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1. Introduction 

Early research on hedge fund performance, such as the papers by Fung and Hsieh (1997) 

and Liang (1999), attempted to decompose the required returns on hedge fund strategies 

through linear combinations of returns on different asset classes such as stocks, bonds, 

and commodities. Regardless of the strategy under study, these traditional sets of factors 

could not yield significance levels (as measured by the adjusted R-square) higher than 

80%, even with as many as 11 risk premia.  

To improve on the static factor model, two streams have developed in the literature. A 

first approach is to relax the assumption of constant exposures to the risk factors. This 

can be done by measuring regime-switching betas, as in Edwards and Caglayan (2001) 

and Capocci, Corhay and Hübner (2005) who measure different betas in up and down 

markets, or by allowing for time-varying betas. This approach is advocated by Fung and 

Hsieh (2004) and Posthuma and van der Sluis (2005) in a Kalman filtering approach. 

Amenc and Vaissié (2006) combine a mixture of Kalman smoothing and regime 

switching models. 

The other approach aims at capturing the nonlinear risk exposures of hedge fund returns 

through the factor premia themselves, leaving the betas constant. Mitchell and Pulvino 

(2001) introduce piecewise linear regressions to account for non-linearities in hedge fund 

returns for risk arbitrage strategies. Fung and Hsieh (2000, 2004) introduce risk premia 

accounting for option straddles for trend-following funds, as these strategies tend to 

exhibit payoffs that resemble long option positions. In a similar vein, Agarwal and Naik 
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(2004) use a framework that applies the option strategies proposed by Glosten and 

Jagannathan (1994) to estimate the returns of exchange-traded calls and puts. Finally, 

Chan et al. (2005) apply a regime-switching multi-moments model to hedge fund returns. 

Irrespective of the approach considered, a highly non-normal behavior of returns is likely 

to flaw statistical inference if there is evidence of measurement errors in the explanatory 

variables. These errors influence the point estimators of the risk factor loadings. Errors in 

the variables may lead to the non convergence of the OLS estimator, very often used in 

the financial literature, casting doubt on the results. Paradoxically, few theoretical and 

applied efforts have been made to reduce this important bias. Fama and Mac Beth (1973) 

try to reduce measurement errors, grouping equities in portfolios. Shanken (1992) 

suggests to adjust standard errors to correct biases induced by errors in variables. Kandel 

and Stambaugh (1995) use a GLS method, but a difficult estimation of covariance matrix 

is needed. 

Unfortunately, the measurement error issue is very likely to arise in the analysis of hedge 

fund returns. In particular, the option-based factors used in the empirical specifications 

are highly prone to measurement errors as they combine the characteristics of being 

artificial variables and of following highly skewed and leptokurtic distributions. 

Furthermore, option-based factors tend to be highly correlated with their corresponding 

asset-based factors, raising potentials concerns for multicolinearity. In this context, as 

shown by Fung and Hsieh (2000, 2004) and by Agarwal and Naik (2004), neither the 

Sharpe ratio, nor Jensen’s alpha are likely to adequately measure abnormal performance 

with the Ordinary Least Squares (OLS). Any properly designed performance measure has 

indeed to account for the significant skewness and kurtosis displayed by hedge fund 
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returns. Thus, the proper treatment of measurement errors appears to be of particular 

importance in the context of the assessment of hedge fund required returns and 

performance. 

In this paper, we propose the use of estimators based on moments of order higher than 

two proposed by Cragg (1994, 1997), Dagenais and Dagenais (1997), and Lewbel (2006) 

to solve this issue. Dagenais and Dagenais’s (1997) higher moment estimator (HM) 

belongs to the class of instrumental variables (IV) estimators. Although instrumental 

variables can resolve in principle the error-in-variables problem, in practice many 

difficulties remain. Among them, finding instruments and proving their validity is not 

always easy in practice1.  

An attractive feature of Dagenais and Dagenais estimator is that no extraneous 

information is required since instruments are constructed from the higher moments 

(skewness, kurtosis and over) of the original data. This approach should arouse interest 

not only because the method is quite simple to implement but also because an estimation 

technique based on the higher moments of asset returns echoes the fundamental 

contribution of Samuelson (1970), demonstrating that the first two moments of asset 

returns do not offer a complete description of portfolio risk. This point is well 

acknowledged in the financial literature2.  

Yet, the Dagenais and Dagenais (1997) method displays a practical drawback. For each 

independent variable used in the original return generating process, the corrected 

estimator generates a new regressor that specifically accounts for the estimated 

measurement error. This mechanical adjustment doubles the number of variables and may 

                                                 
1 See Pal (1980) for further details.  
2 The paradigm of portfolio selection based on the first two moments of the returns distribution does not 
describe well reality: see Huang and Litzenberger (1987) among others.  
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lead to a serious model overspecification. In that respect, the remedy could be worse than 

the pain. We propose a simple method to circumvent this issue by setting up a recursive 

regression algorithm that gradually unfolds the set of independent variables. This 

procedure allows us to reap the best of both the HM and OLS worlds, as it ensures a 

proper care of the measurement errors while limiting the inflation in the variables to what 

is strictly necessary to optimize the significance level of the regression. 

We apply this approach to a set of hedge fund indexes constructed with equally weighted 

hedge fund portfolios. Unlike the investable indexes that can be retrieved by data 

providers, this database most closely resembles portfolio returns that researchers typically 

use in empirical studies. Doing so, we can assess the impact of our procedure for research 

purposes. We estimate the return generating process with a mix of asset- and option-

based explanatory factors.  

Our results indicate that the correction for measurement errors that we perform has a 

significant impact on the performance measurement of hedge fund strategies, especially 

when option-based strategies are considered. Thus, beyond the methodological 

improvements brought in by the higher moment estimation approach, it strongly modifies 

the vision of economic performance of the hedge funds industry. Furthermore, the 

recursive regressions algorithm practically reduces the number of variables in most cases, 

leaving the economic interpretation of the risk premia unchanged, while improving the 

significance of the return generating process. 

The article is organized as follows. Section 2 introduces the econometric method. Section 

3 contains the description of data, the risk factors (buy-and-hold and option-based) and 

the theoretical framework. In Section 4, we present the model in presence of error-in-
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variables, and the results are reported. Section 5 analyzes the choice of factor loadings 

when measurement errors are detected and discussed the stability of risk premia. Section 

6 provides conclusive remarks and suggestions for future research.  

 

2. Linear multifactor model with errors in the variables 

2.1. Higher moment estimators 

With the fundamental work of Frisch (1934), the analysis of measurement errors in the 

regressors, also called errors-in-variables (EIV), initially played a central at the early 

stages in econometrics. It is well known in the economic literature that EIV tend to lead 

to inconsistent ordinary least squares (OLS) estimators in linear regression models. 

Nevertheless, as underlined by Cragg (1994) and Dagenais and Dagenais (1997), the 

problem of EIV have been neglected thereafter. This general neglect of EIV arises from a 

certain misunderstanding of the problem. Treatments of measurement error are usually 

put in the context of a bivariate (i.e. one-factor) linear model. In this particular context, 

two effects can be reported. The first effect is labelled “attenuation effect” by Cragg 

(1994): measurement error biases the slope coefficient toward zero. The second effect is 

called “contamination effect”: measurement error “produces a bias of the opposite sign 

on the intercept coefficient when the average of the explanatory variables is positive3”. 

The contamination effect seems to be neglected and many focus only on the attenuation 

effect. Since the “attenuation effect” appears not to change coefficient sign, errors-in-

variables seem at worst to give rise to conservative estimates. Moreover, given that the 

extent of the attenuation effect is negatively related to the regression 2R , High 2R  are 

indicative of negligible attenuation effect. As highlighted by Cragg (1994), the 
                                                 
3  Cragg (1994), p. 780. 
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conclusions of the bivariate case do not generalize easily to multiple regressions with 

measurement error in more than one variable. Cragg (1994, 1997) demonstrates that the 

bias of any given parameter depends on its own error (the attenuation effect) but also on 

the errors in all others variables (the contamination effect). Because of the contamination 

effect, all parameters of a multiple regressions are inconsistent even if only one variable 

is measured with error. Dagenais and Dagenais (1997) argue that errors-in-variables also 

have more perverse effects on confidence intervals and on the sizes of the type I errors. 

Most data used in empirical economics suffer from the problem of errors-in-variables. In 

finance and especially for asset pricing models this problem is crucial. With the CAPM, 

and Roll’s (1977) famous critique, the unobservability of the true market portfolio 

illustrates the presence of errors-in-variables. In this context, the market factor is 

measured with error, and estimated of the market beta certainly suffer from the problems 

listed in previous paragraphs. Theses problems can be generalized to more general linear 

multifactor model of asset returns such as Ross (1976)’s Arbitrage Pricing Theory or 

Fama and French (1993)’s model. 

Errors-in-variable become important in the estimation of linear asset pricing models 

because they induce a correlation between residuals and regressors that lead to biased and 

inconsistent parameter estimates.  

The problem of errors-in-variable in a finance context can be illustrated through the 

estimation of the following multifactor model of asset return4, tR . 

t

K

k
ktkt uFR +⋅+= ∑

=1

~βα         (1) 

                                                 
4 Here, we consider only errors in independent variables. As it is well known in the econometric literature 
(see Davidson and MacKinnon (2004) for example), there is no bias when only the dependent variable is 
plagued with measurement errors. 



 

 

8

where α is a constant term, tkF~ is factor k realization in period t, kβ is factor k loading and 

tu  is a residual idiosyncratic risk. 

This formulation encompasses many popular models of asset returns. For instance, the 

CAPM is obtained if K=1 and tF1
~  is the market return. The parameter α is known as the 

security’s abnormal return, also called Jensen’s alpha.  

The parameters of model (1) can be consistently estimated by ordinary least squares 

(OLS) if the K factors ktF~  are observed by the analyst. Ordinary least squares are no 

longer consistent if some or all factors ktF~  are unknown and estimation and inference are 

based on observed factors ktF  instead. To demonstrate this point, suppose all factors are 

unobserved and the relationships between true and observed factors are additive. 

ttt vFF += ~           (2) 

where tF , tF~  and tv  are column vectors holding respectively the K observed factors, the 

K true factors and the K measurement errors. Assume further that tv  has mean zero and 

variance matrix equal to VVΣ . The measurement errors ( tv ) are moreover assumed to be 

independent through time and uncorrelated5 with the true unobserved variables, tF~ , and 

the residual idiosyncratic risk, tu . 

To highlight the consequence of measurement errors on estimation, we rewrite (1) in 

vector form. 

ttt uFR +⋅+= βα ~          (3) 

and substitute (2) in (3). 

                                                 
5 The measurement error is said to be “classical” when it is uncorrelated with the true unobserved factor. 
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ββα ⋅−+⋅+= tttt vuFR         (4) 

The OLS estimates α̂  and β̂  are inconsistent because the compound error in (4), 

β.tt vu − , is correlated with the regressor tF  through the measurement error tv 6. In the 

presence of errors-in-variable, factor loading estimates are contaminated by attenuation 

and contamination bias mentioned above.  

Without further assumptions, parameters of the errors-in-variable model (1) and (2) are 

not identified. As suggested by the literature, the standard solution to this identification 

problem is to introduce additional moment conditions. More specifically, if there are 

instrumental variables correlated with the true regressors but unrelated to the 

measurement errors, then adding these moments can help to solve the identification 

problem. 

Many studies (see e.g. Fuller (1987), Bowden (1984) and Aigner et al. (1984)) have 

suggested the use of instrumental variables7 to obtain consistent estimators, when 

information on the variances of these errors is not available. Despite these suggestions, 

instrumental variables techniques are often neglected and no special effort is made to test 

for the presence of error-in-variables8. As highlighted in Pal (1980), it may be not easy to 

verify that available instruments satisfy the required conditions to justify their use. But 

the main problem faced by researchers is the practical difficulty of finding valid 

instruments. On the other hand, as underlined by Klepper and Leamer (1984), they may 

                                                 
6 The nature and extend of the bias is obtained by computing the asymptotic value of the OLS estimates. 
They converge to their true value if true factors are observable. For a demonstration, see Carmichael and 
Coën (2006). 
7 Alternative approaches to the errors in variables problem may be mentioned: Frisch (1934), Klepper and 
Leamer (1984), Hausman and Watson (1985), and Leamer (1987) among others.   
8 Using for example Hausman’s (1978) instrumental variable test. 
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feel that the cost of collecting additional data would be too large in comparison to the 

benefit derived from the fact of possibly producing more accurate estimators. 

If the distributions of explanatory variables ( tF~  in our financial context) are non Gaussian 

in the sense that they are skewed and have non Gaussian excess kurtosis, then Cragg 

(1997) and Dagenais and Dagenais (1997) show that own and cross third and fourth 

moments of these explanatory variables are valid instruments that can be used as 

additional moment restrictions to consistently estimate the model parameters α and β. 

Following Durbin (1954) and Pal (1980), Dagenais and Dagenais (1997) introduce new 

unbiased higher moment estimators exhibiting “considerably smaller standard errors”. 

Under the hypothesis of no measurement error in the variables, the estimators introduced by 

Durbin (1954) and Pal (1980) are unbiased. But, as demonstrated by Kendall and Stuart 

(1963) and Malinvaud (1978), these higher moments estimators have higher standard 

errors than the corresponding least squares estimators, and may be described as more 

erratic. Taking into account this feature, Dagenais and Dagenais (1997) develop a new 

instrumental variable estimator, βΗΜ, which is a linear matrix combination of the 

generalized version of βd, Durbin’s estimator, and βp, Pal’s estimator. 

Dagenais and Dagenais’s estimator can most easily be computed by means of artificial 

regressions as suggested by Davidson and MacKinnon (1993). The first step consists in 

constructing estimates ktF̂  of the true regressors. This is done with K artificial regressions 

having ktF  as dependent variables and third and fourth moments (own and cross 

moments) of ktF  as regressors. These are then used to construct measures of the error-in-
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variables  ktktkt FFw ˆˆ −= . The latter are then introduced as additional regressors, called 

the adjustment variables, in equation (5) as follows: 

t

K

k
ktk

K

k
kt

HM
kt wFR εψβα +⋅+⋅+= ∑∑

== 11

ˆ       (5) 

The contribution of this procedure is twofold. First, we can test the null hypothesis (H0: 

0ˆ =tkw , k = 1,...,K) that there are no errors-in-variables applying a Durbin-Wu-Hausman 

type test. Second, if errors-in-variables are detected, the estimator is automatically 

corrected to take into account this bias. As mentioned earlier, Dagenais and Dagenais 

(1997) demonstrate that this higher moment estimator (HME) (hereafter labelled HMβ ) 

performs better than ordinary least squares estimators. Moreover, if there is no error in 

variables, then it is the same as OLS.  

Therefore, we can implement the following decision rule in our asset pricing context. If 

H0 cannot be rejected for factor loadings, we must use the OLS estimator, otherwise we 

use the higher moment estimator, HMβ  developed by Dagenais and Dagenais (1997). 

 

2.2. The recursive regression algorithm 

The expanded regression model displayed in equation (5) accurately transforms the linear 

asset pricing model to account for measurement errors. Unfortunately, the cost of this 

operation is a considerable inflation in the number of independent variables. As each 

regressor is flanked with a twin variable, a K-factor model becomes a 2K-modified 

model. Although this can be econometrically justified, the lack of significance of some 

adjustment variables might hinder the economic relevance of the expanded model. 
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We propose a recursive method to reduce the number of variables. The principle of the 

algorithm is to detect the adjustment variable that exhibits the lowest significance level. If 

the corresponding original variable were not prone to measurement error, it would have 

been more effective to use the OLS instead. As a check, we subtract the OLS term 

corresponding to this independent variable (regression coefficient times the observation) 

from the value of the dependent variable, and define a new dependent variable equal to 

this difference. We then run the HM estimation again on this new variable with the 

remaining regressors. The procedure stops when the significance level of the new model 

becomes lower than the former specification. 

Formally, the algorithm goes as follows: 

1. We start from the estimation of equation (5): 

t

K

k
ktk

K

k
kt

HM
k

HM
t wFR εψβα +⋅+⋅+= ∑∑

== 11

ˆˆˆˆ      (6) 

which corresponds to the OLS specification: 

t

K

k
kt

OLS
k

OLS
t FR υβα +⋅+= ∑

=1

ˆˆ       (7) 

Note that, unlike equation (1), we use the observed values of the factors and not 

the (unobservable) true values ktF~ . 

2. We identify the risk premium Fi such that the estimated coefficient of the 

corresponding adjustment variable, iψ̂ , is the least significant (using the t-stat of 

the regression).9  

                                                 
9 Alternatively, we could review all adjustment variables and proceed with steps 3 to 5 of the algorithm. 
The removed risk premium is the one that maximizes the pseudo-adjusted R² of the new regression. Our 
tests suggest that this increase in sophistication does not improve the results, as the final specification 
remains unchanged.  
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3. Then, we subtract the i-th value risk premium, estimated with the OLS regression 

(7), from the fund returns.  

4. We then reuse the HM estimation equation on this new model: 

t

K

ik
k

ktk
i

K

ik
k

kt
iHM

k
HM

it
OLS
it wFFR ϑψβαβ +⋅+⋅+=⋅− ∑∑

≠
=

−

≠
=

−

11

,1, ˆˆˆˆˆ    (8) 

5. If the significance level of the new regression, estimated by its adjusted R-

squared, is higher than the one of the previous HM estimation model, we repeat 

the algorithm back from step 1 replacing equation (6) by equation (8); otherwise, 

we stop and keep the previous specification. 

To estimate the significance level of this new regression equation with D removed 

variables (D < K), we get the unadjusted R2 by simply computing 2

2
2

ˆ
ˆ

1
R

R
σ
σ ϑ−= , where 

2ˆϑσ  is the variance of residuals from regression (6) and 2ˆ Rσ  is the variance of the original 

returns. The pseudo-adjusted R2 is then computed as Ps. 2
)2(

1
)2(
)2(12 RR DKT

T
DKT
DK

−−
−

−−
−− +=  where 

T is the number of observations, K is the number of original risk factors, and D is the 

number of adjustment variables removed from the model. 

 

3. Data and empirical methods 

3.1. Hedge Funds Data 

We use the Barclay Group database with monthly net returns on 2,617 funds belonging to 

11 strategies: Event Driven (EDR), Funds of Funds (FOF), Global (GLO), Global 

Emerging Markets (GEM), Global International Markets (GIN), Global Macro (GMA), 

Global Regional Established (GES), Long Only Leveraged (LOL), Market Neutral 
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(MKN), Sector (SEC), and Short Selling (SHO) for the period January 1994 to December 

2002. Out of these funds, 1,589 were still alive at the end of the period and 1,028 funds 

had ceased reporting before the end of the time window. Funds that reported less than one 

consecutive year of returns have been removed from the database10. Data from the same 

period were used by Cappoci, Corhay, and Hübner (2005) with the Managed Account 

Reports (MAR) database, and have been found to be relatively reliable in returns of 

survivorship and instant return history biases.  

The series of dependent variables in our regression are built by computing the equally 

weighted average monthly returns of all funds, either living or dead, that follow a 

particular strategy during a given month.  

 

3.2. Risk Factors 

To implement the estimation procedure and the recursive regression algorithm, we use an 

extended version of the Fama-French (1992) – Carhart (1997) linear asset pricing model. 

We start the implementation with the four-factor model proposed by Carhart (1997), 

supposedly achieving better significance levels than the Fama and French (1993) 

specification for hedge fund returns (see Agarwal and Naik, 2004; Capocci and Hübner, 

2004). This market model is taken as the benchmark of a correctly specified model. Its 

equation is: 

ttuthtstmt UMDHMLSMBMKTR εββββα +++++=    (9) 

where Rt is the hedge fund return in excess of the 13-weeks T-Bill rate, MKTt is the 

excess return on the market index proposed by Fama and French (1993), SMBt is the 

                                                 
10 This treatment explains why we have a lower number of funds remaining than in Capocci, Corhay, and 
Hübner (2005).  
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factor-mimicking portfolio for size (‘small minus big’), HMLt is the factor-mimicking 

portfolio for the book-to-market effect (‘high minus low’), and UMDt = the factor-

mimicking portfolio for the momentum effect (‘up minus down’). Factors are extracted 

from French's website. 

This specification typically achieves significance levels that can easily be improved with 

style-based indexes. Among them, Capocci and Hübner (2004) show that an additional 

factor accounting for the emerging bond market investment strategy triggers a major shift 

in the explanatory power of the hedge fund return regressions. Consequently, we choose 

this particular asset-based index as the fifth regressor. 

Finally, we introduce and option-based factor as the sixth regressor. To make sure that 

the way this variable is constructed does not unduly alter the analysis, we propose two 

alternative characterizations.  

First, we construct monthly returns from index options with a procedure similar to the 

one put forward by Agarwal and Naik (2004) to build two series of actual returns of at-

the-money (ATM) put and call options. As options are never perfectly ATM, we 

approximate each option closing price on the last trading day of the month with a linear 

interpolation of the closest in-the-money (ITM) and out-of-the-money (OTM) option 

prices. The next month, we use the same technique to obtain the closing price. This 

method ensures the time consistency of the series of options used. We apply a similar for 

OTM puts and calls, where the strike price is 5% away from the current value of the 

index. The choice of this degree of moneyness is consistent with the results empirically 

derived by Diez de los Rios and Garcia (2005). The variables corresponding to these 
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series of options are called ACr, OCr, APr and OPr for ATM and OTM calls and ATM 

and OTM puts, respectively. 

Next, we compute artificial option returns with a procedure that refines the one used by 

Glosten and Jagannathan (1994). Each month, we identify the value of the S&P500 

index. We then construct four sets of synthetic options with one-month to maturity: an 

ATM put, an ATM call, an OTM put and an OTM call. The initial price of these options 

is proxied by using the Black-Scholes formula with the continuously compounded 1-

month T-bill rate (risk-free rate), the historical volatility on the S&P500 (volatility) and 

the contemporaneous value of the S&P500 index multiplied by 0.95 (for the OTM puts), 

by 1 (for the ATM options), and by 1.05 (for OTM calls) as the strike prices. We call 

ACa, OCa, APa, OPa the series of realized returns on these artificial strategies.  

The most comprehensive specification is a six-factor model depicted in equation (10). 

ttotetuthtstmt OptEMBUMDHMLSMBMKTR εββββββα +++++++=    (10) 

where Opt is the option-based factor among ACr, OCr, APr, OPr, ACa, OCa APa, and 

OPa that provides the highest level of information in the regression. The estimated 

regression coefficients will be noted OLSα̂  and OLS
kβ̂  for { }oeuhsmk ,,,,,∈ . 

Similarly, the HM specification used to estimate the same model has the following form: 

totoeteutuhthstsmtm

totetuthtstmt

wwwwww
OptEMBUMDHMLSMBMKTR

εψψψψψψ
ββββββα

+++++++
++++++=

ˆˆˆˆˆˆ
 (11) 

where ktŵ  are the adjustment variables for { }oeuhsmk ,,,,,∈ . Again, the estimated 

regression coefficients will be noted HMα̂ , HM
kβ̂  and kψ̂  obtained by applying Dagenais 

and Dagenais’s (1997) artificial regression technique. 
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Thanks to this new approach, we shed a new light on absolute returns, comparing 
OLSα̂  with 

HMEα̂ . Furthermore, we can assess the value-added of the alternative estimation procedure 

by comparing their significance levels. We suggest the use of the following decision rule: if 

presence of errors in variables is statistically significant, use HM estimator; if not, OLS 

estimator can be used. We can note that HM estimator gives the same result as the OLS 

estimator in perfect absence of errors in variables. This point can be interpreted as an 

illustration of the superiority of HM and empirically confirms Dagenais and Dagenais’ 

numerical and simulated results: “The relative performance of HM estimators is always 

superior to that of OLS estimators, when there are errors in variables11”. Of course, the 

consequences of wrong decisions based on linear asset pricing models are straightforward in 

the financial industry.  

 

3.3. Descriptive Statistics 

The descriptive statistics of our sample are given in Table 1. Our database includes a 

substantially higher number of dead funds (+446) than in the MAR database used by 

Capocci, Corhay, and Hübner (2005), especially for the global established (+97 dead 

funds), funds of funds (+77), and market-neutral (+72) strategies. 

[Please insert Tables 1/A and 1/B] 

Consistently with previous studies, some strategies appear to achieve extremely favorable 

performance for all measures. Sector, Global Established, Global Emerging, and Market 

Neutral strategies exhibit average monthly returns greater than 1 percent. The Sharpe 

ratio of Market Neutral funds is up to eight times greater than that of the market proxy. 

                                                 
11 Dagenais and Dagenais (1997), p. 209. 
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Event-Driven, Sector, Global Established, Macro and Funds of Funds strategies also 

obtain Sharpe ratios more than twice higher than the market proxy. Thus, a classical 

model-free performance measure suggests that there might be significant abnormal 

performance present in hedge fund returns.  

[Please Insert Table 1/C] 

As acknowledged by a growing literature, the two first moments of returns are 

insufficient to provide a good description of risk Descriptive statistics reported in Table 

1/B confirm this view and cast doubt on the normality of the returns and the risk factor 

loadings. Errors in variables may be induced by this very restrictive assumption, 

suggested by traditional linear asset pricing models12, but will be corrected with HM 

estimators. To test for the normality of the distributions we use a series of tests (Jarque-

Bera, Lilliefors, Cramer-von Mises, Watson, and Anderson-Darling). Results are 

conclusive: we can reject the hypothesis of normality for all strategies (except short 

selling) and risk premia, with the exception of the HML factor. This indicates that higher 

moments (than the variance) of the regressors are highly likely to influence hedge funds 

performance measurement. 

[Please insert Tables 2/A and 2/B] 

The correlation between and among hedge and among risk factors is reported in Tables 

2/A and 2/B. The correlations between the regressors and the hedge fund returns do not 

exceed 0.80, except Long Only Leveraged and Global Established, which display high 

correlations with the market proxy. The correlation among the asset-based regressors is 

low, thereby raising no serious concern about multicolinearity. Nevertheless, the 

introduction of an option-based factor induces a high correlation with the market excess 
                                                 
12 The CAPM and the FF model are the common choice.  
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return variable (MKT), especially when an ATM option is used. Furthermore, these 

mutlicolinearity problems also exist among option-based factors. This feature of optional 

factors suggests that one should be particularly cautious when interpreting regression 

coefficients arising from a specification using several option-based factors, such as in 

Agarwal and Naik (2004) or Bailey, Li and Zhang (2004).  

 

4. Multifactor Model and Results 

The HM estimation procedure entails that the regression results are directly comparable 

with the OLS results for each original asset pricing specification. Thus, we run OLS on 

our four-, five- and six-factor models depicted above, and compare the significance levels 

achieved with the HME procedure. We use a standard F-test to detect the presence of 

errors-in-variables: we test for 0=Σ kkψ . All F-stats are statistically significant at 1% level, 

highlighting the presence of errors-in-variables in all regressions. OLS estimates are biased. The 

results are presented in Table 3. 

[Please insert Table 3] 

We split this table in three panels: Panel A displays strategies for which the lowest 

significance levels are achieved ( 2R below 70% for the 6-factor OLS model). In Panel B, 

results are displayed for 2R  between 70% and 80%. Finally, strategies achieving the 

highest significance levels ( 2R  > 80%) are reported in Panel C. 

Panel A reports a consistent result regarding the additional information brought by HME 

for the Market Neutral and three internationally driven (Global, Global International and 

Global Macro) strategies. The 6-factor HME specification always dominates the 

corresponding 6-factor OLS, with an increase in the 2R  ranging between 0.1% and 5.4%, 
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despite the fact that all variables are duplicated with the HM characterization, increasing 

the number of coefficients from 7 to 13. Significance levels are only close for the Global 

International strategy, as indicated by the insignificance of each coefficient of the 

adjustment variables. For the other three strategies displayed in the panel, there are 

between one and four significant loadings for the adjustment variables. 

Some coefficients that used to be significant with OLS might not be anymore under 

HME. This phenomenon is particularly noteworthy for the Market Neutral strategy, 

where out of the five significant OLS coefficients, only two of them (the HML and EMB 

coefficients) remain significant with HME. The association of adjustment variables with 

the original factors may thus induce a dilution effect among the variables.  

Oppositely, some coefficients that are insignificant with OLS may become significant 

with HME. This phenomenon happens with the UMD coefficient for the Global strategy 

and with the MKT coefficient for the Global Macro strategy. In such cases, the 

corresponding adjustment variables pick up most of the coefficient variance and the 

factor loading is estimated with greater precision.  

Finally, some OLS coefficients are seen to lose their significance because the 

measurement error is responsible for the effect. This is the case with the option-based 

factor coefficient for the Global strategy and with the MKT coefficient for the Global 

Macro strategy. In these cases, the sign of the coefficients of the original and the 

adjustment factors are opposite.  

In Panel B, we obtain qualitatively similar results for those strategies that had already 

fairly high significance levels with OLS. The significance gains are limited (between 

0.9% and 3.2%) due to the fact that OLS performed relatively well already. We observe 
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that with the option-based factor coefficient for Global Emerging and with the HML 

coefficient for Short Sales, the coefficient is insignificant with OLS but the coefficients 

for both the original factor and the adjustment variable become strongly significant, 

although with opposite signs, with the HME specification. For these strategies, our results 

suggest that the OLS coefficient hides two opposite effects, one for raw factor risk and 

one for measurement risk, that tend to compensate each other if the risk exposures are not 

separated. 

Panel C displays a particular result regarding the Long Only Leveraged strategy: it is the 

only one for which the OLS specification dominates HME. Adjustment variable 

coefficients are insignificant, while some OLS coefficients lose their significance under 

HME. As this strategy most closely resembles long portfolios held by mutual funds 

whose market exposures are relatively well under control, such a result is not very 

surprising. For the other two strategies, the gains from HME are not very large but 

positive. For Sectors, as for the Global Emerging strategy in Panel B, the OLS coefficient 

of the HML variable is not significantly different from zero but both corresponding 

coefficients under HME are significant and of opposite signs. 

When considering Table 3 globally, one also gets some useful insight in terms of strategy 

performance. Aside from the Long Only Leveraged strategy where OLS dominates, the 

account for measurement errors in the HME specification appears to generate higher 

alphas for all but the Sectors strategy, where it decreases by 25 bps per months. Yet, the 

level of alpha gains is limited, as they range from 2.6 bps (for Global International) to 25 

bps (for Short Sales).13 This finding reflects the underlying interpretation of the 

                                                 
13 The peaking monthly 1.335% vs 0.338% for the Global strategy is a clear outlier with respect to the rest 
of the table. This is probably due to the fact that this strategy mostly consists of dead funds, as the funds 



 

 

22

interference of measurement errors in the original OLS specification. Once their effect is 

removed and transferred in the adjustment variables, the sources of risk exposures are 

magnified and the generation of performance can be properly isolated. 

Some variables also appear to be more prone to corrections for measurement errors than 

others. The coefficient of the adjustment variable for the MKT, SMB and option-based 

factors are significant for 6 out of 11 strategies. The other three variables (HML, UMD 

and EMB) trigger a significant loading for the adjustment variable in no more than two 

cases. For the HML variable, the adjustment variable coefficient is highly significant for 

the Global Macro and Sectors strategies regardless of the number of factors chosen. For 

the other nine strategies, this coefficient is consistently insignificant.   

 

5. Optimal model specification 

The previous section displays results that are globally in favor of the higher moment 

estimation method, but suffers from the inflation in the number of variables. The 

algorithm presented in Section 2 aims at mitigating this drawback but gradually reducing 

the number of variables. 

We assess the quality of this procedure in two ways. First, we review the optimal number 

of adjustment variables to drop and observe the gains in overall regression significance. 

Next, we verify the evolution of the risk premia associated to each source of risk under 

the OLS, the HME and the optimal hybrid specification. 

 

                                                                                                                                                  
belonging to this strategy have been reshuffled to the other “Global-based” strategies since 1999 (see 
Capocci and Hübner, 2004). 
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5.1. Gains in significance  

Based on the HME results displayed in Table 3, we perform the recursive regression 

algorithm presented in Section 2.B on the 11 hedge fund strategies. The results are 

presented in Table 4, using the same types of panels as in Table 3. 

[Please insert Table 4] 

For the strategies with low significance levels (Panel A), the algorithm brings some 

improvement for the Global and Global International return indexes. The gains in 

significance, measured with the Pseudo-adjusted R-squared (Ps. 2R ), are 5.2% and 

6.5%, respectively. Nevertheless, the sources of these gains are qualitatively very 

different. For the Global strategy, two adjustment variable coefficients are insignificant in 

the HME: they naturally fade away with the algorithm, leaving only the adjustment 

variables that account for a priced measurement error. For the Global International 

strategy, the HME globally (slightly) improves over the OLS, but without any significant 

loading for the new variables. Thus, it is likely that when they are taken individually, they 

are considered as superfluous. The remaining coefficients after three runs of the 

algorithm are not even significant yet. For these two strategies, the total improvement 

over the OLS 2R  is 10.6% (for Global) and 6.6% (for Global International). 

In Panel B, the algorithm increases the Pseudo-adjusted R-squared of the asset pricing 

specification for Funds of Funds (+3.9% with respect to HME, +4.8% wrt OLS), Global 

Emerging (+2.8% wrt HME, +4.8% wrt OLS) and Event Driven (+4.1% wrt HME, 

+7.3% wrt OLS). For each strategy, the same two coefficients cancel out: the adjustment 

variables corresponding to HML and UMD appear to be superfluous. 
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The results are much less interesting for Panel C, as the original specification (OLS for 

Long Only Leveraged, HME for the other two) does not appear to appreciate thanks to 

the application of the algorithm. For strategies with a high significance level obtained 

with OLS, the correction for measurement errors does not greatly reduce the residual 

variance of returns in our sample.  

We do not witness any large variation in alphas when moving from HME to the optimal 

specification. It increases in three cases (+37.2 bps for Global, +8.1 bps for Global 

Emerging, +9.9 bps for Event Driven) and decreases in three cases (-17.3 bps for Global 

Macro, -3.8 bps for Funds of Funds, -12.9 bps for Sectors). As to the significance levels 

of the individual regression coefficients, they remain very stable for the original factors 

with two exceptions. For Global International, the significance levels of the MKT and 

EMB coefficients drop when the algorithm is applied, and for Global Emerging the 

(weakly) significant SMB coefficient becomes insignificant. In both cases however, this 

adverse effect is compensated through the replacement of an insignificant coefficient 

under HME with a significant OLS coefficient: for Global International, the HML 

coefficient of 0.152 is replaced with the corresponding highly significant value of 0.094 

under OLS; for Global Emerging, the UMD coefficient of 0.078 is swapped with the 

highly significant value of 0.114 under OLS. 

 

5.2. Stability or risk premia 

Our results show that sensible gain in significance is documented in several cases. This 

gain results from the existence of measurement errors in factor risk loadings. By 

definition, such errors imply economically important uncertainty about factor risk premia. 
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Hence, we now have to consider whether the economic substance of the model is not 

altered by the passage from OLS to HME, then from HME to the optimal model 

specification.  

We meet this objective by assessing, for every strategy, the stability of mean total excess 

return attributable to each primary source of risk, whether captured by the original 

observed factor or by the adjustment variable. For the OLS specification, the mean total 

risk premium of factor k for the whole sample period is just measured by the product of 

the estimated loading with the average factor value: k
OLS
kk F⋅= β̂PremTot  for 

{ }oeuhsmk ,,,,,∈ . For HME, the mean total risk premium is defined as 

kkk
HM
kk wF ˆˆˆPremTot ⋅+⋅= ψβ . Of course, whenever the optimal specification is a 

hybrid, the mean total risk premium for each factor is either the one obtained with OLS or 

the one of HME, depending of whether the adjustment variable has been removes from 

the regression equation or not. 

Table 5 compares mean total risk premia obtained with OLS regression technique with 

those generated by HM estimators and those generated by the application of the recursive 

algorithm, if applicable.  

[Please insert Table 5] 

As follows from the average increase in alphas, the risk premia associated with the 

factors decrease on average when migrating from the OLS to the HME. Yet, the 

evolution is not homogenous from one strategy to another or from one factor to another.  

When individual hedge fund strategies are considered, two strategies experience dramatic 

changes in risk premia from the OLS to the HME specification: Global and Short Sellers. 

For both of them, several risk premium experience large swings: MKT (+37.4 bps), HML 



 

 

26

(- 20.6 bps), EMB (-52.1 bps) and OPT (-72.5 bps) for Global, and MKT (+20.8 bps), 

HML (-49.1 bps), UMD (+13.2 bps), EMB (-11.9 bps) and OPT (+19.5 bps) for Short 

Sellers. The explanation of these two series of returns seems to suffer from significant 

alterations from the change in specifications. For the Global strategy, this could be 

reasonably explained by the very small number of live funds at the end of the sample 

period (only 1 live fund on December 2002) that weakens the economic significance of 

the strategy returns. For Short Sellers, the sample also suffers from a small number of 

funds and this may explain the instability of the risk premium.  

For the other eight strategies (excluding Long Only Leveraged, for which HME does not 

dominate OLS), the stability of the first five risk premia is quite high. The average 

difference in mean total risk premium between HME and OLS is equal to 1.5 bps with a 

standard deviation of 7.7 bps (40 observations). Such evidence contrasts with the large 

decline in the option-based risk premium: from OLS to HME, it decreases on average by 

14.3 bps, with only one positive value (Global Macro) and a standard deviation of 15.7 

bps. Thus, accounting for measurement errors in option-based factors appears to decrease 

the average risk premium of these eight hedge fund strategies by a substantial yearly 

1.7%.  

The economic relevance of the recursive regression algorithm can also be assessed by 

considering the difference in risk premia between the HME and the optimal 

specifications. For the five strategies (excluding the Global strategy) for which the HME 

and optimal specification differ (Global International, Funds of Funds, Global Emerging, 

Event Driven, Sectors), the average difference between the HME risk premium and the 

new risk premium (calculated with HME) of the optimal specification is as low as 0.2 bp, 
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with a standard deviation of 4.0 bps (20 observations). Hence, for our sample, we find no 

evidence that the application of the algorithm significantly alters the risk premium 

associated to each factor. This finding holds provided that the strategy return index 

features a sufficient number of funds, as shown by the inconclusive results for the Global 

and, to a lesser extent, the Short Sellers strategies. 

 

6. Conclusion 

The use of the higher moment estimators proposed by Dagenais and Dagenais (1997) has 

been overlooked in the empirical finance literature. In this paper, we provide some 

economic justification for the use of this very powerful statistical approach in the context 

of hedge fund generating processes. As we have small samples of usable data, with large 

nonlinearities in hedge fund returns, and as an increasing body of the literature uses 

option-based factors to explain hedge fund returns, the application of HME appears to be 

a natural and logical choice. Yet, the price to pay for an accurate account for error-in-

variables is a substantial inflation in the number of coefficients to estimate. We have 

developed a new heuristic algorithm to circumvent one of the weaknesses of the proposed 

estimator. 

The empirical test of the Dagenais and Dagenais (1997) method on a sample of hedge 

fund data provides very informative evidence on the applicability of the procedure. First, 

the results suggest that HME is relevant for most series of returns, as it improves the 

explanatory power of most OLS specifications. Second, the performance of hedge fund 

strategies is enhanced, on average, when measurement errors are properly taken into 

account. Third, it does not significantly alter the risk premia attributable to each source of 
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risk except for the optional factor, where we find that the OLS tends to overestimate the 

exposure to option-based risk factors. These results are however limited by the fact that 

the series of hedge fund strategy returns has to result from a sufficiently large set of 

individual hedge funds. 

Furthermore, the algorithm that we propose brings further improvements over the HME 

specification in the majority of the cases. We obtain improved significance levels in six 

cases out of eleven, and find evidence of very small changes in the factor risk premia 

with respect to HME. This procedure seems to bring the best of two worlds, by 

associating the rigor of HME with the parsimony of the OLS specification.  

The scope of application of this approach seems to be very large. Given the fact that 

many data samples are too small to lend themselves easily to nonlinear estimation such as 

the use of dynamic or conditional betas, HME together with the recursive regression 

algorithm might serve as a very credible alternative. In the context of hedge fund 

research, the inflation in the number of candidate variables to explain hedge fund returns 

will probably soon call for a solution that reconciles robustness and parsimony. We view 

our contribution as a step in this direction. 
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Table 1/A: Descriptive statistics of hedge fund strategies 

 

 # funds Living  Dead Mean Std Dev. t(mean) Median Min Max M. exc. t(m. exc.) Sharpe 

EDR 226 154 72 0.92 1.88 5.02 1.09 -8.45 4.96 0.55 3.01 0.49 
FOF 599 410 189 0.70 1.76 4.06 0.61 -6.71 6.45 0.33 1.90 0.40 
GLO 156 1 155 0.41 3.98 1.05 0.54 -28.39 13.90 0.04 0.10 0.10 
GEM 147 100 47 1.09 4.95 2.25 1.75 -21.85 14.35 0.72 1.49 0.22 
GIN 71 50 21 0.84 2.44 3.55 0.84 -6.80 8.92 0.47 1.99 0.35 
GMA 129 52 77 0.81 2.21 3.74 0.53 -4.06 7.05 0.44 2.03 0.37 
GES 467 306 161 1.23 3.23 3.90 1.07 -9.96 12.24 0.86 2.73 0.38 
LON 32 19 13 0.88 5.89 1.52 1.37 -17.44 13.28 0.51 0.88 0.15 
MKN 574 365 209 1.19 1.16 10.47 1.16 -3.49 3.86 0.82 7.20 1.02 
SEC 182 111 71 1.63 4.44 3.76 2.06 -13.11 19.90 1.26 2.91 0.37 
SHO 34 21 13 0.98 4.50 2.23 0.69 -13.63 13.24 0.61 1.38 0.22 
 

This table shows the mean returns, t-stats for mean = 0, standard deviations, medians, minima, 
maxima, mean excess returns, t-stats for mean excess return = 0, Sharpe ratios for the individual 
hedge funds in our database following 11 active strategies for the sample period 1994:02 – 
2002:12. Sharpe ratio is the ratio of excess return and standard deviation. # funds represent the 
number of funds following a particular strategy, living funds and dead funds represent the number 
of surviving and dead funds (in December 2002, without considering the new funds established in 
12:2002). We calculate the mean excess return and the Sharpe ratio considering the Ibbotson 
Associates 1-month T-bills. Returns in the table are in percentages. EDR = Event Driven, 
FOF = Funds of Funds, GLO = Global, GEM = Global Emerging Markets, GIN = Global 
International Markets, GMA = Global Macro, GES = Global Regional Established, LON = Long 
Only Leveraged, MKN = Market Neutral, SEC = Sector, SHO = Short Selling. 
  



   
 

Table 1/B: Descriptive statistics of risk premium 

 

 Mean Std Dev. t(mean) Median Min Max M. exc. t(m. exc.) Sharpe  Skewness Kurtosis 

MKT 0.76 4.83 1.61 1.54 -15.69 8.33 0.39 0.83 0.16 -0.70 0.30 
SMB 0.01 4.47 0.01 -0.41 -16.26 21.38 -0.36 -0.83 0.00 0.88 5.65 
HML 0.64 4.19 1.57 0.77 -8.91 13.67 0.27 0.67 0.15 0.47 1.10 
UMD 1.14 5.82 2.01 1.32 -25.13 18.21 0.77 1.36 0.20 -0.73 4.46 
EMB -0.60 7.35 -0.83 0.40 -34.65 12.71 -0.97 -1.35 -0.08 -1.12 3.56 

ACr 0.01 0.82 0.06 -0.21 -0.98 1.88 -0.36 -4.58 0.01 0.46 -1.02 
OCr -0.01 1.28 -0.10 -0.58 -0.99 4.79 -0.38 -3.07 -0.01 1.76 2.95 
APr -0.17 0.89 -1.95 -0.59 -0.94 2.55 -0.54 -6.20 -0.19 1.33 0.77 
OPr -0.26 1.13 -2.32 -0.78 -0.97 5.17 -0.63 -5.66 -0.23 2.75 8.86 
ACa 0.35 1.45 2.47 0.00 -1.00 4.18 -0.02 -0.14 0.24 0.68 -0.87 
OCa 0.39 1.62 2.45 -0.26 -1.00 4.93 0.02 0.12 0.24 0.84 -0.62 
APa 0.06 1.86 0.34 -1.00 -1.00 10.27 -0.31 -1.70 0.03 2.45 8.20 
OPa 1.24 5.02 2.52 -1.00 -1.00 30.10 0.87 1.77 0.25 3.85 18.23 

 
This table shows the mean returns (in percents), t-stats for mean = 0, standard deviations, 
medians, minima, maxima, mean excess returns, t-stats for mean excess return = 0, Sharpe ratios, 
skewness and kurtosis for the premia for the sample period 1994:02 – 2002:12. Sharpe ratio is the 
ratio of excess return and standard deviation. We calculate the mean excess return and the Sharpe 
ratio considering the Ibbotson Associates 1-month T-bills. Numbers in the table are in 
percentages. MKT = the market premium, SMB = Small Minus Low which is the difference 
between the returns on a portfolio of small stocks and a portfolio of large stocks, HML = High 
Minus Low which is the difference between the returns on a portfolio of high-book-to-market-
equity stocks and a portfolio of low-book-to-market-equity stocks, UMD = Momentum factor 
(Carhart, 1997), EMB = MSCI emerging market index; ACr= return of a true ATM index call, 
OCr = return of a true 5% OTM index call; APr= return of a true ATM index put, OPr = return of 
a true 5% OTM index put; ACa = return of an artificial ATM index call; OCa = return of an 
artificial 5% OTM index call; APa = return of an artificial ATM index put; OPa = return of an 
artificial 5% OTM index put. The underlying index for all options is the S&P500. 
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Table 1/C: Normality tests of hedge funds strategies and risk premia 
 

 Jarque-Bera  Lilliefors Cramer-v. Mises Watson Anderson-Darling

 Stat. p-value  Stat. p-value Stat. p-value Stat. p-value Stat. p-value 

MKN 11.439 0.003  0.052 0.100 0.035 0.762 0.035 0.718 0.307 0.558 
GLO 2943.61 0.000  0.131 0.000 0.607 0.000 0.590 0.000 4.143 0.000 
GIN 9.453 0.008  0.077 0.100 0.089 0.159 0.086 0.146 0.642 0.092 

GMA 4.100 0.128  0.097 0.016 0.155 0.020 0.141 0.021 0.817 0.034 
FOF 42.027 0.000  0.072 0.100 0.122 0.055 0.120 0.043 0.892 0.022 
GEM 58.384 0.000  0.064 0.100 0.090 0.152 0.086 0.145 0.622 0.102 
EDR 111.499 0.000  0.061 0.100 0.079 0.214 0.070 0.244 0.622 0.103 
SHO 2.045 0.359  0.049 0.100 0.037 0.727 0.036 0.703 0.285 0.621 
LON 3.214 0.200  0.073 0.100 0.078 0.215 0.065 0.281 0.466 0.248 
SEC 30.779 0.000  0.074 0.100 0.095 0.130 0.095 0.107 0.653 0.086 
GES 10.630 0.004  0.057 0.100 0.050 0.507 0.050 0.467 0.435 0.295 

MKT 8.557 0.013  0.105 0.006 0.182 0.009 0.150 0.015 1.071 0.008 
SMB 137.387 0.000  0.091 0.031 0.176 0.011 0.162 0.011 1.312 0.002 
HML 7.980 0.018  0.071 0.100 0.079 0.211 0.071 0.231 0.567 0.139 
UMD 85.77 0.000  0.131 0.000 0.470 0.000 0.465 0.000 2.480 0.000 
EMB 70.119 0.000  0.116 0.001 0.217 0.003 0.189 0.004 1.154 0.005 

ACr 8.238 0.016  0.125 0.000 0.407 0.000 0.380 0.000 2.699 0.000 
APr 32.192 0.000  0.211 0.000 1.456 0.000 1.275 0.000 8.062 0.000 
OCr 85.549 0.000  0.221 0.000 0.138 0.000 1.194 0.000 7.999 0.000 
OPr 436.781 0.000  0.285 0.000 2.576 0.000 2.320 0.000 13.167 0.000 
ACa 11.207 0.003  0.214 0.000 0.978 0.000 0.916 0.000 6.161 0.000 
APa 365.228 0.000  0.325 0.000 2.802 0.000 2.582 0.000 14.201 0.000 
OCa 13.735 0.001  0.226 0.000 1.300 0.000 1.207 0.000 7.707 0.000 
OPa 1563.87 0.000  0.328 0.000 3.529 0.000 3.303 0.000 17.665 0.000 

 

This table reports the normality tests of the variables for the sample period 1994:02 – 2002:12: 
Jarque-Bera, Lilliefors, Cramer-von Mises, Watson and Anderson-Darling. EDR = Event Driven, 
FOF = Funds of Funds, GLO = Global, GEM = Global Emerging Markets, GIN = Global 
International Markets, GMA = Global Macro, GES = Global Regional Established, LON = Long 
Only Leveraged, MKN = Market Neutral, SHO = Short Selling, SEC = Sector; MKT = the 
market premium, SMB = Small Minus Low which is the difference between the returns on a 
portfolio of small stocks and a portfolio of large stocks, HML = High Minus Low which is the 
difference between the returns on a portfolio of high-book-to-market-equity stocks and a portfolio 
of low-book-to-market-equity stocks, UMD = Momentum factor (Carhart, 1997), EMB = MSCI 
emerging market index; ACr= return of a true ATM index call, OCr = return of a true 5% OTM 
index call; APr= return of a true ATM index put, OPr = return of a true 5% OTM index put; ACa 
= return of an artificial ATM index call; OCa = return of an artificial 5% OTM index call; APa = 
return of an artificial ATM index put; OPa = return of an artificial 5% OTM index put. The 
underlying index for all options is the S&P500.  
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Table 2/A: Correlations among hedge funds and between hedge funds and risk premia 

 

 EDR FOF GLO GEM GIN GMA GES LON MKN SEC SHO 

EDR 1.00           
FOF 0.85 1.00          
GLO 0.70 0.67 1.00         
GEM 0.70 0.80 0.76 1.00        
GIN 0.78 0.88 0.60 0.76 1.00       
GMA 0.74 0.88 0.50 0.63 0.81 1.00      
GES 0.87 0.87 0.61 0.69 0.83 0.84 1.00     
LON 0.83 0.80 0.60 0.67 0.72 0.78 0.91 1.00    
MKN 0.81 0.81 0.57 0.62 0.73 0.70 0.72 0.66 1.00   
SEC 0.82 0.82 0.55 0.62 0.75 0.79 0.93 0.87 0.65 1.00  
SHO -0.68 -0.63 -0.51 -0.55 -0.61 -0.68 -0.83 -0.82 -0.50 -0.84 1.00 

MKT 0.72 0.65 0.56 0.59 0.68 0.68 0.86 0.86 0.57 0.79 -0.78 
SMB 0.51 0.47 0.30 0.33 0.36 0.40 0.47 0.42 0.36 0.57 -0.51 
HML -0.34 -0.31 -0.31 -0.32 -0.32 -0.37 -0.51 -0.55 -0.17 -0.51 0.57 
UMD -0.05 0.17 -0.06 -0.03 0.05 0.21 0.03 -0.08 0.04 0.13 -0.04 
EMB 0.68 0.70 0.74 0.84 0.75 0.63 0.72 0.72 0.54 0.64 -0.60 

ACr 0.53 0.48 0.41 0.41 0.51 0.56 0.65 0.69 0.45 0.54 -0.59 
APr 0.41 0.38 0.35 0.31 0.40 0.47 0.52 0.54 0.39 0.42 -0.47 
OCr -0.64 -0.56 -0.50 -0.48 -0.58 -0.59 -0.73 -0.76 -0.51 -0.65 0.63 
OPr -0.62 -0.52 -0.56 -0.47 -0.54 -0.50 -0.65 -0.63 -0.47 -0.61 0.61 
ACa 0.50 0.47 0.36 0.41 0.48 0.56 0.66 0.67 0.42 0.57 -0.60 
APa 0.47 0.44 0.34 0.39 0.45 0.53 0.62 0.63 0.40 0.54 -0.57 
OCa -0.73 -0.64 -0.67 -0.57 -0.63 -0.59 -0.76 -0.75 -0.60 -0.69 0.65 
OPa -0.64 -0.57 -0.63 -0.51 -0.55 -0.51 -0.65 -0.63 -0.53 -0.58 0.54 

 
This table reports the correlations among hedge fund returns and between hedge fund returns and 
risk premia for the sample period 1994:02 – 2002:12. EDR = Event Driven, FOF = Funds of 
Funds, GLO = Global, GEM = Global Emerging Markets, GIN = Global International Markets, 
GMA = Global Macro, GES = Global Regional Established, LON = Long Only Leveraged, MKN 
= Market Neutral, SHO = Short Selling, SEC = Sector; MKT = the market premium, SMB = 
Small Minus Low which is the difference between the returns on a portfolio of small stocks and a 
portfolio of large stocks, HML = High Minus Low which is the difference between the returns on 
a portfolio of high-book-to-market-equity stocks and a portfolio of low-book-to-market-equity 
stocks, UMD = Momentum factor (Carhart, 1997), EMB = MSCI emerging market index; ACr= 
return of a true ATM index call, OCr = return of a true 5% OTM index call; APr= return of a true 
ATM index put, OPr = return of a true 5% OTM index put; ACa = return of an artificial ATM 
index call; OCa = return of an artificial 5% OTM index call; APa = return of an artificial ATM 
index put; OPa = return of an artificial 5% OTM index put. The underlying index for all options 
is the S&P500. 
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Table 2/B: Correlations among risk premia 
 

 MKT SMB HML UMD EMB ACr OCr APr OPr ACa OCa APa OPa 

MKT 1.00             
SMB 0.14 1.00            
HML -0.57 -0.26 1.00           
UMD -0.19 0.19 0.09 1.00          
EMB 0.73 0.28 -0.45 -0.21 1.00         

ACr 0.82 -0.13 -0.43 -0.18 0.50 1.00        
APr 0.66 -0.16 -0.32 -0.13 0.37 0.90 1.00       
OCr -0.90 -0.03 0.48 0.21 -0.64 -0.76 -0.55 1.00      
OPr -0.79 -0.08 0.40 0.18 -0.61 -0.58 -0.41 0.88 1.00     
ACa 0.81 -0.07 -0.45 -0.14 0.49 0.93 0.84 -0.68 -0.51 1.00    
APa 0.78 -0.10 -0.43 -0.14 0.47 0.91 0.84 -0.63 -0.47 1.00 1.00   
OCa -0.86 -0.15 0.43 0.14 -0.70 -0.61 -0.43 0.92 0.88 -0.54 -0.49 1.00  
OPa -0.70 -0.15 0.36 0.06 -0.60 -0.49 -0.34 0.78 0.74 -0.42 -0.38 0.91 1.00 

 

This table reports the correlations between risk premia for the sample period 1994:02 – 2002:12. 
MKT = the market premium, SMB = Small Minus Low which is the difference between the 
returns on a portfolio of small stocks and a portfolio of large stocks, HML = High Minus Low 
which is the difference between the returns on a portfolio of high-book-to-market-equity stocks 
and a portfolio of low-book-to-market-equity stocks, UMD = Momentum factor (Carhart, 1997), 
EMB = MSCI emerging market index; ACr= return of a true ATM index call, OCr = return of a 
true 5% OTM index call; APr= return of a true ATM index put, OPr = return of a true 5% OTM 
index put; ACa = return of an artificial ATM index call; OCa = return of an artificial 5% OTM 
index call; APa = return of an artificial ATM index put; OPa = return of an artificial 5% OTM 
index put. The underlying index for all options is the S&P500.  
 

 



   
 

Table 3: OLS and HME regressions on hedge fund strategies 

 

Panel A: Strategies with low significance levels ( 2R  < 0.7)   

   Factors  Adjustment variables 

 2R  α MKT SMB HML UMD EMB Option F-stat wm ws wh wu we wo 

MKN 0.448 0.681*** 0.164*** 0.086*** 0.078*** 0.018           
 0.468 0.713*** 0.124*** 0.073*** 0.077*** 0.023 0.038**           
 0.487 0.752*** 0.065* 0.073*** 0.068*** 0.021 0.030* APa -0.189**        
 0.486 0.743*** 0.187*** 0.087*** 0.146** -0.054*    16.05*** -0.023 0.005 -0.050 0.107***    
 0.504 0.863*** 0.100* 0.040 0.093 -0.003 0.095***   12.76*** 0.029 0.047 0.001 0.054* -0.076*   
 0.522 0.855*** 0.090 0.046 0.123** -0.010 0.095** ACr 0.044 10.01*** -0.047 0.057 -0.035 0.061* -0.072 0.687 

GLO 0.342 -0.197 0.473*** 0.207*** 0.068 0.004           
 0.547 0.121 0.077 0.080 0.063 0.062 0.378***           
 0.604 0.338 -0.254** 0.079 0.014 0.047 0.334*** APa -1.060***        
 0.395 -0.210 0.456*** 0.241* 0.476* -0.330***    12.89*** 0.095 0.012 -0.334 0.461***    
 0.617 0.811*** -0.251 -0.169* 0.031 0.082 0.787***   8.98*** 0.391* 0.349*** 0.101 0.036 -0.512***   
 0.658 1.335*** -0.861*** -0.131 -0.152 0.085*** 0.606*** APa -1.721 8.54*** 0.903*** 0.320*** 0.276 0.012 -0.341*** 1.675** 

GIN 0.540 0.202 0.378*** 0.147*** 0.095** 0.055*           
 0.674 0.359*** 0.184*** 0.085*** 0.092** 0.083*** 0.186***           
 0.677 0.391*** 0.108 0.106*** 0.094*** 0.081*** 0.192*** ACr 0.478        
 0.530 0.181 0.443*** 0.071 0.163 0.050    24.57*** -0.062 0.112 -0.055 0.008    
 0.665 0.265 0.257*** 0.038 0.130 0.090** 0.147**   19.57*** -0.082 0.078 -0.029 -0.019 0.049   
 0.678 0.417* 0.307*** 0.025 0.152 0.085** 0.156*** APa 0.065 13.76*** -0.158 0.102 -0.053 -0.021 0.051 0.377 

GMA 0.632 0.144 0.341*** 0.129*** 0.046 0.115***           
 0.666 0.218* 0.249*** 0.100*** 0.045 0.128*** 0.088***           
 0.690 0.275** 0.112* 0.139*** 0.047*** 0.125*** 0.099*** ACr 0.858***        
 0.636 0.201 0.239*** 0.200*** 0.001 0.053    22.33*** 0.139* -0.075 0.076 0.093*    
 0.660 0.314* 0.233*** 0.137*** -0.093 0.136*** 0.059   18.98*** 0.000 -0.042 0.161 0.000 0.037   
 0.701 0.419*** -0.247 0.300*** -0.061 0.119*** 0.154*** ACr 2.137*** 13.28*** 0.437*** -0.193*** 0.112 0.020 -0.051 -1.366* 



   
 

 

Panel B: Strategies with average significance levels (0.7 < 2R  < 0.8)   

   Factors  Adjustment variables 

 2R  α MKT SMB HML UMD EMB Option F-stat wm ws wh wu we wo 

FOF 0.624 0.097 0.266*** 0.144*** 0.071** 0.069***           
 0.711 0.188* 0.153*** 0.108*** 0.069*** 0.086*** 0.108***           
 0.718 0.216** 0.087* 0.127*** 0.070*** 0.084*** 0.113*** ACr 0.414*        
 0.623 0.116 0.235*** 0.160*** 0.101 0.014    23.39*** 0.054 -0.005 -0.008 0.080*    
 0.704 0.300*** 0.095 0.083 0.013 0.097 0.153   19.44*** 0.068 0.041 0.076 -0.003 -0.056   
 0.727 0.380*** 0.145 0.067 0.043 0.091*** 0.146*** ACr -0.192 13.57*** -0.097 0.085 0.041 0.007 -0.044 1.617*** 

GEM 0.393 0.374 0.624*** 0.293*** 0.107 0.027           
 0.736 0.881*** -0.006 0.091 0.098 0.119*** 0.602***           
 0.739 0.788*** -0.119 0.120* 0.105 0.114*** 0.614*** OCa 0.373        
 0.396 0.290 0.635*** 0.212 0.398 -0.167    21.05*** 0.078 0.180 -0.211 0.267    
 0.736 0.804*** 0.038 -0.020 0.148 0.077 0.568***   18.42*** 0.044 0.211 0.029 0.081 0.038   
 0.759 0.989*** 0.636** -0.224* 0.182 0.078 0.466*** ACr -2.418** 11.79*** -0.890*** 0.484*** -0.002 0.088 0.147 5.636*** 

EDR 0.709 0.378*** 0.298*** 0.194*** 0.093*** -0.002           
 0.727 0.425*** 0.240*** 0.175*** 0.092*** 0.006 0.056***           
 0.748 0.488*** 0.144*** 0.175*** 0.078*** 0.002 0.043** APa -0.308***        
 0.732 0.461*** 0.349*** 0.153*** 0.162** -0.069**    18.61*** -0.048 0.068 -0.037 0.107***    
 0.765 0.633*** 0.223*** 0.084** 0.092 -0.004 0.136***   11.79*** 0.008 0.134*** 0.033 0.032 -0.103**   
 0.780 0.511*** 0.329*** 0.056 0.155*** -0.015 0.107** ACr -0.425 8.58*** -0.212* 0.176*** -0.037 0.042 -0.072 0.820 

SHO 
0.786 0.910*** -0.664*** -0.360*** 0.091 

-
0.087***           

 0.787 0.953*** -0.717*** -0.377*** 0.090 -0.079** 0.051           
 0.791 0.862*** -0.874*** -0.359*** 0.086 -0.077** 0.053 APr -0.903*        
 0.797 1.209*** -0.806*** -0.362*** -0.395*** 0.043    20.61*** 0.180 0.037 0.570*** -0.125    
 0.796 1.275*** -1.038*** -0.362*** -0.355** 0.017 0.143   16.52*** 0.403*** 0.025 0.536*** -0.082 -0.103   
 0.803 1.112*** -1.098*** -0.336*** -0.364*** 0.008 0.105 OPa -0.060 12.21*** 0.445*** -0.008 0.540*** -0.069 -0.074 -0.212 

 



   
 

Panel C: Strategies with high significance levels ( 2R  > 0.8)   

   Factors  Adjustment variables 

 2R  α MKT SMB HML UMD EMB Option F-stat wm ws wh wu we wo 

LON 0.816 0.108 0.987*** 0.384*** -0.023 0.022           
 0.819 0.177 0.901*** 0.357*** -0.025 0.035 0.082           
 0.832 0.291 0.630*** 0.433*** -0.019 0.028 0.104** ACr 1.697***        
 0.815 0.102 0.939*** 0.435*** 0.121 -0.122    24.20*** 0.087 -0.044 -0.116 0.197    
 0.811 0.234 1.000*** 0.350*** -0.013 -0.007 0.035   20.40*** -0.133 0.016 0.008 0.065 0.053   
 0.825 0.505 0.652** 0.459*** -0.060 -0.002 0.112 ACr 1.331 16.62*** -0.069 -0.031 0.049 0.066 -0.012 1.579 

SEC 0.873 0.795*** 0.716*** 0.424*** 0.021 0.150***           
 0.872 0.802*** 0.707*** 0.421*** 0.020 0.152*** 0.008           
 0.871 0.830*** 0.756*** 0.415*** 0.022 0.151*** 0.007 APr 0.280        
 0.886 0.491*** 0.718*** 0.518*** 0.288** 0.108**    18.62*** -0.026 -0.167** -0.365*** 0.001    
 0.882 0.471*** 0.890*** 0.498*** 0.251** 0.128*** -0.096   15.43*** -0.247* -0.151* -0.326*** -0.017 0.128   
 0.886 0.580*** 0.804*** 0.499*** 0.250** 0.125*** -0.116 OPr -0.548* 11.32*** -0.103 -0.170** -0.320*** -0.009 0.151* 1.562** 

GES 0.876 0.526*** 0.577*** 0.248*** 0.045 0.070***           
 0.880 0.568*** 0.525*** 0.232*** 0.044 0.077*** 0.049**           
 0.884 0.604*** 0.439*** 0.256*** 0.046 0.075*** 0.056*** ACr 0.543**        
 0.878 0.469*** 0.604*** 0.232*** 0.198** -0.006    23.09*** -0.013 0.033 -0.147 0.098**    
 0.880 0.503*** 0.641*** 0.198*** 0.153* 0.029 0.002   18.90*** -0.122 0.056 -0.099 0.065 0.053   
 0.894 0.747*** 0.734*** 0.148*** 0.167** 0.033 0.001 OCr -0.304 12.48*** -0.347*** 0.131** -0.106 0.059 0.059 1.520*** 

 

This table reports the regression results of hedge fund returns for the sample period 1994:02 – 2002:12. The OLS specifications take the form of 

equation 
t

K

k
kt

OLS
k

OLS
t FR υβα +⋅+= ∑

=1

ˆˆ  with 4, 5 and 6 risk factors. The HME specifications take the form 
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with 4, 5 and 6 risk factors and the corresponding adjustment variables. For both the OLS and HME specifications, we adopt as sixth risk premium 
the option-based factor that obtains the best value for the Akaike information criterion. The alpha is expressed in percents. F is a standard F test to 
detect EIV by testing for Σκψκ = 0. *** Significant at the 1% level, ** Significant at the 5% level and * Significant at the 10% level.  
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Table 4: Regression coefficients using the recursive regression algorithm 

 

Panel A: Strategies with low significance levels ( 2R  < 0.7)        

    Factors  Adjustment variables 

 Specification Ps. 2R  α Mkt SMB HML UMD EMB OPT  wm ws wh wu we wo 

MKN OLS 0.487 0.752*** 0.065* 0.073*** 0.068*** 0.021 0.030* -0.189**        
 HME 0.522 0.855*** 0.090 0.046 0.123** -0.010 0.095** 0.044  -0.047 0.057 -0.035 0.061* -0.072 0.687 
 -1st fact. (MKT) 0.417 0.911***  0.037 0.094* -0.004 0.117*** -0.022   0.070 -0.004 0.049 -0.093*** 0.759** 
 -2nd fact. (HML) 0.497 0.926***  0.033  0.002 0.118*** -0.074   0.070  0.043 -0.094*** 0.801*** 
 -3rd fact. (UMD) 0.480 0.925***  0.022   0.127*** -0.120   0.091**   -0.101*** 0.828*** 

GLO OLS 0.604 0.338 -0.254** 0.079 0.014 0.047 0.334*** -1.060***        
 HME 0.658 1.335*** -0.861*** -0.131 -0.152 0.085 0.606*** -1.721***  0.903*** 0.320*** 0.276 0.012 -0.341*** 1.675** 
 -1st fact. (UMD) 0.669 1.494*** -0.903*** -0.120 -0.161  0.640*** -1.709***  0.894*** 0.311** 0.263  -0.371*** 1.706** 
 -2nd fact. (HML) 0.710 1.707*** -1.063*** -0.098   0.895*** -1.551***  1.055*** 0.238**   -0.642*** 1.719*** 
 -3rd fact. (SMB) 0.703 1.957*** -1.081***    0.851*** -1.716***  1.102***    -0.580*** 2.362*** 

GIN OLS 0.677 0.391*** 0.108 0.106*** 0.094*** 0.081***  0.192*** 0.478        
 HME 0.678 0.417* 0.307*** 0.025 0.152 0.085** 0.156*** 0.065  -0.158 0.102 -0.053 -0.021 0.051 0.377 
 -1st fact. (UMD) 0.686 0.439* 0.295** 0.026 0.144  0.164** 0.068  -0.122 0.085 -0.037  0.033 0.358 
 -2nd fact. (HML) 0.734 0.386* 0.325*** 0.020   0.103 0.019  -0.166 0.093   0.097 0.337 
 -3rd fact. (APa) 0.743 0.244 0.308*** 0.030   0.110   -0.114 0.076   0.084  
GMA OLS 0.690 0.275** 0.112* 0.139*** 0.047 0.125*** 0.099*** 0.858***        
 HME 0.701 0.419*** -0.247 0.300*** -0.061 0.119*** 0.154*** 2.137***  0.437*** -0.193*** 0.112 0.020 -0.051 -1.366 
 -1st fact. (UMD) 0.680 0.271 -0.063 0.263*** -0.005  0.087 1.691***  0.214 -0.159* 0.039  0.029 -1.029 
 -2nd fact. (EMB) 0.504 0.326** -0.053 0.248*** -0.005   1.537***  0.209 -0.131 0.039    -0.505 
 -3rd fact. (HML) 0.565 0.204 -0.096 0.235***    1.901***  0.301*** -0.111     -1.174 
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Panel B: Strategies with average significance levels (0.7 < 2R  < 0.8)        

    Factors  Adjustment variables 

 Specification Ps. 2R  α Mkt SMB HML UMD EMB OPT  wm ws wh wu we wo 

FOF OLS 0.718 0.216** 0.087* 0.127*** 0.070*** 0.084*** 0.113*** 0.414*        
 HME 0.727 0.380*** 0.145 0.067 0.043 0.091*** 0.146*** -0.192  -0.097 0.085 0.041 0.007 -0.044 1.617*** 
 -1st fact. (UMD) 0.721 0.311* 0.236 0.057 0.075  0.111 -0.396  -0.212 0.092 -0.002  -0.004 1.748*** 
 -2nd fact. (HML) 0.766 0.342*** 0.202 0.057   0.127 -0.331  -0.168 0.094    -0.019 1.659*** 
 -3rd fact. (EMB) 0.525 0.324*** 0.237*** 0.048    -0.451  -0.200** 0.098*     1.612*** 

GEM OLS 0.739 0.788*** -0.119 0.120* 0.105 0.114*** 0.614*** 0.373        
 HME 0.759 0.989*** 0.636** -0.225* 0.182 0.078 0.466*** -2.418**  -0.890*** 0.484*** -0.002 0.088 0.147 5.636*** 
 -1st fact. (HML) 0.774 1.085*** 0.552* -0.224*  0.109 0.506*** -2.385**  -0.862*** 0.459***  0.039 0.107 5.588*** 
 -2nd fact. (UMD) 0.787 1.070*** 0.633* -0.153   0.486*** -2.662**  -0.982*** 0.446***   0.114 5.863*** 
 -3rd fact. (EMB) 0.057 1.131*** 0.309 -0.153    -1.589  -0.604** 0.346**      3.489** 

EDR OLS 0.748 0.488*** 0.144*** 0.175*** 0.078*** 0.002 0.043** -0.308***        
 HME 0.780 0.511*** 0.329*** 0.061 0.155*** -0.015 0.107** -0.425  -0.212 0.176*** -0.037 0.042 -0.072 0.820 
 -1st fact. (HML) 0.816 0.587*** 0.268*** 0.066  0.000 0.129*** -0.375  -0.167 0.164***  0.024 -0.093* 0.827 
 -2nd fact. (UMD) 0.821 0.610*** 0.252** 0.213***   0.143*** -0.358  -0.149 0.170***   -0.107* 0.810 
 -3rd fact. (Mkt) 0.686 0.753***  0.060   0.213*** -0.426*   0.179***    -0.189*** 1.189*** 

SHO OLS 0.791 0.862*** -0.874*** -0.359 0.086 -0.077 0.053 -0.903        
 HME 0.803 1.112*** -1.098*** -0.233 -0.364 0.008 0.105 -0.060  0.445*** -0.008 0.540*** -0.069 -0.074 -0.212 
 -1st fact. (SMB) 0.723 1.042*** -1.010***  -0.217 -0.006 0.068 -0.083  0.330*  0.367* -0.054 -0.018 -0.120 
 -2nd fact. (EMB) 0.756 0.997*** -0.981***  -0.274 -0.007  -0.086  0.253  0.343* -0.069  -0.144 
 -3rd fact. (0/P) 0.775 1.197*** -0.880***  -0.274 0.014    0.157  0.400** -0.092    

 

 



   
 

Panel C: Strategies with high significance levels ( 2R  > 0.8)        

    Factors  Adjustment variables 

 Specification Ps. 2R  α Mkt SMB HML UMD EMB OPT  wm ws wh wu we wo 

LON OLS 0.832 0.291 0.630*** 0.433*** -0.019 0.028 0.104** 1.697***        
 HME 0.825 0.505 0.652** 0.439*** -0.060 -0.002 0.112 1.331  -0.069 -0.031 0.049 0.066 -0.012 1.579 
 -1st fact. (EMB) 0.793 0.527* 0.720*** -0.029 -0.035 -0.031  0.993  -0.144 -0.011 0.024 0.091  1.847 
 -2nd fact. (SMB) 0.764 0.566* 0.722***  -0.096 -0.087  0.990  -0.132  0.040 0.169  1.592 
 -3rd fact. (HML) 0.764 0.543** 0.700***   -0.096  1.122  -0.109   0.174   1.407 

SEC OLS 0.871 0.830*** 0.756*** 0.415*** 0.022 0.151*** 0.007 0.280        
 HME 0.886 0.580*** 0.804*** 0.499*** 0.415*** 0.125*** -0.116 -0.548*  -0.103 -0.170** -0.320*** -0.009 0.151* 1.562** 
 -1st fact. (UMD) 0.886 0.451* 0.879*** 0.482*** 0.250**  -0.161* -0.562*  -0.183 -0.171** -0.353***  0.199** 1.542** 
 -2nd fact. (Mkt) 0.640 0.505*  0.254* 0.288**  -0.089 -0.822   -0.166** -0.323**  0.128 1.700*** 
 -3rd fact. (EMB) 0.636 0.543**  0.485*** 0.276**   -0.446*   -0.164** -0.353***     0.868* 

GES OLS 0.884 0.604*** 0.439*** 0.256*** 0.046 0.075*** 0.056*** 0.543**        
 HME 0.894 0.747*** 0.734*** 0.148*** 0.256*** 0.033 0.001 -0.304  -0.347*** 0.131** -0.106 0.059 0.059 1.520*** 
 -1st fact. (EMB) 0.867 0.794*** 0.637*** 0.157*** 0.167* 0.039  -0.190  -0.240** 0.113* -0.103 0.047  1.232*** 
 -2nd fact. (HML) 0.877 0.846*** 0.564*** 0.178***  0.055  -0.094  -0.159* 0.081  0.036   1.019** 
 -3rd fact. (UMD) 0.880 0.862*** 0.605*** 0.178***    -0.177  -0.223** 0.090      1.129*** 

 

This table reports the regression results of hedge fund returns for the sample period 1994:02 – 2002:12. The OLS specifications take the form of 

equation 
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risk factors and the corresponding adjustment variables. For both the OLS and HME specifications, we adopt as sixth risk premium the option-
based factor that obtains the best value for the Akaike information criterion. For each iteration of the recursive algorithm, we remove the OLS risk 
premium corresponding to the least significant coefficient iψ̂  and re-estimate equation 
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−− +=  where R2 is the unadjusted coefficient of determination. For OLS and HME, Ps. 22 RR ≡ . The alpha is expressed 

in percentage. *** Significant at the 1% level, ** Significant at the 5% level and * Significant at the 10% level. 
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Table 5: Risk premia corresponding to the risk factors  

 

    Mkt SMB HML UMD EMB OPT 

 Specif. α  factor adjust. total factor adjust. total factor adjust. total factor adjust. total factor adjust. total factor adjust. total 

OLS 0.752  0.025  0.025 0.001  0.001 0.050  0.050 0.025  0.025 -0.026  -0.026 0.002  0.002 
MKN 

HME-Opt 0.855  0.035 -0.008 0.027 0.000 0.008 0.009 0.079 0.007 0.086 -0.011 -0.007 -0.018 -0.057 -0.036 -0.092 0.000 -0.051 -0.050
OLS 0.338  -0.099  -0.099 0.000  0.000 0.009  0.009 0.053  0.053 -0.199  -0.199 -0.065  -0.065
HME 1.335  -0.336 0.611 0.275 -0.001 0.041 0.040 -0.097 -0.099 -0.197 0.098 -0.004 0.094 -0.361 -0.359 -0.720 -0.106 -0.683 -0.790GLO 

Optimal 1.707  -0.415 0.752 0.337 -0.001 0.036 0.036 0.009  0.009 0.053  0.053 -0.534 -0.742 -1.276 -0.096 -0.733 -0.829
OLS 0.391  0.080  0.080 0.000  0.000 0.061  0.061 0.096  0.096 -0.112  -0.112 0.004  0.004 
HME 0.417  0.120 -0.107 0.013 0.000 0.013 0.013 0.097 0.019 0.116 0.097 0.007 0.104 -0.093 0.054 -0.039 0.004 -0.154 -0.150GIN 

Optimal 0.244  0.120 -0.111 0.009 0.000 0.009 0.009 0.061  0.061 0.096  0.096 -0.066 0.116 0.051 0.004  0.004 
OLS 0.275  0.044  0.044 0.001  0.001 0.030  0.030 0.143  0.143 -0.059  -0.059 0.004  0.004 

GMA 
HME-Opt 0.419  -0.096 0.074 -0.022 0.002 -0.028 -0.027 -0.039 -0.021 -0.061 0.137 -0.002 0.134 -0.092 -0.026 -0.117 0.011 0.101 0.111 

OLS 0.216  0.034  0.034 0.001  0.001 0.045  0.045 0.096  0.096 -0.068  -0.068 0.002  0.002 
HME 0.380  0.056 -0.016 0.040 0.000 0.012 0.013 0.028 -0.008 0.020 0.104 -0.001 0.103 -0.087 -0.022 -0.109 -0.001 -0.119 -0.120FOF 

Optimal 0.342  0.079 -0.042 0.037 0.000 0.026 0.026 0.045  0.045 0.096  0.096 -0.076 -0.014 -0.090 -0.002 -0.128 -0.130
OLS 0.788  -0.055  -0.055 0.001  0.001 0.065  0.065 0.132  0.132 -0.366  -0.366 0.004  0.004 
HME 0.989  0.248 -0.152 0.097 -0.001 0.071 0.070 0.117 0.000 0.117 0.089 -0.010 0.079 -0.278 0.073 -0.205 -0.012 -0.415 -0.428GEM 

Optimal 1.070  0.247 -0.247 0.000 -0.001 0.123 0.122 0.065  0.065 0.132  0.132 -0.290 0.085 -0.205 -0.013 -0.453 -0.466
OLS 0.488  0.064  0.064 0.001  0.001 0.060  0.060 0.005  0.005 -0.037  -0.037 0.002  0.002 
HME 0.511  0.128 -0.036 0.092 0.000 0.026 0.026 0.100 0.007 0.107 -0.017 -0.005 -0.022 -0.064 -0.036 -0.099 -0.002 -0.060 -0.063EDR 

Optimal 0.610  0.098 -0.038 0.061 0.000 0.047 0.047 0.060  0.060 0.005  0.005 -0.086 -0.080 -0.166 -0.002 -0.063 -0.064
OLS 0.862  -0.294  -0.294 -0.002  -0.002 0.055  0.055 -0.095  -0.095 -0.026  -0.026 -0.066  -0.066

SHO 
HME-Opt 1.112  -0.429 0.343 -0.086 -0.002 -0.001 -0.003 -0.234 -0.203 -0.436 0.009 0.028 0.037 -0.062 -0.083 -0.145 -0.074 0.203 0.129 

LON OLS 0.291  0.246  0.246 0.003  0.003 -0.012  -0.012 0.032  0.032 -0.062  -0.062 0.009  0.009 
OLS 0.830  0.268  0.268 0.002  0.002 0.012  0.012 0.174  0.174 -0.004  -0.004 0.032  0.032 
HME 0.580  0.314 -0.056 0.258 0.003 -0.035 -0.032 0.160 0.101 0.261 0.143 0.001 0.144 0.069 0.142 0.211 0.140 -0.300 -0.160SEC 

Optimal 0.451  0.343 -0.090 0.253 0.003 -0.021 -0.018 0.185 0.101 0.285 0.174  0.174 0.096 0.173 0.270 0.144 -0.295 -0.152
OLS 0.604  0.185  0.185 0.001  0.001 0.028  0.028 0.086  0.086 -0.033  -0.033 -0.003  -0.003

GES 
HME-Opt 0.747  0.287 -0.155 0.132 0.001 0.017 0.017 0.107 0.029 0.137 0.037 -0.013 0.024 0.000 0.048 0.047 0.004 -0.246 -0.242
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This table reports the value of the total mean risk premia (in percents) attributable to each risk factor for the sample period 1994:02 – 2002:12. For 
each specification, the alpha is the intercept of the regression. With OLS, the mean total risk premium of factor k is equal to k

OLS
k Fβ̂ . With HME, 

the mean total risk premium of factor k is equal to kkk
HM
k wF ˆˆˆ ψβ + . Under the optimal specification, the mean total risk premium of factor k is 

either the OLS risk premium if the variable has been removed from the HME estimation, or the mean total risk premium of the last pass of the 
HME. 
 

 



   
 

 

 


