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ABSTRACT 

This paper extends the Jarrow and Deventer (1998) model to facilitate the 
consideration of default risks within the overall evaluation of credit card loans. We 
derive closed-form solutions within a continuous-time framework, whilst also 
providing a numerical method for the evaluation of credit card loans within a 
discrete-time framework. Adopting the market segmentation argument to describe the 
characteristics of the credit card industry, we find from our simulation results that the 
shapes of the forward rate and forward spread (default risk premium) term structures 
play extremely important roles in determining the value of credit card loans. 
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1. INTRODUCTION 

According to 2003 Federal Reserve statistical reports, the annual growth rate in 

consumer credit (93 per cent of which is in the form of credit card receivables) 

averaged out at over 12 per cent between 1980 and 2002, with the average growth rate 

prior to 1987 having been upwards of 15 per cent; thereafter, securitization became an 

integral element of growth within the credit card industry. Throughout the capital 

crunch of the early 1990s, the sector was led by Citicorp, which increased its credit 

card accounts by 42 per cent between 1990 and 1992, with further growth of 18 per 

cent in 1994, and 22 per cent in 1995. Securitized credit card receivables subsequently 

went on to exceed US$180 billion in 1996, by which time credit cards were accounting 

for 48.4 per cent of the non-mortgage ABS market. By 2001, credit card securitization 

had grown to US$339.1 billion (Calomris and Mason, 2004). 

It is clear, therefore, that the market for credit card loans is a market of extremely 

rapid growth; however, credit card loans are very difficult to evaluate since the rates 

charged differ significantly from the market rates for financial securities of equivalent 

risk. Such major differences have been attributed to markets with imperfect 

competition, possibly as a result of market friction, regulatory barriers or adverse 

selection problems under asymmetric information (Hutchison and Pennacchi, 1996).  

Another important feature of credit card loans is that such loans have high default 

risks; indeed, from an overall market perspective, the default rates for credit card loans 

are, on average, much greater than those for other loans. For example, during Asian 

financial crisis, the default rate of credit card loans in Thailand is nearly 36%. Even in 

Singapore, the default rate of credit card loans is 4.3 percent during the same period 

according to the 2004 Visa credit organization’s estimates. Hence, when constructing a 

model for the evaluation of credit card loans, it is important to determine the 
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characteristics of such products, including the interest rate differentials and default risks.  

With the notable exception of the Jarrow and Deventer (1998) model, the 

literature on pricing credit card loans is rare. Thus, in this paper, we use the 

arbitrage-free price method to construct discrete-time and continuous models capable 

of capturing the respective characteristics of interest rate differentials and default risks 

for pricing risky credit card loan assets. In order to achieve this, we first modify the 

Jarrow and Deventer model, extending the Heath-Jarrow-Morton (1990) term-structure 

model so as to facilitate the consideration of default risks. We then adopt the market 

segmentation argument to describe the characteristics of the interest rate differentials 

observed within the credit card industry as a whole. 

The model proposed in this study has three distinctive features. First of all, it takes 

existing spreads as an input into the model, rather than deriving the model from 

implications on default probabilities and recovery rates. Secondly, rather than working 

with spot yield curves for default-free and risky debt, we work with ‘forward rates’ and 

‘forward spreads’. The specific advantage of using forward rates is that since the 

current term structure is an input into the model, forward rates can describe short rates, 

whereas, short rates cannot describe forward rates. Thirdly, on the one hand, we 

provide a closed-form solution for the evaluation of credit card loans and their 

securitization products within a continuous-time framework; on the other hand, we 

offer an applicable lattice approach to the evaluation of credit card loan-related 

products within a discrete-time framework. 

We find from our simulation results that the shape of the forward rate and forward 

spread (default risk premium) term structures play extremely important roles in 

determining the value of credit card loans. Furthermore, to the best of our knowledge, 

this is the first model of its kind to investigate the ways in which the parameters of 
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default risks affect the value of credit card loans. 

The remainder of this paper is organized as follows. Following on from this 

introduction, a brief review of the literature on pricing credit card loans is presented in 

Section 2. This is followed, in Section 3, by the construction of a discrete-time model 

for pricing credit card loan assets with default risks. Section 4 derives a closed-form 

solution for the evaluation of credit card loan-related securities within a 

continuous-time framework. In Section 5, we set up a lattice approach to the 

evaluation of credit card loan-related products within a discrete-time framework, and, 

using the numerical examples, we go on, in Section 6, to investigate the ways in which 

the key parameters in our model affect the value of credit card loans. The conclusions 

drawn from this study are presented in Section 7. 

2. LITERATURE REVIEW 

The existing literature on the evaluation of credit card loans includes Ausubel (1991), 

O’Brien et al. (1994), the Office of Thrift Supervision (1994), Hutchison and Pennacchi 

(1996) and Jarrow and Deventer (1998). Ausubel (1991) and the Office of Thrift 

Supervision (1994) used a model which considered deterministic credit card loan growth, 

rates paid and interest rates, to compute present values; however, such a method 

trivializes the problem, since interest rate risk and stochastic growth are the two major 

confounding factors in determining present values. Although the Office of Thrift 

Supervision (1994) measured the interest rate risk of credit card loan balances by 

computing their ‘duration’, it would seem quite obvious that mixing deterministic and 

stochastic interest rate analyses in such a way can only generate nonsensical results. 

O’Brien et al. (1994) computed present values and sensitivity to interest rates in 

two ways, the first of which followed the method of the Office of Thrift Supervision, 

whilst the alternative method was to discount the expected value using stochastic 
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credit card loan balances, credit card loan rates and interest rates. In the latter case, 

since expectations are computed using a Monte Carlo simulation under an assumption 

of risk neutrality, such expectations represent a present value only if we have 

risk-neutral investors. Hutchison and Pennacchi (1996) calculated present values using 

an equilibrium-based model in an economy within which interest rates followed a 

square root, mean-reverting process, whilst Jarrow and Deventer (1998) provided an 

arbitrage-free procedure for computing present values in a stochastic interest rate 

environment using the Heath et al. (1992) methodology. 

3 THE MODEL 

3.1  The Model Framework 

In this paper, we construct a framework for pricing credit card loans with default risks. 

Utilizing the risk-neutral pricing methodology, we develop an arbitrage-free model for 

the evaluation of credit card loans; however, it is clear that such loans are very difficult 

to evaluate because the rates charged differ significantly from the market rates for 

financial securities of equivalent risk. 

In order to best deal with this characteristic, we adopt the market segmentation 

argument, with the market having numerous providers of credit cards and no major 

barriers to entry. Such a market structure leads to competitive performance, with prices 

adjusting to costs, and issuers earning a normal rate of profit. However, we can see that 

the credit card interest rates, rather than other rates, are inactive, with the largest 

issuers fixing their rates at between 18 and 20 per cent. According to Calem and 

Mester (1995), the imperfect competition existing in the credit card industry arises as a 

result of search costs, switch costs and adverse selection. 

The market segmentation hypothesis proposes that there are just two types of 
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traders; banks (or other financial institutions) and individuals, with the partition 

between these two types being based upon their ability to issue credit cards. We 

assume that there are significant regulatory restrictions associated with credit card 

loans, as well as entry (or mobility) barriers, with only banks (or financial institutions), 

and not individual investors, having the ability to issue credit cards.   

3.2 The Evaluation of Credit Card Loans with Default Risks 

Consider an economy on a finite time interval [0, T *], with the periods being taken to 

be of length h > 0. Thus, a typical time point, t , has the form k * h for integer k. At time 

point t , t = k * h, and it is assumed that at all time points t , a full range of default-free 

zero-coupon bonds are traded, as are a full range of risky zero-coupon bonds. It is also 

assumed that the markets are free from arbitrage, so that an equivalent martingale 

measure Q exists. 

For any given pair of time points ( t, T ) with 0 ≤ t≤ T≤ T *– h, let L( t ) denote the 

volume of credit card loans to a particular bank at time t , and let c( t ) denote the 

interest rate on credit card loans at time t. The cash flow of credit card loans is as 

shown in Table 1; although this cash flow shows no apparent risks, there are actually 

default risks. 

<Table 1 is inserted here> 

Under a risk-neutral measure, the expected risky cash flow, discounted at risk-free 

rates, must be equal to the value of the expected risk-free cash flow discounted at risky 

discount rates. Hence, we use the risky discount rate to calculate the net present value 

of L( t ), and let VL( t ) denote the net present value, to the bank, of L( t ), at time t. 

For any given pair of time points, ( t, T ), let f ( t, T ) denote the forward rate on the 

default-free bonds applicable to the period ( T, T + h ); let r( t ) denote the short rate; and 
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let r( t ) = f ( t, t ). That is to say, f ( t, T ) is the rate, as viewed from time t, for a 

default-free lending or investment transaction over the interval, ( T, T + h ). The forward 

rate curve is assumed to evolve according to the process: 

1( , ) ( , ) ( , ) ( , )ff t h T f t T t T h t T X hα σ+ = + +              (1) 

where α ( t, T ) and σ f ( t, T ) represent the respective forward rate drift term and 

volatility, and X1 is a random variable. 

Let ϕ ( t, T ) be the forward rate on the risky bonds implied from the spot yield 

curve, and let s ( t, T ) be the forward spread on the risky bonds; this is defined as: 

( , ) ( , ) ( , )s t T t T f t Tϕ= −                        (2) 

Assume that the forward spread follows the process given in Equation (3). 

2( , ) ( , ) ( , ) ( , )spreads t h T s t T t T h t T X hβ σ+ = + +              (3) 

where β ( t, T ) and σ spread ( t, T ) represent the respective forward spread drift term and 

volatility, and X2 is a random variable. 

Under a risk-neutral measure, the present value of the expected risk-free cash flow 

must be discounted at risky discount rates, since the cash flow includes default risks. 

Using ϕ ( t, T ) as the discount rate, we can obtain the net present value, VL( t ), of credit 

card loans at time t, from Equation (2). 

VL( t ), the net present value to the financial institution, at time t, of the credit card 

loans, is as follows:1 

/ 1

/

( )*exp{ ( )* } ( ) ( )* ( )( ) [ ( ) ( )* ]
( ) ( )

T h

L t
k t h

L kh c kh h L kh h J t L TV t E L t J t
J kh h J T

−

=

− +
= − + +

+∑     (4) 

                                                 
1   Refer to Appendix A for the derivation of Equation (4). 
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where J ( t ) denotes the time t value of an account which uses an initial investment of 

$1 ( J ( 0 ) = 1), and rolls the proceeds over at rate, ϕ ; that is to say: 

}*),(exp{)(
1/

0
∑

−

=

=
ht

k
hkhkhtJ ϕ                      (5) 

The overall value of the credit card loan assets to the financial institution, at time t , 

is denoted by CL( t ), a value which is equal to the initial credit card loans plus their net 

present value. In other words: 

( ) ( ) ( )L LC t L t V t≡ +                         (6) 

3.3  Identifying the Risk-Neutral Drifts 

In this section, we derive recursive expressions for the drifts, α and β , in the respective 

forward rate and forward spread processes, in terms of their volatilities, σ f and σ spread. 

We first denote B( t ) to be the time t value of a money-market account which uses an 

initial investment of $1, and rolls the proceeds over at the default-free short rate; that is, 

}*)(exp{)(
1/

0
∑

−

=

=
ht

k
hkhrtB                       (7) 

Let Z ( t, T ) denote the price of a default-free bond discounted using B( t ). Under Q (the 

martingale measure), all asset prices in the economy discounted by B( t ) will be martingales. 

)(
),(),(

tB
TtPTtZ =                           (8) 

Since Z is a martingale under Q, we can determine that: 

)],([),( ThtZETtZ t +=                        (9) 

otherwise:              
( , )[ ] 1

( , )
t Z t h TE

Z t T
+

=                          (10) 

Under this assumption, we can obtain: 
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1 1
2 3/ 2

1

1 1

( , )* ln{ [exp{ ( , ) * }]}

T T
h h

t
f

t tk k
h h

t kh h E t kh X hα σ
− −

= + = +

= −∑ ∑         (11) 

and 
1 1

2 3/2
1 2

1 1

[ ( , ) ( , )] ln{ [exp{ [ ( , ) ( , ) ]}]}

T T
h h

t
f spread

t tk k
h h

t kh t kh h E h t kh X t kh Xα β σ σ
− −

= + = +

+ = − +∑ ∑  (12) 

Using the two equations above, we can obtain α and β , in terms of σ f and σ spread , 

and under the Heath-Jarrow-Morton term-structure model, we can use the forward rate 

and forward spread volatilities to describe the forward rate and forward spread drift 

terms, with this method potentially reducing the inputs and simplifying the whole model. 

4.  A CONTINUOUS-TIME MODEL 

This section considers a continuous-time economy with trading horizon [0, τ], and begins 

with a redefinition of the notations of the last section. Let f ( t, T ) be the instantaneous 

forward rate at time t for a default-free transaction at time T. The instantaneous forward 

rate on the risky bonds with maturity T is denoted as ϕ ( t, T ), with the instantaneous 

forward spread, s ( t, T ), on the risky bonds being defined in Equation (2). The forward 

rate curve and forward spread processes are assumed to follow: 

( , ) ( , ) ( , ) ( )f rdf t T t T dt t T dW tα σ= + ,              (13) 

( , ) ( , ) ( , ) ( )s sds t T t T dt t T dW tβ σ= + ,               (14) 

where α ( t, T ), β ( t, T ) are the drift terms; σ f ( t, T ), σ s ( t, T ) are the volatility 

coefficients; Wr ( t ), Ws ( t ) is a two-dimensional Brownian motion with instantaneous 

correlation ρ; and –1≦ρ≦1. In order to evaluate the credit card loan in the 

continuous-time economy, we rewrite Equation (4) and evaluate it at time 0.2  

                                                 
2   Refer to Appendix B for the derivation of Equation (15).  
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( ) ( )/ 1

0
0

0

( ) exp ( ) exp ( , )
(0)

exp ( , )

T h

L i
i

j

L ih c ih h ih ih h
V E

jh jh h

ϕ

ϕ

−

=

=

⎡ ⎤
⎢ ⎥−⎡ ⎤⎣ ⎦⎢ ⎥= ⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑
∑

         (15) 

By analogy with Equation (15), the net present value of the credit card loan, at 

time 0, is given by: 

( ) ( )

( )0 0

0

( ) exp ( ) exp ( , )
(0) .

exp ( , )
L t

L t c t t t
V E dt

u u du

τ ϕ

ϕ

⎡ ⎤
−⎡ ⎤⎢ ⎥⎣ ⎦= ⎢ ⎥

⎢ ⎥
⎣ ⎦

∫
∫

           (16) 

In order to obtain a closed-form solution for Equation (16), we follow Jarrow and 

Deventer (1998) to consider the stochastic process for L( t ) and c( t ), as follows: 

[ ]0 1 2 3log ( ) ( ) ( ),d L t t r t dt dr tα α α α= + + +              (17) 

[ ]0 1 2( ) ( ) ( ).dc t r t dt dr tβ β β= + +                  (18) 

The solutions for the differential Equations of (17) and (18) are presented as: 

 ( )2
0 1 2 30

( ) (0)exp / 2 ( ) ( ) (0) ,
t

L t L t t r u du r t rα α α α⎡ ⎤= + + + −⎢ ⎥⎣ ⎦∫       (19) 

( )0 1 20
( ) (0) ( ) ( ) (0) .

t
c t c t r u du r t rβ β β= + + + −∫             (20) 

Substituting Equations (19) and (20) into Equation (16), we obtain 

( ) ( )2
0 0 1 2 30 0 0

(0) exp ( , ) (0) exp /2 ( ) ( ) (0)
t t

LV E u u du L t t r u du r t r
τ

ϕ α α α α⎛ ⎡ ⎤= − ⋅ ⋅ + + + − ⋅⎜ ⎢ ⎥⎣ ⎦⎝∫ ∫ ∫  

( )( ) ( )0 1 20
exp (0) ( ) ( ) (0) exp ( ) ( ) .

t
c t r u du r t r r t s t dtβ β β ⎞⎡ ⎤+ + + − − + ⎟⎢ ⎥⎣ ⎦ ⎠∫  

After simplifying the above expression, we can rewrite VL( 0 ) as follows: 

( )( ) ( )2
3 2 0 0 10

(0) (0) exp (0) (0) exp ( ) / 2LV L c r t t
τ

α β α β α= ⋅ − + ⋅ + + ⋅∫  
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(( ))0 2 1 3 20 0
exp ( 1) ( ) ( ) ( ) ( )

t t
E r u du r t s u du dtα β α β+ − ⋅ + + −∫ ∫  

( ) ( )2
3 0 10

(0) exp (0) exp / 2L r t t
τ

α α α− ⋅ − ⋅ + ⋅∫               
(21)

 

(( ))0 2 30 0
exp ( 1) ( ) ( 1) ( ) ( ) ( )

t t
E r u du r t s u du s t dtα α− ⋅ + + − +∫ ∫  

In order to obtain a closed-form solution for the value of VL( 0), we consider the 

case of a Gaussian economy within which the process of spot rate and spot spread 

under a risk-neutral probability measure are as follows: 

[ ]( ) ( ) ( ) ( )r r rdr t a r t r t dt dW tσ= − +                (22) 

[ ]( ) ( ) ( ) ( ),s s sds t a s t s t dt dW tσ= − +               (23) 

where r( t ) = f( t, t ) is the instantaneous spot rate; s( t ) = s( t, t ) is the instantaneous spot 

spread; α r and α s are constants; σ r (σ s) is spot rate (spot spread) volatility; and ( )r t  and 

( )s t  are the deterministic functions to fit the initial forward rate curve { f( 0,T ), 0 ≦T ≦τ} 

and forward spread curve { s( 0,T ), 0 ≦T ≦τ}. So as to avoid arbitrage and to match the 

initial curve, ( )r t  and ( )s t  must satisfy the following conditions: 

22( ) (0, ) (0, ) / (1 ) / 2 /ra t
r r rr t f t f t t e a aσ −⎡ ⎤= + ∂ ∂ + −⎣ ⎦          (24) 

22( ) (0, ) (0, ) / (1 ) / 2 / .sa t
s s ss t s t s t t e a aσ −⎡ ⎤= + ∂ ∂ + −⎣ ⎦          (25) 

The solutions for Equations (24) and (25) are then obtained as follows: 

      ( )2 2 2

0
( ) (0, ) ( 1) /(2 ) ( )r r

ta t a t u
r r r rr t f t e a e dW uσ σ− − −= + − + ∫        (26) 

      ( )2 2 2

0
( ) (0, ) ( 1) /(2 ) ( ).s s

ta t a t u
s s s ss t s t e a e dW uσ σ− − −= + − + ∫        (27) 
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Let 

0

0

( )

( )

( )

( )

t

t

r u du

r t
X

s u du

s t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥≡
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫

∫
, 

1

2

3

4

( )
( )
( )
( )

t
t
t
t

µ
µ

µ
µ
µ

⎡ ⎤
⎢ ⎥
⎢ ⎥≡
⎢ ⎥
⎢ ⎥
⎣ ⎦

 , 

2
1 12 13 14

2
21 2 23 24

2
31 32 3 34

2
41 42 43 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t t t t

t t t t

t t t t

t t t t

σ σ σ σ

σ σ σ σ

σ σ σ σ

σ σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥Σ≡ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 ,  

1

2

3

4

γ
γ

γ
γ
γ

⎡ ⎤
⎢ ⎥
⎢ ⎥≡
⎢ ⎥
⎢ ⎥
⎣ ⎦

, 

where X is a vector of normal random variables with mean, µ, and covariance matrix, 

Σ; and γ is a vector of constants. 

Using Equations (21), (24) and (25), along with the above definitions, we can 

obtain the closed-form solution for VL(0), as follows: 

( )( ) ( )2
3 2 0 0 10

(0) (0)exp (0) (0) exp ( ) / 2LV L c r t t
τ

α β α β α= − + + + ⋅∫  

( ) ( ) ( )2
2 1 3 2 3 0 10

, 1, , 1,0 (0)exp (0) exp / 2M t dt L r t t
τ

α β α β α α α+ − + − − − + ⋅∫   (28) 

( )2 3, 1, 1, 1,1 .M t dtα α− + −  

where M(t, γ1, γ2, γ3, γ4) ≡ E0 (eγ 
T X ) = exp (γ 

Tµ + γ 
T Σγ ) is the moment-generating 

function of the normal random vector, X.3 

      ( )( )22 2
1 0 0
( ) (0, ) exp 1 /(2 )

t t

r r rt f u du a u a duµ σ⎡ ⎤≡ + − −
⎣ ⎦∫ ∫  

      ( )( )22 2
2 ( ) (0, ) exp 1 /(2 )r r rt f t a t aµ σ≡ + − −  

      ( )( )22 2
3 0 0
( ) (0, ) exp 1 /(2 )

t t

s s st s u du a u a duµ σ⎡ ⎤≡ + − −
⎣ ⎦∫ ∫  

      ( )( )22 2
4 ( ) (0, ) exp 1 /(2 )s s st s t a t aµ σ≡ + − −  

      ( )( )22 2 2
1 0

( ) 1 exp ( ) /
t

r r rt a t u a duσ σ⎡ ⎤≡ − − −⎣ ⎦∫  

                                                 
3   Refer to Appendix C for the derivation of these integers. 
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      ( )2 2
2 0
( ) exp 2 ( )

t

r rt a t u duσ σ≡ − −∫  

      ( )( )22 2 2
3 0
( ) 1 exp ( ) /

t

s s st a t u a duσ σ⎡ ⎤≡ − − −⎣ ⎦∫  

      ( )2 2
4 0
( ) exp 2 ( )

t

s st a t u duσ σ≡ − −∫  

      ( ) ( )( )22 2
12 ( ) /(2 ) 1 expr r rt a a tσ σ≡ − −  

      ( ) ( )13 0
( ) ( ) 1 exp ( ) 1 exp ( ) /( )

t

r s r s r st a t u a t u a a duσ σ σ ρ≡ − − − − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫  

      ( ) ( )14 0
( ) ( ) 1 exp ( ) exp ( ) /

t

r s r s rt a t u a t u a duσ σ σ ρ≡ − − − − −⎡ ⎤⎣ ⎦∫  

      ( ) ( )23 0
( ) ( ) 1 exp ( ) exp ( ) /

t

r s s r st a t u a t u a duσ σ σ ρ≡ − − − − −⎡ ⎤⎣ ⎦∫  

      ( )24 0
( ) exp ( ) ( )

t

r s r st a t u a t u duσ σ σ ρ≡ − − − −∫  

      ( ) ( )( )22 2
34( ) /(2 ) 1 exps s st a a tσ σ≡ − −  

It is easy to show that the closed-form solution derived by Jarrow and Deventer 

(1998) is a special case in our study when the default risk parameters are set as zero. 

Hence we contribute to the literature by adding in the components of default risks for 

credit card loans, which are an important characteristic observed in such loans. 

5. NUMERICAL PROCEDURES 

5.1  The Process 

In this section we adopt a lattice approach to the evaluation of credit card loans, an 

approach which is easily implemented, and describe the procedures involved in 

constructing this lattice in the following sub-sections. 

5.1.1  Random variables 
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There are two random variables in the above model, X1 and X2; we assume that these 

are binominal random variables, and that each respectively takes on the value +1 

and –1 with probability ½. Let ρ denote the correlation between these two variables 

and note that ρ may be neither equal to zero, nor constant. It is also assumed that the 

joint distribution of (X1, X2 ) is: 

1 2

( 1, 1), . .(1 ) / 4
( 1, 1), . .(1 ) / 4

( , )
( 1, 1), . .(1 ) / 4
( 1, 1), . .(1 ) / 4

w p
w p

X X
w p
w p

ρ
ρ
ρ
ρ

+ + +⎧ ⎫
⎪ ⎪+ − −⎪ ⎪= ⎨ ⎬− + −⎪ ⎪
⎪ ⎪− − +⎩ ⎭

                     (29) 

5.1.2  Forward rate term structure and volatility 

A forward rate term may be one of three types, downward sloping, upward sloping or 

flat, with a number of different theories having previously been proposed. The simplest 

is the ‘expectations theory’, which suggests that long-term interest rates should reflect 

expected future short-term interest rates, whilst ‘segmentation theory’ argues that there 

need be no relationship between short-term, medium-term and long-term interest rates, 

since short-term interest rates are determined by supply and demand in the short-term 

market, medium-term interest rates are determined by supply and demand in the 

medium-term market, and so on. Based upon the underlying assumption that investors 

prefer to preserve their liquidity, ‘liquidity preference theory’ argues that long-term 

interest rates should always be higher than short-term interest rates. This leads to a 

situation in which the shape of the curve is upward sloping. For implementation 

reasons, we assume that forward rate volatility is of the form: 

( , ) *exp{ ( )}f t T T tσ σ λ= − −                     (30) 

where σ > 0 is a positive constant and λ ≥ 0 is a non-negative constant. This structure, 

which is obtained by permitting volatility to depend upon the maturity of the forward 
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rate, (T – t) is a more realistic volatility structure for forward rates. If λ = 0, then 

forward rate volatility is constant, σ 
f ( t, T ) = σ.  If λ > 0, then this implies that with a 

decrease in maturity (T – t) there is an increase in forward rate volatility. This 

exponentially-dampened volatility structure exploits the fact that near-term forward 

rates are more volatile than distant forward rates. 

5.1.3 Forward spread term structure and volatility 

According to the experiments undertaken by Zhou (2001), the term structure of credit 

spreads can generate various shapes, including upward-sloping, downward-sloping, 

flat and hump-shaped. Thus, we can set the form of the forward spread term structure 

to be of different types. We also assume, for the purpose of implementation, that 

forward spread volatility is of the form: 

( , ) *exp{ ( )}spread s st T T tσ σ λ= − −                   (31) 

where σ s >
 0 is a positive constant. 

The forward spread term structure is obtained by permitting volatility to depend upon 

the maturity of the forward spread (T – t).  If λ s = 0, then forward spread volatility is 

constant, σ spread ( t, T ) = σ s. If λ s > 0, then this implies that with a decrease in maturity (T – t), 

there is an increase in forward spread volatility. Conversely, if λ s < 0, then this implies that 

with a decrease in maturity (T – t), there is a corresponding decrease in forward spread 

volatility. That is to say, there are three possible shapes of forward spread volatility. 

5.2  The Implementation of our Model 

We need data on forward rate and forward spread in order to implement the model; based 

upon the above assumptions, this may be easily implemented on a lattice. The double- 

binomial structure, as described above, results in a branching process with four branches 

emanating from each node. The branching lattice is illustrated in Figure 1. 
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<Figure 1 is inserted here> 

We achieve the risk-neutral drifts, α and β, by forward rate volatility and forward 

spread volatility. Once the risk-neutral drifts have been computed, the possible value of 

forward rates and forward spreads are obtained for one period out. The process is as follows.  

Let Fu and Fd respectively refer to the forward rates resulting from F, if X1 equals 

+1 and –1, and let Su and Sd respectively refer to the forward spreads resulting from S, 

if X2 equals +1 and –1. The probability of each branching, which is shown in Equation 

(13), is dependent upon the joint distribution of ( X1, X2
 ). 

6.  NUMERICAL RESULTS 

6.1 Demonstration of the Model 

In order to demonstrate our model, we implement a simple example. Consider an economy 

on a finite time interval [0, 2], with periods taken to be of length h, and h = 0.5 (half-year). 

Details of the cash flow of credit card loans, for five periods, are presented in Table 2, with 

the process subsequently being described below. 

<Table 2 is inserted here> 

According to the whole model described above, some inputs are required for 

implementation. We set the volume of credit card loans, L ( t ), as an increasing volume 

with a fixed rate, g; the initial credit card loan amounts to NT$100 billion; and the 

half-year growth rate, g, as 5 per cent. According to Calem and Mester (1995), we can 

determine that credit card interest rates are sticky; thus, at time t , we set the credit card 

interest rate, c ( t ) , as being constantly equal to 19 per cent. 

We can determine the risk-neutral drifts, α and β, by forward rate volatility and 

forward spread volatility. Once the risk neutral drifts have been computed, the possible 

values of the forward rates and forward spreads are obtained for one period out. The 
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first of these, the forward rate volatility term structure, is as shown in Table 3. 

<Table 3 is inserted here> 

Assuming that forward rate volatility, σf , follows Equation (14), then volatility, σ , 

is equal to 2 per cent, and the volatility reduction factor, λ , is equal to 0.1. That is to 

say, forward rate volatility is: 

( , ) 0.02*exp{ 0.1( )}f t T T tσ = − −                  (32) 

We also set forward spread volatility, σ spread, with the same form, following 

Equation (15). The volatility, σ s
 , is equal to 2 per cent and the volatility reduction 

factor, λ s, is equal to 0.1. That is to say, forward spread volatility is: 

( , ) 0.02*exp{ 0.1( )}spread t T T tσ = − −                (33) 

The forward spread volatility term structure is as shown in Table 4. 

<Table 4 is inserted here> 

Using Mathematica (Wolfram 1988), the forward rate and forward spread term 

structures are as shown in Table 5. 

<Table 5 is inserted here> 

In order to make use of the data in Table 5, and the forward rate and forward spread 

volatility term structures, we achieve the double-binomial structure results in a 

branching lattice with four branches emanating from each node. We now see that, at time 

0, the net present value of credit card loans, VL( 0), is NT$23.072 billion, whilst the value 

of credit card loan assets to the financial institution, CL( 0), is NT$123.072 billion. 

Next, by performing a sensitivity analysis, we further discuss the major factors of 

forward rate, forward spread, forward rate volatility and forward spread volatility, 

within this model, and the ways in which they affect the values of VL( 0) and CL( 0). 
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6.2  The Effects of Changes in the Forward Rate Term Structure  

The forward rate term structure may be of different shapes, including downward 

sloping, flat and upward sloping (Figure 2); we calculate the net present value, at time 

0, of credit card loans, VL( 0), along with the value of credit card loan assets, CL( 0), 

under these three types. The results are presented in Table 6. 

<Figure 2 is inserted here> 

<Table 6 is inserted here> 

We can clearly see that CL( 0) has the smallest value when the forward rate term 

structure is upward sloping; conversely, CL( 0) has the largest value when the forward 

rate term structure is downward sloping. The credit card interest rate has already been 

set as fixed and equal to 19 per cent; therefore, if the forward rate term structure is 

upward sloping, this indicates that the capital cost is greater in the future than in the 

present. Under this term structure, when the earnings rate is fixed, CL( 0) will achieve 

the minimum value of these three situations. 

6.3  The Effects of Changes in the Forward Spread Term Structure  

According to the experiments undertaken by Zhou (2001), the credit spread term 

structure may generate various shapes. We discuss here the effects of three basic types 

of forward spread on the net present value, at time 0, of credit card loans, VL( 0), and 

on the value of credit card loan assets, CL( 0), assuming that the forward spread term 

structures are as shown in Figure 3. The results are presented in Table 7. 

<Figure 3 is inserted here> 

<Table 7 is inserted here> 

The spread determines the default risks in credit card loans, and as we can clearly 



 19

see, CL( 0) has the smallest value when the forward spread term structure is upward 

sloping; conversely, CL( 0) has the largest value when the forward spread term structure 

is downward sloping. If the forward spread term structure is upward sloping, this 

indicates that the default risks are greater in the future than in the present; thus, more 

premiums are required to compensate for the risks. However, given a situation in 

which the earning rate is fixed, CL( 0) will have the smallest value.  

6.4  The Effects of Changes in Forward Rate Volatility 

As noted in section 3, we assume that forward rate volatility abides by Equation (14). 

According to the empirical performance of the single factor proposed by Flesaker (1993) 

(the constant volatility version of the interest rate contingent claims valuation model of 

Heath, Jarrow and Morton (1992), which used a generalized method of moments (GMM) 

and which tested three-year daily data for Eurodollar futures and futures options), the 

results show that the estimated volatility is extremely close to 0.02. The minimum value is 

0.196846, the maximum value is 0.202845, and the mean value is 0.0200070. Following 

the results of the empirical performance, we initially set forward rate volatility, σ , as being 

equal to 2 per cent, and the volatility reduction factor, λ , as being equal to 0.1. Next, we 

examine the effects of changes in forward rate volatility, and discuss this under two topics, 

the effects of volatility, and the effects of the volatility reduction factor. 

6.4.1  The effects of volatility 

We set volatility, σ , as being equal to 2 per cent, and subsequently change the value to 

examine the effects, at time 0, on the net present value of credit card loans, VL( 0), and on 

the value of credit card loan assets, CL( 0). The results are presented in Table 8. 

<Table 8 is inserted here> 

As shown in Figure 4, we can determine that with an increase in volatility, σ , 
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there is a rapid decrease, with maturity, in the forward rate volatility term structure, σ f , 

and a corresponding reduction in the value of CL( 0).  

<Figure 4 is inserted here> 

This exponentially-dampened volatility structure exploits the fact that near-term 

forward rates are more volatile than distant forward rates. An increase in volatility 

indicates that the forward rate is more uncertain, thereby reducing the value of CL( 0). 

6.4.2  The effects of the volatility reduction factor 

We also change the value of the forward rate volatility reduction factor and discuss the 

results; these are presented in Table 9. 

<Table 9 is inserted here> 

We find that with an increase in the volatility reduction factor, λ , there is a 

corresponding decrease in the slope of the forward rate volatility term structure, 

making forward rate volatility more stable, and also increasing the value of CL( 0). 

6.5  The Effects of Changes in Forward Spread Volatility 

For the purpose of implementation, we assume that the forward spread volatility term 

structure abides by Equation (15), and discuss the effects of the volatility reduction 

factor, λs , under settings of positive, zero and negative values (Figure 5). The results 

are presented in Table 10. 

<Figure 5 is inserted here> 

<Table 10 is inserted here> 

We find that if λs = 0 , then the forward spread volatility term structure is flat; that is 

to say, σ spread ( t, T ) = σ s. If λ s > 0, this implies that with an increase in maturity, (T – t), 

there is a corresponding decrease in forward spread volatility. Conversely, if λs < 0, this 
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implies that with an increase in maturity (T – t), there is also an increase in forward 

spread volatility. When λ s < 0, forward spread volatility is greater, leading to CL( 0) 

having the smallest value.  

6.5.1  The effects of volatility 

We further discuss the effects of forward spread volatility under three types of λs. Firstly, 

if λs > 0, this implies that forward spread volatility decreases with an increase in maturity, 

(T – t). We change the volatility, σs, and examine the effects, at time 0, on the net present 

value of credit card loans, VL( 0), and on the value of credit card loan assets, CL( 0). We 

find that with an increase in volatility, σs, there is a rapid decrease, with maturity, in 

the forward spread volatility term structure, σ spread , and a reduction in the value of 

CL( 0). This exponentially-dampened volatility structure exploits the fact that near-term 

forward spreads are more volatile than distant forward spreads. An increase in 

volatility indicates that the forward spread is more uncertain, thereby reducing the 

value of CL( 0). The results are presented in Table 11. 

<Table 11 is inserted here> 

Secondly, if λs = 0, this indicates that the forward spread volatility term structure is 

flat; that is to say, σ spread ( t, T ) = σ s. We change the volatility, σs, and examine the 

effects, at time 0, on the net present value of credit card loans, VL( 0), and on the value 

of credit card loan assets, CL( 0). We find that with an increase in volatility, σ s , the 

forward spread volatility term structure, σ spread, remains flat, but that there is a 

corresponding reduction in the value of CL( 0). This volatility structure exploits the fact that 

near-term and distant forward spread volatilities are the same. An increase in volatility 

indicates that the forward spread is more uncertain, thereby reducing the value of CL( 0). 

The results are presented in Table 12. 
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<Table 12 is inserted here> 

Thirdly, if λs < 0, then this implies that with an increase in maturity, (T – t), there is a 

corresponding increase in forward spread volatility. We change the volatility, σ s , and 

examine the effects, at time 0, on the net present value of credit card loans, VL( 0), and on 

the value of credit card loan assets, CL( 0). We find that with an increase in volatility, σ s , 

there is a rapid increase, with maturity, in the forward spread volatility term structure,    

σ spread , and a corresponding reduction in the value of CL( 0). This exponentially-upward 

volatility structure exploits the fact that near-term forward spreads are more stable than 

distant forward spreads. An increase in volatility indicates that the forward spread is more 

uncertain, thereby reducing the value of CL( 0). The results are presented in Table 13. 

<Table 13 is inserted here> 

We then change volatility, σ s , under the three types of forward spread volatility 

term structure. Comparing Tables 11, 12 and 13, we find that when λ s < 0, the value of 

CL( 0) changes more than other values, indicating that if the slope of the forward spread 

volatility term structure is upward, then changes in volatility will affect the value of 

CL( 0) more than other values. 

6.5.2  The effects of the volatility reduction factor 

First of all, under a situation of λ s > 0, we change the volatility reduction factor and 

examine the effects, at time 0, on the net present value of credit card loans, VL( 0), and 

on the value of credit card loan assets, CL( 0) (Figure 6). We find that with an increase 

in the volatility reduction factor, λ s , there is a decrease in the slope of the forward 

spread volatility term structure, making forward spread volatility more stable, and 

thereby increasing the value of CL( 0). The results are presented in Table 14. 

<Figure 6 is inserted here> 
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<Table 14 is inserted here> 

Secondly, under a situation of λ s < 0, we change the volatility reduction factor and 

examine the effects, at time 0, on the net present value of credit card loans, VL( 0), and 

on the value of credit card loan assets, CL( 0) (Figure 7). We find that with an increase 

in the volatility reduction factor, λ s , there is a corresponding increase in the slope of 

the forward spread volatility term structure, making forward spread volatility more 

volatile, and also reducing the value of CL( 0). The results are presented in Table 15. 

<Figure 7 is inserted here> 

<Table 15 is inserted here> 

In summarizing this section, we should point out that the application of our 

pricing model to the evaluation of credit card asset-backed securities with default risk 

is quite straightforward. The findings on the ways in which the parameters of default 

risks affect the value of different tranches in credit card asset-backed securities are 

quite similar to those for credit card loans; therefore, for the purpose of conciseness, 

we do not report the results for pricing credit card asset-backed securities.  

7. CONCLUSIONS 

Using risk-neutral pricing methodology, we present an arbitrage-free model for the 

evaluation of credit card loans and credit card loan ABS. The model is based upon an 

extension of the Heath-Jarrow-Morton (1990) term-structure model, in order to 

facilitate the consideration of default risks. Since there is imperfect competition in the 

credit card industry, with constantly sticky interest rates, we therefore use the market 

segmentation argument to describe this characteristic. 

Our model has three distinctive features. First of all, it takes existing spreads as an 

input into the model, rather than deriving the model from implications on default 
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probabilities and recovery rates. Secondly, rather than working with spot yield curves 

for default-free and risky debt, we work with ‘forward rates’ and ‘forward spreads’. 

The specific advantage of using forward rates is that since the current term structure is 

an input into the model, forward rates can describe short rates, whereas short rates 

cannot describe forward rates. Thirdly, on the one hand, we provide a closed-form 

solution for the evaluation of credit card loans and their securitization products within 

a continuous-time framework; on the other hand, we offer an applicable lattice 

approach for evaluating credit card loan-related products within a discrete-time 

framework. 

We find that the shapes of the forward rate and forward spread (default risk 

premium) term structures play extremely important roles in determining the value of 

credit card loans.
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Table 1  Cash-flow of credit card loans 
 

t t + h t + 2h T – h T 

– L (t) + L (t)*exp {c(t)} + L (t + h)*exp {c(t + h)} + L (T – 2h) *exp {c(T – 2h)} + L (T – h) *exp {c(T – h)}
    – L (t + h)      – L (t + 2h)     – L (T – h)  

 
 
 
 
Table 2  Cash-flow of credit card loans for five periods 
 

0 0.5 1.0 1.5 2.0 

– L (0) + L (0)*exp {c(0)} + L (0.5)*exp {c(0.5)} + L (1)*exp {c(1)} + L (1.5)*exp {c(1.5)}
    – L (0.5)      – L (1)      – L (1.5)  

 
 
 
 
Table 3  Forward rate volatility term structure  
 

( T – t ) 0 0.5 1.0 1.5 2.0 

σ f  ( T – t ) 0.0200 0.0190246 0.0180967 0.0172142 0.0163746 
 
 
 
 
Table 4  Forward spread volatility term structure  
 

( T – t ) 0 0.5 1.0 1.5 2.0 

σ spread  ( T – t ) 0.0200 0.0190246 0.0180967 0.0172142 0.0163746 
 
 
 
 
Table 5  Forward rate and forward spread term structures  
 

Period T (0, T)  f (0, T)  s(0, T)  

0 0 (0, 0) 0.05 0.008 
1 0.5 (0, 0.5) 0.06 0.010 
2 1.0 (0, 1.0) 0.07 0.015 
3 1.5 (0, 1.5) 0.08 0.020 
4 2.0 (0, 2.0) 0.09 0.022 

ρ -0.074    
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Table 6  The value of VL(0) and CL(0) under three types of forward rate term structures  
 

Forward rate term structure  Upward sloping Flat Downward sloping 

f (0, 0) 0.05 0.05 0.05 
f (0, 0.5) 0.06 0.05 0.04 
f (0, 1.0) 0.07 0.05 0.03 
f (0, 1.5) 0.08 0.05 0.02 

VL(0) 23071.80641 25891.17073 29808.70709 
CL(0) 123071.80641 125891.17073 129808.70709 

% Change – 2.29 5.47 

 
 
 
 
Table 7  The value of VL(0) and CL(0) under three types of forward spread term structures  
 
Forward spread term structure Upward sloping Flat Downward sloping 

s(0, 0) 0.008 0.008 0.008 
s (0, 0.5) 0.010 0.008 0.006 
s (0, 1.0) 0.015 0.008 0.003 
s (0, 1.5) 0.020 0.008 0.001 

VL(0) 23071.80641 23748.61399 24094.39675 
CL(0) 123071.80641 123748.61399 124094.39675 

% Change – 0.55 0.83 

 
 
 
 
Table 8  The value of VL(0) and CL(0) under different forward rate volatility levels 
 

σ f  ( T – t )  σ = 1% σ = 2% σ = 3% σ = 4% σ = 5% 

0 0.01 0.0200 0.03 0.04 0.05 

0.5 0.009512 0.019025 0.028537 0.038049 0.047562 

1.0 0.009048 0.018097 0.027145 0.036194 0.045242 

1.5 0.008607 0.017214 0.025821 0.034428 0.043035 

2.0 0.008187 0.016375 0.024562 0.032749 0.040937 
VL(0) 23072.5635 23071.80641 23070.6711 23068.8847 22958.45694 
CL(0) 123072.56335 123071.80641 123070.6711 123068.8847 122958.45694

% Change 0.00615 – -0.00923 -0.02374 -0.92100 
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Table 9  The value of VL(0) and CL(0) with different forward rate volatility reduction factor 
levels 

 

σ f  ( T – t ) λ = 0.05 λ = 0.1 λ = 0.3 λ = 0. 5 

0 0.0200 0.0200 0.0200 0.0200 
0.5 0.019506 0.0190246 0.017214 0.015576 
1.0 0.019025 0.0180967 0.014816 0.012131 
1.5 0.018554 0.0172142 0.012753 0.009447 
2.0 0.018097 0.0163746 0.010976 0.007358 

VL(0) 23071.71402 23071.80641 23072.18038 23072.36517 
CL(0) 123071.71402 123071.80641 123072.18038 123072.36517 

% Change 0.00075 – 0.00304 0.00454 

 
 
Table 10  The value of VL(0) and CL(0) under three types of forward spread volatility 

reduction factors  
 

σ spread  ( T – t ) λs = 0.1 λs = 0 λs = –0.1 

0 0.0200 0.0200 0.0200 
0.5 0.0190246 0.0200 0.0210254 
1.0 0.0180967 0.0200 0.0221034 
1.5 0.0172142 0.0200 0.0232367 
2.0 0.0163746 0.0200 0.0244281 

VL(0) 23071. 80641 22972.86488 22855.19066 
CL(0) 123071. 80641 122972.86488 122855.19066 

% Change 0.0805 – –0.0957 

 
 
Table 11  The value of VL(0) and CL(0) with different forward spread volatility levels under 

λs
 > 0 

 
σ spread  ( T – t ) σs = 1% σs = 2% σs = 3% σs = 4% σs = 5% 

0 0.01 0.0200 0.03 0.04 0.05 
0.5 0.009512 0.019025 0.028537 0.038049 0.047562 
1.0 0.009048 0.018097 0.027145 0.036194 0.045242 
1.5 0.008607 0.017214 0.025821 0.034428 0.043035 
2.0 0.008187 0.016375 0.024562 0.032749 0.040937 

VL(0) 23493.1088 23071.80641 22406.56576 21607.65253 20797.23996 
CL(0) 123493.1088 123071.80641 122406.56576 121607.65253 120797.23996

% Change 0.3423 – -0.5405 -1.1897 -1.8482 
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Table 12  The value of VL(0) and CL(0) with different forward spread volatility levels under 
λs

 = 0 
 
σ spread  ( T – t ) σs = 1% σs = 2% σs = 3% σs = 4% σs = 5% 

0 0.01 0.02 0.03 0.04 0.05 
0.5 0.01 0.02 0.03 0.04 0.05 
1.0 0.01 0.02 0.03 0.04 0.05 
1.5 0.01 0.02 0.03 0.04 0.05 
2.0 0.01 0.02 0.03 0.04 0.05 

VL(0) 23484.8248 22972.86488 22213.80386 21329.84318 20452.46576 
CL(0) 123484.8248 122972.86488 122213.80386 121329.84318 120452.46576

% Change 0.41632 – -0.61726 -1.33608 -2.04956 

 
 

Table 13  The value of VL(0) and CL(0) with different forward spread volatility levels under 
λs

 < 0 
 
σ spread  ( T – t ) σs = 1% σs = 2% σs = 3% σs = 4% σs = 5% 

0 0.01 0.0200 0.03 0.04 0.05 
0.5 0.010513 0.021025 0.031538 0.042051 0.052564 
1.0 0.011052 0.022103 0.033155 0.044207 0.055259 
1.5 0.011618 0.023237 0.034855 0.046473 0.058092 
2.0 0.012214 0.024428 0.036642 0.048856 0.061070 

VL(0) 23465.8728 22855.19066 21974.86713 21013.82813 20060.53263 
CL(0) 123465.8728 122855.19066 121974.86713 121013.82813 120060.53263

% Change 0.49707 – -0.71656 -1.49881 -2.27476 

 
 

Table 14  The value of VL(0) and CL(0) with different forward spread volatility reduction factors 
under λs

 > 0 
 
σ spread  ( T – t ) λs = 0.05 λs = 0.1 λs = 0.3 λs = 0.5 

0 0.0200 0.0200 0.0200 0.0200 
0.5 0.019506 0.019025 0.017214 0.015576 
1.0 0.019025 0.018097 0.014816 0.012131 
1.5 0.018554 0.017214 0.012753 0.009447 
2.0 0.018097 0.016375 0.010976 0.007358 

VL(0) 23023.53637 23071.80641 23240.47368 23354.93278 
CL(0) 123023.53637 123071.80641 123240.47368 123354.93278 

% Change -0.03922 – 0.13705 0.23005 
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Table 15  The value of VL(0) and CL(0) with different forward spread volatility reduction factors 
under λs

 < 0 
 
σ spread  ( T – t ) λs = 0.05 λs = 0.1 λs = 0.3 λs = 0.5 

0 0.0200 0.0200 0.0200 0.0200 
0.5 0.020506 0.021025 0.023237 0.025681 
1.0 0.021025 0.022103 0.026997 0.032974 
1.5 0.021558 0.023237 0.031366 0.042340 
2.0 0.022103 0.024428 0.036442 0.054366 

VL(0) 22919.78508 22855.19066 22524.63045 22052.6728
CL(0) 122919.78508 122855.19066 122524.63045 122052.6728

% Change 0.05258 – -0.26906 -0.65326 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1  The branching lattice 
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Figure 2  Three types of forward rate term structure 
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Figure 3  Three types of forward spread term structure 
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Figure 4  Forward rate volatility term structure with different volatility reduction factors 
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Figure 5  Forward spread volatility term structure with different volatility reduction factors 
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Figure 6  Forward spread volatility term structure with different volatility reduction factors 

under λs > 0 
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Figure 7  Forward spread volatility term structure with different volatility reduction factors 
under λs < 0
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Appendix A 

The Derivation of Equation (4)   

1( ) [ ( ) [ ( )*exp{ ( )* } ( )]
exp{ ( , )* }

1 [ ( )*exp{ ( )* } ( 2 )]
exp{[ ( , ) ( , )]* }

1 [ ( 2 )*exp{ ( 2 )* } ( 3 )]
exp{[ ( , ) ( , ) ( 2 , 2 )]* }

1

exp{

L tV t E L t L t c t h L t h
t t h

L t h c t h h L t h
t t t h t h h

L t h c t h h L t h
t t t h t h t h t h h

ϕ

ϕ ϕ

ϕ ϕ ϕ

= − + − +

+ + + − +
+ + +

+ + + − +
+ + + + + +

+ + + +
2

1

[ ( 2 )*exp{ ( 2 )* } ( )]

( , )* }

1 [ ( )*exp{ ( )* }]]

exp{ ( , )* }

( ) ( )[ ( ) [ ( )*exp{ ( )* } ( )] [ ( )*exp{ ( )* } ( 2 )]
( ) ( 2 )

( ) [
( 3 )

T
h

ti
h

T
h

ti
h

t

L T h c T h h L T h

ih ih h

L T h c T h h

ih ih h

J t J tE L t L t c t h L t h L t h c t h h L t h
J t h J t h

J t
J t h

ϕ

ϕ

−

=

−

=

− − − −

+ − −

= − + − + + + + − +
+ +

+
+

∑

∑

( 2 )*exp{ ( 2 )* } ( 3 )]

( ) ( )[ ( 2 )*exp{ ( 2 )* } ( )] [ ( )*exp{ ( )* }]]
( ) ( )
[ ( )

( ) ( ) ( )[ * ( )*exp{ ( )* } * ( )*exp{ ( )* } * ( 2 )*
( ) ( 2 ) ( 3 )

t

L t h c t h h L t h

J t J tL T h c T h h L T h L T h c T h h
J T h J T
E L t

J t J t J tL t c t h L t h c t h h L t h
J t h J t h J t h

+ + − + +

+ − − − − + − −
−

= −

+ + + + + +
+ + +

exp{ ( 2 )* }

( ) ( )* ( 2 )*exp{ ( 2 )* } * ( )*exp{ ( )* }]
( ) ( )

( ) ( ) ( ) ( )[ * ( ) * ( 2 ) * ( 3 ) * ( )]]
( ) ( 2 ) ( 3 ) ( )

( )*exp{ ( )* }[ ( ) ( )[
(t

c t h h

J t J tL T h c T h h L T h c T h h
J T h J T

J t J t J t J tL t h L t h L t h L T h
J t h J t h J t h J T h

L kh c kh hE L t J t
J k

+

+ + − − + − −
−

− + + + + + + + −
+ + + −

= − +
/ 1 / 2

/ /

/ 1

/

/ 1

/

( )]]
) ( )

( )*exp{ ( )* } ( ) ( )[ ( ) ( )[ ]]
( ) ( )

( )*exp{ ( )* } ( ) ( )* ( )[ ( ) ( )* ]
( ) ( )

T h T h

k t h k t h

T h

t
k t h

T h

t
k t h

L kh h
h h J kh h

L kh c kh h L kh h L TE L t J t
J kh h J T

L kh c kh h L kh h J t L TE L t J t
J kh h J T

− −

= =

−

=

−

=

+
−

+ +

− +
= − + +

+

− +
= − + +

+

∑ ∑

∑

∑

 



 35

Appendix B 

The Derivation of Equation (15) 

From Equation (4), the net present value of the credit card loan can be expressed as: 
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Appendix C 

The Derivation of Expression (28) 

From Equation (26), we have:  

( )2 2 2

0
( ) (0, ) ( 1) /(2 ) ( )r r

ta t a t u
r r r rr t f t e a e dW uσ σ− − −= + − + ∫ ,         (C.1) 

We can then write:  
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r r r r rf u du e a du a e dW uσ σ− − −⎡ ⎤= + − + −⎣ ⎦∫ ∫ ∫ . 

In a similar way, we can restate Equation (27) as: 

   ( )2 2 2

0
( ) (0, ) ( 1) /(2 ) ( )s s

ta t a t u
s s s ss t s t e a e dW uσ σ− − −= + − + ∫ ,         (C.3) 

Hence we obtain 
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Equations (C.1) to (C.4) are four normal random variables with the following respective 

means, variances and covariances. 
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( )2
1 0

( ) ( )
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( )13 0 0
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