becomes difficult to implement. 

 

The estimation is done using a Gibbs sampler implemented in WinBUGS9. A total of 12’000 

iterations have been undertaken for each model with a burn-in of 20’000 iterations each. After 

this number of iterations, MC-errors for the estimated parameters are usually small and 

convergence for the MCMC sampler seems to have been achieved. 

 

In order to check the goodness of fit of each model to the observed data we rely on the 

approach based on posterior predictive assessment. This approach, introduced by Guttman 

(1967) and Rubin (1984) and further discussed in Gelman and Meng (1996) and Gelman, Meng 

and Stern (1993), provides an intuitive and easy to implement method to estimate the p-values 

of the observed data given a certain model.  

 

The method relies on the draws Gθθ ,...,1 from the posterior distribution generated by the 

MCMC. Replications of the data Ggngg
rep
g ,....,1),,...,( ,1, == yyy  are generated for each 

simulated parameter by drawing from the sampling distribution given the parameters (predictive 

distribution). The simulated replications are then compared to the observed values y by 

computing the estimated p-value of a test statistic T(y). The estimated p-value is calculated as 

the proportion of cases in which the simulated test statistics exceed the realized value: 

{ }∑
=

>=
G

i

rep
ival TT

G
p

1

)()(1 yy1  

where {}⋅1  is the indicator function.  

A p-value too close to 1 or to 0 will be the evidence that the model is not accurately fitting 

some aspects of the data related to the test statistic which is used. 

 

                                                   
9 Spiegelhalter et al. (2003) 
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Given the complexity of the models involved and the high number of parameters to be fitted, 

we believe that this kind of assessment is particularly needed in the current framework and may 

be used to discriminate between the various models. The results of the analysis on the four 

models fitted to our hedge fund data are confirming this intuition highlighting a statistically 

significant lack of fit for some of the models. In the context discussed in this paper, some lack 

of fit concerning particularly important statistics like the first three moments, may be used as 

additional evidence to give more strength to the choice in favour of one model rather than 

another from a model selection perspective.   

 

Table 2 displays the p-values for the four models implemented. Mean, variance and skewness 

together with minimum and maximum values are used as test statistics. The results show that 

models with a diagonal D matrix have substantial difficulties in fitting negatively skewed data. 

In fact, for the relative value and event driven styles, all the generated samples have higher 

skewness values than the (negative) skewness of the observed data. 

 

When a full matrix is used for D, the fit is improved although the p-values obtained for 

minimum value and skewness for the relative value and event driven styles are still high. In this 

regard, we might consider that our data is including the observations relative to a severe hedge 

fund crisis occurred in the year 1998 (LCTM crisis). The crisis affected negatively both the event 

driven and the relative value styles managers and had a more severe impact on the last ones. 

Since the returns produced during this period are reflecting the outcome of an extreme event, 

the fact that only a small percentage of the data replications are exhibiting lower minimum 

value and skewness than the observed data may not be entirely considered as lack of fit. This 

intuition is confirmed by the p-values obtained using a measure of skewness which is less 

sensitive to outliers10. 

 

Table 2. Model checking results 
Skew-normal (diagonal D ) p-values of observed statistics Skew-t (diagonal D ) p-values of observed statistics

EH RV ED GM MF EH RV ED GM MF
Mean 0.509 0.505 0.504 0.507 0.507 Mean 0.537 0.568 0.581 0.494 0.446
Min.value 0.971 1.000 1.000 0.926 0.391 Min.value 0.866 0.996 0.968 0.721 0.232
Max.value 0.047 0.846 0.868 0.323 0.464 Max.value 0.272 0.815 0.862 0.588 0.738
Variance 0.368 0.571 0.514 0.513 0.500 Variance 0.327 0.200 0.308 0.519 0.643
Skewness 0.204 1.000 1.000 0.368 0.100 Skewness 0.476 0.997 0.978 0.479 0.340
Robust Skew. 0.559 0.588 0.959 0.047 0.141 Robust Skew. 0.670 0.623 0.938 0.073 0.227

Skew-normal (full D ) p-values of observed statistics Skew-t (full D ) p-values of observed statistics

EH RV ED GM MF EH RV ED GM MF
Mean 0.504 0.501 0.506 0.497 0.499 Mean 0.490 0.557 0.557 0.523 0.516
Min.value 0.484 0.989 0.768 0.888 0.573 Min.value 0.582 0.980 0.797 0.759 0.441
Max.value 0.257 0.682 0.650 0.444 0.772 Max.value 0.295 0.785 0.783 0.565 0.808
Variance 0.569 0.695 0.587 0.595 0.568 Variance 0.498 0.311 0.483 0.542 0.656
Skewness 0.244 0.999 0.851 0.501 0.524 Skewness 0.337 0.993 0.847 0.559 0.555
Robust Skew. 0.606 0.327 0.837 0.089 0.393 Robust Skew. 0.646 0.530 0.856 0.130 0.415  

 

                                                   
10 The robust measure of skewness used here is the one proposed by Groeneveld and Meeden (1984). 
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Model selection 

To compare the models we compute the deviance information criterion (DIC) introduced by 

Spiegelhalter et al. (2002) and implemented in the BUGS software. Although there is some 

criticism concerning the use of the DIC to select the best fitting model, the results are in line 

with the conclusions drawn from the p-values used to assess the goodness of fit of the models. 

DIC values for the four model specifications are displayed in table 3. 

 

Table 3. Deviance information criterion of the implemented models 

 

Model DIC
Skew-normal (diagonal D) 3127.13
Skew-t (diagonal D) 2770.50
Skew-normal (full D) 1832.84
Skew-t (full D) 1890.14  

 

The models based on a full D matrix which allows for co-skewnesses are providing a better fit. 

The skew-normal model (full D) seems to be the best model for the data. 

 

The posterior means for the parameters of the skew-normal (full D) are displayed in Table 4. 

Appendix B shows the averages of the first three moments over 12’000 replications of the data 

sampled from the fitted skew-normal (full D) model. 

  

Table 4. Posterior means of the skew-normal (full D) parameters 
Posterior mean of μ

0.6391 1.397 2.371 0.5682 -2.173

Posterior mean of D
-0.9621 0.3578 1.198 0.8726 -0.7969
-0.5043 -0.02614 0.08169 0.02091 -0.3758

-1.064 -0.1779 0.4158 0.1492 -1.001
-0.5518 0.2026 0.891 0.377 -0.5827
0.6699 0.6405 0.8925 0.5674 0.8406

Posterior mean of Σ
1.171 0.1118 0.5328 0.5645 0.2456

0.1118 0.3771 0.18 0.09973 0.06598
0.5328 0.18 0.8583 0.4836 0.4192
0.5645 0.09973 0.4836 1.909 1.034
0.2456 0.06598 0.4192 1.034 2.528  

 

Optimisation results  
In this section, the efficient frontier portfolios from the classical mean-variance framework 

computed using the hedge fund monthly return data are compared with the efficient frontier 

allocations resulting from the optimisation framework based on the first three moments.  
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Table 5 displays the allocation chart, mean return and standard deviation (monthly figures) of 

the fifteen portfolios used to approximate the efficient frontier in a mean-variance optimisation 

framework.    

 

Table 5. Mean-variance efficient frontier 

Portfolio
Mean 
return

Standard 
deviation Skewness

1 0.76% 0.81% -1.44
2 0.79% 0.86% -1.67
3 0.82% 0.92% -1.62
4 0.85% 1.00% -1.52
5 0.88% 1.08% -1.42
6 0.91% 1.18% -1.32
7 0.94% 1.28% -1.23
8 0.97% 1.38% -1.15
9 1.00% 1.49% -1.08
10 1.03% 1.61% -1.03
11 1.05% 1.72% -0.99
12 1.08% 1.84% -1.08
13 1.11% 1.99% -0.90
14 1.14% 2.26% -0.24
15 1.17% 2.63% 0.32
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The three moment optimisation is based on the predictive estimates of the mean, covariance 

matrix and third central moment tensor obtained from the skew-normal full D model in the 

Bayesian framework. To approximate the efficient frontier, the minimum and maximum third 

central moment values attainable from a portfolio satisfying the budget and no-short-selling 

constraints11 are calculated. Then, the interval of the attainable third central moment values is 

spanned by picking the fifteen values dividing the difference between the minimum and the 

maximum in equal intervals. A mean-variance efficient frontier is then obtained for each fixed 

value of the third central moment. This is done by imposing an additional constraint on the 

third central moment of the portfolios which is constrained to match the selected fixed value. 

 

Each constrained mean-variance frontier is approximated by fifteen portfolios spanning the 

attainable returns. Thus, we end up with a three dimensional efficient frontier approximated by 

152 portfolios. As an example, Table 6 displays the allocation charts and some statistics for two 

of the fifteen efficient frontiers constrained on the third central moment value. 

 

                                                   

11 This corresponds to the constraints set { }01 ≥== ωωω ,1'C  
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Table 6. Efficient frontier portfolios for two different values of the third central moment 

 

The minimum third central moment portfolios are fully allocated to the event driven style and 

the maximum third central moment portfolios are 100% allocated to managed futures. When 

the constraint on the third central moment is introduced the resulting portfolios are in general 

loosing their efficiency in the mean-variance space. Although, comparing the efficient frontier 

portfolios obtained in the mean-variance framework with the ones from the three moment 

optimisation from Table 6, we notice that the latter exhibit a higher diversification for small 

differences in mean and standard deviation. The results in Table 6 show that in order to 

increase skewness the portfolio standard deviation is increased or the expected return reduced. 

This reflects the fact that the investor may give up something on the risk-return side in order to 

improve the skewness of the portfolio. 
 

Portfolio
Mean 
return

Standard 
deviation

3rd central 
moment Skewness Portfolio

Mean 
return

Standard 
deviation

3rd central 
moment Skewness

1 0.77% 0.87% -3.8E-07 -0.58 1 0.85% 1.29% 6.0E-07 0.28
2 0.80% 0.90% -3.8E-07 -0.52 2 0.88% 1.30% 6.0E-07 0.27
3 0.83% 0.97% -3.8E-07 -0.42 3 0.90% 1.35% 6.0E-07 0.24
4 0.86% 1.05% -3.8E-07 -0.33 4 0.92% 1.42% 6.0E-07 0.21
5 0.88% 1.14% -3.8E-07 -0.26 5 0.94% 1.49% 6.0E-07 0.18
6 0.91% 1.24% -3.8E-07 -0.20 6 0.96% 1.56% 6.0E-07 0.16
7 0.94% 1.35% -3.8E-07 -0.15 7 0.99% 1.64% 6.0E-07 0.13
8 0.97% 1.46% -3.8E-07 -0.12 8 1.01% 1.72% 6.0E-07 0.12
9 0.99% 1.57% -3.8E-07 -0.10 9 1.03% 1.81% 6.0E-07 0.10
10 1.02% 1.69% -3.8E-07 -0.08 10 1.05% 1.91% 6.0E-07 0.09
11 1.05% 1.82% -3.8E-07 -0.06 11 1.07% 2.01% 6.0E-07 0.07
12 1.08% 1.96% -3.8E-07 -0.05 12 1.10% 2.13% 6.0E-07 0.06
13 1.10% 2.12% -3.8E-07 -0.04 13 1.12% 2.26% 6.0E-07 0.05
14 1.13% 2.28% -3.8E-07 -0.03 14 1.14% 2.39% 6.0E-07 0.04
15 1.16% 2.46% -3.8E-07 -0.03 15 1.16% 2.53% 6.0E-07 0.04
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5 Conclusions 
This article proposes an application of Bayesian allocation techniques to the portfolio selection 

problem in the hedge fund context. Given the strong departures from normality of the hedge 

fund returns and the short data series available in the hedge fund context, both the inclusion of 

higher moments and the parameter uncertainty need to be addressed in the portfolio selection 

task.  

 

Parameter estimates for the hedge fund return distribution are obtained from four different 

model specifications.  

§ Skew-normal (diagonal D) 

§ Skew-normal (full D) 

§ Skew-t (diagonal D) 

§ Skew-t (full D) 

In our analysis the estimates produced by the full D models are providing a better fit to the data 

than the diagonal D models. In the latter models, in fact, co-skewnesses are not modelled 

accurately, although these models have the advantage that the definition of priors on the D 

parameter becomes easier and more intuitive. The skew-normal full D model is providing the 

best fit to the hedge fund return data used in the analysis. One of the drawbacks of the full D 

models is that the specification of investor’s views in the prior, one of the most important 

features of the Bayesian framework, is more difficult to implement. An improvement that could 

be addressed in future research is the development of a model based on the skewed class of 

distributions recently proposed by Ferreira and Steel (2004). This family of skewed distributions 

is more flexible than the one proposed by Sahu et al. (2003) and its characteristics could 

provide an improvement in fitting the return distributions. 

 

Our results confirm that introducing skewness in the asset allocation task will produce a 

different allocation for investors with skewness preference. An investor wanting to improve the 

skewness profile of his portfolio, will loose the portfolio efficiency in the risk-return space. 

Although, the additional constraint imposed on the third central moment may produce more 

diversified allocations if compared to the allocations obtained in a mean-variance framework 

for similar risk-return characteristics.  
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Appendix A 

Full conditional distributions for the skew-t model 
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Note:  

The full conditional of ν  is not a known distribution: a sampling algorithm (e.g., Slice sampling 

or rejection envelope method) is needed in order to draw the samples. 

The specification for the skew-t model includes as a special case also the model for the skew-

normal. The full conditionals for the latter are obtained by setting wi = 1, ∀ i. The full 

conditional distributions for wi and ν  are not needed in the skew-normal case. 
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Appendix B 

 

Skew-normal (full D ) model
Averages of the first three moments over 12’000 replications of the data (Yrep) compared with sample moments of the data (Y)

Mean(Yrep)/1E-02 Mean(Y)/1E-02
EH RV ED GM MF EH RV ED GM MF
1.172 0.786 1.094 0.842 0.625 1.171 0.786 1.092 0.843 0.625

Covariance(Yrep)/1E-04 Covariance(Y)/1E-04
EH RV ED GM MF EH RV ED GM MF

EH 7.086 1.436 4.051 3.451 -0.518 EH 6.940 1.422 4.008 3.399 -0.527
RV 1.436 0.907 1.256 0.777 -0.484 RV 1.422 0.837 1.239 0.766 -0.488
ED 4.051 1.256 3.641 2.392 -0.526 ED 4.008 1.239 3.536 2.352 -0.551

GM 3.451 0.777 2.392 4.785 2.753 GM 3.399 0.766 2.352 4.592 2.682
MF -0.518 -0.484 -0.526 2.753 8.390 MF -0.527 -0.488 -0.551 2.682 8.165

Skewness(Yrep) Skewness(Y)
EH RV ED GM MF EH RV ED GM MF
0.140 -0.879 -0.894 0.055 0.303 0.320 -2.633 -1.258 0.058 0.287

Third central moment: m3(Yrep) /1E-06

EH RV ED GM MF EH RV ED GM MF EH RV ED GM MF EH RV ED GM MF EH RV ED GM MF
EH 2.642 -1.893 -3.530 1.671 7.192 -1.893 -1.334 -2.661 -0.768 2.839 -3.530 -2.661 -5.512 -1.098 6.639 1.671 -0.768 -1.098 1.132 3.365 7.192 2.839 6.639 3.365 -4.225
RV -1.893 -1.334 -2.661 -0.768 2.839 -1.334 -0.764 -1.483 -0.629 1.319 -2.661 -1.483 -2.965 -1.128 2.837 -0.768 -0.629 -1.128 -0.329 1.288 2.839 1.319 2.837 1.288 -2.389
ED -3.530 -2.661 -5.512 -1.098 6.639 -2.661 -1.483 -2.965 -1.128 2.837 -5.512 -2.965 -6.229 -2.078 6.407 -1.098 -1.128 -2.078 -0.353 2.891 6.639 2.837 6.407 2.891 -5.100

GM 1.671 -0.768 -1.098 1.132 3.365 -0.768 -0.629 -1.128 -0.329 1.288 -1.098 -1.128 -2.078 -0.353 2.891 1.132 -0.329 -0.353 0.573 1.848 3.365 1.288 2.891 1.848 -0.992
MF 7.192 2.839 6.639 3.365 -4.225 2.839 1.319 2.837 1.288 -2.389 6.639 2.837 6.407 2.891 -5.100 3.365 1.288 2.891 1.848 -0.992 -4.225 -2.389 -5.100 -0.992 7.417

Third central moment: m3(Y)/1E-06

EH RV ED GM MF EH RV ED GM MF EH RV ED GM MF EH RV ED GM MF EH RV ED GM MF
EH 5.828 -2.514 -4.439 3.402 7.097 -2.514 -2.619 -4.017 -1.165 3.585 -4.439 -4.017 -7.349 -0.945 7.879 3.402 -1.165 -0.945 2.393 3.464 7.097 3.585 7.879 3.464 -3.395
RV -2.514 -2.619 -4.017 -1.165 3.585 -2.619 -2.010 -3.111 -1.495 2.170 -4.017 -3.111 -4.713 -1.737 4.262 -1.165 -1.495 -1.737 -0.201 2.136 3.585 2.170 4.262 2.136 -2.765
ED -4.439 -4.017 -7.349 -0.945 7.879 -4.017 -3.111 -4.713 -1.737 4.262 -7.349 -4.713 -8.332 -2.083 8.707 -0.945 -1.737 -2.083 0.378 3.767 7.879 4.262 8.707 3.767 -5.359

GM 3.402 -1.165 -0.945 2.393 3.464 -1.165 -1.495 -1.737 -0.201 2.136 -0.945 -1.737 -2.083 0.378 3.767 2.393 -0.201 0.378 0.566 1.488 3.464 2.136 3.767 1.488 -0.938
MF 7.097 3.585 7.879 3.464 -3.395 3.585 2.170 4.262 2.136 -2.765 7.879 4.262 8.707 3.767 -5.359 3.464 2.136 3.767 1.488 -0.938 -3.395 -2.765 -5.359 -0.938 6.676

GM MF

EH RV ED GM MF

EH RV ED

 


