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HIGH FREQUNCY ANALYSIS ON JUMPS AND LONG MEMORY 

VOLATILITY IN COMMODITY FUTURES PRICES* 

 

 

Abstract 

We concern the high frequency returns of 15 minute commodity futures prices. The basic 

FIGARCH model with the usual normality assumption is found to be inappropriate in 

representing the high frequency commodity futures returns and the rejection appears to be due 

to the jumps which are occurred in the high frequency returns. Hence, this paper relies on the 

generalized FIGARCH model combined with the Bernoulli distribution that allows for jumps in 

the high frequency commodity futures returns. This paper shows that the generalized 

FIGARCH-Bernoulli distribution model performs quite well and that the jumps spuriously 

increase the long memory persistence in the volatility process of the high frequency commodity 

futures returns.  

 

Keywords: High frequency commodity futures, Jumps, FIGARCH, Bernoulli distribution, Long 

memory property. 

EMF classification code: 420 
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INTRODUCTION 

We consider the high frequency 15 minute commodity futures prices of cattle, corn, 

hogs and gasoline.1) In particular, we focus mainly on finding an appropriate model of the high 

frequency commodity futures prices. Since there has been the apparent lack of any economic 

theory explaining the dynamics of the first two conditional moments in asset prices including 

commodity futures prices, many econometricians have commonly used the extended models of 

the traditional ARMA models for the means and the ARCH models for the variances to describe 

and represent the dynamic process of the asset prices. These traditional models have usually 

been estimated by the approximate Quasi Maximum Likelihood (QMLE) method under the 

assumption that the innovations are normally distributed. And, the normality assumption has 

been justified by Bollerslev and Wooldridge (1992).  

Thus, we characterize the process of the high frequency commodity futures returns by 

applying some recent developments in modeling the volatility process. First, we use the 

relatively recent FIGARCH model of Baillie et al. (1996) with the Gaussian normality 

assumption in order to represent the high frequency commodity futures returns. The primary 

results from the Maximum Likelihood Estimation (MLE) of the basic FIGARCH model indicate 

that the FIGARCH model under the Gaussian normality assumption generally seems to match the 

dynamics of high frequency futures returns and is a satisfying starting point for studying the 
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underlying features of the high frequency futures returns data.  

On the other hand, using the usual FIGARCH model with the normal distribution 

assumption leads to excess kurtosis, which may be related to conditional mean jumps in the high 

frequency futures returns. Franses and Ghijlsels (1999) have proposed that the estimated residuals 

from GARCH model have excess kurtosis due to neglected additive outliers (AOs). These jumps 

might lead to “outliers” in the level and volatility process that cannot be taken accounted for by the 

simple normal distribution model (Hotta and Tsay, 1998). Accordingly, this paper analyzes jumps in 

the conditional mean process of the high frequency futures return series. Jumps in the conditional 

mean process are of significant interest, and the long memory property in the conditional variance 

process cannot be extracted without an appropriate specification of the conditional mean process.  

The basic FIGARCH model assuming a normal distribution is unlikely to represent the 

process of high frequency futures returns with a mixture of distributions. For this purpose, it 

appears more useful to apply the jump diffusion process proposed by Press (1967) in order to 

properly account for the jumps. Since the statistical and economic explanations for the jumps and 

the long memory property are quite different, this paper employs a normal mixture distribution 

model, the FIGARCH model combined with Bernoulli jump process to account for the jumps in the 

conditional mean process and the long memory property in the conditional variance process.  

Thus, in order to consider the existence of the jumps, we adopt the generalized 
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FIGARCH model combined with the Bernoulli distribution which allows for a jump possibility 

instead of the usual normal distribution assuming the jump probability is constant and is 

exogenously determined. We find that the FIGARCH-Bernoulli distribution model performs 

quite well and that a normal mixture distribution model, the FIGARCH model combined with the 

Bernoulli jump process, can improve estimates of the long memory parameter. Specification of the 

conditional mean process without considering the jumps seems to cause distorted higher estimates 

of the long memory parameter in the volatility process of the high frequency futures returns. This 

is quite understandable given that the jumps which otherwise may be spuriously associated with 

additional volatility are fully accounted for in the mixture distribution. 

The results of this paper can provide important implications for the understanding of the 

intraday dynamics of the high frequency commodity prices and hence for empirical applications 

such as optimal hedge ratio estimation, tests for futures market efficiency, tests for the risk 

management, option valuation and portfolio management.  

The plan of the rest of this paper is as follows. The next section describes the 15 minute 

commodity futures returns of cattle, corn, hog and gasoline and the basic properties of the high 

frequency commodity futures returns data. In particular, a strong intraday periodicity and a long 

memory property are found to be very significant in the high frequency commodity futures 

returns. This is followed by the application of the long memory volatility, FIGARCH model to 
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represent the high frequency commodity futures returns. For the analysis of the high frequency 

commodity returns, we first apply the Flexible Fourier Form (FFF) proposed by Gallant (1981, 

1982) to eliminate the intraday periodicity in the high frequency commodity futures returns and 

then uses the basic FIGARCH model of Baillie et al. (1996) with a normal distribution to 

estimate the long memory property in the volatility process of the high frequency filtered 

commodity futures returns. The FIGARCH model is found to be econometrically superior to the 

model of the regular stable GARCH model. But the primary results show excess kurtosis which 

cannot be accounted for by the normal distribution model. 

And, the next section then analyzes jumps in the conditional mean process of the high 

frequency futures returns using a normal mixture distribution model. The FIGARCH model 

combined with Bernoulli process is to represent the conditional mean jumps and the long 

memory volatility process of the high frequency commodity futures returns. In particular, the 

Bernoulli jump process is found to be quite appropriate for accounting for the conditional mean 

jumps and in capturing the effects of the jumps on the high commodity frequency commodity 

futures returns data. The final section provides a brief conclusion.  

 

BASIC ANALYSIS OF HIGH FREQUENCY FUTURES RETURNS 

 We examine four high frequency commodity futures data; cattle, corn, hogs, and 
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gasoline, which are obtained from the Futures Industry Institute data center. The high frequency 

commodity futures prices are for real-time transaction records, which we initially convert to 15-

minute price intervals by using the last price quoted before the end of every 5-minute interval 

over the trading day.2) Cattle and hogs are both important livestock commodities in U.S. 

agriculture but their different life cycles mean different inherent price dynamics, even though 

they are found to have a lot of similarity in the stochastic properties of prices for these two 

livestock commodities as presented by Baillie et al. (2007). Corn is a major annual crop that is 

of critical importance to U.S. agriculture since it is used heavily as animal feed, and Gasoline is 

included to see if results are markedly different for a natural resource based commodity.  

 The returns of the 15-minute commodity futures prices are defined in the conventional 

manner as continuously compounded rates of return and calculated as the first difference of the 

natural logarithm of prices. The n-th interval return during day t is defined as 

)]ln()[ln(100 1,,, −−×= ntntnt PPR      (1) 

where t = 1,..,T (trading days), n = 1,…,K (intraday intervals) and ,t nP is the futures price for 

the n-th intraday interval during trading day t. The details of the basic statistics and the sample 

periods used for the raw (unadjusted) 15-minute futures returns are provided in Table 1. For 

example, the sample mean of the 15-minute corn futures return is found to be -0.0041 which are 

very close to zero and indistinguishable at the standard significance level given the sample 
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deviations of 0.01 and 0.1. And, Figure 1 displays corresponding picture of the 15 minute corn 

future returns representing that the returns are centered on zero but there exist several jumps 

(large changes) and obvious volatility clustering in the high frequency futures return series.  

However, the high frequency corn returns appear not to be normally distributed since 

the sample skewness and kurtosis are -0.2142 and 5.2148, which are all found to be statistically 

significant. In particular, the estimated kurtosis statistics for the high frequency corn futures 

returns is found to be relatively large, which implies the rejection of a Gaussian normal 

distribution assumption. The high excess kurtosis may be due to the occurrences of numerous 

jumps that have taken place in the high frequency corn futures returns as presented in Figure 1. 

These jumps could lead to the level and volatility outliers that the normal distribution cannot 

take into account (Hotta and Tsay, 1998). Actually, the high frequency corn futures returns are 

characterized by several large jumps or shifts followed by ostensibly random movement. The 

jumps in the high frequency corn futures returns may be caused by several financial and 

economic events in the corn futures markets. The corresponding graphs for the other 

commodities are not shown to reserve space but they all exhibit the quite similar pattern. 

 The volatility processes in the high frequency commodity futures returns are further 

analyzed. Figure 2 plots the sample autocorrelations of high frequency corn futures returns for 

lags of up to 10 trading days in 15-minute intervals displayed in the horizontal axis for the 
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returns, the squared returns and the absolute returns of the raw 15-minute high frequency corn 

futures returns series. In particular, Figure 2 shows that there generally exists a small negative 

but significant first-order autocorrelation in returns, which may be due to the non-synchronous 

trading phenomenon while higher order autocorrelations are not significant at conventional 

levels. The autocorrelation functions of the absolute returns exhibit a pronounced U shape 

suggesting substantial intraday periodicity and decay very slowly at the hyperbolic rate, which 

is a typical feature of a long memory property. These are in line with the findings of Cai et al. 

(2001) who characterized similar intraday periodicity in the 5-minute high frequency gold prices. 

To conserve space the corresponding graphs for the other commodities are not shown but are 

available upon request to the authors. However, it is observed that the similar shapes and the 

amplitudes of the intraday periodicity in the autocorrelations of absolute returns exist in the 

other commodities. This seasonal pattern seems to be closely related to the intraday trading 

activity in commodity futures markets as presented by Muller et al. (1990) and Cai et al. (2001).  

 

FIGARCH MODEL WITH A NORMAL DISTRIBUTION 

As with many analyses of high frequency asset price returns like stocks, bonds and 

exchange rates (Andersen et al., 2005), it is found that the high frequency commodity futures 

returns display considerable intraday periodicity, which is usually attributed to institutional 
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trading features. This periodicity is removed using the FFF filtering method of Gallant (1981, 

1982), which is explained in detail in Baillie et al. (2007). Thus, the filtered high frequency 15-

mimute commodity futures returns is defined as, ntntnt sRy ,,, /=  where st,n is the intraday 

periodicity estimated from FFF. Figure 3 represents the correlograms of the filtered high 

frequency corn futures returns while the correlograms of the other commodities are not included 

in this paper to reserve space but they are available upon the request to the authors. It shows that 

the FFF filter seems to remove much of intraday periodicity presented in the raw absolute 

returns successfully as in Baillie et al. (2007). The filtered high frequency corn futures returns 

(yt,n)are virtually found to be stationary with small autocorrelations at the first few lags. On the 

other hand, the volatility processes of the filtered high frequency corn futures returns are found 

to be very persistently autocorrelated with long memory hyperbolic decay. The long memory 

patterns in the volatility process of the high frequency corn futures returns are almost same as 

the pattern in the high frequency gold futures returns in Cai et al. (2001).3) The correlograms of 

the other high frequency futures returns are also found to exhibit the similar patterns. 

 A model that is consistent with these stylized facts is the MA(n)-FIGARCH(p, d, q) 

process,  

ntntntnt LsRy ,,,, )(/ εθμ +==    (2) 

ntntnt z ,,
2
, σε =     (3) 
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where st,n is the intraday periodicity estimated from FFF, and )1,0.(..~, diiz nt , Pt is the asset 

price, μ and ω are scalar parameters, and β(L) and φ(L) are polynomials in the lag operator to be 

defined later. The polynomial in the lag operator associated with the moving average process is 

n
n LLLL θθθθ ++++= ...1)( 2

21 , and d continues to represent the long memory parameter.  

 The FIGARCH model in equation (4) is motivated by noting that the standard GARCH 

(p, q) model of Bollerslev (1986) can be expressed as 2 2 2( ) ( ) ,t t tL Lσ ω α ε β σ= + +  

where the polynomials are 2
1 2( ) .... q

qL L L Lα α α α≡ + + + , 2
1 2( ) ... .p

pL L L Lβ β β β≡ + + +   

The GARCH(p, q) process can also be expressed as the ARMA[max(p, q), p] process in squared 

innovations [ ] [ ]21 ( ) ( ) 1 ( )t tL L Lα β ε ω β υ− − = + −  where 2 2 ,t t tυ ε σ≡ − and is a zero mean, 

serially uncorrelated process which has the interpretation of being the innovations in the 

conditional variance. Similarly, the FIGARCH(p, d, q) process can be written naturally as  

  [ ]2( )(1 ) 1 ( )d
t tL L Lφ ε ω β υ− = + − ,  (5) 

where )]()(1[)( LLL βαφ −−=  is a polynomial in the lag operator of order max(p, q). 

Equation (5) can be easily shown to transform to equation (4), which is the standard 

representation for the conditional variance in the FIGARCH(p, d, q) process. Further details 

concerning the FIGARCH process can be found in Baillie et al. (1996). The parameter d 

characterizes the long memory property of hyperbolic decay in volatility because it allows for 
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autocorrelations decaying at a slow hyperbolic rate. 

 The above model (2), (3), and (4) is estimated for futures returns on our four 

commodities of interest by maximizing the Gaussian log likelihood function, 

 ][ln()
2
1()2ln()

2
();ln( 2

,
2
,

1

2
,,

1
ntnt

k

n
nt

T

t

TL σεσπ ∑∑
==

+−−=Θ  (6) 

where Θ is a vector containing the unknown parameters to be estimated. However, it has long 

been recognized that most asset returns are not well represented by assuming zt in equation (2) 

is normally distributed; for example see McFarland et al.(1982). Consequently, inference is 

usually based on the QMLE of Bollerslev and Wooldridge (1992), which is valid when zt is non-

Gaussian. Denoting the vector of parameter estimates obtained from maximizing (6) using a 

sample of T observations on equations (2), (3) and (4) with zt being non-normal by 
^

TΘ , then 

the limiting distribution of 
^

TΘ  is 

 
^

1/ 2 1 1
T 0 0 0 0T ( ) N[0, A( ) B( )A( ) ]− −Θ −Θ → Θ Θ Θ ,            (7) 

where A(.) and B(.) represent the Hessian and outer product gradient respectively, and 0Θ  

denotes the vector of true parameter values. Equation (7) is used to calculate the robust standard 

errors that are reported in the subsequent results in this paper, with the Hessian and outer 

product gradient matrices being evaluated at the point 
^

TΘ for practical implementation.  

Considerable previous work in the literature has examined high frequency returns in 

stock, equity and foreign exchange markets, but to date very little analysis has been done on 
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high frequency commodity returns (Cai et al., 2001; Martens and Zein, 2004; Baillie et al. 2007). 

This section of the paper represents an extensive analysis of the volatility properties of high 

frequency commodity futures returns using the FIGARCH model with the normal distribution 

of Baillie et al. (1996). The orders of the MA and GARCH polynomials in the lag operator are 

chosen to be as parsimonious as possible but still provide an adequate representation of the 

autocorrelation structure of the high frequency data. The exact parametric specification of the 

model that best represents the degree of autocorrelation in the conditional mean and conditional 

variance of high frequency commodity returns are found to be the MA(1)-FIGARCH(1, d, 1) 

model for cattle, hogs and corn and the MA(1)-FIGARCH(0, d, 1) model for gasoline.4)  

 Table 2 presents results of applying the above model to high frequency commodity 

futures returns for the four commodities discussed earlier. All the models have small but 

significant MA(1) parameter estimates, which is usually attributed to the non-synchronous 

trading phenomenon. The estimated long memory volatility parameters, d, are in the range 

between 0.20 and 0.35 for most of the commodities considered and are generally statistically 

significant indicating the significant long memory characteristics in the volatility of the high 

frequency returns. Thus, the hypotheses that d = 0 (stationary GARCH) and also d =1 

(integrated GARCH) are consistently rejected for all commodities using standard significance 

levels.  
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 Table 2 also reports the robust Wald test statistics, denoted by W, for testing the null 

hypothesis of GARCH versus a FIGARCH data generating process. Under the null, W will have 

an asymptotic 2
1χ  distribution and, from Table 2, the GARCH model is rejected for every 

commodity at standard significance levels. This robust Wald test supports the conclusion 

obtained both here and in Jin and Frechette (2004) that FIGARCH is superior to GARCH for 

modeling the conditional variances of the high frequency commodity futures returns. Evidently, 

the long memory property is the characteristic feature of high frequency commodity futures 

returns, and FIGARCH represents a significant improvement over GARCH. Thus, the estimated 

MA-FIGARCH models appear to describe the futures return data quite well so that it may be a 

satisfying starting point to analyze the nature of the underlying distributions in the high 

frequency commodity returns.  

 On the other hands, the focus of this paper is primarily directed at the assumption of the 

Gaussian normal distribution. Under the normality assumption, the estimated excess kurtosis are 

found to be 4.7, 6.6, 6.1 and 4.7 for the high frequency futures returns of the cattle, corn, hog 

and gasoline respectively, which are enough to reject the normal distribution. The normal 

distribution assumption seems to lead to excess kurtosis, and the excess kurtosis may be resulted 

from the jump (large changes) in the high frequency commodity futures prices caused by several 

financial and economic events as presented in Figure 1 for the corn futures returns. These events 
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concerning expected future flows can result in price changes well above normal and might be 

better captured by jumps rather than normal innovations. These jumps might lead to the level 

and volatility outliers which can not be taken into account for by the simple normal distribution 

as Hotta and Tsay (1998) presented. Thus, the assumption of the normal distribution seems to be 

inappropriate to represent the high frequency commodity returns series properly due to the 

jumps. 

 

FIGARCH-BERNOULLI DISTRIBUTION MODEL WITH JUMPS  

 Since the presence of the jumps is primarily responsible for the rejection of the usual 

normality assumption, it seems to call for the use of another model. One model to be considered 

is to introduce jumps through the use of a normal mixture distribution. We employ a normal 

mixture distribution model, the jump diffusion model proposed by Press (1967), in order to account 

for the conditional jumps in the high frequency futures returns. Initially, Press (1967) proposed a 

jump diffusion model for stock prices under the assumption that the logarithm of the stock price 

follows a Brownian motion process on which i.i.d. normal distributed jumps are superimposed. In 

particular, we analyze the impact of jumps in the conditional mean process on the long memory 

property in the conditional variance process of the high frequency commodity futures returns series 

by using a normal mixture distribution model. Efficient estimation of the parameters of 
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continuous time processes is generally challenging, In order to give an alternative perspective 

on the continuous time formulation, it is considered interesting to fit a normal mixture model in 

discrete time, taking advantage of the relatively simple formulation. 

Hence, in order to model the jumps occurred in the high frequency commodity futures 

returns appropriately, we rely on a jump-diffusion FIGARCH model that assumes the high 

frequency commodity returns are drawn from a mixture of normal distribution and jump process. 

In particular, we consider this model in the context of a Bernoulli distribution. The Bernoulli 

distribution models the stochastic jumps in the 15-minute high frequency commodity futures 

returns series. The main characteristic of the Bernoulli process is that over a fixed time period, one 

relevant information arrives in foreign exchange markets and a jump occurs in the high frequency 

commodity futures returns with probability (λ) which is drawn from a Bernoulli distribution and 

is forced in the (0,1) interval. The jump size is given by the random variable ν, which is 

assumed to be NID(ν, δ2). 

The combined MA(1)-FIGARCH (1,d,1) model with Bernoulli distribution is, 

ntntnt by ,,, εελνμ +++=      (8) 

),(),()1(~ 22
,

2
, δσλννλδλνλε +−+− ntnt NN     (9) 

2
,

2
1,

2
, ])1)(1(1[ nt

d
ntnt LLL εφββσωσ −−−−++= −     (10) 

The high frequency commodity futures returns are still specified as following the MA(1) 
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process, with a jump probability (λ) which is constant and is drawn from a Bernoulli distribution 

(0< λ <1) and ν is the mean of the jump distribution while δ2 captures the variance of the jump 

distribution implying the additional volatility related to the jumps. The volatility process is the 

FIGARCH(1,d,1) model as developed earlier. The log likelihood function for the combined 

model has the following form, 

]}
)(2
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The form of the likelihood function for the Bernoulli-normal mixture distribution is basically 

similar to that proposed by Vlaar and Palm (1993) which studied foreign exchange rates in the 

EMS (European Monetary System) using a GARCH framework. And, the normalized residuals 

are used for the statistical inference instead of the usual standardized residuals since the 

standardization may not lead to i.i.d. residuals in the mixture distribution model with time 

dependent variance as suggested by Vlaar and Palm (1997) and Beine and Laurent (2003). 

Hence, this paper investigates the high frequency futures returns by combining the 

FIGARCH model with the Bernoulli jump diffusion models to consider jumps in the conditional 

mean and capture the long memory property in the conditional variance. Jump process is included 

in an attempt to reduce the influence of the conditional mean jumps on the MA-FIGARCH 

specification. The estimated parameters for the high frequency futures returns series over 
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different commodities are reported in Table 3.  

The estimated parameters (j) for the probability of a jump are all significant at the 

conventional level of significance across different commodities, implying that the jumps are 

quite significant in the conditional mean process for the high frequency commodity futures 

returns. The jumps intensities (λ) calculated from the estimated (j) are 0.18, 0.13, 0.15 and 0.11 

for the high frequency commodity futures returns of cattle, corn, hog and gasoline respectively, 

which indicate the probability of jumps in the high frequency commodity futures returns 

occurring during the sample period. One interesting issue concerns the interpretation of the 

jumps and whether or not they correspond to economic and financial events in the commodity 

futures markets. Without more detailed information, it is difficult to distinguish these effects. 

We would leave this issue for a future study. 

The estimated parameters (υ) which represent the impacts of the jumps on the mean 

process are found to be insignificant for the high frequency commodity futures returns. This 

may be due to a general pattern of very quick and effective exchange rate conditional mean 

adjustment after the jumps. However, the effects of the jumps on the volatility process (δ2) of the 

high frequency futures returns are estimated to be very significant and much greater than those 

on the mean process. The effects of jumps on volatility process appear to be more important and 

more significant than the effects on the mean process. These results are generally similar to the 
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case of the high frequency gold futures returns in Cai et al. (2001) 

In particular, the estimated long memory parameters of the high frequency returns are 

0.1733, 0.1134, 0.1129 and 0.1437 for the high frequency commodity futures returns of cattle, 

corn, hog and gasoline respectively, and they are all very significant. The long memory 

parameters are found to be much lower than those estimated from the basic MA-FIGARCH 

model without considering the jumps. This suggests that the long memory property of the high 

frequency commodity futures returns may be significantly affected by jumps in the conditional 

mean process and higher values of the long memory parameters can be induced when jumps in 

the conditional mean process are not accounted for. This result is quite understandable given 

that the jumps which otherwise may be spuriously associated with additional volatility are fully 

accounted for in the mixture distribution model.5) And, the estimation results show that the 

kurtosis statistics are reduced significantly for the various commodity futures returns after the 

jumps are accounted for. 

Thus, the greater long memory property and the excess kurtosis seem to be related to 

asymmetric adjustments to conditional variance in response to the jumps, which is much more 

gradual and persistent than the conditional mean adjustments. In particular, the jumps appear to 

be the driving force behind the long memory property in the volatility process of the high 

frequency futures returns. This confirms that the mixture distribution generally outperforms the 
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simple normal distribution and that hat accounting for non-uniform flows of information can 

significantly improve the fit of the model.  

 

CONCLUSION 

We examine the properties of high commodity frequency returns of 15-minute cattle, 

corn, hog and gasoline futures prices. The strong intraday periodicity and the long memory 

property are found to have a significant impact on the volatility process of the high frequency 

futures returns. First, after eliminating the intraday periodicity by FFF method, we apply the 

FIGARCH model with a usual normality assumption and find that the FIGARCH model 

provides a better representation of the long memory property in the volatility process of the high 

frequency commodity futures return series than the usual GARCH model. The general 

appropriateness and robustness of the FIGARCH model persist for different high frequency 

commodity futures returns. But, there still exists high excess kurtosis in the high frequency 

commodity futures returns implying the rejection of the normality assumption, which may be 

caused by jumps in the conditional means of the high frequency commodity futures returns. 

Jumps in the conditional mean process of the high frequency returns data may be caused by 

economic and financial events in commodity futures markets.  

These features can be better modeled by using the FIGARCH model combined with the 
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Bernoulli jump process. Such model is constructed to investigate the effects of conditional mean 

jumps on the long memory property for different high frequency commodity futures returns data. 

The combined FIGARCH-Bernoulli model appears to be quite appropriate for describing jumps 

in the conditional mean process and the long memory property in the volatility process of the 

high frequency futures returns series. In particular, the long memory parameters and the values 

of kurtosis estimated from the combined models are found to be much lower than those from the 

basic FIGARCH model without considering the conditional mean jumps. This constitutes strong 

evidence that the specification of the conditional mean process without considering the jumps 

may spuriously distort the estimates of the long memory parameters.  

It is hoped that these results may be helpful in deepening our understanding the 

dynamics of commodity futures prices and in developing empirical applications such as optimal 

hedge ratio estimation, tests for futures market efficiency, tests for the announcement effect of 

market news, option valuation, risk management and portfolio management.  

.  
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Endnotes 

1. Cai etal. (2001) have used 5-minute gold futures prices to find the effects of US news on the 

high frequency gold futures returns. And Martens and Zein (2004) have used high 

frequency oil prices data to investigate the realized daily volatility measures. 

2. The original commodity futures prices data in this paper is the same as in Baillie et al. 

(2007). For more information and data availability see http://www.theifm.org.  

3. The long memory pattern is found in the volatility process of daily commodity futures 

prices. See Baillie et al. (2007), Jin and Frechette (2004), Martens and Zein (2004), Brunetti 

and Gilbert (2000) and Crato and Ray (2000).  

4. The Box-Pierce portmanteau statistics show that the models specified for each commodity 

do a good job of capturing the autocorrelations in the mean and volatility of the commodity 

return series. In each case there is no evidence of additional autocorrelation in the 

standardized residuals or squared standardized residuals, indicating that the chosen model 

specification provides an adequate fit. It is interesting to note that the autocorrelation in the 

mean tends to persist more for cattle and hogs than for the other commodities (i.e. more MA 

terms in the mean required for an adequate fit). Furthermore, these commodities also seem 

to require more flexible models to capture their autocorrelation in volatility as well (i.e. 

more GARCH terms required for an adequate fit). 
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5. Several recent papers present that the decrease of the persistence of shocks in foreign 

exchange rates when accounting for jumps appropriately. See Diebold and Inoue (1999), 

Granger and Hyung (1999) and Beine and Laurent (2003). 
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Table 1: Basic Statistics for Raw High Frequency Commodity Futures Returns 

 
    Cattle  Corn   Hog Gasoline 

 
First Obs.  99/05/03 99/05/03 99/05/03 99/0503 
  9:30 13:15 9:30 10:15 
Last Obs.  00/12/28 00/12/28 00/12/28 00/12/28 
  13:00 13:15 13:00  15:00 
Sample Size  6075 6594 6000 8020 
 
Mean       0.0036 -0.0041 0.0037 0.0069 
Variance  0.0183 0.0755 0.0384 0.1590 
Skewnes  -0.2142 -0.0704 -0.1634 -0.2142  
Kurtosis  5.2148 9.9384 13.0998 5.4554 
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Table 2: Estimated MA-FIGARCH model for Filtered High Frequency Commodity 
Futures Returns 

 
  Cattle Corn  Hogs Gasoline                  

 

 μ 0.0031 -0.0060 0.0091 0.0113  
  (0.0015) (0.0027) (0.0033) (0.0039)  

 θ -0.0525 -0.0955 -0.0490 -0.0272  
  (0.0144) (0.0143) (0.0158) (0.0128)  

 d 0.2097 0.2263    0.3503    0.2113   
  (0.0366) (0.0539) (0.0620) (0.0251)  

 ω 0.0024 0.0027    0.0030 0.0325  
  (0.0019) (0.0015) (0.0012) (0.0049)  

 β 0.4234 0.8519   0.7242 0.0963        
  (0.3876) (0.0812) (0.0816) (0.0283)   

  φ 0.3450 0.8137 0.5485   ---------  
  (0.3802) (0.0968) (0.0964)   

 

 m3        -0.111 0.233 -0.199 -0.294  
 m4         4.728 6.648 6.138      4.695   
 Q(50)    51.138 62.609 50.327 32.422  
 Q2(50)   37.736 48.162    53.041   45.245  
   W 32.777 17.648 31.943 71.131   
Notes: Robust standard errors based on QMLE are in parentheses below the corresponding 
parameter estimates. The diagnostic statistics Q(50) and Q2(50) are portmanteau statistics based 
on the first 50 autocorrelations of the standardized residuals and the autocorrelations of the 
squared standardized residuals respectively. The statistics m3 and m4 are the sample skewness 
and kurtosis respectively of the standardized residuals. W is the robust Wald statistic for testing 
the GARCH specification against FIGARCH. 
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Table 3: Estimated MA-FIGARCH-Bernoulli jump model with for Filtered High 
Frequency Commodity Futures Returns 

 
  Cattle    Corn Hogs Gasoline                  

 
  μ   0.0051  -0.0091 0.0089  0.0221   

   (0.0019)  (0.0028) (0.0034)  (0.0044)    
 j 1.4889 1.9376   1.7171  2.1077   

    (0.4475) (0.1871) (0.4255)  (0.3941)  
  λ   [0.184] [0.126]   [0.152]  [0.108]  
  υ  -0.0122 0.0383   -0.0092 -0.1320    

   (0.0101)  (0.0226)  (0.0240) (0.0520)   
  δ2  0.0294 0.2258   0.2161 0.3122  

    (0.0073) (0.0352) (0.0761)  (0.0735)   
  θ  -0.0668  -0.1203   -0.0655  -0.0437    

   (0.0140)  (0.0126)  (0.0142) (0.0128)   
  d   0.1733   0.1134   0.1129  0.1437    

   (0.0303)  (0.0233)  (0.0202) (0.0170)   
  ω   0.0001   0.0009   0.0000  0.0184    

   (0.0003)  (0.0007)  (0.0001) (0.0067)   
  β   0.6978   0.8514   0.9651  0.0364    

   (0.2908)  (0.0926)  (0.0285) (0.0208)   

  φ   0.6382   0.8342   0.9736      -         
   (0.3035)  (0.0997)  (0.0242)    -        

 
   m3    -0.067    0.143    -0.021   -0.193      
   m4 1.625  3.619     3.732    1.687     
  Q(50)    20.625 28.838    26.117 23.652   
    Q2(50) 12.723 10.704    17.793    7.290 
   
Notes: the same as Table 2 except that a jump intensity of λ, where λ = [1 + exp(j)]-1, 0 <λ < 1, 
and is specified to be generated by the Bernoulli distribution. The jump size is given by the 
random variable vt which is assumed to be NID (ν, δ2). 
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Figure 1: 15 minute Corn Futures Returns 
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Figure2: Correlograms of Raw 15 minute Corn Futures Returns for 10 trading days 
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Figure3: Correlograms of Filtered 15 minute Corn Futures Returns for 10 trading days 

 


