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Abstract 

   

 Whether dividend yield (DY) can forecast aggregate stock returns is the topic of 

many recent researches.  However, statistical evidence of its predictive power is 

weak, inconsistent across time periods, and different across asset classes.  Further, 

while time-varying risk preferences can induce the standard positive relation between 

dividend yields and expected returns, time-varying expected dividend growth may 

induce a negative relation between them, offsetting and reducing the ability of DY to 

forecast future returns.  In this study, we show the existence of a DY threshold point, 

above which future returns are significantly negatively correlated with DY, but below 

which future returns are significantly positively correlated with DY.  When modeled 

under the autocorrelation bias-adjusted predictability framework of Lewellen (2004), 

our threshold controlled forecasting equations show DY has significant ability to 

forecast future stock returns during the period 1927-2001.  Conversely, when the 

threshold effect is not controlled for, DY fails to show significant ability to forecast 

future stock returns.  
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Threshold Effect and the Predictive Ability of Dividend Yield 

 

Introduction 

Whether or not dividend yield (DY from now on) can predict aggregate stock 

returns has received much attention in the recent literature.  However, statistical 

evidence of its predictive power is weak, inconsistent across time periods, and 

different across asset classes.  For example, earlier studies such as Fama and French 

(1988) find that DY predicts monthly NYSE returns from 1941-1986, with t-statistics 

between 2.20 and 3.21.  In contrast, other studies such as Stambaugh (1986) and 

Mankiw and Shapiro (1986), for example, show that predictive regressions can be 

severely biased toward finding predictability.  Nelson and Kim (1993), applying 

bootstrap simulations to correct for bias, replicate the Fama and French tests and find 

that the p-values are actually between 0.03 and 0.33.  More recently, Stambaugh 

(1999), using the exact small-sample distribution of the slope estimate when DY is 

assumed to follow a first-order autoregressive (AR1) process, reports a one-sided 

p-value of 0.15 when NYSE returns are regressed on DY over the period 1952-1996.  

On the other hand, in an even more recent article, Lewellen (2004) shows that the 

small-sample distribution studied by Stambaugh (1986,1999) and Nelson and Kim 

(1993), which has become standard in the literature, can substantially understate, in 

some circumstances, DY’s predictive ability. 

The standard positive relation between dividend yields and expected returns can 

be induced by time-varying risk preferences.  However, time-varying expected 

dividend growth may induce a negative relation between them, offsetting and 

reducing the ability of DY to forecast future returns.  Specifically, for a given 

expected dividend growth, a decrease in risk tolerance increases the equity premia on 

all assets and increases their DY.  That is, the variation in risk preferences induces 
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the standard positive relation between DY and expected returns.  However, for a 

given investors’ attitude toward risk, an increase in the asset’s expected dividend 

growth yields both an decrease in its DY and an increase in its equity premium.  That 

is, changes in expected dividend growth induce a negative relation between DY and 

expected excess returns, contrary to the common wisdom on return predictability.  

The reason is that an increase in expected dividend growth implies that the asset pays 

further ahead in the future, making its price more sensitive to shocks to the aggregate 

discount rate, that is, to fluctuations in the investors’ risk preferences.  Since this 

additional volatility of the asset is perfectly correlated with changes in investors’ 

attitude toward risk, it must be priced, and thus the premium is larger.  In equilibrium, 

however, this increase in the premium is not sufficient to offset the decrease in the DY 

that stems from a higher expected dividend growth, so the negative relation between 

DY and expected future returns remains, though attenuated.  Under this framework, 

the above offsetting effects can reduce the ability of the dividend yield to forecast 

future returns.  Dividend yield, thus, may not always be a good predictor for future 

returns since it may not always vary with expected returns with the same sign. 

Menzly, Santos and Veronesi (2004) present a general equilibrium model in 

which both investors’ preferences for risk and their expectation of future dividend 

growth are time-varying, where time-varying risk preferences induce the standard 

positive relation between dividend yields and expected returns, while time-varying 

expected dividend growth induces a negative relation between them in equilibrium.  

Their model, however, requires that the expected excess rate of return of an asset be a 

linear function not only of its DY but also of its consumption/price (CP) ratio.  

Moreover, in their framework, fluctuations in DY must predict changes in dividend 

growth.  Empirically, aggregate dividend growth, though, is not predicted by past 

DY of the market portfolio. 
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In this study we describe a threshold-based correction to the standard 

predictability regressions to disentangle the conflicting effects that variations in 

expected dividend growth and the preferences for risk have on the expected excess 

returns of the stock index.  Because DY may not always be a good predictor for 

future returns since it may not always vary with expected returns with the same sign, 

introducing a threshold effect to the predictability equations allows for the attractive 

plausibility that investors may have different expected dividend growth prospects with 

respect to different magnitude of DY.  That is, if DY is below a certain threshold 

consistent with “normal DY” or “normal economic circumstances or times”, the 

standard positive relation between DY and expected future returns maintains.  

However, if DY is “abnormally high” (above a certain threshold), investors may view 

it as “abnormal DY” or “abnormal economic circumstances or times”, and thus may 

attribute different (higher) expected dividend growth than in “normal times.”  If the 

expected dividend growth is over a certain level, its effect may be large enough to 

overwhelm the standard positive relation between DY and expected future returns, 

and, thus, vary with expected returns with the opposite sign instead.  

The unobservable DY threshold can be computed empirically from data using 

standard econometric models.  In this study, we derive threshold controlled 

forecasting equations by modeling the autocorrelation bias-adjusted predictability 

equations of Lewellen (2004) into the threshold testing methodology equations of Bai 

and Perron (1998, 2003 (BP)).  Using our constructed threshold and autocorrelation 

bias adjusted equations, we show the existence of a DY threshold point, above which 

future returns are significantly negatively correlated with DY, but below which future 

returns are significantly positively correlated with DY.  Our threshold and 

autocorrelation bias controlled forecasting equations show DY has significant ability 

to forecast future stock returns during the period 1927-2001.  On the other hand, 
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when the threshold effect is not controlled for, DY fails to show significant ability to 

forecast future stock returns under the autocorrelation bias-adjusted predictability 

equations of Lewellen (2004). 

The rest of the paper is organized as follows.  Section 2 describes the 

econometric procedures we use to control for possible threshold effects in predictive 

regression models.  Important issues relating to the time-series properties of 

regressors appearing in predictive regression models of stock returns are then 

discussed.  Section 3 describes the data and computes the DY threshold test results.  

Section 4 gives the empirical results.  Section 5 concludes and summarizes our main 

findings. 

 

Methodology 

 Predictive regressions have often been used in the finance literature to test 

whether past prices, financial ratios, interest rates, and a variety of other 

macroeconomic variables can forecast stock and bond returns.  For stock market 

indices, one common form is 

 

 ttt xr εβα ++= −1              (1) 

 

where tr  is the return in month t  and 1−tx  is a predictive variable (DY) known at 

the beginning of the month and is assumed to follow a stationary AR1 process: 

 

 ttt xx µρφ ++= −1              (2) 

 

where 1<ρ .  When the predictive variable is DY the residuals in (1) and (2) will be 

negatively correlated since an increase in price leads to a decrease in DY.  It follows 
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that tε  is correlated with tx  in the predictive regression, violating the OLS 

assumption of requiring independence at all leads and lags.  As a consequence, 

estimation errors in the two equations are closely connected: 

 

 ηρργββ +−=− )ˆ(ˆ             (3) 

 

where η  is a random error with mean zero and γ  is a negative constant.  The bias 

in β̂  is typically found by taking expectations of both sides of (3).  However, this 

approach implicitly discards any information we have about )ˆ( ρρ − .  In particular, 

Lewellen (2004) shows that for stationary predictive variables such as DY, the bias in 

β̂  is at most )1ˆ( −ργ .  This upper bound will be less than the standard 

bias-adjustment if ρ̂  is close to one, and empirical tests that ignore the information 

in ρ̂  will understate DY’s predictive power. 

 The tests in this paper therefore use the Lewellen (2004) bias-adjusted estimator 

 

 )ˆ(ˆˆ ρργββ −−=adj             (4) 

 

where ρ  is assumed to be approximately one (operationalized as 9999.0=ρ ).  

The variance of adjβ̂  is 1

)2,2(

2 )( −′XXvσ .  To implement the test, we can estimate γ  

and vσ  from ttt νγµε += , where tε  and tµ  are the residuals in (1) and (2).  

Operationally, Lewellen(2004) used the following equation to estimate ˆ
adj

β and γ  

 

 ttttt xxxr υγβα +−++= −− )9999.( 11                                  (5) 
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Equation (5) can be further modified to control for threshold effects by specifying 

1−tx  as the threshold variable (
tν ):  

 

1 1( .9999 )t j j t j t t tr x x xα β γ υ− −= + + − + ,   
1j t jτ ν τ− < <                 (6) 

 

for 1,..., 1j m= +  with the convention that 0τ = −∞ and 1mτ + = +∞ .  Thus, the 

functional form of equation (6) now depends on the value of the observable variable 

1−tx . 

Applying the Bai and Perron (1998, 2003; hereafter BP) methodology to (6) 

results in a joint test of (bias adjusted) predictability and threshold effects.  That is, 

we regress aggregate stock return on lag one DY and the difference between current 

DY and lag one DY which multiplies 0.9999,and then test for threshold effects in the 

constant term and slope terms.  In particular, consider such a regression model with 

m  threshold points 1( ,..., )mτ τ  and m+1 regimes, i.e., 

  

t t j tr z δ υ′= +        1j t jτ ν τ− < <                (7) 

 

for 1,...,1 += mj , where 1 1(1, log , log .9999 log )t t t tz DY DY DY− −
′= −  and 

( , , )j j j jδ α β γ ′= .  Let 1( ,..., )Tν ν ν′ =  and 
1

* ( ,..., )
Tt tν ν ν′ =  be the sorted version 

of ν ′ such that 
1 2

...
Tt t tν ν ν≤ ≤ ≤ .  The indices 1( ,..., )Tt t  are a permutation of the 

time indices (1,..., )T .  Now, for 1,..,i m= , let iT  be the time index such that 

jt i
ν τ≤  for all j  such that ij T≤  and 

jt i
ν τ>  for all j  such that ij T> .  The 

m -partition ),...,( 1 mTT  is the partition that corresponds to the time indices of the 

sorted vector *ν ′  when the variables 
jt

ν reach each of the m  thresholds.  We can 
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write the model (7) using all variables sorted according to the partition 1( ,..., )mT T .  

Then, we have, for 1,...,j T=  and 1,.., 1i m= + : 

 

j j jt t i t
r z δ υ′= +                1,...,i ij T T−=           (8) 

  

(using 00 =T  and TTm =+1 ).  The BP methodology is used to test for multiple 

threshold effects in (8) and allows for the threshold points to be explicitly treated as 

unknowns.
1
  Let the estimate of the partition be denoted by ( )1

,...,
m

T T
) )

; the estimates 

of the thresholds are then recovered as 
rj tτ ν=

)
 with ˆ

j
r T=  for 1,...,j m= .  One 

can then recover the estimates of jδ  from (7) by OLS  conditioning on the 

threshold values. 

 To test the null hypothesis of no threshold effect against the alternative of bm =  

threshold points, let ),...,( 1 bTT  be a partition such that [ ]ii TT λ=  ( )bi ,...,1= .  

Also define R  such that ( )'',...,'')'( 121 +−−= bbR δδδδδ . Then the following statistic 

can be specified: 

 

( )
1

1

1 2( 1) 1 ˆ,..., ' ' '( ) '
2

T b

T b
F R RV R R

T b
λ λ δ δ δ

−− + −   =     

) ))
               (9) 

where )ˆ(δV
)

 is an estimate of the variance-covariance matrix for δ
)

 that is robust to 

heteroskedasticity and serial correlation. 

 To test the null hypothesis of l  threshold points against the alternative 

hypothesis of 1+l  threshold points, the statistic labeled ( )llSupFT 1+  by BP can 

be used.  Operationally, the global minimized sum of squared residuals for the model 

                                                
1 See technical appendix 
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with l  threshold points is first computed.  Each of the intervals defined by the l  

threshold points is then analyzed for an additional threshold point.  From all of the 

intervals, the partition allowing for an additional threshold point that results in the 

largest reduction in the sum of squared residuals is considered as the model with 1+l  

threshold points.  The ( )llSupFT 1+  statistic tests whether the additional threshold 

point leads to a significant reduction in the sum of squared residuals.   

 The BP methodology allows for quite general specifications when computing 

confidence intervals and test statistics for the threshold points and regression 

coefficients including autocorrelation and heteroskedasticity in the residuals, and 

different moment matrices for the regressors in the different regimes. 

 

Data, Descriptive Statistics and Threshold Test Results  

 Prices and dividends come from the Center for Research in Security Prices 

(CRSP) database.  Our tests focus on NYSE value-weighted index.  DY is defined 

as dividends paid over the prior year divided by current level of the index and is 

calculated monthly on the value-weighted NYSE index.  We use value-weighted DY 

to predict returns on the NYSE index.  The predictive regressions use the natural log 

of DY.  The analyses focus on the period January 1927 to December 2001. 

Table 1 provides summary statistics for the data.  Log DY averages 1.35% over 

the full sample with a standard deviation of 0.36%.  The table also shows that our 

predictor variable is extremely persistent.  The first-order autocorrelation is 0.991. 

The autocorrelations tend to diminish as the lag increases.  That the log DY is found 

to be highly autocorrelated is important for the empirical tests since the 

bias-adjustment depends on 1ˆ −ρ .  The table also provides corresponding summary 

statistics for the returns and the excess returns on the value-weighted NYSE index, 
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VWNY and EVWNY, respectively. 

 Table 2 reports BP statistics for tests of threshold effect of the parameters in our 

predictive regression model (i.e. equation 8).  For this test, both double maximum 

statistics are significant at conventional significance levels, giving us strong evidence 

of threshold effects in the predictive regression model.  The )12(F  statistic is 

insignificant at the 5% level, while the )23(F is also insignificant, indicating just only 

one threshold point (two regimes) for this model.  The threshold point for the 

predictive variable DY is found to occur at 1.6376. 

 

Empirical Results 

 Table 3 explores the predictive ability of log DY in the full sample.  The Table 

reports a variety of statistics.  The row labeled ‘OLS’ shows the least-squares slope 

and standard error.  These estimates ignore bias and are reported primarily as a 

benchmark.  The row labeled ‘ 1≈ρ ’ reports estimates based on the conditional 

distribution of β̂ .  The slope coefficient is the Lewellen (2004) bias-adjusted 

estimator (equation (4)).  The results, as a whole, show no evidence of predictability 

for both the nominal return on the value-weighted index (VWNY) and its 

corresponding excess returns (EVWNY) series.  For the nominal return on the 

value-weighted index (VWNY), the conditional test of Lewellen (2004) provides a 

bias-adjusted estimate of –0.081 with a p -value of 0.587.  For EVWNY, the 

bias-adjusted estimate is 0.072 and the p -value is 0.630. 

 Table 4 reports the results of our joint test for predictability and threshold effect 

under the Lewellen (2004) bias adjusted estimator.  Panel A shows the results for 

VWNY and Panel B shows the results for EVWNY.  Both VWNY and EVWNY are 

shown to be highly predictable using DY.  Panel A shows that when DY is below 
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1.6376, the standard positive relation between DY and return results.  The 

bias-adjusted slope for VWNY is 0.631 with a p -value of 0.002.  However, Panel A 

also shows that when DY is above 1.6376, the relation between DY and return 

reverses.  The slope coefficient and p -values are now –3.235 and 0.000, 

respectively.  Panel B shows similar results for EVWNY.  When DY is below 

1.7017, the bias-adjusted slope for EVWNY is 0.519 with a p -value of 0.007.  

When DY is above 1.7017, the slope coefficient and p -values becomes –3.80 and 

0.000, respectively. 

  

Summary and Conclusion 

 Whether DY can forecast aggregate stock returns has evolved considerably over 

the last 20 years.  Initial tests produced strong evidence that market returns are 

predictable using financial variables such as DY.  On the other hand, more recent 

evidence suggests that DY has at best, weak power to predict returns.  Under 

standard predictability equations, DY is positively related with future returns.  

However, time-varying expected dividend growth may induce a negative relation 

between DY and future returns, offsetting and reducing the ability of DY to forecast 

returns under standard predictability equations. 

 In this study we describe a threshold-based correction to the standard 

predictability regressions to disentangle the conflicting effects that variations in 

expected dividend growth and the preferences for risk have on the expected excess 

returns of the stock index.  Introducing a threshold effect to the predictability 

equations allows for the attractive plausibility that investors may have different 

expected dividend growth prospects with respect to different magnitude of DY.  

Methodologically, we showed that we could feasibly compute the unobservable DY 

threshold from data by modeling the autocorrelation bias-adjusted predictability 
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equations of Lewellen (2004) into the threshold testing methodology equations of Bai 

and Perron (1998, 2003 (BP)).  Using our constructed threshold and autocorrelation 

bias adjusted equations, we show the existence of a DY threshold point, above which 

future returns are significantly negatively correlated with DY, but below which future 

returns are significantly positively correlated with DY.  This DY threshold shows up 

for both the VWNY and EVWNY (excess return) series.  Our overall results show 

that DY has significant ability to forecast both nominal and excess future stock returns 

during the period 1927-2001 under the threshold and autocorrelation bias controlled 

forecasting equations.  We also show that when the threshold effect is not controlled 

for, DY fails to forecast future stock returns under the autocorrelation bias-adjusted 

predictability equations of Lewellen (2004). 

 Our model is intuitive from an economic viewpoint since, in real life, investors 

may have different expected dividend growth prospects with respect to different 

magnitude of DY.  We show that when DY is below a certain threshold consistent 

with “normal DY” or “normal economic circumstances or times”, the standard 

positive relation between DY and expected future returns maintains.  Alternatively, 

when DY is “abnormally high” (above the threshold), investors may view it as 

“abnormal DY” or “abnormal economic circumstances or times”, and thus may 

attribute different (higher) expected dividend growth than in “normal times.”  If the 

expected dividend growth is over a certain level, its effect may be large enough to 

overwhelm the standard positive relation between DY and expected future returns, 

and, thus, vary with expected returns with the opposite sign instead.  
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Technical Appendix 

For each m-partition ),...,( 1 mTT , the associated least-squares estimates of iδ  

can be obtained by minimizing the sum of squared residuals, 

 

( )
1

2
1

1

1 1

( ,..., )
i

j j

j i

Tm

T M t t i

i t T

S T T r z δ
−

+

= = +

′= −∑ ∑            (1A)  

Let the regression coefficient estimates based on a given m -partition ),...,( 1 mTT  be 

denoted by { }( )mTT ,...,ˆ
1δ , where 

′





 ′′

= +11 ,..., mδδδ .  Substituting these into 

equation (1A), the estimated threshold points are given by 

 

( ) ( )MTTTm TTSTT
M

,...,minarg,..., 1,...,1 1
=

))
       (2A) 

 

From equation (2A), it is clear that the threshold point estimators correspond to the 

global minimum of the sum of squared residuals objective function.  With the 

breakpoint estimates in hand, the corresponding least-squares regression parameter 

estimates { }( )mTT
)))

,...,ˆ
1δδ =  can be computed.  Dynamic programming can be used 

to efficiently compute these estimates. 

 To test the null hypothesis of no threshold points against the alternative 

hypothesis of an unknown number of threshold points given an upper bound M , two 

“double maximum” statistics developed by BP can be used.  Firstly, consider the 
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following maximum F -statistic corresponding to equation (9) in the main body, 

 

( )bTT FbSupF λλ
))

,...,)( 1=            (3A) 

 

where ( )bλλ
))

,...,1  minimize the global sum of squared residuals, ( )bT TTS λλ
))

,...,1 , 

under the restriction that ( ) πλλ Θ∈b

))
,...,1 , where 

( ){ }πλπλπλλλλπ −≤≥≥−=Θ + 1,,;,..., 111 biib  for some arbitrary small positive 

number π  (the trimming parameter).  The first double maximum statistic can then 

be written as 

 

( )mSupFUD TMm≤≤= 1max max            (4A) 

 

The second double maximum statistic, maxWD , applies different weights to the 

individual ( )mSupFT
 statistics so that the marginal p -values are equal across 

values of m . 

 To test the null hypothesis of l  threshold points against the alternative 

hypothesis of 1+l  threshold points, the statistic labeled ( )llSupFT 1+  by BP can 

be used.  To determine the number of threshold points, BP recommends the 

following strategy.  First, examine the double maximum statistics to determine if any 
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threshold points are present.  If the double maximum statistics are significant, then 

examine the ( )llSupFT 1+  statistics to decide on the number of threshold points, 

choosing the ( )llSupFT 1+  statistic that rejects for the largest value of l .  BP 

(2001) recommend using a trimming parameter π  of at least 0.15 (corresponding to 

5 threshold points).  We follow this recommendation. 
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Table 1: Summary statistics 

The table reports summary statistics for stock returns and dividend yield for the period covering 

January 1927 to December 2001 (900 months). Observations are monthly and the variables are 

expressed in percent. VWNY is the returns on the value-weighted NYSE index.  EVWNY is the 

corresponding excess returns.  Excess returns are calculated as VWNY minus the one-month T-bill 

rate. The dividend yield (DY) equals dividends paid over the prior year divided by the current level of 

the index. 

 

Variable Mean S.D. Skew.  Autocorrelation   

    ρ1 ρ12 ρ24 

VWNY 0.97   5.44   0.24 0.097 -0.001 0.026 

EVWNY 0.67   5.46   0.29 0.100 -0.0004 0.027 

Log(DY)   1.35   0.36  -0.35 0.991 0.841 0.730 
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Table 2: Bai and Perron statistics for tests of multiple thresholds in the 

parameters of the predictive regression model 

 

Predictive Model UDmax
a WDmax

b F(2|1)c F(3|2)c F(4|3)c F(5|4)c 

   VWNY 52.7508*** 52.7508*** 7.1372 10.1818 7.2161 1.3136 

  EVWNY  36.9939***   36.9939*** 7.2347 3.0907 6.4695 1.5027 

 

Notes: The statistics are used to test for structural change in the parameters, α  and β , in the 

predictive regression model, 

rt =α+βLog(DYt-1) + γ (Log(DYt)- 0.9999*Log(DYt-1))+εt , 

ert =α+βLog(DYt-1) + γ (Log(DYt)- 0.9999*Log(DYt-1))+εt , 

where rt is the returns on the value-weighted NYSE index (VWNY) , ert is the excess returns on the 

value-weighted NYSE index (EVWNY), Log(DYt-1) is the natural logarithm of dividend yield on the 

value-weighted NYSE index, andεt is a disturbance term(all at time t); 

*** indicates significance at the 1 percent level.  The minimal length of any threshold regime is 

required to 15% of the full sample. 

aOne-sided (upper-tail) test of the null hypothesis of no threshold effect against the alternative 

hypothesis of an unknown number of threshold points given an upper bound of 5.  The 1 percent 

critical value is equal to 18.26. 

bOne-sided (upper-tail) test of the null hypothesis of no threshold effect against the alternative 

hypothesis of an unknown number of threshold points given an upper bound of 5.  The 1 percent 

critical value is equal to 19.86. 

cOne-sided (upper-tail) test of the null hypothesis of l threshold points against the alternative 

hypothesis of 1+l threshold points; F(2|1), l = 1;…; F(5|4), l = 4 ; 10, 5, and 1 percent critical values 

are: F(2|1), 13.91, 15.72, and 19.77 ; F(3|2), 14.96, 16.83 , and 20.75; F(4|3), 15.68, 17.61, and 21.98 ; 

F(5|4), 16.35, 18.14, and 22.46. 
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Table 3: Dividend yield and expected returns without controlling for threshold 

effects  

The table reports an AR1 regression for dividend yield and predictive regressions for stock returns for 

the period January 1927-December 2001 (900 months). Observations are monthly. DY is the dividend 

yield on the value-weighted NYSE index and Log(DY) is the natural logarithm of DY . VWNY is the 

returns on the value-weighted NYSE index.  EVWNY is the corresponding excess returns.  Excess 

returns are calculated as VWNY minus the one-month T-bill rate. Returns are expressed in percent. For 

the predictive regressions, ‘OLS’ reports the standard OLS estimates, and ‘ 1≈ρ ’ reports the 

bias-adjusted estimate and p-value assuming that ρ is approximately one. 

 

Log(DYt) = ψ+ ρ Log(DYt-1)+μt 

  ρ S.E.(ρ)  p-value  Adj. R
2
 S.D.(μ)   

AR(1)  OLS 0.991 0.005 0.000 0.976 0.014  

rt = α + β Log(DYt-1) +εt 

     β  S.E.(β)  p-value Adj. R
2
  S.E.(ε)  cor(ε,μ) 

VWNY OLS 0.773  0.501 0.062 0.003 5.437 -0.955 

   1ρ ≈   -0.081  0.149 0.587    

EVWNY OLS   0.927  0.502 0.032 0.003 5.445 -0.954 

   1ρ ≈    0.072  0.150 0.630    
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Table 4: Dividend yield and expected returns accounting for threshold effects 

Panels A and B reports the results of our joint test for predictability and threshold effects under the 

Lewellen (2004) bias adjusted estimator that accounts for AR(1) by fixing the slope of the dividend 

yield autoregressive parameter to approximately equal 1 (.9999).  Observations are monthly. DY is the 

dividend yield on the value-weighted NYSE index and Log(DY) is the natural logarithm of DY . 

VWNY is the returns on the value-weighted NYSE index.  Excess returns (EVWNY) are calculated as 

VWNY minus the one-month T-bill rate.  Returns are expressed in percent.  

 

Panel A: VWNY 

rt = α + β Log(DYt-1) + γ (Log(DYt)- 0.9999*Log(DYt-1))+εt 

Threshold Value Observations α (p-value) β (p-value) γ (p-value) 

( ) 1.6376Log DY ≤     720   0.171 (0.498)   0.631 (0.002)   -88.37 (0.000) 

( ) 1.6376Log DY >     180   6.419 (0.000)   -3.235 (0.000)   -99.08 (0.000) 

Panel B: EVWNY 

ert = α + β Log(DYt-1) + γ (Log(DYt)- 0.9999*Log(DYt-1))+εt 

Threshold Value Observations α (p-value) β (p-value) γ (p-value) 

( ) 1.7017Log DY ≤     760   -0.052 (0.832)   0.519 (0.007)   -88.78 (0.000) 

( ) 1.7017Log DY >     140   7.474 (0.000)   -3.80 (0.000)   -99.44 (0.000) 

 

 

 

 

 

 


