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1 Introduction

Recent disaster experience has produced a flurry of economic inquiry into catastrophe in-
surance markets. Especially puzzling is the apparent incompleteness of catastrophe risk
transfer: The price of risk transfer seems high, risk is not spread evenly among insur-
ers in the manner suggested by Borch’s [1] groundbreaking theoretical result, and, in stark
contrast to Arrow’s well-known characterization of optimal insurance contracts, reinsurance
consumers do not purchase coverage for high layers of risk. Froot [11] documents these
puzzles and fingers various market imperfections as possible explanations.

Some view the catastrophe bond as a promising vehicle for overcoming imperfections
in the reinsurance market. In principle, the catastrophe bond opens a direct channel for
catastrophe risk to flow to the capital markets, sidestepping frictions present in the rein-
surance market and connecting those who need protection with well-funded investors eager
to provide it. On the other hand, others are skeptical that catastrophe securitization will
be a panacea. Bouriaux and Scott [2] argue that securitization terms are unlikely to be
attractive to buyers of terrorism coverage and note that the record of risk-linked capital
market instruments has not been encouraging. Indeed, catastrophe bond issuance to date
has been relatively limited, even in the aftermath of events that were expected to stimulate
issuance. It is too early to write an epitaph for the catastrophe bond, but the experience
to date raises questions about its theoretical foundations and its likely future role.

On closer inspection, the catastrophe bond seems both paradoxical and primitive. Its
current form features full collateralization and links principal forfeiture only to specific risks,
thereby retreating from the fundamental, time-tested concept of diversification that allows
insurers to protect insured value far in excess of the actual assets held as collateral. In a
world where frictional costs (e.g., due to taxes, regulations, or moral hazard) make capital
costly to hold, diversification lowers the cost of insurance. Viewed in this light, a fully
collateralized instrument seems an unlikely competitor to traditional reinsurance products.1

This paper examines this issue by developing a theory of risk collateralization. Specif-
ically, we study the efficient division of risk-bearing assets between reinsurance company
assets and catastrophe bond principal (both of which can be used to “collateralize” promises
to indemnify consumers). In a narrow sense, the analysis supports the skeptical intuition
outlined above. When reinsurance companies can write any type of contract with their
insureds and frictional costs are identical for catastrophe bonds and reinsurer assets, catas-
trophe bonds are at best redundant, and at worst welfare-reducing. If the insurer has
complete freedom to vary indemnity payments to consumers in every state of the world, it
can engineer any possible menu of pay-outs through its own contracts: Catastrophe bonds
add nothing in the absence of contracting constraints.

However, reinsurers and insurers do face contracting constraints in practice. Typical
contracts promise an indemnity payment to a policyholder who has suffered a covered loss
but do not specify rules ex ante for who gets what in the event of insurer failure. Instead,
the division of assets under bankruptcy is determined by insurance receivership laws, and
insurers either cannot or do not attempt to contractually specify how assets will be divided
in the event of bankruptcy. As a result, assets of failed companies are distributed according

1Niehaus [21] observes this paradox on Page 593.
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to inflexible and potentially inefficient mechanical rules.
Constraints on company asset distribution under default open up a role for catastrophe

bonds (and other highly collateralized vehicles, such as reinsurance “side-cars”), even if
there are no differences in the frictional costs. When insureds are homogeneous and risk
exposures are binary (loss or no loss), optimal insurance contracts are similar, and simple
rules—e.g., a pro rata rule that pays all claimants at the same rate on the dollar in the event of
insurer bankruptcy—can perform well. Heterogeneity, however, exposes the shortcomings
of insurance contracts in the presence of pro rata rules, which may misallocate assets in
the bankruptcy state.2 Pro rata allocations can be suboptimal when some insureds are
more concerned about the bankruptcy state than others, and this will generally be the case.
Reinsurance buyers hold policies of differing quality even when purchasing these policies from
the same reinsurer. Some are more exposed to default than others, and those that have
greater exposure to bankruptcy risk may desire greater collateralization of their potential
claims than can be provided under pro rata rules. This need opens up a role for catastrophe
bonds and other related instruments in the risk transfer market, which can vary the degree
of collateralization of coverage for specific insureds.

Thus, catastrophe bonds can improve welfare when reinsurers face constraints on the
distribution of assets in bankruptcy, and when they must insure a heterogeneous group of
risks. Catastrophe bonds can smooth out allocations made ragged by the risk of bankruptcy.
Put differently, reinsurance capital may weakly dominate the catastrophe bond in terms
of raising average policy quality, but such capital can be rendered a blunt instrument by
bankruptcy laws: Catastrophe bonds can improve welfare for those insureds most exposed
to bankruptcy risk.

The paper is laid out as follows. Section 2 provides some background and context on
catastrophe bonds. Section 3 then develops a concrete two-consumer example to illustrate
the intuition behind our results. Section 4 develops our results formally in the context
of a social planning problem with N consumers. Section 5 discusses other strategies for
protecting consumers against default and interprets them in the context of the model. In
particular, it considers how collateralization clauses in reinsurance policies influence the
priority of claimants under bankruptcy, and the extent to which such clauses substitute for
fully collateralized instruments such as catastrophe bonds. Section 6 concludes.

2 Background and Motivation

While structures vary, a typical catastrophe bond transaction involves a special purpose
vehicle (SPV). The SPV sells securities (catastrophe bonds) to investors, and the proceeds
from the sale are deposited in trust and invested. The SPV then provides reinsurance to
a ceding insurer or reinsurer, who pays a premium in exchange. The premium, as well
as income earned on the trust investments, funds interest payments to investors. If a
contractually-defined trigger event occurs, part or all of the bond principal is forfeited to the

2Mahul and Wright [17] also note the inefficiency of pro rata rules in the context of a model with identical
consumers but generalized loss distributions.

2



ceding company; if no event occurs, the principal is returned to investors.3

The catastrophe bond market is still evolving and, in particular, moving toward higher
layers of risk. While the first catastrophe bonds linked forfeiture of principal to the issuer’s
actual losses (an indemnity trigger), triggers linking forfeiture of principal to industry losses,
model output, or to specific parameters of the disaster (e.g., the strength of an earthquake
centered in a certain geographic region) have grown in popularity. Some deals feature
multiple event triggers—requiring two or more major disasters within a short time period to
trigger principal forfeiture (see Woo [22]).

How important is the catastrophe bond market? Catastrophe bond issuance in 2005
amounted to a record $2 billion, with outstanding principal in the neighborhood of $5 bil-
lion.4 With ongoing growth in catastrophe bond issuance, as well as the emergence of
reinsurance side-cars (which will be discussed later), 2006 is set to be another record year
for alternative risk transfer in the catastrophe market. On the other hand, catastrophe
bonds currently provide only a tiny fraction of reinsurance capacity. Despite being around
for more than a decade, outstanding catastrophe bond principal amounted to less than 2%
of global reinsurance capital at year-end 2005.5 Relative to the giddy expectations of the
1990’s, the volume of catastrophe securitization has been disappointing.

Nevertheless, while issuance so far has fallen short of optimistic projections, we argue
that catastrophe bonds do serve a well-defined economic role in the risk transfer market—a
role deriving from the full collateralization underlying the instrument. Full collateralization
allows catastrophe bonds to be useful in cases where traditional risk transfer (e.g., through
reinsurance policies) is subject to significant risk of counterparty default. This role could
expand if frictional costs associated with catastrophe bonds (e.g., issuance costs, secondary
market illiquidity) fall significantly in relation to the frictional costs associated with reinsur-
ance equity. However, unless frictional costs become negligible, full collateralization is likely
to limit the role of catastrophe bonds in circumstances where diversification opportunities
make partially collateralized instruments attractive.

To understand the role of customer-specific collateral, we must move beyond existing
theory on insurance pricing. The theory of the insurance firm has made a great deal of
progress in understanding the joint determination of multiple line pricing, capital allocation,
and the firm’s overall default risk (see, e.g., Cummins et al. [6], Myers and Read [20], and
Zanjani [23]). However, most models consider the default risk of the firm as a whole. Less
progress has been made in studying differences across a firm’s policyholders in their exposure
to default.

Differences across policyholders, though, are central to the value of catastrophe bonds.
If the object of interest is a single default-related financial target for the company as a
whole—such as the expected policyholder deficit per dollar of liabilities—a dollar held in the
form of a catastrophe bond cannot possibly be preferable to one held as company equity.

3For more information on the structure of insurance-linked securities, see, for example, Canabarro, E.,
Finkemeier, M., Anderson, R.R., and Bendimerad, F. (1998), “Analyzing Insurance-Linked Securities,”
Goldman Sachs & Co. Quantitative Research, October, 1998.

4Source: The Catastrophe Bond Market at Year-End 2005: Ripple Effects from Record Storms, MMC
Securities. Figures include only publicly disclosed transactions.

5Standard and Poor’s Global Reinsurance Highlights, 2006 edition tallied over $300 billion in total adjusted
shareholder funds for the industry at year-end 2005.
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Since the dollar held as equity will be available in all states of the world, it will be available
to pay for all of the losses that will be covered by a catastrophe bond and some losses that
are not covered by the catastrophe bond.

To understand how catastrophe bonds can be used in the absence of compelling frictional
cost differences, we must move beyond thinking of a single default-related financial target
for the insurance company. Instead, we must think about the company’s policies as having
varying levels of quality, corresponding to varying levels of exposure to default, and how
catastrophe bonds and equity have distributional consequences for recoveries by different
policyholder groups in states of default.

3 A Simple Example

In the context of a simple two-consumer example, we illustrate how the role for catastrophe
bonds depends on the presence of: (1) nonzero bankruptcy risk for the insurer; (2) con-
tracting constraints that prevent the insurer from optimally allocating claims payments in
the bankruptcy state; and (3) heterogeneity across consumers, such that one consumer faces
greater exposure to insurer bankruptcy risk.

Consider the case of two consumers, named A and B. Consumer A faces a 10% chance
of losing $100, while Consumer B faces a 1% chance of losing $100. An insurer issues
simple contracts to indemnify the consumer, fully or partially, in the event of a loss. In
the bankruptcy state (where claims exceed insurer assets), claims payments are allocated
according to a mechanical rule by dividing assets on a pro-rata basis, according to the
claims made by the insureds.6

Suppose we have $150 in assets. How should we allocate them? Consider first the case
where we use all $150 to fund an insurance company, which issues a $100 limit insurance
policy to A and a $100 limit policy to B. Expected claims in this example equal:

10% ∗ $100 + 1% ∗ $100 = $11 (1)

The insurer is able to pay all claims in full except when both consumers suffer a loss; in
that event, the insurer pays out all $150 of its assets but declares bankruptcy. Therefore,
expected claims payments equal:

10% ∗ 99%($100) + 1% ∗ 90%($100) + 10% ∗ 1%($150) = $10.95 (2)

Overall, the insurer pays $10.95
11

, or better than 99 cents, on the dollar. However, the two
consumers are unevenly exposed to default. Consumer B ends up being much more exposed
to bankruptcy risk on a per dollar basis, because she faces a higher relative likelihood of
suffering a loss in the state of the world where the other consumer also suffers a loss.

Specifically, Consumer A expects to lodge $10 worth of claims and to receive payments
of:

10% ∗ 99% ∗ $100 + 10% ∗ 1% ∗ $75 = $9.975 (3)

6The exact form of the mechanical rule is less relevant than the presence of contracting constraints in the
bankruptcy state.
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On the other hand, Consumer B expects to lodge $1.00 worth of claims, but receive

1% ∗ 90% ∗ $100 + 1% ∗ 10% ∗ $75 = $0.975 (4)

Thus, Consumer A receives 99.975 cents on the dollar, while Consumer B receives only 97.5.
Consumer A is better insured than Consumer B, and the social planner, depending on

the objective function, might want to consider redistributing coverage from Consumer A to
Consumer B. One way of accomplishing this is to redeploy some of our assets in the form of
a catastrophe bond tied to Consumer B. Suppose we now spend $100 funding the insurance
company, which sells a $100 limit insurance policy to Consumer A and a $50 limit policy to
Consumer B. We then use the remaining $50 on a catastrophe bond payable to Consumer
B in the event of a loss.

Consumer A still expects to lodge $10 worth of claims, but now receives payments of:

10% ∗ 99% ∗ $100 + 10% ∗ 1% ∗ (
100

150
∗ 100) = $9.967 (5)

On the other hand, Consumer B now expects to lodge $0.50 worth of claims with the insur-
ance company, but now also is entitled to receive $50 of catastrophe bond principal in the
event of a loss:

1% ∗ 90% ∗ ($50 + $50) + 1% ∗ 10% ∗ (
50

150
∗ $50 + $50) = $0.983 (6)

In other words, the recovery differential narrows. Consumer A now receives 99.67 cents of
relief per dollar of loss, a slightly worse rate than before. Consumer B now receives a bit
more—98.3 cents—once the catastrophe bond principal is considered.

In this example, using the catastrophe bond instead of a full reinsurance solution effec-
tively transfers coverage from one consumer to the other. The transfer occurs only when
the reinsurer defaults: We have sufficient assets to fully indemnify both consumers except
when both experience a loss, and the catastrophe bond allows us to affect the distribution of
indemnification in that unfortunate state of the world. Of course, the question of whether
or not this redistribution is desirable depends on particulars such as preferences—but the
general point is that the allocation of assets to consumers in the bankruptcy state may be
suboptimal in a pure reinsurance solution, and the catastrophe bond is one way of securing
the interests of one consumer over the other.

The presence of contracting constraints, the risk of bankruptcy, and the presence of con-
sumer heterogeneity all play key roles in driving this result. If an insurer is able to write
complex contracts that vary indemnification across all states of the world, it can replicate
the payout structure of a catastrophe bond without using the bond itself. For instance,
in the example above, we could replicate the payoffs involved under the second approach
(using the catastrophe bond) simply by capitalizing the insurer with $150 and issuing po-
lices offering full $100 indemnification except in the case where both consumers had losses,
in which case Consumer A would receive $66.67 and Consumer B would receive $83.33.7

7Note that if we allowed policy limits to exceed insurer assets, this would allow insurers to influence the
division of resources in the bankruptcy state. However, this is a blunt instrument for resource allocation that
cannot generally replicate the payouts of catastrophe bonds. For example, with more than two consumers,
insurer bankruptcy is not perfectly correlated with the loss experience of any one consumer, because there
are many possible loss configurations that trigger bankruptcy. Nevertheless, in the general theory developed
in Section 4, we place no constraints on the choice of policy limits.
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Contracting constraints that prevent the insurer from specifying complicated priority rules
under bankruptcy are necessary to preclude this possibility. Heterogeneity also plays an
important role by rendering mechanical bankruptcy rules inefficient. If Consumers A and
B were identical, an equal pro rata division of resources in the bankruptcy state would be
optimal, and neither consumer would be any more exposed to default risk.

This example shows how catastrophe bonds can be used to improve social welfare by
redistributing coverage among consumers in “unfortunate” states of the world, but it falls
short of illustrating other aspects of the general trade-off between catastrophe bonds and
reinsurance. Earlier, we emphasized the costliness of fully collateralized catastrophe bonds,
relative to less than fully collateralized insurance. Yet in this example, there is no disadvan-
tage to “sequestering” capital in the form of a catastrophe bond since we make full use of the
collateral assets. In more general versions of the problem, one of the important drawbacks
associated with catastrophe bonds is that the assets dedicated to catastrophe bond principal
for one consumer will not be available to pay losses experienced by others. In the results
that follow, we show that the three conditions identified above are necessary for catastrophe
bond issuance to be useful, but not sufficient—any benefits associated with catastrophe bond
issuance may fail to outweigh the inefficiencies associated with full collateralization.

4 Theory

The basic approach borrows from Borch’s analysis of optimal risk sharing among many
consumers: Instead of modelling individual behavior, we study the social planning problem
and its solutions.

Consider a world with N consumers. Consumer i is endowed with initial wealth Wi and
faces the risk of experiencing a loss of fixed size—denoted by Li. To characterize the possible
states of the world, we define a row vector x of length N, with the elements all taking a value
of zero or one: x(i) = 1 means that consumer i experienced a loss, while x(i) = 0 means
that she did not. Let Ω denote the set of all such vectors of length N with the elements
taking values of one or zero. Each element of Ω corresponds to a complete description of
one possible state of the world. The entire set Ω contains all possible such states. The
following set definitions are useful:

Ωi = {x : x(i) = 1},
the set of all states in which agent i suffers a loss, and

Γ(x) = {i : x(i) = 1},

the set of all agents that suffer a loss in state x.
Thus, using this notation, we may describe the probability of loss faced by consumer i as:

pi =
∑

x∈Ωi

Pr(x)

There are two risk transfer technologies available to insure against losses. First, we can
set up an insurance company and issue insurance policies to consumers, collateralized by the
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assets of the company. Second, we can issue a risk-linked security on behalf of a consumer
(i.e., a catastrophe bond) that pays off in the event that the consumer experiences a loss.

The insurance company is formed with assets of A. Throughout our discussion, we think
of “assets” as all the resources the insurer can use to pay claims. Therefore, it includes both
capital paid in by investors and premiums paid in by consumers. For our purposes, the
key issue is whether or not the dollar is available for claims payment—not how it would be
treated by accounting conventions. In the event of a loss (or losses), the consumers can
draw on the assets to pay claims. When assets exceed claims, what remains after claims are
paid reverts to investors. On the other hand, if claims exceed assets, the company defaults,
and claimants are assumed to be paid according to a pro rata rule—everyone receives the
same rate of recovery per dollar of claim.

Each consumer can separately issue a catastrophe bond8 to investors. The principal of
the bond is forfeited to the consumer in the event of a loss, but not otherwise. Let Bi be
the bond issuance of consumer i. We simplify matters by assuming indemnity triggers—
where principal forfeiture is linked directly to issuer loss experience. Hence, we avoid
the complexities of optimal trigger design (see Doherty and Mahul [7]) and the problem of
basis risk. We do not directly model these and other costs associated with asymmetric
information,9 but such costs can be thought of as being embedded in the frictional costs
associated with catastrophe bond principal described below.

What do insurance policies and catastrophe bonds cost? The cost of risk transfer can be
decomposed into 1) fair ex ante compensation for claims expected to be paid under the risk
transfer agreement and 2) frictional costs associated with establishing and maintaining the
risk transfer scheme. We start simply by assuming that the cost of risk transfer amounts to
the expected value of claims plus a frictional cost proportional to the amount of collateral
used in the risk transfer scheme (i.e., the amount of assets used in the insurance company, or
the amount of catastrophe bond principal used). We then generalize the results to the case
where fair compensation for expected claims reflects the states of the world where the claims
occur: That is, we price risk transfer according to how claims are expected to relate to the
expected distribution of returns on other assets available in the broader capital markets.

We start “simply” because it turns out that our results are driven entirely by frictional
costs. In the absence of frictional costs, all consumers will be fully insured, and it is irrelevant
how risk transfer technologies are combined in providing this full insurance: Frictional
costs provide a motivation to economize on capital in the process of collateralizing risk-
transfer. Accordingly, we start with a model where insurance risks are “zero beta,” but
where frictional capital costs lead to limited risk transfer. We then show that these results
hold even when insurance risks correlate in some way with capital market returns (and are
priced accordingly), but that non-zero frictional costs are key to our findings.

8We refer to “catastrophe bonds” because of their familiarity, but the analysis that follows obviously
applies to other highly collateralized instruments used in risk transfer—such as collateralized reinsurance
policies and “side-cars.” These and other risk transfer alternatives will be discussed in Section 5.

9See Brandts and Laux [3] for a theoretical justification for the catastrophe bond market based on
asymmetric information between insurers and reinsurers.
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4.1 Optimal Collateralization with Frictional Costs

Frictional costs are imagined here as deriving from agency costs, taxes, liquidity costs, or
other frictions. Each dollar of assets held in the insurance company results in per unit
frictional costs of δA. Each dollar of catastrophe bond principal raised has the frictional
cost δB.

Consumers must pay for all frictional costs and fair compensation for recoveries expected
from the risk transfer. Denote the portion of this total risk transfer cost allocated to
consumer i as ci.

Insurance policies are represented as simple promises of indemnification: The insurer
promises to pay Ii in the event that consumer i experiences a loss. We place no constraints
on the promised indemnity: It may be less than, equal to, or greater than the prospective
loss. However, contracting constraints come into play in the sense that we do not allow the
insurer to offer a schedule of promised indemnification, with the amount contingent on the
loss experiences of other insureds. If the insurer is able to pay, it pays in full; if not, it
defaults, and all claims are paid at the same rate on the dollar. The example of Section 3
suggests that relaxing this contracting constraint will obviate roles for catastrophe bonds or
other fully collateralized instruments. In the Appendix (Section A), we verify that this is
in fact the case: When frictional costs are identical (δA ≡ δB) , allowing the social planner
to arbitrarily vary the indemnification promised in each insurance policy eliminates any
potential role for catastrophe bonds.

We can now define utility for consumer i (according to the usual Von Neumann-Morgenstern
assumptions) as:

EUi =
∑

x∈Ωi

Pr(x)Ui (Wi − Li + fxIi + Bi − ci) +
∑

x/∈Ωi

Pr(x)Ui (Wi − ci) , (7)

where fx represents the proportion of the indemnity payment actually paid in state x.
The social planning problem can now be written as:

max
A,{Bi},{ci},{Ii},{fx}

V =
∑

i

EUi (8)

subject to:

[µ] :
∑

ci ≥ δAA + δB

∑
i

Bi +
∑
x∈Ω

Pr(x)


 ∑

i∈Γ(x)

fxIi +
∑

i∈Γ(x)

Bi


 (9)

[λx] : fx

∑

i∈Γ(x)

Ii ≤ A,∀x (10)

[φx] : fx ≤ 1, ∀x (11)

and subject to non-negativity constraints on catastrophe bond principal and policy limits.
Constraint 9 ensures that consumers’ total payments for risk-transfer instruments (

∑
ci)

cover the frictional costs of capital and expected losses. Constraint 10 ensures that the
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insurer always has enough assets on hand to cover actual (as opposed to promised) liabilities.
Finally, constraint 11 precludes the insurer from ever paying out more than the policy limit.

Any difference in frictional costs (e.g., δA 6= δB) will obviously create a potential advan-
tage for one of the technologies, but we will start by considering the case where

δA ≡ δB ≡ δ.

Thus, we start by studying how the nature of preferences and risk affect the optimal mix of
the two risk transfer technologies. The optimality conditions are derived in the Appendix
(Section B.1), as is the following marginal condition for catastrophe bond issuance (where
we use the notation Ux

i to denote the utility of consumer i in state x):

Ri =
∑

x∈Ωi

Pr(x) [1− fx]


∂Ux

i

∂W
−

∑

j∈Γ(x)

wx
j

∂Ux
j

∂W


−

∑

x/∈Ωi

λx ≤ 0 (12)

where

wx
j =

Ij∑
j∈Γ(x) Ij

.

Ri is the “marginal return on catastrophe bonds”—the increase in utility associated with
the first-dollar of bond issuance. Ri ≤ 0 if and only if catastrophe bonds cannot improve on
a reinsurance-only equilibrium. Specifically, if Ri is negative, this means that catastrophe
bond issuance was not useful (optimal) for consumer i—or, in other words, that B∗

i = 0.
Study of (12) reveals several important characteristics of optimal catastrophe bond use in
the social planning problem.

First, a catastrophe bond’s potential to enhance the welfare of the issuing consumer is
intimately linked to the presence of default risk. If consumer i does not face any risk of
default (i.e., fx = 1 for all x ∈ Ωi), catastrophe bond issuance will not be useful for that
consumer.10

Second, assuming consumer i is confronted with default, catastrophe bond issuance on
behalf of that consumer has the potential to be useful only if her marginal valuation of
consumption in the states where the company defaults on her claim exceeds the average
valuation of other consumers who lose in those same states:

∑

x∈Ωi

Pr(x) [1− fx]


∂Ux

i

∂W
−

∑

j∈Γ(x)

wx
j

∂Ux
j

∂W


 > 0.

Intuitively, it will not make sense to dedicate collateral to consumer i if that collateral
is actually worth more to her companions in states of default. If her companions value
that collateral more highly on average than she does, it will be more efficient to add that

10This is equivalent to saying that Ri < 0, except in solutions where the insurance company never defaults
on any contract. If the insurer never defaults, Ri = 0, implying that cat bonds could figure in a solution.
However, as shown in the Appendix (Section B.2), any such solution would not be unique: Without
default, any solution with catastrophe bond principal can be matched by a solution without catastrophe
bond principal.
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collateral to the insurance company or to issue catastrophe bonds on behalf of the high
valuation consumers.

Finally, the value of catastrophe bond issuance for consumer i also depends on the extent
of diversification possibilities, as captured in:

∑

x/∈Ωi

λx.

If that term is positive, it means those diversification possibilities still exist. In other words,
the company is defaulting in states of the world where consumer i does not experience a
loss, and, thus, there are other consumers who would enjoy benefits from increasing the
capitalization of the insurance company. While this does not preclude the solution from
featuring catastrophe bond issuance on behalf of consumer i, it makes it more difficult for the
catastrophe bond to be the preferable instrument for addressing the the risk transfer needs
of the consumer in question: Any benefits obtained by sequestering collateral on behalf of
consumer i (and thus shielding the assets from consumers who place lower valuations on
additional coverage in those states where consumer i is exposed to default) must be weighed
against the cost of preventing consumers exposed to default in other states of the world from
accessing that collateral.

The importance of differences across consumers is highlighted by the case where con-
sumers are homogenous, or ex ante identical. The Appendix explores this case in detail,
showing that catastrophe bonds will not be useful in this case. The result (shown in the Ap-
pendix - Section B.3) can be understood by noting that, assuming that symmetric solutions
apply under homogeneity, the marginal utilities of consumers who lose will be equivalent in
each state. So Equation 12 reduces to:

Ri = −
∑

x/∈Ωi

λx ≤ 0

In other words, cat bond issuance will be strictly suboptimal unless diversification possibili-
ties have been completely exhausted. More precisely, cat bond issuance for consumer i will
be suboptimal if there is a single state of the world where additional insurance capital will
benefit someone other than consumer i. In the case of homogeneity, this can only happen
if all consumers enjoy full indemnification except in the state where everyone experiences a
loss. If the social planner finds it desirable to indemnify consumers to this extent, she will
be indifferent between cat bonds and insurance policies as a means of providing additional
coverage in the N -loss state.11

Thus, the N -consumer case under homogeneity exposes the extreme disadvantage of
cat bonds with respect to diversification. Even when catastrophe bonds are cheaper than

11An interesting feature of the model is that contracts under homogeneity will always promise (but some-
times fail to deliver) full indemnification if the loss amount is less than company assets. This contrasts
with the insurance demand model of Doherty and Schlesinger [8], in which the consumer buys less than full
coverage in the presence of default risk. There are several reasons for this difference, including the presence
of frictional costs in our model (Doherty and Schlesinger’s result referenced actuarially fair premiums), and
also a different definition of default: Doherty and Schlesinger’s default features zero payment, while our
model offers a partial pro-rata payment to insureds. The pro rata allocation amounts to a “mutuality
principle” that encourages full coverage even in the presence of default risk.
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insurance company assets (i.e., if δB < δA), they could still be strictly suboptimal if the
welfare-maximizing solution involved tolerance of default beyond the absolute worst case
scenario of N losses.

More generally, the return to catastrophe bonds given in (12) can be rewritten for the
case of different frictional costs as:

Ri =
∑

x∈Ωi

Pr(x) [1− fx]


∂Ux

i

∂W
−

∑

j∈Γ(x)

wx
j

∂Ux
j

∂W


−

∑

x/∈Ωi

λx + µ(δA − δB) ≤ 0 (13)

If bond principal enjoys frictional cost advantages relative to insurer assets (δB < δA),
additional opportunities for catastrophe bond issuance may arise. Note, however, that such
frictional cost advantages (to the extent they exist) are by no means the only consideration
in assessing the potential for the catastrophe bond market. The extent of heterogeneity
across consumers—in terms of preferences and in terms of risk exposures—as well as the
presence or absence of diversification opportunities, still figure in the calculus of catastrophe
bond issuance.

Catastrophe bonds are often advanced as a method for sidestepping the frictions in the
reinsurance market. But, of course, a different set of frictional costs exist in the catastrophe
bond market. The key policy question concerns whether supply-side initiatives to promote
catastrophe risk transfer are best focused on the frictional costs in the reinsurance market
or those in the catastrophe bond market.

At first glance, it seems that the opportunities for welfare gains are much greater when
reducing frictional costs in the reinsurance market. The value of reducing the frictional
costs of insurer assets by one unit is the derivative of the Lagrangian of the welfare function
with respect to δA, or,

VA ≡ µA∗,

while an analogous reduction in the frictional costs of catastrophe bond principal yields

VB ≡ µ
∑

i

B∗
i .

Thus, the marginal benefit of reducing frictional costs in each market is directly proportional
to the assets deployed in the respective market: Since far more collateral is held in the form
of reinsurer assets than in the form of catastrophe bond principal, the marginal impact
of frictional cost reductions in the reinsurance market should be far greater than similar
reductions in the catastrophe bond market.

On the other hand, the cost side of the policy equation—i.e., what resources must be
sacrificed to reduce frictional costs in each market—is less clear. Indeed, the frictional cost
reduction technologies could differ substantially across the markets. Since the catastrophe
bond market is young, there may be “low-hanging fruit”: Investments in investor education
or primary and secondary bond market infrastructure could offer much larger frictional cost
reductions in the catastrophe bond market than could be possible in the more mature rein-
surance market. However, frictional cost reductions will not necessarily translate perfectly
into corresponding movements in market performance. The drawback of diversification in-
efficiencies discussed above may place important limits on the extent to which catastrophe
risk will be transferred through catastrophe bonds and similar vehicles.
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4.2 Optimal Collateralization with Generalized Capital Costs

To this point, we have abstracted from modelling any risk premium that might be demanded
by investors. However, the amount of compensation due to capital suppliers theoretically
depends on how the insurance risks borne correlate with returns on other capital assets.
Little evidence exists connecting the cost of capital in the insurance industry to the risk
characteristics of the underlying policyholder liabilities (Cummins and Harrington [5]; Cox
and Rudd [4]); this is true of catastrophe insurance in particular, where both academics
(e.g., Hoyt and McCullough [14]) and practitioners (e.g., Litzenberger, Beaglehole, and
Reynolds [16]) have found catastrophic risk to be uncorrelated with stock market returns.
Nevertheless, a connection exists at least in theory, so we explore this possibility more thor-
oughly in this subsection—where the cost of risk transfer depends not only on frictional costs
associated with collateral but also on the relationship between the risk transferred and the
risks in the broader capital markets.

In principle, frictional costs could be zero, and the cost of risk transfer could thus consist
entirely of the equilibrium compensation for risk demanded by investors. However, as noted
earlier, the cost of risk transfer must include a pure frictional cost that is entirely lost to the
capital suppliers for the optimal collateralization structure to be determinate. If there is no
gain to economizing on collateral, it does not matter how risk transfer is collateralized: All
consumers will be fully insured, and it does not matter how insurance policies and catastrophe
bonds are combined in providing that full insurance. However, if frictional costs are present,
the earlier results still carry through—even after the introduction of security markets and
equilibrium risk pricing.

To add security markets and equilibrium to our model, we start with a state-pricing ap-
proach built on the assumption of no arbitrage, as described in the first chapter of Duffie [9].
For insurance markets to be relevant (and not redundant), it must be the case that finan-
cial markets are incomplete. Specifically, if it is possible to replicate the payoffs from an
insurance policy using existing securities in frictionless markets (and if those securities are
priced fairly), there will be no need for insurance policies. Therefore, we will work under
the assumption that markets are incomplete—or, specifically, that insurance policy payoffs
cannot be replicated using other financial instruments. This is similar in flavor to the as-
sumption underlying Mayers and Smith [18]—tradeable portfolio securities are assumed to
have well-defined prices that flow from an equilibrium asset pricing model, but insurance
risks are denoted as “nontradeable” and thus must be dealt with separately (although, as
noted by Mayers and Smith, the decisions are not independent).

A key question not addressed by Mayers and Smith, but crucial for our purposes, is how
insurance policies will be priced when they are non-tradeable and cannot be replicated with
other financial instruments. The obvious approach is to price insurance policies “as if” they
were traded financial securities. That is, their prices are determined by their contingent
payoffs, weighted by appropriate state prices—just as with any other security. The only
complication is that, by assumption, the contingencies relevant for insurance policy payoffs
do not map into the state space that governs the security markets—so the state prices needed
to price policies will not follow from the absence of arbitrage among the financial instruments
traded in the security markets. With this in mind, we “extend” state prices derived from
the assumption of no-arbitrage in the security markets to apply to subsets of events within
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states. While this extension may not be a technical implication of arbitrage pricing theory,
it produces a necessary foundation for insurance pricing that is logically consistent with
security market pricing.

We use the N person model and start by defining the relevant probability spaces. Recall
the set of vectors that define consumer loss experience, denoted by Ω, whose members are
row vectors x of length N, with the vector elements all taking a value of zero or one: x(i) = 1
means that consumer i experienced a loss, while x(i) = 0 means that she did not.

We now introduce a set of M securities, each security with distinct payoffs in S states
of the world. Let Ψ be the set of those states (with the associated σ-algebra FΨ, and let
there be state prices, consistent with the absence of arbitrage, denoted by πs for each s ∈ Ψ.
Let D be an M × S matrix, with Dij describing the payoff of the i-th security in the j-th
state. We assume that

span(D) ≡ RS.

This condition is typically known as a “complete markets” condition—that any arbitrary
menu of state-contingent consumption can be purchased at time zero. In our case, however,
it would be misleading to characterize markets as complete, since Ψ does not provide a
complete description of the states of the world.

Instead, we characterize the full probability space as (Θ, FΘ, µΘ), with

Θ ≡ {θ = [x(1) x(2)...x(N) s] | x ∈ Ω, s ∈ Ψ}
The state variable θ ∈ Θ is a row vector of length N + 1 that provides a complete

description of one possible state of the world. The first N elements of θ describe which
consumers experienced losses (and which ones did not), while the last element describes the
state of the securities markets. The entire set Θ contains all possible states of the world.

The following set definitions are useful:

Θi = {θ : θ(i) = 1},
the set of all states in which agent i suffers a loss, and

Γ(θ) = {i : θ(i) = 1},

the set of all agents that lose in state θ. In addition, for every s and every agent i, define:

Υs0
i ≡ {θ : θ /∈Θi,θ(N + 1) = s},

the set of all states θ where agent i does not suffer a loss and the security market “sub-state”
is s, and

Υs1
i ≡ {θ : θ ∈Θi,θ(N + 1) = s},

the set of all states θ where agent i does suffer a loss and the security market “sub-state”
is s. Finally, note that for any i the entire sub-state space defined by s can be written as:

Υs ≡ Υs1
i ∪Υs0

i
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We now extend the state prices to define prices for events that are not measurable with
respect to FΨ. Define extended state prices as follows. For each s ∈ Ψ

πθ = πs,∀θ ∈ Θ | θ(N + 1) = s

Recall that we are extending the state-prices to include the price of claims associated with
the hazards being insured. This approach implicitly assumes that there is no variation in
“sub-state” prices within the states priced by the security market equilibrium. This is not a
mathematical truism implied by the absence of arbitrage in security markets: The absence
of arbitrage does not pin down the state prices for events that are not measurable with
respect to FΨ. However, as discussed above, this assumption provides a reasonable basis for
insurance pricing that is logically consistent with the security market equilibrium.

We can now define utility for Consumer i as

EUi =
∑
s∈Ψ

∑

θ∈Υs1
i

µΘ(θ)Ui (Wis − Li + fθIi + Bi) +
∑
s∈Ψ

∑

θ∈Υs0
i

µΘ(θ)Ui (Wis) ,

where fθ represents the proportion of the indemnity payment actually paid in state θ, and Wis

is state-contingent security-market wealth for consumer i.
The social planning problem can now be written as:

max
A,{Bi},{ci},{Ii},{fθ},{Wis}

V =
∑

i

EUi (14)

subject to

[µ] :
∑

ci ≥ δAA + δB

∑
i

Bi +
∑

θ∈Θ


µΘ(θ)πθ

∑

i∈Γ(θ)

(fθIi + Bi)


 (15)

[λθ] : fθ

∑

i∈Γ(θ)

Ii ≤ A, ∀θ (16)

[φθ] : fθ ≤ 1, ∀θ (17)

[ϕi] :
∑
s∈Ψ

πsWis ≤ W − ci,∀i (18)

and the previous non-negativity constraints. New to the problem is the last constraint, which
governs portfolio investment. The present value of each consumer’s contingent consumption
is constrained to no more than time zero wealth, net of risk transfer costs.

Before proceeding further, it is worth noting that the generalized capital allocation struc-
ture does not alter our basic results for the return on catastrophe bonds (see Appendix
Section C.1). In this setting, the return to catastrophe bonds is given by:

Ri =
∑

θ∈Θi

µΘ(θ)(1− fθ)


∂Uθ

i

∂W
−

∑

i∈Γ(θ)

wθ
i

∂Uθ
i

∂W


−

∑

θ/∈Θi

λθ + µ(δA − δB) ≤ 0 (19)
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This is analogous to equation 13.
The marginal conditions describing optimal issuance of catastrophe bonds do not directly

reference frictional costs (except when δB 6= δA), yet frictional costs are required for them
to be useful. Without frictional costs, both terms of the marginal condition will be zero in
all cases—simply because there is no insurance company default in the absence of frictional
costs, and every consumer enjoys full insurance.

To illustrate this, we eliminate frictional costs but continue to weight claims payments
and catastrophe bond default according to the appropriate state prices:

∑
ci ≥

∑

θ∈Θ


µΘ(θ)πθfθ

∑

i∈Γ(θ)

Ii


 +

∑
i

(∑

θ∈Θi

µΘ(θ)πθ

)
Bi.

Intuitively, insurance premiums must pay for contingent claims on the assets, but, in the
absence of frictional costs, extra capital always earns its own keep, because the insurer can
invest it at market rates of return. As a result, the only real cost of holding capital as
collateral is the extent to which you are exposing the owner to additional claims risk—but
this additional risk is compensated in the capital market.

Section C.2 of the Appendix characterizes the solution in this setting without frictional
costs in a series of lemmas that yield two important lessons. First, full insurance will always
be optimal: Every consumer will be fully covered. Second, the optimal division of collateral
between reinsurance company assets and catastrophe bond principal is indeterminate. In
other words, with full insurance it ends up being irrelevant whether the insurance is provided
through reinsurance policies or catastrophe bonds: Any combination of the two instruments
is optimal, so long as full insurance is provided.

As is often the case, consumers fully insure when the insurance is fairly priced. Moreover,
there is no incentive to economize on collateral in this setting—collateral is “free” in the sense
that there are no frictional costs. The only “costs” with holding assets in the reinsurer
or the SPV are the fair value of expected claims payments to policyholders or cat bond
issuers. Since there are no penalties associated with over-collateralization, neither risk
transfer instrument holds a natural advantage over the other.

5 Other Risk Transfer Options

To this point, we have limited our attention to catastrophe bonds and traditional reinsurance
policies. With this focus, we risk overlooking hedging strategies based on other risk transfer
options that could potentially yield welfare improvements. In this section, we consider how
other risk transfer strategies fit into our framework.

5.1 Collateralized Reinsurance and Side-cars

Reinsurance can be “collateralized” in at least two senses. The first, more common sense, is a
contract clause requiring the reinsurer to collateralize claims obligations at the time they are
incurred but before they are due to be paid. The second is a full or partial collateralization
of the policy limits at the inception of the contract. Both are interesting for our paper
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because they allow the reinsurer and its customers to influence how assets are divided up in
the event of bankruptcy. We discuss each in turn.

Reinsurance contract clauses regarding the collateralization of liabilities arise most often
in the context of transactions between offshore reinsurers and U.S. cedents (i.e., buyers
of reinsurance). Regulations regarding statutory credit for reinsurance typically stipulate
that an insurer may not take credit for anticipated recoveries from unlicensed reinsurers
unless those anticipated recoveries are fully secured. Acceptable forms of security include
funds held in trust and clean, irrevocable, and evergreen letters of credit issued by financial
institutions deemed acceptable by the regulator in question.

To the extent that some cedents have these contract clauses and others do not, the
clauses may be interpreted as a means of affecting the distribution of assets in bankruptcy.
Secured claimants effectively “step ahead” of unsecured claimants in the liquidation process.
However, it should be noted that the ability to “step ahead” is by no means absolute and
depends on ex post actions by the insurer. For example, a transfer of assets to a trust for the
benefit of a cedent (or to collateralize a letter of credit issued by a third-party for the benefit
of a cedent) can be challenged as a voidable preference if bankruptcy follows soon thereafter.12

Hence, in practice, a cedent cannot count on security being posted when a reinsurer is in
or near insolvency, and, even if the reinsurer is willing to post security—the transfer will
be subject to challenge. This issue also surfaces when modelling collateralization in a one-
period setting: When claims are submitted simultaneously and bankrupt the reinsurer, what
compels the reinsurer (or its receiver) to honor liability collateralization clauses that have
no force during liquidation?

It is also possible to provide partial or full collateralization (e.g., a letter of credit) of
the policy limits at contract inception. This approach is useful if the underwriter does
not have a financial strength rating, as is the case with a number of hedge funds that have
entered the property catastrophe reinsurance market in recent years. For an underwriter
issuing only fully collateralized policies, this form of collateralized reinsurance is effectively
equivalent to a catastrophe bond with an indemnity trigger. Another variation on this
theme is the recent innovation of the reinsurance “side-car,” where investors capitalize a
special purpose company to provide reinsurance to a ceding company, with the capital being
held in a collateral trust account for the benefit of the cedent (see Murray [19] for additional
information on side-cars).

For underwriters issuing policies that differ in the degree of collateralization, the situation
is more complicated. Since collateral posted will presumably be released in the event
that the underlying policy is not triggered, it will subsequently become available to pay
claimants whose policy limits were not fully secured at inception. In our framework, this
approach to collateralizing risk transfer offers the potential for welfare improvement relative
to catastrophe bonds because of this increase in the availability of assets to pay claims.

In principle, varying the degree of collateralization across policies could be used to af-
fect the allocation of assets during bankruptcy, but it is important to note theoretical lim-
its. Aside from the two-person case, varying the degree of collateralization associated with
policies will generally give the insurer only limited control over the allocation of assets in

12For more details, especially with respect to letters of credit, see Hall [13] and the NAIC’s Receivers
Handbook for Insurance Company Insolvencies.
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bankruptcy. In the multiple consumer case, there are multiple bankruptcy states, with
different consumers affected in different bankruptcy states: Varying ex ante collateral levels
does not allow arbitrary prioritization of claims within bankruptcy.

Practical limits also apply. The effective security of partial collateralization will not be
transparent to the policyholder in practice: To form an expectation of relative priority in
bankruptcy, one must know all the details about the collateralization of other policies. For
example, if all outstanding policies are collateralized to the same degree, collateralization has
no effect, and recoveries would not change if the collateralization were terminated. Finally,
in a world where claims are being submitted in continuous time, the reinsurer will not be
able to commit all of its assets to ex ante collateralization, since it would have no funds
available beyond the collateral supporting any given policy to pay a claim on that policy.

5.2 Third-Party Default Insurance

In the model, catastrophe bonds protect consumers from the consequences of insurer default.
A possible alternative approach would be to buy “default insurance” from a third party, and
these possibilities arise if the insurer has issued negotiable securities. For example, credit
default swaps (CDS) referencing outstanding transferable bonds or loans of the insurer13 are
a possible alternative hedging device: Issuing policies along with default protection could
conceivably offer welfare improvements over the strategies considered in this paper. There
are two aspects of this strategy that merit comment.

First, to deliver a welfare improvement over catastrophe bonds, any protection offered
by the CDS would have to be implicitly collateralized at less than 100% (or somehow have
lower frictional costs with a similar degree of collateralization). On the one hand, less than
full collateralization implies that there is some risk of counterparty default, so purchasing
default insurance with a CDS is not a perfect substitute for the catastrophe bond. On
the other hand, if the seller of protection could conceivably realize additional economies in
collateralization by taking advantage of diversification opportunities beyond the insurance
market. In this light, the CDS approach can be understood as an intermediate device,
located on a continuum between the fully collateralized and undiversified catastrophe bond,
and the imperfectly collateralized and diversified reinsurance contract.

Second, the CDS hedging approach will generally involve basis risk when there are more
than two policyholders. With two policyholders, the CDS offers a perfect hedge to a
consumer desiring protection: The contract is triggered only in states where the company
defaults and the consumer experiences a loss. With multiple consumers, however, the
company may default in states where the consumer does not experience a loss, thereby
triggering a default insurance payment in a scenario where the consumer does not need
additional indemnification. The consumer becomes “overinsured” with respect to default
risk. Moreover, the extent of a consumer’s recovery on a policy will generally vary across
states of default in the multiple consumer model, and this variation may not generally be
hedged with a CDS (or with a short position in the insurer’s debt, if this were possible)
unless the holder of the underlying debt security is in the same class as the holder of an

13Alternatively, in the absence of a CDS market, hedging strategies using equities or equity derivatives
could substitute. However, equity-based strategies will generally have more basis risk as defined below.
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insurance policy with respect to priority of claim on the insurer’s assets.14

6 Conclusions

In theory, catastrophe bonds can potentially be useful to ameliorate the effects of the con-
tracting constraints faced by insurers. These constraints include the difficulty of writing con-
tracts that allocate the company’s assets efficiently in the event of insolvency, or of contracts
that are contingent on the loss experiences of other insureds. These constraints can bind
when insureds are heterogeneous. Therefore, catastrophe bonds can be welfare-improving
when: (1) Reinsurers face constraints on contracting, and (2) Insureds are heterogeneous.
We have derived these results from models of efficient collateral allocation with two or more
insureds, when the frictional costs associated with catastrophe bond issuance mirror those
associated with holding assets in insurance companies.

If catastrophe bond issuance is a cheaper option than equity issuance (with respect to
frictional costs), additional opportunities for welfare-improvement arise. Indeed, if bond
issuance costs (i.e., spreads over LIBOR that must be paid by issuers as premium) fall, it
seems likely that usage will expand. However, because of the catastrophe bond’s relative
inefficiency in the realm of diversification, it is possible for the catastrophe bond to be cheaper
but still unattractive relative to risk transfer options based on partial collateralization. Thus,
while frictional costs associated with underdeveloped market infrastructure and the basis risk
faced by issuers are often fingered as the main roadblocks to growth in the catastrophe bond
market, this analysis suggests that a more fundamental obstacle—costs deriving from the
instrument’s full collateralization—may ultimately place limits on its growth in the absence
of further innovation.

14This equivalence in priority will often hold for reinsurance contracts, which are in the same class as
general creditors under the NAIC’s Insurer Rehabilitation and Liquidation Model Act (revision of 4/27/04)
but not for primary insurance contracts, which are typically assigned higher priority. In some circumstances,
however, reinsurance contracts have also been assigned higher priority than general creditors (see Hall [12]).
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APPENDIX

A Unconstrained Contracting

In this section of the Appendix, we verify that catastrophe bond issuance is optimally zero
when insurance policy indemnity schedules can be made state-contingent and frictional costs
for the two risk transfer technologies are equal.

Let Ix
i represent the indemnity promised in state x under the policy issued to consumer i.

Then the utility of consumer i can be rewritten as:

EUi =
∑

x∈Ωi

Pr(x)Ui (Wi − Li + fxI
x
i + Bi − ci) +

∑

x/∈Ωi

Pr(x)Ui (Wi − ci) , (20)

and the social planning problem becomes:

max
A,{Bi},{ci},{Ix

i },{fx}
V =

∑
i

EUi (21)

subject to:

[µ] :
∑

ci ≥ δAA + δB

∑
i

Bi +
∑
x∈Ω

Pr(x)


 ∑

i∈Γ(x)

fxI
x
i +

∑

i∈Γ(x)

Bi


 (22)

[λx] : fx

∑

i∈Γ(x)

Ix
i ≤ A, ∀x (23)

[φx] : 0 ≤ fx ≤ 1,∀x (24)

and the usual non-negativity constraints and subject to Ix
i = 0 for x/∈Ωi, for all i. The

following theorem proves the result.

Theorem. Suppose δA = δB = δ. Suppose Â, {B̂i}, {ĉi}, {Îx
i }, {f̂x} is a set of optimal

choices maximizing (21) subject to the listed constraints, with B̂k > 0 for at least one k ∈
{1, ..., N}. Then there exists another set of choices Ā, {B̄i}, {c̄i}, {Īx

i }, {f̄x}, with B̄i = 0 for
all i, that satisfy the listed constraints and also maximize the objective function.

Proof:
Define Λ = {k : k∈ {1, ..., N}, B̂k > 0}.
Let c̄i = ĉi, for all i.
Let B̄i = 0, for all i.
Let f̄x = 1, for all x.
Let Ā = Â +

∑
i B̂i

For all i : Let Īx
i = f̂xÎ

x
i + B̂i, ∀x ∈Ωi; Īx

i = Îx
i = 0, ∀x /∈Ωi.

We first verify that the new choices satisfy all constraints:
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Note that

∑
c̄i =

∑
ĉi ≥ δ

(
Ā +

∑
i

B̄i

)
+

∑
x∈Ω

Pr(x)


 ∑

i∈Γ(x)

f̄xĪ
x
i +

∑

i∈Γ(x)

B̄i




= δ

(
Â +

∑
i

B̂i

)
+

∑
x∈Ω

Pr(x)


 ∑

i∈Γ(x)

(
f̂xÎ

x
i + B̂i

)



= δ

(
Â +

∑
i

B̂i

)
+

∑
x∈Ω

Pr(x)


 ∑

i∈Γ(x)

f̂xÎ
x
i +

∑

i∈Γ(x)

B̂i


 ,

so [µ] is satisfied.
For all x,

f̄x

∑

i∈Γ(x)

Īx
i =

∑

i∈Γ(x)

(
f̂xÎ

x
i + B̂i

)

But

Ā = Â +
∑

i

B̂i ≥
∑

i∈Γ(x)

(
f̂xÎ

x
i + B̂i

)

since

Â ≥
∑

i∈Γ(x)

f̂xÎ
x
i ,

so [λx] is satisfied.
Since f̄x = 1, for all x, [φx] is satisfied, and the non-negativity constraints are obviously

satisfied since the original set of choices met the non-negativity constraints. So the proposed
choices are feasible ones.

Now we show that the proposed alternative choices produce the same value of the objec-
tive function. Note that

EUi =
∑

x∈Ωi

Pr(x)Ui

(
Wi − Li + f̄xĪ

x
i + B̄i − c̄i

)
+

∑

x/∈Ωi

Pr(x)Ui (Wi − c̄i)

can be rewritten as:

∑

x∈Ωi

Pr(x)Ui

(
Wi − Li + f̂xÎ

x
i + B̂i − ĉi

)
+

∑

x/∈Ωi

Pr(x)Ui (Wi − ĉi) ,

so, for each consumer, the proposed alternative choices yield the exact same utility as
the original choices. Therefore, the objective function value does not change when we move
from the original choices to the new choices. Q.E.D.
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B Proofs for Section 4.1

B.1 Derivation of (12) and (13)

We start by developing the first order conditions from the stated maximization problem. We
then use these to derive Equation 13 (which reduces to Equation 12 when δA = δB). The
first order conditions are as follows (where we use the notation Ux

i to denote the utility of
consumer i in state x):

[Bi] :
∑

x∈Ωi

Pr(x)
∂Ux

i

∂W
− µ

(
δB +

∑

x∈Ωi

Pr(x)

)
≤ 0 (25)

[ci] : −
∑
x∈Ω

Pr(x)
∂Ux

i

∂W
+ µ = 0 (26)

[Ii] :
∑

x∈Ωi

Pr(x)fx

(
∂Ux

i

∂W
− µ

)
−

∑

x∈Ωi

fxλx = 0 (27)

[A] : −δAµ +
∑
x∈Ω

λx = 0 (28)

[fx] :
∑

i∈Γ(x)

Pr(x)Ii

(
∂Ux

i

∂W
− µ

)
− λx

∑

i∈Γ(x)

Ii − φx = 0 (29)

We start by observing that φx = 0 for all states x (i.e., ∀x, the constraint fx ≤ 1 fails to
bind). To see this, multiply [Ii] by Ii and sum over i to obtain:

N∑
i=1

∑

x∈Ωi

Pr(x)fxIi

(
∂Ux

i

∂W
− µ

)
−

N∑
i=1

∑

x∈Ωi

fxIiλx = 0 (30)

Next, multiply [fx] by fx and sum over x to obtain:

∑
x∈Ω

∑

i∈Γ(x)

Pr(x)fxIi

(
∂Ux

i

∂W
− µ

)
−

∑
x∈Ω

∑

i∈Γ(x)

fxIiλx −
∑
x∈Ω

fxφx = 0 (31)

After noting that Γ(x) is a null set for the state where nobody experiences a loss (i.e., where x
is a vector of zeroes), it is evident that the first two terms of (30) are equal to the first two
terms of (31),15 implying that

∑
x∈Ω fxφx = 0. Thus, it is clear that φx = 0 for all x.

We now derive the marginal utility of catastrophe bond issuance for the case of two
consumers. After multiplying by fx, using the above result on φx, and rearranging, note
that [fx] can be written as:

∑

i∈Γ(x)

Pr(x)wx
i fx

(
∂Ux

i

∂W
− µ

)
− fxλx = 0,

15Intuitively, the summations
∑N

i=1

∑
x∈Ωi represent the sum of all states in which agent i suffers a loss,

summed across all agents i. This is equivalent to the sum of all agents suffering a loss in state x, summed
across all states x, which is depicted by the double summation

∑
x∈Ω

∑
i∈Γ(x).
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where

wx
i =

Ii∑
i∈Γ(x) Ii

.

Summing over x ∈ Ωi :

∑

x∈Ωi

Pr(x)fx


 ∑

j∈Γ(x)

wx
j

∂Ux
j

∂W
− µ


−

∑

x∈Ωi

fxλx −
∑

x∈Ωi

fxφx∑
j∈Γ(x) Ij

= 0,

which is the same as [Ii] except that
∂Ux

i

∂W
in each state is replaced by

∑
i∈Γ(x) wx

i
∂Ux

i

∂W
(a

weighted average of the marginal utilities of all consumers who lost in that state). In
summary, we have

∑

x∈Ωi

fxλx =
∑

x∈Ωi

Pr(x)fx


 ∑

j∈Γ(x)

wx
j

∂Ux
j

∂W
− µ


 . (32)

Note that we did not need to multiply by fx. Omitting this step leads to:

∑

x∈Ωi

λx =
∑

x∈Ωi

Pr(x)


 ∑

j∈Γ(x)

wx
j

∂Ux
j

∂W
− µ


 (33)

Recall the marginal condition [Bi] :

Ri = −(δ +
∑

x∈Ωi

Pr(x))µ +
∑

x∈Ωi

Pr(x)
∂Ux

i

∂W
≤ 0.

The first term is the marginal cost of issuance—including both the frictional cost per dollar
of collateral and the expected loss on the bond—and the second term is the marginal benefit,
which amounts to an extra dollar of consumption in all of the loss states. Subtracting the
left-hand side of the first order condition [Ii] from the above expression yields the following:

Ri =
∑

x∈Ωi

Pr(x) [1− fx]

(
∂Ux

i

∂W
− µ

)
+

∑

x∈Ωi

fxλx − δBµ.

or

Ri =
∑

x∈Ωi

Pr(x) [1− fx]

(
∂Ux

i

∂W
− µ

)
+

∑

x∈Ωi

[fx − 1] λx +
∑

x∈Ωi

λx − δBµ.

Substituting in from [A] yields:

Ri =
∑

x∈Ωi

Pr(x) [1− fx]

(
∂Ux

i

∂W
− µ

)
+

∑

x∈Ωi

[fx − 1] λx −
∑

x/∈Ωi

λx + (δA − δB) µ.

Subtracting (33) from (32) and substituting in the resulting expression for
∑

x∈Ωi [fx − 1] λx

yields Equation 13.
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B.2 Irrelevance of Cat Bonds in the Absence of Default Risk

In Footnote 10, we claim that a solution with positive cat bond issuance for consumer i,
where that consumer faces no default risk, is not unique and can be replicated by a solution
with zero issuance for consumer i. The following theorem proves this claim formally.

Theorem. Suppose δA = δB = δ and that Â, {B̂i}, {ĉi}, {Îi}, {f̂x} is a set of optimal choices
maximizing (21) subject to the listed constraints, with B̂k > 0 for some consumer k ∈
{1, ..., N}, and f̂x = 1 for all x ∈ Ωk. Then there exists another set of choices Ā, {B̄i}, {c̄i}, {Īi}, {f̄x},
with B̄k = 0 that satisfy the listed constraints and also maximize the objective function.

Proof:
Let c̄i = ĉi, for all i.
Let B̄i = B̂i, for all i 6= k. Let B̄k = 0.
Let Īi = Îi, for all i 6= k. Let Īk = Îk + B̂k

Let f̄x = f̂x, for all x.
Let Ā = Â + B̂k

We first verify that all constraints are satisfied. Note that

∑
c̄i =

∑
ĉi ≥ δ

(
Â +

∑
i

B̂i

)
+

∑
x∈Ω

Pr(x)


 ∑

i∈Γ(x)

f̂xÎi +
∑

i∈Γ(x)

B̂i


 =

δ

(
Ā +

∑
i

B̄i

)
+

∑
x∈Ω

Pr(x)


 ∑

i∈Γ(x)

f̄xĪi +
∑

i∈Γ(x)

B̄i


 ,

so [µ] is satisfied.
For all x /∈ Ωk, [λx] is obviously satisfied. For x ∈ Ωk, we know that

∑

i∈Γ(x)

Īi =
∑

i∈Γ(x)

Îi + B̂k,

and that f̄x = f̂x = 1 for all x ∈ Ωk. So, it follows that

f̄x

∑

i∈Γ(x)

Īi =
∑

i∈Γ(x)

Îi + B̂k ≤ Â + B̂k = Ā,

so [λx] is also satisfied for x ∈ Ωk.
Finally, the constraints [φx] are obviously satisfied, since f̄x = f̂x, for all x.
Next, we verify that the objective function value is unchanged with the new choices.

Note that, for all i,

∑

x∈Ωi

Pr(x)Ui

(
Wi − Li + f̄xĪi + B̄i − c̄i

)
+

∑

x/∈Ωi

Pr(x)Ui (Wi − c̄i)

equals

∑

x∈Ωi

Pr(x)Ui

(
Wi − Li + f̂xÎi + B̂i − ĉi

)
+

∑

x/∈Ωi

Pr(x)Ui (Wi − ĉi) .
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Thus, expected utility for each consumer under the new choices is identical to that under
the original choices. It follows that the overall objective function V =

∑
EUi must have

the same value under each set of choices. Q.E.D.

B.3 Homogeneity with Identical Frictional Costs

In this section, we assume that consumers are “homogenous” in the sense of having iden-
tical preferences and wealth, as well as having risks that are independent and identically
distributed. In this homogeneous case, we restrict ourselves to considering symmetric equi-
libria in which all consumers are treated identically.

With this focus, the choice problem can be simplified by recognizing that all consumers
have the same contracts and bond issuance. We denote the common probability of loss as p
and the size of loss as L and seek to solve:

max
B,I,E,c,{fl}

N∑

l=0

(
N

l

)
pl(1− p)N−l

[
l ∗ U(W − L + flI + (1− δ − p)B − c)+

(N − l) ∗ U(W − (δ + p)B − c)

]

subject to the following constraints, with their associated multipliers,

[µ] : Nc ≥ δA +
N∑

l=0

(
N

l

)
pl(1− p)N−llflI (34)

[λl] : lflI ≤ A,∀l (35)

[φl] : fl ≤ 1,∀l (36)

The contracting constraints are embodied in the fl multipliers,which allow the indemnity
payments to be scaled back in any state of the world (e.g., in states of default), but restricts
any discounting to apply evenly across policyholders. Note that fl is allowed to vary with l,
the number of insureds experiencing a loss. Also, note that we have automatically allocated
the frictional cost associated with cat bond issuance to the consumer (rather than including
it in constraint [µ]; this has no effect on the result.

The first order conditions for this problem are as follows (where we use the notation U
′
l

to denote the marginal utility of a consumer who experienced a loss along with l − 1 other
consumers, and Ū ′ is marginal utility in the no loss state):
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[B] :
N∑

l=0

(
N

l

)
pl(1− p)N−l

[
lU

′
l (1− δ − p)− (N − l)Ū ′(δ + p)

]
≤ 0 (37)

[c] :
N∑

l=0

(
N

l

)
pl(1− p)N−l

[
−lU

′
l − (N − l)Ū ′

]
+ Nµ = 0 (38)

[I] :
N∑

l=0

(
N

l

)
pl(1− p)N−l

(
U
′
l − µ

)
lfl −

∑
lflλl ≤ 0 (39)

[A] : −δµ +
∑

λl ≤ 0 (40)

[fl] :

(
N

l

)
pl(1− p)N−l

(
U
′
l − µ

)
lI − λllI − φl = 0 (41)

Note that the optimality condition for [c] can be used to rewrite [B] as:

−(δ + p)Nµ+
N∑

l=0

(
N

l

)
pl(1− p)N−llU

′
l = −δµ+

N∑

l=0

(
N

l

)
pl(1− p)N−l

(
l

N

)
[U ′

l − µ] . (42)

To rewrite this, we relied on the fact that, with N consumers,

p = p1(1− p)N−1 + (N − 1)p2(1− p)N−2 + ... + pN =
N∑

i=1

(
N − 1

i− 1

)
pi(1− p)N−i,

And, going further, that:

Np = N

N∑
i=1

(
N − 1

i− 1

)
pi(1−p)N−i = N

N∑
i=1

N − 1!

N − i!i− 1!
pi(1−p)N−i =

N∑
i=1

(
N

i

)
ipi(1−p)N−i

But [A] can be rewritten as:

−δµ +
N∑

l=0

(
N

l

)
pl(1− p)N−l [U ′

l − µ] ≤ 0, (43)

which is identical to the right hand side of (42) except for the weights
(

l
N

)
.

Note further that 1) [fl] implies that [U ′
l − µ] ≥ 0 for all l 6= 0, and 2)

(
l
N

)
< 1 for l < N ;(

l
N

)
= 1 for l = N. This implies that the right hand side of (42) will be strictly less than

the left hand side of (43) unless U ′
l − µ = 0 for l < N.

In other words, for catastrophe bond issuance will be strictly suboptimal unless consumers
are fully insured in all states of the world except the one where everyone experiences a loss.
In this scenario, the social planner is indifferent between using reinsurance policies alone and
reinsurance policies in conjunction with catastrophe bonds.
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C Proofs for Section 4.2

C.1 Derivation of (19)

The generalized asset allocation model produces the following first order conditions that
analogize to the simpler model:

[Bi] :
∑
s∈Ψ

∑

θ∈Υs1
i

µΘ(θ)
∂Uθ

i

∂W
− µ


δB +

∑
s∈Ψ

∑

θ∈Υs1
i

µΘ(θ)πθ


 ≤ 0,∀i (44)

[ci] : −ϕi + µ = 0,∀i (45)

[Ii] :
∑
s∈Ψ

∑

θ∈Υs1
i

µΘ(θ)fθ

(
∂Uθ

i

∂W
− µπθ

)
−

∑
s∈Ψ

∑

θ∈Υs1
i

fθλθ = 0, ∀i (46)

[A] : −δAµ +
∑
s∈Ψ

∑

θ∈Υs

λθ = 0 (47)

[fθ] :
∑

i∈Γ(θ)

µΘ(θ)Ii

(
∂Uθ

i

∂W
− µπθ

)
− λθ

∑

i∈Γ(θ)

Ii − φθ = 0,∀θ (48)

It is straightforward to derive the return on catastrophe bonds in this case, by following the
outline of our earlier argument. First, we show that φθ = 0 for all θ. To see this, multiply
[Ii] by Ii and sum over i to obtain:

∑
i

∑
s∈Ψ

∑

θ∈Υs1
i

µΘ(θ)fθ

(
∂Uθ

i

∂W
− µπθ

)
Ii −

∑
i

∑
s∈Ψ

∑

θ∈Υs1
i

fθλθIi = 0

Next, multiply [fθ] by fθ and sum over θ to obtain:

∑

θ∈Θ

∑

i∈Γ(θ)

µΘ(θ)fθIi

(
∂Uθ

i

∂W
− µπθ

)
−

∑

θ∈Θ

λθfθ

∑

i∈Γ(θ)

Ii −
∑

θ∈Θ

fθφθ = 0

The definitions of Γ and Υ imply that the double summation
∑

θ∈Θ

∑
i∈Γ(θ) is equivalent to∑

i

∑
s∈Ψ

∑
θ∈Υs1

i
. Therefore, it is the case that

∑
θ∈Θ fθφθ = 0, and that φθ = 0 for all θ.

Using this result, and multiplying [fθ] by fθ, we obtain:

∑

i∈Γ(θ)

µΘ(θ)wθ
i fθ

(
∂Uθ

i

∂W
− µπθ

)
− λθfθ = 0,

where

wθ
i =

Ii∑
i∈Γ(θ) Ii

Summing over θ ∈ Θi, we obtain:

∑

θ∈Θi

µΘ(θ)fθ


 ∑

i∈Γ(θ)

wθ
i

∂Uθ
i

∂W
− µπθ


 =

∑

θ∈Θi

λθfθ, (49)
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Dividing both sides of this equation by fθ yields:

∑

θ∈Θi

µΘ(θ)


 ∑

i∈Γ(θ)

wθ
i

∂Uθ
i

∂W
− µπθ


 =

∑

θ∈Θi

λθ, (50)

Subtracting equation 50 from 49 leads to:

∑

θ∈Θi

µΘ(θ)(fθ − 1)


 ∑

i∈Γ(θ)

wθ
i

∂Uθ
i

∂W
− µπθ


 =

∑

θ∈Θi

λθ(fθ − 1) (51)

We now rewrite the marginal condition [Bi] in terms of the Θi set notation:

Ri =
∑

θ∈Θi

µΘ(θ)

(
∂Uθ

i

∂W
− µπθ

)
− µδB ≤ 0 (52)

Subtracting the right-hand side of [Ii] from the above equation results in:

Ri =
∑

θ∈Θi

µΘ(θ)(1− fθ)

(
∂Uθ

i

∂W
− µπθ

)
+

∑

θ∈Θi

fθλθ − µδB ≤ 0 (53)

or

Ri =
∑

θ∈Θi

µΘ(θ)(1− fθ)

(
∂Uθ

i

∂W
− µπθ

)
+

∑

θ∈Θi

(fθ − 1)λθ +
∑

θ∈Θi

λθ − µδB ≤ 0 (54)

Substituting in from [A] yields:

Ri =
∑

θ∈Θi

µΘ(θ)(1− fθ)

(
∂Uθ

i

∂W
− µπθ

)
+

∑

θ∈Θi

(fθ − 1)λθ −
∑

θ/∈Θi

λθ + µ(δA − δB) ≤ 0 (55)

Substituting in equation 51 transforms this into:

Ri =
∑

θ∈Θi

µΘ(θ)(1− fθ)


∂Uθ

i

∂W
−

∑

i∈Γ(θ)

wθ
i

∂Uθ
i

∂W


−

∑

θ/∈Θi

λθ + µ(δA − δB) ≤ 0 (56)

This is the final expression for the bond return.

C.2 Characterization of Solution without Frictional Costs

This section presents four lemmas in support of the claims in Section 4.2. Specifically, the
intention is to show that, in the absence of frictional costs, 1) full insurance is optimal, and 2)
given full insurance, the division of risk transfer between reinsurance polices and catastrophe
bonds is irrelevant. The approach is as follows.

The first lemma facilitates later work. It shows that, for each consumer, the sum of
promised indemnification under insurance policies and catastrophe bond principal in any
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solution will be at least equal to the loss, allowing us to rule out solutions where some
consumers have less than full coverage.

The second lemma shows that, if the optimal solution features exactly full coverage for
each consumer (in the sense of the sum of promised indemnification under insurance policies
and catastrophe bond principal being exactly equal to the loss), there will be no default: In
other words, full coverage means full insurance.

The third lemma shows the indeterminacy of risk transfer: If consumers have exactly
full coverage (and hence, by the second lemma, full insurance), it does not matter how that
coverage is delivered—a continuum of solutions with exactly full coverage (but different splits
of coverage between cat bonds and insurance) exist.

The fourth lemma shows that, in any case where a solution exists where a consumer
has greater than full coverage (i.e., the sum of promised indemnity and catastrophe bond
principal is greater than the loss), an equivalent solution can be constructed with exactly full
coverage. This completes the proof of the “full insurance is always optimal.” By the first
lemma, we know that only solutions with exactly full coverage and greater than full coverage
need be considered. By the fourth lemma, we know that any solution with greater than fully
coverage can be replicated by a solution with exactly full coverage. By the second lemma,
we know that a solution with full coverage also features no default (i.e., full insurance).

Likewise, the fourth lemma completes the proof of the second claim—that the division
of risk transfer between insurance policies and catastrophe bonds is indeterminate in the
absence of frictional costs. By the reasoning in the preceding paragraph, we know that
solutions with exactly full coverage and full insurance are always optimal in the absence
of frictional costs. By the third lemma, we know that the division of risk transfer be-
tween insurance policies and catastrophe bonds is indeterminate in solutions with exactly
full coverage and full insurance, in the absence of frictional costs.

Lemma. Consider the maximization of (14) subject to the constraints below it, and assume
at least one solution exists. Then there exists a solution Â, {B̂i}, {ĉi}, {Îi}, {f̂θ}, {Ŵis} with
Îi + B̂i ≥ Li, for all i.

Proof:
Suppose not. Then there is a solution with Îk + B̂k < Lk for some k ∈ {1, ..., N}.

Consider an alternative set of choices:
Ã = Â.
Ĩi = Îi, for all i.
f̃θ = f̂θ, for all θ.

B̃i = B̂i, for all i 6= k; B̃k = B̂k +
(
Lk − (Îk + B̂k)

)
.

c̃i = ĉi, for all i 6= k; c̃k = ĉk +
∑

θ∈Θk µΘ(θ)πθ
(
B̃k − B̂k

)

W̃is = Ŵis, ∀i 6= k, ∀s; W̃ks = Ŵks −
∑

θ∈{θ:θ(N+1)=s,θ∈Θk} µΘ(θ)
(
B̃k − B̂k

)
, ∀s

We first verify that these new choices satisfy all constraints. First, note that
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∑

θ∈Θ


µΘ(θ)πθf̃θ

∑

i∈Γ(θ)

Ĩi


 +

∑
i

(∑

θ∈Θi

µΘ(θ)πθ

)
B̃i =

∑

θ∈Θ


µΘ(θ)πθf̂θ

∑

i∈Γ(θ)

Îi


 +

∑
i

(∑

θ∈Θi

µΘ(θ)πθ

)
B̂i +

∑

θ∈Θk

µΘ(θ)πθ
(
B̃k − B̂k

)
≤

∑
ĉi +

∑

θ∈Θk

µΘ(θ)πθ
(
B̃k − B̂k

)
=

∑
c̃i.

So [µ] is satisfied.
Next, since Ã = Â, Ĩi = Îi (for all i), and f̃θ = f̂θ (for all θ), the new choices satisfy [λθ]

and [φθ] .
Next, note that [ϕi] is obviously satisfied for i 6= k. For i = k, note that:

∑
s∈Ψ

πsW̃ks =
∑
s∈Ψ

πs


Ŵks −

∑

θ∈Υs1
k

µΘ(θ)
(
B̃k − B̂k

)



≤ W − ĉk −
∑
s∈Ψ

πs

∑

θ∈Υs1
k

µΘ(θ)
(
B̃k − B̂k

)
= W − c̃k,

so [ϕk] is satisfied.
The non-negativity constraints are obviously satisfied in all cases.
We next verify that the proposed alternative set of choices improves the objective func-

tion. Since Ĩi = Îi (for all i), B̃i = B̂i (for all i 6= k), c̃i = ĉi (for all i 6= k), W̃is = Ŵis (for
all i 6= k), and f̃θ = f̂θ (for all θ), it is obvious that the alternative choices yield identical
levels of expected utility for all consumers other than consumer k.

Recall the definitions Υs0
k ≡ {θ : θ /∈Θk,θ(N +1) = s} and Υs1

k ≡ {θ : θ ∈Θk,θ(N +1) =
s}, noting further that

Υs ≡ Υs0
k ∪Υs1

k = {θ : θ(N + 1) = s}.
For consumer k,

EŨk =
∑
s∈Ψ

∑

θ∈Υs1
k

µΘ(θ)Uk

(
W̃ks − Lk + f̃θĨk + B̃k

)
+

∑
s∈Ψ

∑

θ/∈Υs0
k

µΘ(θ)Uk

(
W̃ks

)

EÛk =
∑
s∈Ψ

∑

θ∈Υs1
k

µΘ(θ)Uk

(
Ŵks − Lk + f̂θÎk + B̂k

)
+

∑
s∈Ψ

∑

θ/∈Υs0
k

µΘ(θ)Uk

(
Ŵks

)

The difference EŨk−EÛk reflects the increase in utility when moving from the “solution”
to the utility level obtained with the alternative set of choices. It can be written as:
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∑
s∈Ψ

∑

θ∈Υs1
k

µΘ(θ)
[
Uk

(
W̃ks − Lk + f̃θĨk + B̃k

)
− Uk

(
Ŵks − Lk + f̂θ Îk + B̂k

)]
+

∑
s∈Ψ

∑

θ∈Υs0
k

µΘ(θ)
[
Uk

(
W̃ks

)
− Uk

(
Ŵks

)]

If this difference is weakly positive, then the alternative set of choices constitutes an addi-
tional solution, and we have our desired contradiction.

If security markets are complete with respect to consumer k’s loss exposure (i.e., if, for
every s, either Υs0

k = ∅ or Υs1
k = ∅), then it is trivial to show that this difference is zero. If

security markets are incomplete with respect to consumer k’s loss exposure, then there will
be some nonempty subset Z ⊂ Ψ such that:

Z = {s : Υs0
k 6= ∅, Υs1

k 6= ∅}.
For every s ∈ Z,

∑

θ∈Υs1
k

µΘ(θ)
[
Uk

(
W̃ks − Lk + f̃θĨk + B̃k

)
− Uk

(
Ŵks − Lk + f̂θÎk + B̂k

)]
+

∑

θ∈Υs0
k

µΘ(θ)
[
Uk

(
W̃ks

)
− Uk

(
Ŵks

)]

may be rewritten as:

∑

θ∈Υs1
k

µΘ(θ)Uk

(
W̃ks − Lk + f̃θ Ĩk + B̃k

)
+

∑

θ∈Υs0
k

µΘ(θ)Uk

(
W̃ks

)
−

∑

θ∈Υs1
k

µΘ(θ)Uk

(
Ŵks − Lk + f̂θ Îk + B̂k

)
+

∑

θ∈Υs0
k

µΘ(θ)Uk

(
Ŵks

)

and further as:

∑

θ∈Υs1
k

µΘ(θ)Uk


Ŵks −

∑

θ∈Υs1
k

µΘ(θ)
(
B̃k − B̂k

)
− Lk + f̃θĨk +

(
B̃k − B̂k

)
+ B̃k




+
∑

θ∈Υs0
k

µΘ(θ)Uk


Ŵks −

∑

θ∈Υs1
k

µΘ(θ)
(
B̃k − B̂k

)

−


 ∑

θ∈Υs1
k

µΘ(θ)Uk

(
Ŵks − Lk + f̂θÎk + B̂k

)
+

∑

θ∈Υs0
k

µΘ(θ)Uk

(
Ŵks

)

 ,

which is greater than zero, since Uk is concave and
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f̂θÎk + B̂k < f̃θ Ĩk +
(
B̃k − B̂k

)
+ B̃k ≤ Lk, ∀θ.

QED.

Lemma. Let Â, {B̂i}, {ĉi}, {Îi}, {f̂θ}, {Ŵis} be choices that solve (14) subject to the con-
straints below it, and suppose Îi+B̂i = L, for all i. Then there exists a solution Ã, {B̃i}, {c̃i},
{Ĩi}, {f̃θ}, {W̃is} with 1) Ĩi + B̃i = Li, for all i, and 2) f̃θ = 1, for all θ where Γ(θ) is
nonempty and Îi > 0 for some i ∈ Γ(θ).

Proof :
Suppose not. Then the set ∆ = {θ : f̂θ < 1} is nonempty and Îi > 0 for some i ∈ Γ(θ)

for some θ ∈ ∆.
Let Φ ≡ {i : Îi > 0, i ∈ Γ(θ) for some θ ∈ ∆}. Consider an alternative set of choices as

follows:
f̃θ = 1, ∀θ.
Ĩi = Îi, for all i.
B̃i = B̂i, for all i

Ã = max
[
Â, maxθ∈∆

∑
i∈Γ(θ) Ĩi

]

c̃i = ĉi +
∑

θ∈Θi µΘ(θ)πθ
(
f̃θ − f̂θ

)
Ĩi, ∀i.

W̃is = Ŵis −
∑

θ∈{θ:θ∈Θi,θ(N+1)=s} µΘ(θ)
(
f̃θ − f̂θ

)
Ĩi, ∀s, ∀i.

We first verify that the constraints are satisfied.
Starting with [µ], note that

∑
c̃i =

∑
i

(
ĉi +

∑

θ∈Θi

µΘ(θ)πθ
(
f̃θ − f̂θ

)
Ĩi

)

=
∑

θ∈Θ

µΘ(θ)πθf̂θ

∑

i∈Γ(θ)

Îi +
∑

i

(∑

θ∈Θi

µΘ(θ)πθ

)
B̂i +

∑
i

∑

θ∈Θi

µΘ(θ)πθ
(
f̃θ − f̂θ

)
Ĩi

=
∑

θ∈Θ

µΘ(θ)πθf̃θ

∑

i∈Γ(θ)

Ĩi +
∑

i

(∑

θ∈Θi

µΘ(θ)πθ

)
B̃i.

By construction of Ã, it is clear that [λθ] is satisfied. Likewise, since f̃θ = 1, ∀θ, [φθ] is
satisfied.

For the individual wealth constraint [ϕi],

∑
s

πsW̃is =
∑

s

πsŴis −
∑

s

∑

θ∈Υs1
k

µΘ(θ)πθ
(
f̃θ − f̂θ

)
Ĩi

≤ W − ĉi −
∑

s

∑

θ∈Υs1
k

µΘ(θ)πθ
(
f̃θ − f̂θ

)
Ĩi

= W − c̃i.
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The non-negativity constraints are obviously satisfied. We now must verify that the
alternative choices improve the objective function.

Evidently, utility is unchanged for i /∈ Φ, so we are left to verify that utility improves
for i ∈ Φ. We thus consider some consumer k (with k ∈ Φ). To verify that utility improves
with the new choices, we focus on the utility levels under the alternative and original choices,
as in:

EŨk =
∑

s

∑

θ∈Υs1
k

µΘ(θ)Uk

(
W̃ks − Lk + f̃θĨk + B̃k

)
+

∑
s

∑

θ∈Υs0
k

µΘ(θ)Uk

(
W̃ks

)

EÛk =
∑

s

∑

θ∈Υs1
k

µΘ(θ)Uk

(
Ŵ θ

k − Lk + f̂θÎk + B̂k

)
+

∑
s

∑

θ∈Υs0
k

µΘ(θ)Uk

(
Ŵ θ

k

)

and examine the difference EŨk − EÛk.
If security markets are complete with respect to consumer k’s loss exposure (i.e., if, for

every s, either Υs0
k = ∅ or Υs1

k = ∅), then it can be shown that this difference is zero—since
security markets can replicate the payoffs from insurance policies for consumer k. Similarly,
when security markets are incomplete, but the sets Z ≡ {s : Υs0

k 6= ∅, Υs1
k 6= ∅} and

X = {θ(N + 1) : θ ∈∆} do not intersect, the difference will be zero for the same reason.
On the other hand, if Z ∩ X 6= ∅, then consumer k cannot replicate insurance policy

payoffs with securities. For every s,

∑

θ∈Υs1
k

µΘ(θ)
[
Uk

(
W̃ks − Lk + f̃θĨk + B̃k

)
− Uk

(
Ŵks − Lk + f̂θÎk + B̂k

)]
+

∑

θ∈Υs0
k

µΘ(θ)
[
Uk

(
W̃ θ

k

)
− Uk

(
Ŵ θ

k

)]

may be rewritten as:

∑

θ∈Υs1
k

µΘ(θ)Uk


Ŵks −

∑

θ∈Υs1
k

µΘ(θ)
(
1− f̂θ

)
Îk


 +

∑

θ∈Υs0
k

µΘ(θ)Uk


Ŵks −

∑

θ∈Υs1
k

µΘ(θ)
(
1− f̂θ

)
Îk


−

∑

θ∈Υs1
k

µΘ(θ)Uk

(
Ŵks −

(
1− f̂θ

)
Îk

)
+

∑

θ∈Υs0
k

µΘ(θ)Uk

(
Ŵks

)

which is greater than or equal to zero, since Uk is concave, with strict inequality when
s ∈ Z ∩X.

QED.
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Lemma. Let Â, {B̂i}, {ĉi}, {Îi}, {f̂θ}, {Ŵis} be choices that solve (14) subject to the con-
straints below it, and Îi + B̂i = L, for all i. Then, an equivalent solution yielding 1) the
same value for the overall objective function and 2) the same values for the utility levels
of each of the individual consumers, can be constructed as Â, {B̃i}, {ĉi}, {Ĩi}, {f̂θ}, {Ŵis},
where {B̃i} and {Ĩi} are any alternative sets of feasible choices satisfying the nonnegativity
constraints and Ĩi + B̃i = Li, for all i, and Â = max

θ

∑
Γ(θ) Ĩi.

Proof :
The preceding lemma shows that for any solution with Îi+B̂i = Li, for all i, an equivalent

solution can be constructed as:
f̌θ = 1, ∀θ.
Ǐi = Îi, for all i.
B̌i = B̂i, for all i

Ǎ = max
[
Â, maxθ∈∆

∑
i∈Γ(θ) Ǐi

]

či = ĉi +
∑

θ∈Θi µΘ(θ)πθ
(
f̌θ − f̂θ

)
Ǐi, ∀i.

W̌is = Ŵis −
∑

θ∈Υs1
k

µΘ(θ)
(
f̌θ − f̂θ

)
Ǐi, ∀s, ∀i.

Then, given any sets {B̃i} and {Ĩi} that satisfy Ĩi + B̃i = Li, Ĩi ≥ 0, and B̃i ≥ 0, for all i,
we construct the remaining choice variables as:

f̃θ = 1, ∀θ.
Ã = max

θ

∑
i∈Γ(θ) Ĩi

c̃i = či, ∀i.
W̃is = W̌is, ∀s, ∀i.
We now must show that the new choices satisfy all constraints and (weakly) improve the

objective function. Starting with constraint [µ], in the absence of frictional costs, we have:

∑
c̃i =

∑
či ≥

∑

θ∈Θ


µΘ(θ)πθfθ

∑

i∈Γ(θ)

Ǐi


 +

∑
i

(∑

θ∈Θi

µΘ(θ)πθ

)
B̌i

Since fθ = 1, we may rewrite as:

∑
c̃i =

∑
či ≥

∑
i

(∑

θ∈Θi

µΘ(θ)πθ

)
(
B̌i + Ǐi

)

But, since

B̌i + Ǐi = Ĩi + B̃i = L,

∑
c̃i ≥

∑
i

(∑

θ∈Θi

µΘ(θ)πθ

) (
B̃i + Ĩi

)
,

so the constraint is satisfied.
For constraint [λθ], note that:
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Ã = max
θ

∑

i∈Γ(θ)

Ĩi,

which is obviously greater than or equal to fθ

∑
i∈Γ(θ) Ĩi for all θ, so the constraint is satisfied.

Constraints [φθ] and [ϕi] are obviously satisfied, since f̃θ = 1, c̃i = či, and W̃is = W̌is.
Since 1) state contingent wealth allocations are unchanged under the new choices (W̃is =

W̌is, for all s and for all i), and 2) the total of insurance policy and cat bond recoveries are
unchanged for every consumer in every state of the world where that consumer experiences
a loss:

fθĨi + B̃i = Ĩi + B̃i = Ǐi + B̌i = fθǏi + B̌i, ∀i,θ ∈Θi,

it is evident that utility is unchanged for every consumer. Thus, the objective function is
unchanged and the alternative choices proposed must constitute an additional solution.

QED.

Lemma. Let Â, {B̂i}, {ĉi}, {Îi}, {f̂θ}, {Ŵis} be choices that solve (14) subject to the con-
straints below it, and suppose Îi + B̂i > L, for at least one i. Then there exists a “full
coverage, full insurance” solution yielding the same value for the overall objective function
that can be constructed with {B̃i} and {Ĩi} as alternative sets of feasible choices satisfying
the nonnegativity constraints and Ĩi + B̃i = Li, for all i, f̃θ = 1 ∀θ, and Ã = max

θ

∑
i∈Γ(θ) Ĩi.

Proof :
From the preceding lemma, we know that all solutions with Ĩi + B̃i = Li, for all i,

and f̃θ = 1, ∀θ, are equivalent. Given sets {B̃i} and {Ĩi} satisfying these conditions,
construct the remaining choice variables as:

Ã = max
θ

∑
i∈Γ(θ) Ĩi

f̃θ = 1, ∀θ
c̃i = ĉi +

∑
θ∈Θi µΘ(θ)πθ

[(
f̃θĨi − f̂θÎi

)
+

(
B̃i − B̂i

)]

W̃is = Ŵis −
∑

θ∈Υs1
k

µΘ(θ)
[(

f̃θĨi − f̂θÎi

)
+

(
B̃i − B̂i

)]
, ∀s, ∀i

We start by verifying that these alternative choices satisfy the constraints. First, rewrite
the original constraint as:

∑
ĉi ≥

∑
i

∑

θ∈Θi

µΘ(θ)πθ
(
f̂θÎi + B̂i

)
.

Furthermore,
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∑
c̃i =

∑
ĉi +

∑
i

∑

θ∈Θi

µΘ(θ)πθ
[(

f̃θ Ĩi − f̂θ Îi

)
+

(
B̃i − B̂i

)]

≥
∑

i

∑

θ∈Θi

µΘ(θ)πθ
(
f̂θ Îi + B̂i

)
+

∑
i

∑

θ∈Θi

µΘ(θ)πθ
[(

f̃θĨi − f̂θÎi

)
+

(
B̃i − B̂i

)]

≥
∑

i

∑

θ∈Θi

µΘ(θ)πθ
(
f̃θ Ĩi + B̃i

)

=
∑

θ∈Θ


µΘ(θ)πθf̃θ

∑

i∈Γ(θ)

Ĩi


 +

∑
i

(∑

θ∈Θi

µΘ(θ)πθ

)
B̃i

so [µ] is satisfied.
Next, since Ã = max

θ

∑
i∈Γ(θ) Ĩi and f̃θ = 1 for all θ, [λθ] and [φθ] are obviously satisfied.

For [ϕi], note that, for each i,

∑
s∈Ψ

πsW̃is =
∑
s∈Ψ

πsŴis −
∑
s∈Ψ

πs

∑

θ∈Υs1
k

µΘ(θ)
[(

f̃θĨi − f̂θÎi

)
+

(
B̃i − B̂i

)]

≤ W − ĉi −
∑

θ∈Υs1
k

µΘ(θ)πθ
[(

f̃θ Ĩi − f̂θ Îi

)
+

(
B̃i − B̂i

)]

= W − c̃i,

so the constraints are evidently satisfied.
By definition, the non-negativity constraints are satisfied.
It remains to show that the objective function (weakly) improves under the alternative

choices. For any consumer k, the difference between utility achieved under the alternative
choices and the original choices can be expressed as:

∑
s∈Ψ

∑

θ∈Υs1
k

µΘ(θ)
[
Uk

(
W̃ks − Lk + f̃θĨk + B̃k

)
− Uk

(
Ŵks − Lk + f̂θ Îk + B̂k

)]
+

∑
s∈Ψ

∑

θ∈Υs0
k

µΘ(θ)
[
Uk

(
W̃ks

)
− Uk

(
Ŵks

)]
.

Simplifying (recall that f̃θĨk + B̃k always equals L) yields:

∑
s∈Ψ

∑

θ∈Υs1
k

µΘ(θ)
[
Uk

(
W̃ks

)
− Uk

(
Ŵks − Lk + f̂θÎk + B̂k

)]
+

∑
s∈Ψ

∑

θ∈Υs0
k

µΘ(θ)
[
Uk

(
W̃ks

)
− Uk

(
Ŵks

)]
,

or:
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∑
s∈Ψ

∑

θ∈Υs1
k

µΘ(θ)


Uk


Ŵks −

∑

θ∈Υs1
k

µΘ(θ)
[
Lk − (f̂θ Îk + B̂k)

]

− Uk

(
Ŵks − Lk + f̂θÎk + B̂k

)



+
∑
s∈Ψ

∑

θ∈Υs0
k

µΘ(θ)


Uk


Ŵks −

∑

θ∈Υs1
k

µΘ(θ)
[
Lk − (f̂θÎk + B̂k)

]

− Uk

(
Ŵks

)



Since Uk is concave, it follows that this difference is weakly greater than zero.
QED.
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