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Abstract 

Many empirical researches have indicated that the Black-Scholes option pricing 

model demonstrates systematic biases due to some unreasonable assumptions. In 

practice, Black-Scholes implied volatilities tend to differ across exercise prices and 

time to maturities. In order to solve the problem, many researchers developed closed 

form model (Heston and Nandi, 2000). In this study, we apply their closed form 

GARCH (HN GARCH) model on FTSE 100 Index option. As a benchmark, we 

employ the Ad Hoc Black-Scholes model of Dumas, Flemming and Whaley(1998) 

which use a separate implied volatility for each option to fit to the smirk/smile in 

implied volatilities. We find that the HN GARCH has smaller valuation errors than ad 

hoc BS model both in-sample and out-of-sample. 
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1. Introduction 

Black and Scholes (1973) derived a close-form option pricing model by assuming 

the asset price following geometric Brownian motion and log-normal distribution with 

constant volatility. However, Fama (1965) and Mandelbort (1966) found that stock 

returns exhibit both fat-tailed marginal distribution and volatility clustering. Some 

empirical studies had proved that Black-Scholes implied volatilities incline toward 

differing across exercise prices and time to maturities. The assumption of constant 

volatilities partly causes the system biases of Black-Scholes model. For overcoming 

the shortcoming, many researchers have devoted themselves to the development of 

option valuation models that try to grab the pattern of volatilities in the last two 

decades.  

Early amendments include the constant-elasticity-of-variance model by Cox 

(1975), the jumping model by Merton (1976), the compound-option model by Geske 

(1979), and the displaced-diffusion model by Rubinstein (1983). Nevertheless, these 

models encounter the difficult that the variance rate is not observable. The latest 

amendments are the two types: implied volatility and stochastic volatility. The 

stochastic volatility includes two major kinds: continuous-time stochastic volatility 

models and discrete-time generalized autoregressive conditional heteroskedasticity 

(GARCH) models. 

Continuous-time stochastic volatility models are effective for option pricing but 

may be difficult to implement. Although these models are assume that volatility is 

observable, it is very difficult to filter a continuous volatility variable from discrete 

observations. One alternative is the implied volatilities derived from option prices. 

Nevertheless, this is very time spending and computationally burdensome. Moreover, 

the volatility estimation techniques for continuous-time models are always nontrivial. 

Furthermore, the continuous-time model can serve as the limit of a certain 
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GARCH model. For instance, Nelson (1990a) proved that the GARCH (1,1) model 

converged to a certain diffusion model. Duan (1996) argued that most of the existing 

bivariate diffusion models, which had been used for modeling asset returns and 

volatilities, could be represented as the limit of a family of GARCH models. As a 

particular case, nonlinear asymmetric GARCH process used for HN model was 

proved to contain Heston’s (1993) stochastic volatility process as a continuous-time 

limit. 

The GARCH model has an advantage over the continuous-time model because the 

volatility is readily observable in the historical prices of the underlying asset. 

Therefore, it is possible to price an option just by using the information from the 

observations of underlying asset. Oppositely, the continuous-time stochastic volatility 

model has an inherent disadvantage that it assumes that volatility is observable, but it 

is impossible to exactly filter volatility from spot asset prices, discrete observations, in 

a continuous-time stochastic volatility model. This means it is unlikely to price an 

option merely based on the historical prices of underlying asset. 

Duan (1990) cited the econometric method, GARCH, into the discrete-time model 

and derive the GARCH option pricing model (1995) to improve the Black-Scholes 

model. The ARCH model was first introduced by Engle (1982). Bollersleve (1986) 

improve the ARCH model to create the GARCH model. In the GARCH process, the 

vital hypothesis is conditional hetreoskedasticity that the variance is determined by a 

series of parameters and a sequence of random variables which are white noise. To 

capture the negative correlation between returns and conditional volatility, Engle and 

Ng (1993) introduced the NGARCH model. The NGARCH model is often applied to 

the general theory of GARCH option pricing. 

Most GARCH option pricing models are not closed-from solution. These models 

are typically solved by Monte Carlo simulation (Engle and Mustafa (1992), Amin and 
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Ng (1993), Duan (1995)), which is slow and computationally intensive for empirical 

analysis. More recently, Hanke (1997) has provided a network approach, Ritchken 

and Trevor (1999) have provided a lattice approximation to value American option 

and Duan, Gauthier and Simonato (1999) have provided Markov chain approach for 

GARCH process with single lag in the variance dynamics. Heston and Nandi (2000) 

invent a closed-form solution for European option pricing in a GARCH model. The 

model allowing not only for multiple lags in the time series dynamics of the variance 

process but also for correlation returns of the spot asset and variance do provide an 

alternative for option pricing.  

We test the pricing efficiency of Heston and Nandi (2000) GARCH model (the 

HN GARCH) based on the data from the FTSE 100 option market. As a benchmark, 

we choose the Ad Hoc BS model of Dumas, Flemming and Whaley (1998, henceforth 

DFW), which has the flexibility of fitting to the smirk/smile of observed implied 

volatilities by applying a separate implied volatility for each option. We find that the 

HN GARCH model has smaller valuation errors than the Ad Hoc BS model in both 

in-the-sample and out-of-sample empirical analysis. 

The rest of this article proceeds as follows. In Section 2, we introduce the 

methodology containing FTSE 100 option market introduction and the models we 

apply. Section 3 reports the empirical results including in-the-sample and out-of 

sample estimation. Section 4 is the conclusion. 

 

2. Data and Methodology 

The Financial Times Stock Exchange (FTSE) 100 Index was launched in 1984. It 

tracks the share price movement of the top 100 UK companies. It is calculated every 

15 seconds throughout the trading day from 8 A.M. to 4:30 P.M. 

There are two main types of FTSE 100 Index Options – calls and puts. FTSE 100 
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Index Options operate in much the same way as equity options. The main difference 

between them is that when exercised, the cash value is calculated and not the physical 

delivery of the underlying shares. 

In the first half of 2001, the European style FTSE 100 Index option contract had 

an average monthly volume of 1.25 million contracts and an average monthly open 

interest of over 1.4 million contracts, it ranks fourth worldwide just behind the S&P 

100 and S&P 500 contracts of the CBOE and the ODAX contract of the EUREX. 

The standard expiration months are March, June, September and December. 

Additional expiration months are introduced so that contracts that expire during the 

three nearest calendar months are always available. The trading hours of FTSE 100 

Index options are from 8 A.M. to 4:30 P.M. Traders submit orders electronically to the 

central limit order book. Incoming market orders are automatically matched with 

orders in the order book. Moreover, order can be canceled at any time. No one can 

submit orders directly to LIFFE Connect except exchange members. Till October 

2002, there were 143 public order members. Public order members can trade their 

own account or on behalf of their customers. There were also 60 non-public order 

members. Non-public order members can only trade on their own account. There are 

no designated market makers with special quoting obligation or privileges in the 

FTSE 100 Index options.  

The buyers and the sellers pay a fixed cost of ₤0.25 per trade. Order submissions 

and cancellations are free. However, there is a fixed fee per message for the 

automated price injection models. 

We obtained our sample from Bloomberg. It consists of time series of reported 

closing prices of European style FTSE 100 index option contracts. Our sample data 

covers 194 trading days from 06/01/2005 to 03/03/2006. We assume the dividends to 

be zero and need not to subtract it from the current index level. For the risk free rate, 
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the continuously compounded Treasury bill rates interpolated to match the maturity of 

the call option are used. 

Two exclusionary criteria are used for filtering these data. First, only call option 

records in which moneyness, K/S, lies between 0.9 and 1.1 are included in the sample. 

This excludes some very deep out-of-the-money and deep in-the-money call options 

that are either infrequently traded.  

Second, the call options are taken out of the sample if their prices do not satisfy the 

boundary condition: 

                                                              ))(max(0,),()(             )( tTrKePVDtSTtCtS −−−−≥≥  (1) 

The first inequality must hold. If not, investor can just buy the underlying asset 

directly because a call option represent a right to buy one share of underlying asset so 

a call option never exceeds the value the underlying asset no matter what happens. 

The second inequality also must be satisfied since it ensures that there is no arbitrage 

opportunity. 

   The data set consist of 1302 records. 848 of the 1302 records are for in-sample 

empirical analysis. The rest 454 are for out-of-sample empirical analysis. In 

out-of-sample section, the sample of 704 is categorized into 10 sets. In terms of 

moneyness, the data set is divided into five categories: deep in-the-money call options 

with K/S < 0.96, in-the-money call options with 0.96  K/S ≦ < 0.98, at-the-money call 

options with 0.98 ≦ K/S < 1.02, out-of-the-money call options with 1.02 ≦ K/S < 

1.05, and deep out-of-the-money call options with 1.05 ≦ K/S ≦ 1.1. The term to 

expiration is classified into two categories: Short-term (less than 65 days) and 

Long-term (between 65 and 100 days). For the difficulty of obtaining data and the 

data filtration by above two criteria, the bin of contract with moneyness K/S between 

1.05 and 1.1 and time to maturity less than 65 days is empty. 

We find the average call option prices across different moneyness and time to 
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maturity based on the data for out-of-sample part. The important finding is that the 

price difference in call option prices for different moneyness and time to maturity is 

large. 

  We examine the average implied Black-Scholes volatilities from call contracts 

across different moneyness and time to maturity from the data for out-of-sample 

empirical analysis. We find that the implied volatility of each bin is not significantly 

different. It means the volatility smirk/smile effect of the sample is not obvious. 

We find that the implied volatility curve across different strike prices and 

moneyness is flat. It may virtually meet the assumption of constant volatility under 

Black-Scholes (BS) model. We do further discussion on effect of flat implied 

volatility curve in the following out-of-sample empirical analysis. 

Moreover, we use the daily historical closing price of FTSE 100 Index, from 

1/2/2003 to 12/30/2005, to estimate the parameters in the GARCH process. 

 

3. The Model 

This part describes the option pricing process under the closed-form GARCH 

option valuation model (Heston & Nandi (2000)). Before, GARCH option pricing 

models are typically solved by simulation. It is time-spending and computationally 

intensive. In contrast, the HN GARCH model offers an analytical solution and would 

be time-saving and cost-saving for option pricing. 

3.1 The HN Closed-form GARCH Option Pricing Model 

     At time t, a European option with strike price K at the expires at time T is 

worth  
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where  denotes the expectation under risk-neutral probability measure. [ ]*
tE

 

The HN closed form GARCH model enables us to calculate the expectation in the 

above formula once we have the characteristic function of , instead of 

calculating two separate integrals. This is different from that of Heston (1993) in 

which we have to get two characteristic functions, respectively 

))(log( TS

( )φ;,,log1 tvSf  

and ( )φ;,,log2 tvSf . Therefore, the model in Heston (1993) have to invert the above 

two characteristic functions to get the desired probabilities 
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And then, substituting the two probabilities into the formula, 

, generates the option value. ( ) ( )
21,, PKeSPtvsC tTr −−−=

 

   Comparing with Black-Scholes formula, HN GARCH model is a function of 

current asset price and the conditional variance. Since the conditional variance is a 

function of the observed path of asset prices, the option formula is a function of 

current and lagged asset prices. In contrast to continuous-time stochastic volatility 

models, volatility under HN GARCH model is a readily observable function of 

historical assets and is not necessary to be estimated with other procedures. 

 

3.2 Ad Hoc Black-Scholes Model 

A troubling aspect of the analysis is that we have not yet indicated what size of 

prediction error should be considered “large”. One way to gauge the prediction error 

is to measure them against a benchmark. Since HN GARCH model has more 

parameters than BS model, which owns only one parameter—volatility, it is unfair to 

compare these two models. Moreover, DFW (1998) had indicated that Ad Hoc BS 
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model could price more accurately than BS model. Therefore, we choose Ad Hoc BS 

model as the benchmark. 

DFW (1998) fitted the BS model to the reported structure of option prices each 

week by using the following model to describe the Black- Scholes implied volatility. 

                ))min(max(0.01, 5
2

43
2

210 τττσ KaaaKaKaa +++++=     (13) 

σ  is the annual implied volatility for an option with exercise price K and time to 

maturity τ . A minimum value of 0.01 for the local volatility is imposed to prevent 

negative values.  

   The empirical analysis following the methodology is presented below. First, we 

use Maximum Likelihood (MLE) method to estimate the parameters of the GARCH 

process based on the FTSE 100 index historical prices. Second, because HN GARCH 

model is a closed-form solution, we can estimate the parameters of HN GARCH 

model by Nonlinear Least Square (NLS) method based on historical prices of FTSE 

100 option. Su and Fung (2004) had found that the pricing efficiency of HN GARCH 

model in which parameters are estimated by MLE is not virtually accurate. It may be 

due to that the information set of index is not necessary the same with that of index 

option prices since the information of daily index time series is backward-looking 

while index option prices are forward-looking. Finally, we compare the pricing 

accuracy of HN GARCH model with Ad Hoc Black-Scholes in both in-the-sample 

and out-of-sample empirical analysis. 

 

4. Empirical Analysis 

The empirical analysis starts with the estimation of GARCH model by Maximum 

Likelihood Estimation (MLE) with time series data on index returns in part A. In part 

B, we report the model comparisons including in-sample and out-of-sample 

comparisons in which we estimate the parameters of the close-form solution by 
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Nonlinear Least Square (NLS) method. 

 

4.1 Estimation 

The empirical analysis focuses mainly on the single lag version of GARCH model. 

We set △ = 1 and use daily index return to model the volatility. In GARCH model, 

all parameters can be estimated directly from the history of asset prices. We do the 

estimation with the Maximum Likelihood Estimation (MLE) used by Bollerslev 

(1986). In order to illustrate the importance of skewness parameter, 1γ , we perform 

this estimation with an unrestricted model and a restricted model in which the 

skewness parameter, 1γ , equals zero. When 1γ  equal zero, the GARCH model is a 

symmetric model (henceforth, we called it symmetric GARCH). We do the estimation 

based on the data of FTSE 100 Index ranging from 1/2/2003 to 12/30/2005. Table 1 

shows the maximum likelihood estimates of GARCH model for the whole sample 

period. Table 2 presents the MLEs for year 2003, 2004, and 2005. Figure 1 and Figure 

2 show the annualized volatility of unrestricted model and restricted model for the 

whole sample period, respectively. 

   Table 1 compares the parameters of asymmetric model and symmetric model 

estimated based on the whole sample. We focus on the discussion of skewness 

parameter, 1γ . The volatility of volatility, 1α , is 7.2039E-06 from asymmetric 

( 1 0γ ≠ ) GARCH model and 6.6393E-06 from symmetric ( 1 0γ = ) GARCH model. 

The parameter used to measure the degree of mean reversion ( ) is 0.884 from 

asymmetric GARCH model and 0.892 from symmetric GARCH model. The 

annualized long-run mean of volatility,

2
111 γαβ +

2
1 1 1252( ) /(1 )1ω α β α γ+ − − , under 

asymmetric and symmetric GARCH is 12.50% and 12.46%, respectively. There is no 

significant difference between these two models. By comparing figures 1 and 2, we 
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find that the annualized level of ( 1)h t + of the two models is similar. It is due to that 

the skewness parameter is not significantly different from zero by likelihood ratio test. 

In contrast, we find the skewness parameter of year 2004 and 2005 is significantly 

different from zero by using likelihood ratio test. One could plug the parameters 

obtained from the above MLEs (using historical FTSE 100 index levels) into the 

options valuation formula to get the call option prices. However, the information set 

of index levels is not necessarily the same with that of option prices. Option prices 

often embed with the expectation about the future evolution of price of the underlying 

asset. Su and Fung (2004) had indicated that plugging the parameters obtained from 

MLEs into HN GARCH pricing model to calculate option prices is not extremely 

accurate. HN GARCH model and Ad Hoc Black-Scholes model are all closed-form 

solution. Therefore, we use the Nonlinear Least Square method to estimate the 

parameters of HN GARCH model and Ad Hoc Black-Scholes model in the following 

part, model comparisons. In model comparisons, we do NLS procedure with the 

downhill simplex method of Nelder and Mead, which is different from Levenberg 

-Marquardt method used by Heston and Nandi (2000) 

4.2 Model Comparisons 

This part contains in-sample and out-of-sample comparisons. We compare the 

pricing accuracy of HN GARCH model with two option pricing models including 

Black-Scholes (BS) model and Ad Hoc Black-Scholes (Ad Hoc BS) Model. We get 

the parameter estimates and in-sample valuation errors from minimizing the root 

mean square error (RMSE), 1 1
( , )tN T

i t

t

e i t
TN

= =∑ ∑ , where denotes the number of days in 

the sample,  is the number of options traded on specific day in the sample, and 

 is the difference between model value of option and market price of that option 

T

tN

( , )e i t
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at time . t

4.2.1 In-sample Comparison 

We estimate from the NLS estimation in-sample period (ranging from 6/1/2005 to 

10/27/2005) and the average in-sample valuation error (not reported). The risk neutral 

skewness is positive, which indicates that variance tends to rise when index falls, and 

vice versa. 

The average call option price of the sample period is₤118.12. The root mean 

square error (RMSE) of the simple BS model is₤14.41. The root mean square error 

for the non-updated GARCH model is₤10.68. Comparing these two models, the 

non-updated GARCH model can get the more accurate price than simple BS model. 

However, comparing non-updated GARCH model with the Ad Hoc BS model, we 

find that the Ad Hoc BS model with RMSE of 9.91 provides a better in-sample fit 

than non-updated GARCH model does. It is because the Ad Hoc BS model is 

designed to fit both the volatility smile in strike prices and the term structure of 

implied volatilities. Moreover, it is updated every week. Therefore, the above 

comparison is not extremely fair. In order to do a fair comparison, we estimated an 

“updated” GARCH model by minimizing the RMSE between model prices and 

market prices by allowing the parameters to change every week. Table 3 reports the 

comparison between the updated GARCH model and the Ad Hoc BS model. We find 

that after updating the GARCH model, the RMSE, 9.87, is smaller than that in Ad 

Hoc BS model. Thus, the flexibility of updating appears to make a difference in terms 

of its ability to fit option prices in-sample. 

Table 4 describes the mean and standard deviation of the updated GARCH 

coefficients from the estimation. All parameters seem to be unstable in the sample 

period. It may result from the insufficient data or the character FTSE 100 Index. 

Moreover, the average skewness parameter of the updated GARCH model is negative. 

 - 12 -



There is significantly different from the skewness parameter of the non-updated 

GARCH model. It may be caused by the loss function, RMSE, which is used to 

estimate the parameters. Kristofferson and Jacobs (2001) indicated that the relatively 

wide range of option prices across moneyness and maturity raises the problem of 

heteroskedasticity for RMSE-based parameter estimation. We find the average 

standard deviation of market call option prices in updated periods is 92.94. 

DFW (1998) have shown that a more flexible model may dominate within 

in-sample period but have much less predictive power for out-of-sample option prices. 

It occurs when a misspecified model achieves a good in-sample result by overfitting 

the data. We examine this issue in the following section by comparing all the models 

within out-of-sample period. 

4.2.2 Out-of-sample Comparison 

After estimating the parameters within in-sample period, we turn to verify the 

out-of-sample valuation performance of these option-pricing models which are 

estimated within in-sample period. We test the prediction performance of each option 

valuation model based on the call option prices ranging from 10/28/2005 to 3/3/2006. 

In computing the out-of-sample call option prices by the non-updated GARCH model, 

we estimate the parameters of this model by Nonlinear Least Squares method based 

on call option prices from 6/1/2005 to 10/27/2005 (106 days) and plug these 

parameters into this model to calculate the call option prices from 10/28/2005 to 

3/3/2006. For computing the updated models including the updated GARCH, the Ad 

Hoc BS and the simple BS model, we use the data from 106 days to 1 day before the 

first day of each predicted period (one week, around 5 days) to estimate the 

parameters and apply these parameters to computing the call option prices in that 

predicted period. 

For getting objective and fair comparisons, we quote four loss functions to judge 
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which model is more efficient and accurate. There are root mean squared errors 

(RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and 

(root mean implied volatility errors (RMIVE). Each loss function owns its 

disadvantage. For example, the disadvantage of RMSE is that it implicitly assigns a 

lot of weight to options with high valuations. MAPE has the disadvantage that short 

time to maturity and out-of-the money options with price valuations close to zero will 

implicitly get assigned a lot of weight. Therefore, we try to use the advantages of four 

loss functions to compensate the disadvantages of each loss function. 

We list these loss functions in the following: 

2

1
mod )(1

market
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n
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N
RMSE −= ∑

=

          (13) 

∑
=

−=
N

n
marketel CC

N
MAE

1
mod

1            (14) 

market

marketel

C
CC

N
MAPE

−
= mod1            (15) 

2

1
mod ))()((1

market

N

n
el CC

N
RMIVE σσ −= ∑

=

         (16) 

model

market

model

market

where,
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Table 5 reports the out-of-sample aggregate valuation errors across various models. 

The aggregate out-of-sample root of mean squared errors are 9.27, 6.77, 6.94, and 

5.90, respectively for the BS, the Ad Hoc BS, the non-updated GARCH, and the 

updated GARCH, respectively. By comparing the valuation errors, we find the 

updated GARCH model outperform the other models in each loss function 
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comparison. The out-of-sample result is similar with the in-sample result. The BS is 

still the worst performer on each loss function except RMIVE out-of-sample. We also 

find that the Ad Hoc BS performs worst on RMIVE. It may be due to the flat implied 

volatility cure from the data in this sample period. However, based on the other three 

loss functions, the Ad Hoc BS is the second best. It dominates the non-updated 

GARCH model. In a nutshell, the updated GARCH still dominates the other three 

option valuation models out-of-sample.  

   The valuation errors by different option moneyness and maturity categories are 

presented in Table 6. In Panel A, the result in the column of options with time to 

maturity more than 65 days is similar to that of aggregate out-of-sample. The updated 

GARCH model significantly outperforms other three option valuation models, 

especially in valuing deep out-of-the-money (K/S>1.05) contracts and in-the-money 

(0.96 K/S<0.98)≦  contracts. In Figure 3, we can see the trend of % Error of each 

model from data with time to maturity more than 65 days, and we find that the biggest 

% Error happen at deep out-of-the-money call options and obviously, updated 

GARCH values these call options more accurately than the other three models do. 

Panel B reports the valuation errors of these four models from option contracts with 

time to maturity less than 65 days. We find that the BS model dominates the other 

three models. In Figure 4, we can find the % Error of BS is smaller than the other 

three models. It may due to that the implied volatility curve of the FTSE 100 call 

options with time to maturity less than 65 days is flat. Therefore, the assumption of 

constant volatility of the BS model meets the condition. Nevertheless, after valuing 

the call option contracts with time to maturity more than 65 days, we find that the BS 

model is significantly dominated by the other three models. It mainly caused by the 

assumption of constant volatility because the implied volatility curve derived from 

these call contracts with time to maturity more than 65 days across different strikes is 
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steeper. Moreover, we find that the performance of Ad Hoc BS on pricing the call 

options with time to maturity less than 65 days is the worst.  Even though the 

updated GARCH model does not outperform all other models, it is still the second 

best model among the four models to value the call options with time to maturity less 

than 65 days.  

 

5. Conclusion 

This article presents the valuation performance of GARCH model on FTSE 100 

Index option market and compares it with other option pricing models, including the 

Ad Hoc Black-Scholes model, the benchmark. In the empirical analysis, we find that 

the GARCH model without parameter updating every week is dominated by the Ad 

Hoc Black-Scholes model in both in-sample and out-of-sample empirical analysis. 

However, the comparison is unfair because the Ad Hoc Black-Scholes Model is 

updated every week, but the non-updated GARCH model is not. Therefore, we update 

parameters of the GARCH model every week instead of holding them constant and 

find the updated GARCH model outperforms the Ad Hoc Black-Scholes both 

in-sample and out-of-sample. It means the updated GARCH model can both fit better 

in-sample and predict option prices more accurately out-of-sample than the Ad Hoc 

Black-Scholes, which uses a separate implied volatility for each option (specific to its 

strike and time to maturity) extracted from market prices and is designed to produce a 

very close fit to the shape of the implied volatility across strike prices and maturities. 

Although we prove the updated GARCH model significantly outperform the Ad 

Hoc Black-Scholes model, we find that in out-of-sample empirical analysis, the 

simple Black-Scholes model can value the call options with time to maturity less than 

65 days more accurately than the other option pricing models, including the updated 

GARCH model. It is because the BS implied volatility curve is flat that partly meets 
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the assumption of constant volatility under Black-Scholes model. However, the 

aggregate valuation errors of the simple Black-Scholes model are still the biggest.  

In the in-sample empirical analysis, we find the parameters of updated GARCH 

model are not stable. It may be due to the loss function, root of mean squared error 

(RMSE), which is used to estimate the parameters. Because the call option prices we 

collected are wide-ranged, it causes the RMSE-based parameters unstable. Therefore, 

selecting a loss function for NLS estimation that fits the data characters is vital and 

critical for the parameters estimation. We leave the selection of loss function for NLS 

estimation for future research. 

 - 17 -



Reference 

Amin, K., and V. Ng, 1993, ARCH processes and option valuation, working paper, 

University of Michigan. 

Bollerslev, T., 1986, Generalized autoregressive conditional heteroskedasticity, 

Journal of Econometrics 31, 307-327. 

Christopher S. J., 2003, The dynamics of stochastic volatility: Evidence from 

underlying and option markets, Journal of Econometrics 116. 181-224. 

Christian M., and S. T. Rachev, 2005, Smoothly truncated stable distributions, 

GARCH-models, and option pricing, working paper, Cornell University. 

David S. B., 2003, Empirical option pricing: A retrospection, Journal of Econometrics 

116. 387-404. 

Duan, J., 1995, The GARCH option pricing model, Mathematical Finance 5, 13-32. 

Duan, J., G. Gauthier, and J. Simonato, 1999, An analytical approximation for the 

GARCH option pricing model, Journal of Computational Finance 2, 75-116. 

Dumas, B., J. Fleming, and R. Whaley, 1998, Implied volatility functions: Empirical 

tests, Journal of Finance 53, 2059-2106. 

Engle, R., and C. Mustafa, 1992, Implied ARCH models from options prices, Journal 

of Econometrics 52, 289-311. 

Heston, S. L. 1993, A closed-form solution for options with stochastic volatility with 

application to bond and currency options, The Review of Financial Studies 6, 

327-343. 

Heston S. L., and N. Saikat, 2000, A closed-form GARCH option valuation model, 

Review of Financial Studies 13, 585-625. 

Hsieh. K. C. and P. Ritchken, 2000, An empirical comparison of GARCH option 

pricing models, working paper, Case Western Reserve University. 

Hentschel, L., 1995, All in the family Nesting symmetric and asymmetric GARCH 

 - 18 -



models, Journal of Financial Economics 39, 71-104. 

Ritchken, P., and R. Trevor, 1999, Pricing options under generalized GARCH and 

stochastic volatility processes, Journal of Finance 54, 377-402. 

Christoffersen, P., S. Heston, and K. Jacobs, 2003, Option valuation with conditional 

skewness, Journal of Econometrics 127, 253-284. 

Christoffersen, P., and K. Jacobs, 2001, The importance of the loss function in option 

pricing, working paper, McGill University. 

Christoffersen, P., and K. Jacobs, 2004, Which GARHC model for option valuation? 

Management Science 50, 1204-1221. 

Engle, R. F., 1982, Autoregressive conditional heteroscedasticity with estimates of the 

variance of United Kingdom inflation, Econometrica, 50, 987-1008. 

Fahlenbrach, R., and P. Sandas, 2003, Bid-ask spreads and inventory risk: Evidence 

from the FTSE 100 index options market, working paper, The Wharton School 

University of Pennsylvania. 

 - 19 -



0

0.05

0.1

0.15

0.2

0.25

0.3

1/
2/

20
03

3/
2/

20
03

5/
2/

20
03

7/
2/

20
03

9/
2/

20
03

11
/2

/2
00

3

1/
2/

20
04

3/
2/

20
04

5/
2/

20
04

7/
2/

20
04

9/
2/

20
04

11
/2

/2
00

4

1/
2/

20
05

3/
2/

20
05

5/
2/

20
05

7/
2/

20
05

9/
2/

20
05

11
/2

/2
00

5

Da te s

A
n

n
u

a
li

z
e

d
 V

o
la

ti
li

ty

 

Figure 1. 

This figure shows the daily annualized spot volatility from the restricted/symmetric 

GARCH model from 1/2/2003 to 12/30/2005 using daily FTSE 100 Index levels. 
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Figure 2. 

This figure shows the daily annualized spot volatility from the unrestricted/asymmetric 

GARCH model from 1/2/2003 to 12/30/2005 using daily FTSE 100 Index levels. 
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Figure 3. 

This figure shows the percentage out-of-sample valuation errors (i.e. 100 × RMSE ÷ 

Average option prices) for call options (more than 65 days) by various models. 
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Figure 4. 

This figure shows the percentage out-of-sample valuation errors (i.e. 100 × RMSE ÷ 

Average option prices) for call options (less than 65 days) by various models. 
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Table 1. Maximum Likelihood Estimation 

 1α  1β  1γ  ω  λ  θ  2
111 γαβ + Log-Likelihood 

GARCH (Spot) 7.2039E-06 0.884  -0.146  0 0.0475  12.50% 0.884 3330.856  
 (2.81E-05)       (7.88E-01) (4.31E+00) (2.27E-05) (5.92E-01)  
GARCH, 01 =γ ,(Spot)   6.6393E-06 0.892        

    

0 -0.0928 12.46% 0.892 3331.783 
  (7.06E-06) (2.07E-01)  (6.42E-06) (4.37E-01)       

Maximum Likelihood Estimates of the GARCH with p = q = 1, and △ = 1 (day) using the spot FTSE 100 levels for the unrestricted 

( 1 0γ ≠ )and restricted ( 1 0γ = ) model. 

2
1 1 1

log( ( )) log( ( )) ( ) ( ) ( ).

       ( ) ( ) ( ( ) ( ))

S t S t r h t h t z t

h t h t z t h t

λ

ω β α γ

= −∆ + + +

= + −∆ + −∆ − −∆
 

   The log-likelihood function is 2
1

0.5(log( ( )) ( ) )T

t
h t z t

=
− +∑ , where T is the number of days in the sample. The daily index levels from 

1/2/2003 to 12/30/2005 are used. Number of Observations = 758. Asymptotic standard errors appear in parentheses.θ  defined to be equal 

to 2
1 1 1 1252( ) /(1 )ω α β α+ − − γ  is annualized (252days) long-run volatility (standard deviation) implied by the parameters estimates. 

=  measures the degree of mean reversion in that 2
1 1 1 1β α γ+ 2

1 1 1 1β α γ+ =  implied that the variance process is integrated. 
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Table 2. Maximum Likelihood Estimation 

 1α  1β  1γ  ω  λ  θ  2
111 γαβ +  Log-Likelihood  

         

#Observation

2005 
2.05E-06       

        
        

0.7342 217.9788 2.91E-06 32.24 0.08624 0.832 1185.646 252 
GARCH (Spot) 

1.80E-06 0.1761 137.6015 2.85E-06 90.86  
2.11E-06 0.8705 1.71E-06 74.10 0.08613 0.871 1181.398 252

GARCH, 01 =γ ,(Spot) 
1.51E-06        

        
       

       
        

0.1214 2.81E-06 88.18  
2004  

1.27E-06 0.546 476.8648 5.88E-06 24.10 0.10462 0.835 1148.355 254 
GARCH (Spot) 

2.07E-07 0.3009 189.5706 3.83E-06 28.20  
1.80E-06 0.8464 4.76E-06 74.01 0.10372 0.846 1144.397 254

GARCH, 01 =γ ,(Spot) 
1.30E-06       

        
       
        
         

0.0978 4.42E-06 134.13  
2003  

1.54E-05 0.8805 0.090976 0.00E+00 0.11 0.18015 0.88 1010.749 252 
GARCH (Spot) 

0.00000726 0.0991 0.019645 7.60E-06 0.79  
1.56E-05 0.8788 0 0.07 0.18026 0.879 1010.683 252

GARCH, 01 =γ ,(Spot) 
9.33E-06         0.1336 9.80E-06 0.09
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Table 3. In-sample comparison of the Ad Hoc BS model and the updated  
GARCH model 
 

 
In-sample valuation errors (in₤) from weekly estimation using call option prices in 
the period from 6/1/2005 to 10/27/2005. Average price is the average call option price 
in the sample period. 
 

 RMSE Average price Observation 
Ad Hoc BS 9.91 118.12 848 
HN GARCH model-updated 9.87 118.12 848 
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Table 4. Mean estimates from the updated GARCH model using Nonlinear  
Least Squares 
 

Parameter  Mean Standard Deviation 

1α   3.59478E-06 6.37E-06 

1β   0.218902879 0.308171 

*
1γ   -1150.685404 1155.317 

ω   4.17739E-07 9.4E-07 
 

 - 37 -



Table 5. Out-of-sample valuation error 
 

 
 
 
 
 
 
 
 
 
 

     Loss Function
Models  RMSE MAPE MAE RMIVE Average prices # Obs
BS 9.27      0.075 7.20 0.0111 151.19 454
       

      
      

      
      

      

Ad Hoc BS 6.77 0.056 5.25 0.0126 151.19 454
 
HN GARCH-non-updated 6.94 0.066 5.61 0.0111 151.19 454
 
HN GARCH-updated 5.90 0.045 4.40 0.0105 151.19 454

Table reports the aggregate out-of-sample valuation errors (in₤) for call options by various models. The data range from 10/28/2005 to 3/3/2006. BS is the 
Black-Scholes model in which volatility is assumed being constant. Ad Hoc BS is an Ad Hoc version of Black-Scholes model with strike and maturity 
specified implied volatility; both the BS and Ad Hoc BS are parameter-updated each period 
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      Table 6. Out-of-sample valuation error for call options 
Panel A 

 Time to Maturity 
 >=65 
Model   Moneyness RMSE %Error MAE RMIVE 
BS  
   0.9-0.96 5.79 1.46 4.59 0.0146 
   0.96-0.98 11.62 4.12 10.31 0.0137 
   0.98-1.02 15.18 9.85 14.28 0.0130 
   1.02-1.05 10.40 16.32 8.75 0.0089 
   1.05-1.1 5.80 22.11 4.65 0.0071 
Ad Hoc BS 
   0.9-0.96 7.94 2.01 6.85 0.0230 
   0.96-0.98 5.24 1.86 4.28 0.0068 
   0.98-1.02 4.32 2.80 3.20 0.0036 
   1.02-1.05 4.55 7.15 3.18 0.0038 
   1.05-1.1 4.60 17.52 4.06 0.0061 
HN GARCH-non-updated 
   0.9-0.96 5.29 1.34 4.31 0.0164 
   0.96-0.98 5.92 2.10 4.90 0.0069 
   0.98-1.02 6.87 4.46 4.98 0.0058 
   1.02-1.05 6.02 9.44 4.12 0.0050 
   1.05-1.1 4.51 17.18 3.79 0.0054 
HN GARCH-updated 
   0.9-0.96 5.73 1.45 4.87 0.0185 
   0.96-0.98 5.22 1.85 4.13 0.0061 
   0.98-1.02 6.65 4.32 4.65 0.0056 
   1.02-1.05 5.52 8.67 3.40 0.0045 
    1.05-1.1 3.44 13.12 2.54 0.0042 

  Panel B 
  Time to Maturity 

 <65 
Model   Moneyness RMSE %Error MAE RMIVE 
BS 
   0.9-0.96 5.37 1.59 4.98 0.0188 
   0.96-0.98 6.14 2.89 4.92 0.0157 
   0.98-1.02 5.07 5.12 3.91 0.0073 
   1.02-1.05 3.26 8.46 2.49 0.0042 
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Ad Hoc BS 
   0.9-0.96 12.41 3.67 11.60 0.0348 
   0.96-0.98 12.86 6.05 12.30 0.0262 
   0.98-1.02 7.51 7.59 6.38 0.0107 
   1.02-1.05 2.62 6.81 2.07 0.0032 
HN GARCH-non-updated 
   0.9-0.96 8.34 2.47 7.40 0.0260 
   0.96-0.98 9.92 4.67 9.14 0.0221 
   0.98-1.02 8.21 8.30 7.33 0.0115 
   1.02-1.05 5.73 14.89 5.14 0.0064 
HN GARCH-updated 
   0.9-0.96 8.82 2.61 7.97 0.0278 
   0.96-0.98 9.34 4.40 8.55 0.0215 
   0.98-1.02 5.71 5.77 4.63 0.0089 
   1.02-1.05 2.06 5.34 1.70 0.0023 
 

Panel C 
Model   #Obs Time to Maturity RMSE MAPE MAE RMIVE 
BS          
  276 >=65 11.16 0.096 9.31 0.0118 
  178 <65 5.09 0.043 3.92 0.0099 
Ad Hoc BS       
  276 >=65 5.24 0.053 4.07 0.0098 
  178 <65 8.61 0.061 7.09 0.0159 
HN GARCH-non-updated      
  276 >=65 5.94 0.056 4.49 0.0082 
  178 <65 8.27 0.081 7.34 0.0144 
HN GARCH-updated      
  276 >=65 5.56 0.043 3.95 0.0085 
    178 <65 6.39 0.047 5.08 0.0130 

Reported out-of-sample valuation errors by moneyness and maturity for call options. Moneyness is 
defined to be K/S where K is the strike price and S is the spot price. %Error is the ratio of the RMSE 
to the average call option prices for that option category. Panel A reports the valuation errors of 
contracts, which are categorized by moneyness, with time-to-maturity more than or equaling to 65 
days. Panel B reports the valuation errors of contracts, which are categorized by moneyness, with 
time-to-maturity less than 65 days. Panel C reports the out-of-sample valuation errors of each model. 
The call option contracts are separated into ≧65 days and <65 days. #Obs means the number of 
observations. 
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