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Abstract 
This paper proposes a method to overcome the classical drawbacks of the Monte Carlo 

methods for the asset allocation, namely resampling, deeply dependent upon the multinormal 
assumption. Differently from the resampling, the proposed approach allows to set a derivative-free 
barrier against joint extreme negative returns (tail-dependence) and extreme (negative) returns 
(univariate tail risk) not included in the multivariate normal distribution. The extremely dangerous 
tail-dependence between asset returns is considered by using a copula based approach instead of the 
multivariate normal Monte Carlo simulation. Then the proposed model has been applied on a 
sample of eleven euro-denominated asset classes with historical input and the consequent asset 
weights have been tested on multivariate Student’s t returns and on a set of out-of-the sample real 
returns. A comparison has been also performed with both parametric and non-parametric simulation 
methods, namely resampling and bootstrapping. The results of this model provide evidence of a 
barrier against extreme negative returns occurring simultaneously. Furthermore the proposed model 
is totally distribution-free and therefore it does not involve any a priori decision on the marginal 
distributions for asset returns. The cost of this approach in terms of loss of Sharpe ratio, in our 
example, is negligible. 
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 Introduction 
The financial planning process is characterized by three main steps: 
1. identification of the strategic asset allocation, i.e. the set of efficient portfolios 

constituted by broad asset classes, summarized by benchmark indices; 
2. identification of the best portfolio with the aim to achieve the goal of the investor in 

terms of wealth. This specific portfolio should be consistent with investor’s preferences; 
3. selection of specific assets available on the marketplace that match the strategic asset 

allocation or, alternatively, the definition of the asset allocation with a explicit trade-off between 
active risk and active return. 

Each step has been carefully examined separately in the last decades. 
The first step deals with both parameter uncertainty and optimization process. Various 

techniques have been proposed to solve the problems related to the choice of the inputs (see Jobson 
and Korkie (1981), Black and Littermann (1992)) and to reduce the impact of the input instability 
through the resampling (see Jorion (1992) and Michaud (1998)). The second step is indebted to the 
contribution of Leibowitz et al. (1991a), (1991b) which introduces a shortfall constraint and to the 
contributions of Rockafellar and Uryasev (1999) and Sentana (2001) which introduce parametric-
VaR constraint and Iso-VaR constraint. It is worth emphasizing that both the shortfall constraint 
and the two different VaR constraints rely on the normality assumption of asset returns. Following 
the growing empirical evidence on the violation of the normality assumption Williams (1997) and 
Campbell, Huisman and Koedijk (2001) elaborated other constraints based on lognormal 
assumption and non-parametric assumption. The third step has grown on the wave of multimanager 
portfolio construction, inspired by the Return-Based Style Analysis of Sharpe (1992) extensively 
applied by Lucas (1999), Baierl and Chen (2000), Waring et al. (2000).  

All the previous works assume that asset returns can be modeled using a parametric 
distribution (normal, lognormal or Student’s t) and correlation coefficients are key inputs when 
setting dependences between asset classes. Unfortunately this is not the reality: extreme events can 
affect the results in the short and in the long term; marginal distributions can significantly differ 
from normal distribution (see Longin (1996)) and crashes occur more often than booms (see Peiro 
(1999)). Moreover constraints based on parametric assumptions are likely to fail.  

An alternative approach, widely diffused in the literature1 but less among practitioners, 
involves the maximization of the expected utility under the assumption of a given utility function. 

In the more comprehensive case of elliptical distribution for asset returns the mean-variance 
approximation results is still viable for all utility functions (see Chamberlain (1983)). In contrast, 
not homogeneous and severely asymmetric distributions show that the mean-variance criterion does 
not correctly approximate the expected utility. In this case an higher moment optimization better 
approximates the expected utility (see Athayde and Flôres (2004)). However analytical closed 
solutions are available only if marginal distributions have defined functions such as the multivariate 
skewed Student’s t (see Jondeau and Rockinger (2005)). Different marginal distributions do not 
have closed formulas to be applied yet. Recently, elegant non-parametric solutions to the 
optimization problem with co-skewness and co-kurtosis matrix have been proposed by Jondeau and 
Rockinger (2006). However they propose an approximation of the utility function given by Taylor 
expansion up to order four and thus they rely on a defined utility function (CARA) for the investor. 

We propose an heuristic model to overcome some of the key drawbacks analyzed in the 
previous literature. First, our model allows to deal with very flexible and different return 
distributions (for each standardized innovation process) for each asset involved. For the sake of 
simplicity the example is restricted to a set of Student’s t(ν) distributions with different degrees of 
freedom (ν). According to the empirical evidence daily return distributions usually show severe 
tails and skewness whereas monthly returns are usually fat-tailed but with negligible skewness. The 
former case is typical in the field of market risk management, while the latter is appropriate for 

                                                 
1 A wide reference on these studies can be found in Jondeau and Rockinger (2006). 
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asset allocation purposes. Second, the parameters of each marginal distribution are fitted in a non-
parametric way using some theoretical findings of the Extreme Value Theory. It is worth 
highlighting that a parametric estimation implies the choice of the marginal distribution by asset 
managers and therefore the entire process may be affected by these a priori decisions. We propose a 
method to obtain reliable estimates based on a set of Student’s t distributions whose key parameters 
(a vector of different ν) are estimated with a fully non parametric method. The use of EVT also 
ensures a proper inclusion of the tail risk for each margin. Third, the known limits of the Pearson 
correlation coefficient (see Embrechts et al. (2002)) are overcome with the insertion of a set of 
Archimedean copulas whose parameters are again fitted with non-parametric relationships. The use 
of a rank correlation like Kendall’s tau has two advantages: it ensures an higher stability of the 
inputs over the time and integrates the tail-dependence among asset classes. 

The proposed model incorporates both the tail risk for each return distribution and the 
dependence among negative extremes highlighted by Longin and Solnik (2001). Tail risk is 
incorporated analyzing the tail index, a specific index for each asset return distribution. The theory 
behind tail index and its estimation (see Embrechts et al. (1997)) is applicable to events with no 
serial correlations. This feature requires the fit of a filtering process with standardized innovations 
given by a specific distribution. At this step we test the family of Student’s t distribution whose 
vector of ν parameters is estimated with non-parametric methods. The choice of Student’s t 
innovation process is the only a priori choice we made. However this family is very flexible and it 
can properly deal with fat tails. Tail dependence is an important issue that deals with multivariate 
distributions with joint extreme events. It is an important issue to include since it is well known that 
correlations raise during high-volatility market and therefore extreme negative events are likely to 
significantly reduce the performance of the portfolio. An explicit way to deal with tail-dependence 
is the extensive use of Archimedean copulas which allow to consider upper and lower tail-
dependence. These topics experienced an increasing development and success in the modern 
finance related to the risk measurement issues (among the latest contributions see Longin (2005) 
and Yamai and Yoshiba (2005)), deeply concentrated on the left tail of the distributions. 

Finally an example is provided using multivariate Monte Carlo simulation with different 
techniques and with relationships expressed by copulas. In order to provide a significant 
comparison the resampling method has also been applied and the two methods have been tested on 
a set of simulated asset returns. We also make an out-of-the sample test with real data in order to 
prove the potential of the proposed method.  

The main findings are quite interesting. The financial planning theorem of the normal-
lognormal distribution of asset returns should be reviewed by taking into account more realistic 
assumptions (related to the specific marginal distributions) and the chance to experiment extreme 
events. The events to be considered are those (the negative extremes) which effect the final wealth 
in a saving instrument like pension plan or life policy (pure endowment). 

The paper proceeds as follows. Section 2 shortly discusses the concept of tail-dependence, 
Archimedean copula and EVT. Section 3 introduces the heuristic model that deal with tail risk and 
tail-dependence. Section 4 deals with the parameter estimates required by the heuristic model. 
Section 5 discusses the results and highlights the main difference with a naïve approach as the 
classical Quasi-Random Monte Carlo Simulation Asset Allocation (QRMCSAA) introduced by 
Michaud (1998) and greatly dependent upon the normality assumption and upon the linear 
correlation matrix. Section 6 concludes.  
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Archimedean copula, tail-dependence and EVT  
Under the assumption of multivariate normality the dependence structure of the multivariate 

distribution is fully explained by the matrix of covariances or, alternatively, by the matrix of linear 
correlation coefficients. If distributions of returns significantly differ from multivariate normal then 
Pearson’s coefficient is no longer suitable and can largely induce to misleading solutions. For 
distributions different from the normal the dependence structure is fully explained by a copula 
function. A wide reference to copula can be found in Joe (1997) and Nelsen (1999). More recently 
an excellent introduction to copulas and several financial applications can be found in McNeil et al. 
(2005), Rob van den Goorbergh (2004) and Embrechts et al. (2002).  

Copulas rely on the fundamental Sklar’s theorem (see Sklar (1996) and Nelsen (1999)).  
Sklar's theorem states that any multivariate distribution can be factored into the marginal 

cumulative distributions and a copula function describing the dependence between the components. 
In other terms the copula is a multivariate distribution with Uniform (0,1) margins. In this way the 
problem of the dependence structure of the joint distribution can be completely separated from the 
problem of modeling marginal distributions (see Genest and Rivest (1993)).  

In formula let F be an N-dimensional distribution function with marginals Xj ~ Fj (j=1, 
….N). Then exists an N-copula C:(0,1)N such that for every x = (x1, ……, xN) 

 
( ) ( ) ( )( )NNN xFxFCxxF ,.....,,...., 111 =      (1) 

 
The theorem also states that if Fj are continuous then the copula C is unique.  

Since Fj(xj) : (0,1), we can easily apply the inversion method to the marginal distributions Fj(xj) in 
order to obtain dependent non-normal distributions with different margins. In formula  

 
( ) ( ) ( )( )NNN uFuFFuuC 1

1
1

1 ,.....,,....,
1

−−=     (2) 

 
Strictly related to the general concept of copula it is very useful to distinguish between: 

a) implicit copulas (namely Gaussian copula ( )N
Gaussian uuC ,....,1ρ  and t copula 

( )N
t uuC ,....,1
ν

ρ ), both dependent upon the linear correlation matrix while the t copula also 

upon the degree of freedom (ν); 
b) Archimedean copulas, strictly related to the generating function ϕ(.) defined on (0,1) � 

(0,�). The function ϕ must be convex and decreasing. Thus ϕ(0) = �, ϕ(1) = 0, ϕ’(.) < 0 � 
and ϕ’(.) > 0. 

To reduce the notation we briefly discuss the bivariate case. It is worth noting that the 
extension from the bivariate to the multivariate case often become intractable2. Even though our 
approach involves a multivariate framework, this study, as well as Ward and Lee (2002) and 
Rosenberg and Schuermann (2006), approaches the problem of risk aggregation by considering 
risks pair-wise.  

In the bivariate case the Archimedean copula has the following form: 
 

( ) ( ) ( )( )vuvuC ϕϕϕ += −1,      (3) 
 
with u, v ∈ (0,1). The extension to the multivariate case is straightforward. A list of known ϕ(.) 
function is available in Frees and Valdez (1998) and Nelsen (1999). Archimedean copulas are 
widely used in finance, insurance and reinsurance applications since they stress the tail dependence 
                                                 
2 As noted by Bouyè et al. (2001) Archimedean copula significantly reduces the number of the parameters to be 
estimated. Implicit (Gaussian and t) copula provides information about the dependence between each pair of random 
variables therefore, for N variables, N(N-1)/2 parameters have to be estimated. For Archimedean copula the dependence 
is characterized only by N-1 parameters.   
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between different sources of risk. We report the most famous Clayton ( ClaytonCα ) and Gumbel 

( GumbelCα ) copulas. Risk managers apply these functions to improve the upper or the lower tail 
dependence (see Vaz de Melo Mendes and Martins de Souza, (2004)). The generator function ϕ(.) 

for Clayton copula is ( )1
1 −= −α

α
ϕ tClayton

t , thus the bivariate case can be expressed as follows: 

 

( ) ααα
α

1

1),(
−−− −+= vuvuCClayton    (α>0)   (4) 

 
The generator function ϕ(.) for Gumbel copula is ( )( )αϕ tGumbel

t ln−= , thus the bivariate 
Gumbel copula is: 

 

( )( ) ( )( )[ ]
�
�
�

�
�
�

−+−−= ααα
α

1

lnlnexp),( vuvuCGumbel   (α�1)   (5) 

 
To emphasize the importance of the joint distribution expressed by the copula function, 

Exhibit 1 shows 10,000 standard normal bi-variates with roughly the same (Pearson) correlation 
coefficient ρ=0.7. These random variables have the same marginal distributions, the same 
correlation matrix but different structure of dependence. We represent two implicit copulas 
(Gaussian and t(2)) and Gumbel and Clayton copulas. 

 
(Exhibit 1) 

 
It is well evident that Gaussian copula does not show any tail dependence, while the copula 

of the bivariate t distribution is asymptotically dependent in both upper and lower tails. Exhibit 1 
shows symmetric and asymmetric tail dependence, therefore Gumbel and Clayton copulas are also 
known as asymmetric copulas. Clayton copula emphasizes lower tail dependence whereas Gumbel 
copula highlights joint positive dependence. 

It is also worth noting that while Gaussian copula depends only on the linear correlation 
coefficient (ρ), t-copula depends on the linear correlation coefficient (ρ) and on the number of 
degrees of freedom (ν). Clayton and Gumbel copulas depend on a parameter (α) that has direct 
relationships with Kendall’s tau (ρτ), one of the most diffused measure of dependence. 

In the copula related theory, Kendall’s tau ρτ is the most popular coefficient of rank 
correlation to be estimated instead of the classical Pearson’s rho ρ. Kendall’s tau measures the 
concordance between two random variable X1 and X2 or, in other words, it reflects the degree of 
some monotonic dependence. Therefore ρτ is a rank correlation. In terms of copula ρτ  can be 
represented as follows: 

 

( ) ( )� � −=
1

0

1

0

1,,4 vudCvuCτρ      (6) 

 
where the integral above is the expected value of the random variable C(u,v) where u, v ~Uni(0,1) 
with joint distribution function C. 

Its success can be mainly attributed to two reasons. First, known relationships between the 
unknown parameter of several Archimedean copulas and the Kendall’s tau are available. In the case 
of elliptical distributions ρτ has important direct relationship (7) with the linear correlation (ρ) (see 
Embrechts et al. (2002)). For this reason ρ remains the most important parameter in the Gaussian 
copula and it is as important as ν in the case of t-copula. 
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( )ρ
π

ρτ ArcSin
2=       (7) 

 
Exhibit 3 highlights the relationships between the ρτ  and the parameter α of the 

Archimedean copulas.   
The second reason entails the drawbacks of the linear (Pearson) correlation coefficient ρ. 

We summarize those in the list below3: 
1. ρ � between two random variables is strictly invariant under increasing linear transformations 

but it is non invariant under nonlinear strictly increasing transformations4. In other words 
ρ depends on the copula and on the marginals; 

2. it is possible to calculate ρ if and only if the variance of the desired distribution is known. 
However several common marginal distributions in insurance and finance are infinite-
variance and thus the concept of linear correlation is not applicable. For example the Cauchy 
distribution, diffused in modeling asset returns, has infinite variance and therefore ρ can not 
be calculated.  

3. ρ is more unstable than the correspondent ρτ. Its sensibility to outliers can be again shown 
through an example. We draw a sample of 100 bivariate Student’s t variates with 3 degree of 
freedom (heavy tailed distribution) with a linear correlation of +0.7. Inverting the relationship 
(7) it is straightforward to verify an implicit Kendall’s tau of +0.4936. This simulation is 
performed 5000 times and both correlations (ρ and ρτ) are calculated5. Exhibit 2 highlights 
the different level of stability for the two different estimators. 

 
(Exhibit 2) 

 
To summarize ρ addresses linear dependences for the family of the elliptical distributions 

which includes a wide range of potential return distributions. Other common random variables can 
incidentally have the same Pearson’s rho coefficients but their dependence structures could not be 
fully explained by ρ.  

Kendall’s tau overcomes the fallacies of Pearson’s rho described above. Exhibit 2 shows the 
higher stability of Kendall’s tau in the case of t(3) random variables (heavily tailed). Furthermore it 
is easy to demonstrate that Kendall’s tau is stable under strictly increasing nonlinear 
transformations6. It is also possible to link infinite-variance marginal distributions through direct 
relationships (see Exhibit 3) between α parameter of Archimedean copula and ρτ.  

The coefficient of upper (λU) and lower tail dependence (λL) is a measure of pairwise 
dependence in the tails or in the case of extremal events. Some authors describe this coefficient in 
terms of limiting conditional probabilities of quantile exceedances (McNeil et al. (2005), pg. 208). 
If there exists a positive association between extreme events of X1 and X2, then the conditional 
probability ( ) ( ){ }kFXkFX −>−> −− 11Pr 1

22
1

11  is greater than zero and decreases as k↓0 in the upper 

case. The coefficients of upper λU and lower λL tail dependence are respectively defined as: 

                                                 
3 For an extensive discussion about these fallacies see Embrechts, McNeil and Straumann (2002). 
4 It is really easy to verify this fallacy by drawing two correlated (ρ) vectors or normally distributed random variables 
(X1 and X2) and then taking Exp(X1) and Exp(X1). This transformation is nonlinear strictly increasing. ρ of the two 
transformed variables is not the same whereas ρτ  remains unchanged.  
5A sample of bivariate Student’s t(ν) is simulated in two steps (see algorithm 3.10 in McNeil et al. (2005)): 1) 
simulation of multivariate normal variates using Cholesky decomposition; 2) introduction of a mixing variable W drawn 
from an Inverse Gaussian - IG - distribution (W~IG(1/2 ν, 1/2 ν)).  
6 Again, simulate two random vectors of correlated normally distributed random variables (X1 and X2), take the Exp(X1) 
and Exp(X2) and then calculate the Pearson’s rho and Kendall’s tau in both cases (for an analytical proof see 
Proposition 5.29 of McNeil et al. (2005)).  
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 ( ) ( ) ( ){ }kFXkFXk

kU −>−>= −−

→
11Prlim 1

22
1

110
λ   (8) 

 
 ( ) ( ) ( ){ }kFXkFXk

kL −≤−≤= −−

→
11Prlim 1

22
1

111
λ   (9) 

 
If λU and λL = 0 random variables are asymptotically independent, otherwise a form of upper 

or lower dependence exists. Fortunately for symmetric copula (eg. Gaussian and t-copula) λU = λL. 
For Archimedean copulas with closed form these coefficients have straightforward solutions 
dependent on the copula α-coefficients. For this reason the parameter α is also known as degree of 
dependency. Exhibit 3 shows λU and λL directly related to the Kendall’s tau through the parameter α 
for different copulas.  

 
(Exhibit 3) 

 
In the last column of Exhibit 3 λ is a function of ρτ

7. Clayton copula turns out to have only 
lower tail dependence whereas Gumbel copula emphasizes the upper tail dependence without any 
weight on the lower tail dependence. Exhibit 4 shows different coefficients λ of tail dependence. 
Notice that Exhibit 4 does not distinguish between upper and lower dependence. We plot for 
positive ρτ since Clayton copula exists only for positive α, strictly related to positive ρτ.  

 
In the t-copula the higher the number of degree of freedom the lower the dependence (t-

copula tends to be nearer to the Gaussian copula). However even for zero correlation and high ν, a 
positive λ can be found. Clayton copula has the heaviest (lower) tail dependence whereas the 
heaviest (upper) tail dependence is a feature of Gumbel copula.  

 
(Exhibit 4) 

 
Spearman’s rho is another well known measure of rank correlation. It is less used than 

Kendall’s tau since direct relationships with copulas (direct and Archimedean) are not always 
available8. For those reasons we concentrate our model on Kendall’s tau as measure of dependence.  

The last argument to be introduced is the well-known theory of extremes or Extreme Value 
Theory (EVT). Numerous theoretical studies and empirical financial/insurance applications are 
available about this important topic. This argument is gaining an increasing attention in any field of 
the financial theory since the distributions of asset returns tend to be different from the Gaussian 
and events on the (left) tail are a matter of concern for both practitioners and supervisors. A solid 
background on EVT is in Embrechts et al. (1997) and in McNeil et al. (2005). Extremes can be 
modeled in two different ways: modeling the maximum or minimum of a portfolio of random 
variables, and modeling the largest values over some high threshold. For our purposes the second 
approach is more suitable than the first since the first requires a large amount of data, typically daily 
returns divided in blocks (e.g. months). The second approach is called Peaks Over Threshold (POT) 
method and attempts to focus only on events greater than some large preset threshold. Negative 
(positive) exceedances are defined as the observations of the returns lower (greater) than a given 
threshold. Longin and Solnik (2001) show that the cumulative distribution of the exceedances  ( )θ

RF  

                                                 
7 Notice that a closed formula is available for Pearson’s rho (ρ).  However, for the sake of comparison, we derive direct 
relationships with Kendall’s tau (ρτ). The relationship between ρS and ρ for multivariate t is not available. This is 
another reason to consider only Kendall’s tau (ρτ).  
8 For example the relationship between t-copula and Spearman’s rho is still unknown (see Hult and Lindskog, (2002)). 
Moreover we do not have a direct formula to link the parameter α of the Gumbel copula to the Spearman’s rho (see 
Frees and Valdez (1998)). 
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over a threshold θ is exactly known if the parent distribution of returns (FR) is also known. However 
in many financial applications the distributions of returns are not known and therefore an 
asymptotic distribution is required.  

Balkema, De Haan (1974) and Pickands (1975) demonstrate that the only non-degenerate 
distribution able to approximate the distribution of return exceedances ( )θ

RF  is the Generalized 
Pareto Distribution (GPD). This limit distribution is given by: 

 

( )
( )

�
�
�

�

��
�

�

�

=
	



�
�


� −−−

≠	



�
�


�
	



�
�


� −+−
=

−

01

011

1

τ
σ

θ

τ
σ

θτ
τ

θ

x
Exp

x

xGR     (10) 

where θ is the threshold (location parameter), σ is the dispersion (scale) parameter and τ is the tail 
index (or shape parameter), intrinsic in the original distribution of the returns (FR). The tail index τ 
is the most important parameter because it describes the behavior of the extreme returns. The 
function (10) is called ‘Generalized’ since it can assume different shapes according to the tail index 
τ. If the distribution has a power-declining tail, it is an ordinary Pareto distribution and it has τ > 0 
(fat-tailed). Otherwise if the distribution has an exponentially-declining tail or it is thin-tailed (τ = 
0) it is exponential. If the return distribution has negative τ (no tail) therefore it is a Pareto type II 
distribution. Thin-tailed distributions include normal, exponential, gamma, lognormal. Short-tailed 
distributions include beta and uniform. Fat-tailed distributions are widely studied in financial 
applications. Precisely a distribution with τ greater than 0.5 is consistent with the Stable Paretian. 
τ = 1 implies a Cauchy distribution and 0 < τ < 0.5 is typical for the Student’s t distribution. It also 
worth noting that there is a direct relationship between the tail index τ and the highest existing 
moment k (k=1/τ). Thus, the normal distribution has infinite moments (1/0) whereas Cauchy 
distribution has only the first moment (1/1) but is infinite-variance. For the Student’s t k is greater 
than 2 and equal to the number of degree of freedom ν. It also means that there is an inverse and 
simple relationship between the dof (ν) of the Student’s t and its tail index (τ = 1/ν) and also that 
the Student’s t(ν) has at least ν moments.  

Parameter estimation is made with two approaches. The first is parametric while the second 
is based on non-parametric estimators. The former relies on the assumption that extreme returns are 
exactly drawn from the extreme value distribution and it typically requires a large amount of data 
(daily returns). The latter has no distributional assumption and it is based, like Schmid-Trede test, 
on the order statistics of the parent variable R (see Embrechts et al. (1999) and Resnick and Starica, 
(1997)) and particularly on the time series of returns ranked in increasing order (R’). The most used 
estimators are Pickands’s estimator, given by  

 

'
14

'
12

'
12

'
1ln

)2ln(
1

+−+−

+−+−

−
−

−=
qNqN

qNqN
Pickands RR

RR
τ     (11) 

 
and Hill’s estimator whose formula is given by 

  

 �
−

=
−− −

−
=

1

1

'' lnln
1

1 q

i
qNiNHill RR

q
τ      (12) 
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It is widely accepted that Hill’s estimator is consistent and the most efficient estimator (see Longin, 
(2005) and Embrechts et al. (1999)). However it is applicable only with positive τ while Pickands’s 
estimator is suitable for any τ. Normalized Pickands’s statistics is asymptotically normally 

distributed with mean τ and variance ( ) ( ) ( )[ ]2122 2122/12 Log−+ −+− τττ  while Normalized Hill’s 
estimator is asymptotically normally distributed with mean τ and variance τ2�� Hill’s estimator is 
significantly more efficient than Pickands’s9 in the classical interval of τ for monthly asset returns. 
For this reason our model greatly relies on Hill’s estimator. The choice of the appropriate θ and 
therefore the number of exceedances q is an important issue well investigated in the extreme value 
theory. An high q leads to a small number of exceedances with inefficient parameter estimates 
whereas a low q leads to many exceedances giving biased parameter estimates. This can be viewed 
as the classical problem of optimizing the trade-off between bias and inefficiency. Jansen and De 
Vries (1991) and Danielsson et al. (2000) propose a Monte Carlo simulation in order to minimize 
the mean square error (MSE) of the simulated tail index τ10. Their method finds the minimum of the 
U-shaped relationship between MSE and q (number of exceedances) of the simulated data (see 
Longin (2005) for a detailed description).  

 
The heuristic model 

The classical asset allocation models rely on the normal assumption for each asset return. 
Under this assumption elegant solutions for the optimization problem are available with and without 
the inclusion of the investor preferences, i.e. utility function. However asset returns are rarely 
normally distributed and therefore the classical optimization methods are rejected by the empirical 
evidence. Interesting alternative approaches have been proposed by Harvey and Siddique (2000) 
and Jondeau and Rockinger (2005), (2006). They suggest the inclusion of higher than second 
moments in order to significantly improve the asset allocation and also calculate how costly can be 
the departure from the classical normality assumption. Unfortunately analytical forms for the 
optimal portfolios are available only in few cases. The authors use a multivariate skewed Student’s t 
framework with a time-varying correlation matrix (Dynamic Conditional Correlation – DCC – 
multivariate GARCH introduced by Engle in 2002) in order to find closed formulas for the optimal 
portfolio. Bradley and Taqqu (2001) report another significant example of explicit solutions, 
assuming Stable Paretian distribution S(α, β, σ, µ) for all asset classes11. 

However those authors do not considered three important features: 
1.  the presence of autocorrelation and heteroskedasticity that can significantly underestimate 

the standard deviation. Notice that this problem should be solved with the DCC-MVGARCH 
model. However Rob van den Goorbergh (2004) provides examples of alternative approaches able 
to overperform the DCC-MVGARCH model; 

2. marginal distributions can be different from the skewed-t and Stable Paretian (a 
significant example of testing univariate marginal distributions with different time horizons is given 

                                                 
9 It can be verified that for Pickands’s estimator the minimum of its variance can be obtained for τ=0.599847 and the 
correspondent variance is 3.02674. Hill’s variance is strictly increasing for τ > 0 (no local minimum) while its variance 
on the minimum of the Pickands’s estimator is 0.359816 (more than 8 times lower than Pickands’s variance). The 
estimators are equivalently consistent (they have the same variance) if τ=2.06691. 
10 A detailed description of this Monte Carlo simulation is reported in the Appendix of Longin (2005).  
11 Notice that he Gaussian distribution can be viewed as a special case of the Stable Paretian. In particular Gaussian 
distribution corresponds to the S(2, 0, σ, µ) distribution. α is the index of stability or tail exponent and controls the 
decay in the tails of the distribution. The other parameters (σ, β, µ) control respectively scale, skewness and location. 
Notice also that the Stable Paretian has known variance if and only if α = 2 (Gaussian case). With 0 < α < 2 (the 
classical case in portfolio theory reveals 1 < α < 2) and both skewness and location parameter β equal to zero, closed 
formulas for optimal portfolios are available minimizing the scale parameter σ equivalent to the classical risk parameter 
(standard deviation) in the Normal case. 
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in Levy and Duchin (2004)12) therefore analytical solutions are not available. Moreover the same 
distributional assumption for each margin seems to be too limiting;  

3.  correlation matrix might not capture the entire dependence among asset classes. 
Particularly tail dependence may be greatly underestimated in the (Pearson) correlation coefficient 
framework. 

We try to remove these limitations using simulation techniques. In our model we can deal 
with different marginal distributions, even though belonging to the same elliptical family, and for a 
structure of dependences given by a set of bivariate Clayton copulas. Clayton copulas have been 
externally imposed in order to correctly consider the lower tail-dependence, if present, or otherwise 
overweight the probability of joint extreme negative returns. Following the example of McNeil and 
Frey (2000) we propose a technique consisting in first filtering the data, second applying extreme 
value techniques to the tails of the standardized innovations and third relating these innovation 
processes with bivariate Clayton copulas. We then extend the methodology of Filtered Historical 
Simulation (FHS) proposed by Barone-Adesi and Giannopoulos (2001) and recently tested by 
Giannopoulos and Tunaru (2005) by rescaling our standardized innovations matrix to obtain 
pathways of multivariate returns.  

To prove the potential distortions of the elegant methods with closed formulas we propose 
an example of asset allocation based on a set of eleven euro-denominated indexes. Furthermore we 
provide a comparison of our method with the widely diffused resampling method proposed by 
Michaud (1998). Michaud’s method involves a multivariate normal Monte Carlo simulation for 
asset returns whose parameters are calibrated on the historical vectors of average returns, average 
standard deviations and the correlation coefficient matrix. Then the standard constrained 
optimization is performed and the resulting weights are stored in a matrix for each simulation. Key 
variables in the resampling method are the length T of the vector of each simulated asset return and 
the number of simulations M. These parameters are typically left to the asset managers. However 
the former should be related to the time period of the investor while the latter is set in relationship 
with the precision of the asset weights to be achieved. It is worth noting that Michaud’s approach 
does not consider tail dependences and extreme (negative) returns (tail risk), not assumed in the 
classical multinormality assumption.   

The proposed heuristic method can be analytically divided in eight steps: 
1. Estimation of the filtering model in order to eliminate autocorrelation and heteroskedasticity 

in the marginal distribution of the n asset returns involved in the asset allocation. This is 
done through an ARMA/GARCH model with the innovations given by a Student’s t with 
dof (ν) estimated using log-likelihood. Notice that this step is required in order to remove 
relevant autocorrelation and heteroskedasticity of the time series for the application of EVT. 
We reached the following model specification: 

tiitititi C ,1,1,, εϕεφµµ +++= −−         (13a)

 2
1,

2
1,

2
, −− ++= tiitiiiti εβσακσ         (13b) 

 
tititi x ,,, σε =   xt ~ t(ν).         (13c) 

 
Estimated models for each margin will be used in the step 5 to simulate paths of standard 
deviations separately [ ])()(

1
)( ,..., i

T
ii σσσ =  for (i=1….n). 

2. Fit the shape parameter τi (tail index) and the number of appropriate exceedances opt
iq  of the 

Generalized Pareto Distribution on the left tail of the standardized residuals distribution 

                                                 
12 For a large sample of equities, indexes and bonds authors find the supremacy of logistic, gamma, lognormal and 
extreme value.  
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(once historical returns have been filtered) with a non-parametric approach based on the 
Hill’s estimator. This step implies the identification of the minimum of the U-shaped 
relationship between the MSE and the number of exceedances q. With this minimum we can 
easily identify the optimal number of exceedances opt

iq  and the correspondent tail index (τi). 
For this estimation we follow the non-parametric method suggested by Jansen and De Vries 
(1991) and Danielsson et al. (2001). Once the minimum MSE tail index and the 
correspondent number of exceedances have been found, we can infer the appropriate parent 
distribution of the standardized innovations (see the next step)13.  

3. Simulation of a vector of T standardized innovations, drawn independently, for each asset 
class using a Student’s t distribution whose dof (νi) has been derived by the tail index τi 
estimated in 2 with the simple relationship νi=1/τi. Notice that these distributions are 
different for each margins and therefore they incorporate specific characteristics for each 
innovation process. With this approach we obtain a multivariate distribution with n 
marginals [ ])()(

1
)( ,..., i

T
ii xxX =  (for i=1…n) of T standardized innovations parameterized on 

the specific tail index (τi). 
4. Simulation of the dependencies through the Clayton copula. This is done using the inversion 

method in (2). As noted above this copula significantly emphasizes the lower tail 
dependence while maintaining the same (Pearson) correlation coefficient ρ. The tail-
dependence coefficient (λ) is estimated on Kendall’s tau (ρτ) matrix14. With this step we 
obtain a multivariate distribution with n marginals [ ])()(

1
)( ,..., i

T
copicopicop xxX =  (for i=1…n) of 

T standardized innovations, parameterized on the specific tail index (τi) for each asset class. 
Each margin is related according to the specific coefficient of lower tail-dependence (λL). At 
this stage we use the pair-wise method introduced by Ward and Lee (2002) and extensively 
applied by Rosenberg and Schuermann (2006). 

5. Simulation of n vectors of conditional standard deviations [ ])()(
1

)( ,..., i
T

ii σσσ =  and 

reintroduction of the copula-related standardized innovations )(icop X  in the ARMA/GARCH 

process estimated in (13a) and (13b) to obtain a sample of T simulated returns with margins 
given by distributions related to the tail index τi  and with the dependence structure given by 
the α-parameterized Clayton copula. The reintroduction is done in two steps. First, rescaling 
the n vectors of T simulated conditional standard deviations )(iσ  given by the conditional 

volatility model in (13b). In this way we obtain n vectors of simulated innovations 
( ) ( ) ( )[ ])()()()(

2
)(

2
)(

2
)(

1
)(

1
)(

1
)( ,...,, i

T
i

T
copi

T
copiicopicopiicopicopicop xxx σεσεσεε ⋅=⋅=⋅==  (for i=1….n). 

Second, the n vectors )(icopε  have been reintroduced in the ARMA process in (13a) in order 

to obtain [ ])()(
1

)( ,..., i
T

copicopicop µµµ =  for each i asset. 

6. Optimization à la Markowitz using quadratic programming on the matrix 
[ ])()1( ,..., ncopcopcop µµµ =  where [ ])()(

1
)( ,..., i

T
copicopicop µµµ =  and on the covariance matrix 

recalculated in each simulation. We optimize in the presence of positivity constraints and 
then store the optimal weight for each asset class (W(i)) related to the asset allocation along 
the efficient frontier. The number of portfolios along the efficient frontier has to be chosen. 

7. Repetition of steps 3, 4, 5 and 6 M times in order to obtain M matrix of weights W(i). 

                                                 
13 Notice that the scale parameter σ in (28) is not required since in this conditional variance approach we do not directly 
simulate the returns but we simulate specific standardized innovations, given the tail index. In a unconditional approach 
we could need random variates drawn from a GPD, therefore the scale parameter σ should be also estimated.  
14 Note that this approach of estimation is known as ‘Method of Moments’ (see McNeil et al. (2005), section 5.5.1) and 
it is appropriate in the case of few observations. Otherwise the classical MLE estimators for the parameter α can be 
applied but it requires a huge amount of data, rarely available with a monthly framework. 
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8. Calculation of the main statistics of these weights along the efficient frontier in order to 
have estimates of the uncertainty of the allocation. 
 
Our model is empirical, distribution-free15, only related to the copula-parameters and to the 

tail indexes, both estimated with non-parametric techniques. Such a solution should emphasize the 
lower tail-dependence between return distributions and therefore implicitly overestimates the joint 
tail risk by underweighting those asset classes with high lower tail-dependence, all other things (e.g. 
covariance matrix) being equal. Notice also that the classical quadratic programming for the 
calculation of the efficient frontier is suitable for many marginal distributions belonging to the 
elliptical family since this family has very important properties listed below. Among the others it is 
important to highlight that: 
a) any linear combination of elliptically distributed variates is elliptical itself with the same 

characteristic generator (see Valdez and Chernih (2003)); 
b) if all univariate marginals are elliptical then the minimization of variance for a given level 

of expected return leads to the same results given by the minimization of other more 
sophisticated risk measures (see Embrechts et al. (2002))  

Next session reports the detailed description of the input estimation methods for the eleven 
asset classes involved in the example. The resampling method has also been performed on the same 
asset classes in order to evaluate the cost of assuming multinormality for asset returns and the 
correlation matrix as the only input required in the algorithm.  

Finally, we perform two different tests in order to have empirical evidence about the 
potential of our method. First, we simulate a new sample of 20.000 Student’s t(νsim) (with 
νsim=3,….,20) multivariate returns with an implicit correlation matrix given by historical Kendall’s 
tau (ρτ). Then we use each simulated sample to obtain several statistics on the returns of some 
identified portfolios along the efficient frontier whose weights come from our model and from the 
resampling method. Second, we perform an out-of-the sample test using the real historical returns 
of the eleven asset classes from a subsequent period and then we analyze the results.  

We expect a smaller distance between the upper bound (e.g. the 1% percentiles of the 
portfolio returns) and the lower bound (e.g. the 99% percentiles of the portfolio returns) with our 
model. We also expect more thin-tailed return distributions with our model than in the resampling 
model for each portfolio.  
 
 Parameter estimates  

Exhibit 5 shows the descriptive statistics of the monthly returns from January 1991 to 
December 2004 for a total of 168 observations, including market crashes and bubbles. Parameters 
estimates reported in Exhibit 5 indicate positive average monthly returns for ten markets and 
negative average monthly returns for the Japanese market. Notice also the minimum statistics 
ranging from – 12.5% for UK market to -31.3% for Hong Kong market.  
 

(Exhibit 5) 

 

Return distributions are slightly asymmetric and leptokurtic (excluding S&P 500, CAC40 and 
Nikkei). However it is well known that the fourth moment is a weak measure of leptokurtosis. Its 
weaknesses can be listed as follows: a) it does not exist for every distribution; b) it accounts jointly 
for peakedness and fat tails; c) it is extremely sensible with respect to outliers.  

Since the fourth moment is a poor measure of leptokurtosis we perform the new distribution-
free Schmid-Trede test (2004) in order to provide consistent estimates for peakedness and fat tails 

                                                 
15 We let data decide what is the right ν=1/τ parameter for each standardized innovation process. Therefore we do not 
externally impose any  distribution with the consequent parameters.  
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separately. This test relies on the Hogg selector statistics based on quantiles (see Hogg and Lenth 
(1984)) and allows to unambiguously test the fat-tail behavior (T-test), the peakedness (P-test) of 
every distribution and the leptokurtosis of the sample data (L-test), regardless to the scale and 
location. Nevertheless, as pointed out by the authors, critical values are available only for large 
sample size16. For finite sample (less than 2000 observations) the critical value has to be calculated 
with a Monte Carlo approach. Therefore we perform a Monte Carlo simulation, following the 
method described by the authors, in order to obtain critical values in our case of 168 observations. 
The simulation is repeated 100,000 times. The critical values LTP ˆ,ˆ,ˆ  for 168 observations at 95% 
are 1.5238 (P-test), 1.15104 (T-test), 2.4805 (L-test), while at 99% the critical values are 1.4621 (P-
test), 1.4461 (T-test), 2.3378 (L-test). In our sample the null hypothesis H0

17 is always rejected 
(excluding the P-test for Nikkei) revealing interesting features about indexes.  

Returns show significant peakedness (P-test) and fat taildness (T-test) even though with 
different intensities. For example the S&P shows a low level of sample kurtosis explained by an 
high and significant peakedness and an higher than the correspondent normal level of fat taildness. 
It is worth mentioning that the taildness of S&P is remarkable but not as tremendous as the Hang 
Seng while S&P has an higher peakedness than the Hang Seng. Nikkei index is less peaked than the 
normal (the normality assumption is accepted at 95% and rejected at 99%), but its tails are fatter 
than the correspondent normal tails. This decomposition allows to concentrate on the tails of the 
Nikkei distribution even though its sample kurtosis is lower than the normal. This specific effect 
explains the higher and significant level of leptokurtosis badly captured by the sample kurtosis in 
Exhibit 5. FTSE index has also a sample kurtosis lower than the normal while the more precise 
decompositions reject the hypothesis of peakedness and taildness equal to the normal-ones. The 
most leptokurtic index is the Singapore Straits and it is explained with its fattest tails. The least 
leptokurtic index is the Nikkei and it is mainly due to the absence of peakedness.  

We also test the hypothesis of univariate normality for each return distribution with Jarque-
Bera tests. These tests accept the normality assumption for five indices (at 95%) whereas the more 
appropriate investigation of P, T and L tests allow to reject the assumption of normality for all 
indices.  

A test for the multinormality is also conducted. The best known is Mardia’s test of 
multivariate skewness and kurtosis. Specifically Mardia’s test is based on the Mahalanobis distance 
of data vector from its sample mean and it allows to reject the hypothesis of the normality if the 
sample has no significant skew and the measure of kurtosis deviates from expectancy only 
randomly. Both multivariate tests strongly reject the hypothesis of multinormality18. 

An investigation for autocorrelation in the vectors of returns is also performed. The Ljung-
Box-Pierce Q-test for a departure from randomness up to 20 lags for the vectors of returns and for 
the its squared is conducted. We did not find significant departures from randomness for the returns 
and for volatilities. We found only some significant persistence in volatilities. This is also 
consistent with the empirical evidence about asset returns with monthly observations. Differently 
from more frequent data, monthly returns are seldom serially correlated.  

Furthermore we perform the ARCH test statistics to check for heteroskedasticity in the 
vectors of returns. We found evidence of heteroskedasticity in the vectors of returns, even though 
with different intensity. The introduction of EVT for modeling the tail risk requires to completely 
remove the persistence in variance. This is done by fitting a general ARMA/GARCH model to filter 
the returns in order to obtain uncorrelated standardized innovations and to remove 

                                                 
16 The asymptotic distribution may be used for calculating critical values for hypothesis test if n>2000. In this case the 
authors provide the quantiles of the test statistics, dependent only on the level of confidence p. 
17 Recall that the P-test is ‘the sample is peaked as a normal distribution’; the T-test is ‘the sample has tails comparable 
with the normal distribution’ and the L-test is ‘the sample is leptokurtic as a normal distribution’. 
18 See Von Eye A. and Bogat A. (2004) for further details on Mardia’s tests. 
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heteroskedasticity19. However, since the main aim of the paper is not to estimate the best model for 
all kind of financial time series but it is to provide evidence of the importance of the tail dependence 
and of the tail risk in the asset allocation choices with tail-dependent assets, we decide to keep the 
filtering model simple and to introduce a general ARMA/GARCH filtering model with a Student’s 
t(ν) innovation process with ν estimated using log-likelihood function. Innovations given by 
Student’s t theoretically incorporate significant extreme events and, in the form of skewed-t also a 
relevant skewness. However the skewness not significantly different from zero does not allow to 
test a parameterized skewed-t. We test several filtering models in order to obtain a good equilibrium 
between parsimony and the absence of autocorrelation in the standardized residuals and in the 
squared standardized residuals and the model described in (13a), (13b) and (13c) met all these 
requirements. Student’s t has been used since it can incorporate either Gaussian innovations when ν 
tends to be high or excess kurtosis in the time series of returns. Exhibit 6 reports the estimated 
coefficients for each vector in our sample.  

 
(Exhibit 6) 

 
 

LBQ and ARCH tests before and after the ARMA/GARCH filtering for each index are 
reported in the Appendix A. 

The second step requires the estimation of the appropriate tail index for the left tail and the 
correspondent number of exceedances. Tail index τi for each distribution ‘i’ is estimated on the 
standardized residuals of the filtering model resulting from step 1. for each distribution ‘i’ The 
method of estimation is non-parametric. The identification of the optimal value of q (number of 
exceedances), namely opt

iq , requires a Monte Carlo simulation. We simulate 168 innovations drawn 
from different Student’s t distributions with degrees of freedom equal to 2, 3, 4 and 5. The fatness 
(tail index) of these distributions corresponds to 1/2, 1/3, 1/4, 1/5. The higher the number of the 
degree of freedom (the lower the tail index) the lower the number of extreme innovations. Then we 
estimate the tail index τi using the Hill’s estimator with different values of q ranging from 2 to 36 
(roughly 20% of the observations in our sample). We repeat this simulation 10,000 times. Therefore 
we get 10,000 observations of the tail index estimates for each distribution i and each value of q. 
For each distribution i we compute the MSE of the series and then we choose the value of q (called 

opt
iq ) which minimizes the U-shaped MSE function. opt

iq  is the number of extremes over the 
threshold θ that minimizes the trade-off between bias ad inefficiency for each distribution. Having 

opt
iq  for each distribution i, we compute the statistics ( )[ ] ii

opt
iHill q σττ /−  where τHill is the vector of 

the Hill’s estimators calculated on the real data with different q, τi is the theoretical estimate of the 
tail index given by 1/ν for a Student’s t(ν) and σi is the standard error of this estimate. We then 
calculate the p-values associated to these statistics and retain the estimates of ( )opt

iHill qτ  with the 
lowest p-value. The simulation and the estimation is computed only for the Hill’s estimator since it 
is widely recognized that Hill’s estimator is more efficient and more stable than the Pickands’s 
estimator (see Embrechts et al. (1999)). However the correspondent Pickands’s estimator is also 
reported in Exhibit 8. As noted above we do not need the other parameters in (10) since we simulate 
from the related parent (elliptical) function and not from the GPD. Exhibit 7 and Exhibit 8 
summarize the sample estimates for both Hill’s and Pickands’s estimators and the results for the tail 
index estimates related to the Monte Carlo method explained above.  

 
(Exhibit 7) 

                                                 
19 Notice that a similar two-step GARCH-EVT approach has been applied in the risk management field by McNeil and 
Frey (2000) for a more reliable estimation of VaR and Expected Shortfall (ES). The authors first filter the returns in 
order to have i.i.d. innovations. Second they fit a GPD distribution by maximum likelihood estimators for the 
innovations and then estimate VaR and ES.  
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(Exhibit 8) 

 
Notice the concordance of the tail index estimation with the T-test in Exhibit 5. Asset classes 

with high T-test tend to have higher estimated tail index on the standardized innovations. It is also 
worth highlighting that despite the rejection of the hypothesis of Student’s t standardized 
innovations in several cases (see Exhibit 5), Hill’s estimates are always positive. This can be 
attributable to the poor fit of the whole distribution and to a better fit of the left tail.  

The simulation of each margin is straightforward once the tail indexes for the standardized 
innovation distributions have been properly estimated. The step from the simulation of eleven 
independent univariate margins to a copula dependent multivariate distribution of asset returns can 
be divided in two parts. The first part entails the Clayton copula α-parameter estimation. This is 
done studying the matrix of the Pearson’s rho (ρ) and then computing the implicit Kendall’s tau 
(ρτ). Once the Kendall’s tau has been estimated we obtain the parameter α of the Clayton copula. 
Exhibit 9 reports the estimated ρ in the upper-right triangle and the implicit ρτ in the lower-left 
triangle.  

 

(Exhibit 9 ) 
 

The second part of this step can be described as follows. We simulate a matrix of T rows and 
the number of assets as columns i=(1,….11) in the way described above. Then we de-standardized 
the innovations by rescaling each simulated margin with the simulated standard deviation as 
described in (13c). We reinsert the de-standardized innovations in the ARMA process estimated in 
(13a) in order to obtain a matrix of α-parameterized copula returns with embedded tail risk. Recall 
that the filtering model assumes that )()()( i

t
i

t
copi

t x σε ⋅=  where )(i
tε  is the vector of the simulated de-

standardized innovations for each asset ‘i’, )(i
t

cop x  is the vector of the standardized innovations 

(simulated margins) after the Clayton copula transformation, )(i
tσ  is the univariate conditional 

standard deviation for each asset generated from the filtering process in (13b). In this way we 
produce a matrix of dependent returns with a dependence structure given by the specific α-
parameterized copula. 

A similar approach involves the bootstrapping of the standardized innovations parameterized 
using the α-Clayton copula and the replacement of these innovations in the filtering process 
estimated in (13b). This method has been extensively applied in the field of the Filtered Historical 
Simulation – FHS - (see Giannopoulos and Tunaru (2005), Barone-Adesi and Giannopoulos (2001) 
to estimate different risk measures for a portfolio consisting of linear and non-linear securities. 
However this methodology requires a huge amount of historical data to incorporate all possible 
movements of asset returns. This in not the case when we deal with monthly observations but could 
be appropriate with daily returns. 

An alternative approach could be to fit a multivariate GARCH model, eg. DCC –MVGARCH 
model proposed by Engle in 2002. The DCC model is a multivariate GARCH model with time-
varying correlations. It assumes a (conditionally) joint normal distribution for the return 
innovations. Note that this assumption implies normal conditional margins, and a normal 
conditional copula, which is fully explained by the correlation coefficients. The DCC –MVGARCH 
model estimates simultaneously both the margins and the dynamic matrix of correlations. Van den 
Goorbergh (2004) demonstrated that a copula based approach systematically overperforms the 
easier DCC-MVGARCH approach in a risk management framework.  

The simulation, analogously with the resampling approach proposed by Michaud, requires the 
setting of the length of the innovation vectors T (length of the multivariate returns in the 
resampling). We decide to simulate a matrix with 60 rows (5 years of monthly returns). This 
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parameter is arbitrarily chosen but should be consistent with the horizon of the asset allocation and 
with the frequency of data.   

For each simulation a matrix of autoregressive tail-dependent returns is obtained. We apply 
the classical constrained minimization à la Markowitz to this matrix obtaining an estimation of the 
efficient frontier and of the composition in terms of weights for each portfolio along the efficient 
frontier20. Notice that the final distribution of portfolio returns is a linear combination of dependent 
Student’s t whose ν parameter is different for each margin. With these assumptions the classical 
minimization solution is still viable21.  

These steps obviously require the repetition of the simulation M times and the recalculation of 
the optimal weights each time. We store each optimal weight for each asset class for each portfolio 
along the efficient frontier and then we average this matrix in order to obtain a unique optimal 
weight for each portfolio. 

The last step involves a comparison of the simulated portfolios, calculated using both our 
proposed approach and the classical resampling approach. The test is conducted using a set of 
simulated returns and an out-of-the sample set of real returns. We use a set of simulated returns 
drawn from a multivariate Student’s t with ν dof (for ν=3,…30). With multivariate Student’s t(ν) 
extreme returns have the same probability to occur because τ is the same for each margin (τ =1/ν, 
for ν=3,…30). Tail-dependence is variable and dependent upon the Kendall’s tau matrix. Notice 
that in this Student’s t(ν) simple case the tail-dependence is symmetric (λU=λL). Equating the 
relationships in Exhibit 3 on different copulas (tν and α-Clayton) and imposing ν=3,…30, we can 
solve numerically the equation Clayton

L
t
L λλ ν =  for ρτ. We can easily verify that Clayton copula has 

higher tail-dependence than multivariate Student’s t(ν) for all ρτ in our sample. In other words if we 
consider the correlation matrix in Exhibit 9 Clayton copula has always higher λL than tν copula, 
assuming that the margins are the same t(ν)22.  

We report some relevant statistics for the description of the simulated portfolio returns in 
both cases. The out-of-the sample test is concentrated on the absolute difference between standard 
deviations of some selected portfolios.  

 
 Results  

As stated before we perform both our asset allocation method and the resampling method 
setting T=60 and M=1000 for 200 portfolios.  

The results are well summarized by the area plots for the weights. Exhibit 10 highlights the 
results in our proposed model while Exhibit 11 shows the allocation of the wealth along the 
efficient frontier among the eleven asset classes, according to the resampling procedure. For the 
sake of comparison in Appendix B we report the composition of the portfolios along the efficient 
frontier à la Markowitz, even though it is well known that it is affected by numerous drawbacks and 
therefore not diffused among the practitioners. 

                                                 
20 The number of efficient portfolios along the efficient frontier has been set to 200. 
21 Recall that Student’s t(ν) has at least ν moments, thus imposing ν > 2 the variance always exists and the minimization 
approach à la Markowitz rests valid.  
22Multivariate Student’s t(ν) in d-dimensions can be decomposed in d univariate Student’s t(ν) with the a tν copula and 
a given correlation matrix. Therefore the multivariate Student’s t(ν) can be considered as a special case of the tν copula 
in which the marginals and the tν copula have the same ν. For this reason λU and λL  in the multivariate Student’s t(ν) 

case are a function of the unique ν and ρτ . Numerical solutions of the equation Clayton
L

t
L λλ ν =  in Exhibits 3 for different 

ν give the following relationships: for ν=3 Clayton
L

t
L λλ ν <  if ρτ>0.1247, for ν=4 Clayton

L
t
L λλ ν <  if ρτ>0.1092, for ν=5 

Clayton
L

t
L λλ ν <  if ρτ>0.0973,….., for ν=10 Clayton

L
t
L λλ ν <  if ρτ>0.0634, for ν=15 Clayton

L
t
L λλ ν <  if ρτ>0.0474, for ν=20 

Clayton
L

t
L λλ ν <  if ρτ>0.0379, for ν=25 Clayton

L
t
L λλ ν <  if ρτ>0.0316, for ν=30 Clayton

L
t
L λλ ν <  if ρτ>0.02718. Clearly the 

higher ν the lower the tail-dependence of the tν copula, the lower also the ρτ  in the Clayton copula to have the same 
lower tail-dependence.  
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(Exhibit 10) 

 
(Exhibit 11) 

 
Exhibit 10 shows a greater stability of the asset classes along the efficient frontier and 

portfolios more similar to the equally weighted in the middle of the efficient frontier. 
To provide further investigation about the effect of the proposed method we simulate a 

sample of 20,000 unconditional multivariate Student’s t(ν) monthly returns and then we calculate 
the most important quantiles for the portfolio return distribution for the 200 efficient portfolios. 
Exhibit 12 represents the case of multivariate t(4) returns. The lower quantiles are severely affected 
by extreme returns in case of significant lower tail dependence. For homogeneity we also represent 
the upper quantiles for the t(4) case. 

 

(Exhibit 12) 
 

It is important to highlight that potential returns can have heavier tails than Student’s t. To 
complete the description we also report the main statistics for some relevant portfolios along the 
efficient frontier in Exhibit 13. We compute the P, T and L tests as indicated by Schmid and Trede 
(2003) in order to have a precise distinction between peakedness and taildness of the return 
distribution for each portfolio. Notice that in this case the formula for critical values does not 
require a simulation but is only dependent upon the sample size (20,000 observations for each 
portfolio) and the level of confidence (p).  

 

(Exhibit 13) 
 

In this simple case of returns drawn from a multivariate t(4) the τ-EVT α-Clayton portfolio 
returns are unambiguously less heavy-tailed than in the sophisticated resampling method. This 
effect leads to a potential lowest return higher in the τ-EVT α-Clayton method than in the 
resampling method and to a wider bounds in the worst (1%, 5%, 10%) cases for resampled 
portfolios. These results are efficiently summarized by the kurtosis of each portfolio along the 
efficient frontier and, more precisely, by the T-tests. 

For other multivariate t(ν) simulations we only indicate the main results in Exhibit 14. 
Particularly we concentrate on: standard deviation, sample kurtosis, T-test and Sharpe ratio of the 
middle portfolio (portfolio n.100). Empirical evidence does not change if we simulate potential 
returns from other multivariate Student’s t(ν) distributions. Our method allows to strongly reduce 
the negative effect of both potential extreme negative returns and lower tail-dependence.  

 
(Exhibit 14) 

 
Finally we test our model with out-of-the sample data. We test the portfolio returns for some 

portfolios with real monthly returns of the eleven assets from 01/2005 to 09/2006. Our model 
allows to relatively reduce the standard deviations for all portfolios along the efficient frontier. The 
reduction can be measured as the absolute difference between the two standard deviations for 
several portfolios. These differences range from 0.0003 (200th portfolio) to 0.0018 (20th portfolio). 
Nevertheless this approach is not costless. The cost of adopting this method can be interpreted as 
the difference between the average return for each portfolio or, better, as the difference between the 
Sharpe ratios for each portfolio. Assuming a risk free rate of 2% per year it is trivial to note that the 
difference is always negative ranging from a minimum of -0.0210 to a maximum of -0.0060 for the 
t(4) case. However our method is aimed to build an implicit tail-risk and negative tail dependence 
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constraint and therefore this implicit cost represents the insurance premium for an efficient asset 
allocation aimed to reduce the negative effects of extreme negative returns and negative tail-
dependence. It is worth noting that the cost tends to be negligible with real data. The out-of-the 
sample test reveals that the real portfolio returns are both lower and higher than the correspondent 
resampled portfolios. The difference is positive and decreasing for portfolios from 80th to 200th 
(from +0.03% to 0% for the last portfolio) but negative and decreasing for portfolios from 1st to 80th 
(from -0.11% to -.01% for the 80th portfolio). This effect could be attributed to FTSE and SMI. 
These asset classes have a significantly different role in the first part of the efficient frontier.  

 
Conclusions 

In this paper we present a Monte Carlo method for asset allocation purposes aimed to reduce 
the effects of negative extreme returns and lower tail dependence among asset classes.  

Our method is based on non-parametric estimations and therefore it does not imply any a 
priori choice for the asset manager. This feature improves the efficiency of this method since other 
diffused methodologies have shown their limits on the distributional assumptions. The only 
distributional assumption we made is strictly related to the standardized innovations. However these 
are not chosen by the asset managers but are derived from the Extremal Value Theory properties. 
This theory provides simple relationships between the tail index (τ) of the Generalized Pareto 
Distribution for the returns in excess over a threshold θ (number of exceedances) and the parent 
return distribution. Furthermore we introduce a more realistic structure of dependencies whose aim 
is to stress the negative tail dependence among asset classes in order to build an implicit barrier 
against joint negative extreme returns. Again, the parameters of the multivariate copula (α-vector) 
are estimated using a distribution-free methodology.  

We have shown that EVT and copula-related theory can help not only risk managers but also 
asset managers. The study of extreme quantiles can support the asset allocation decisions leading to 
safer portfolios. Furthermore theory on copulas can significantly improve the quantitative asset 
allocation considering more complex dependencies than those ‘linear’, described by the Pearson’s 
rho (ρ).  

We have also simulated a realistic framework with multivariate Student’s t returns to 
demonstrate the efficiency of the method and to compute the cost of this implicit protection. This 
cost (only valued in terms of loss of average return and in terms of Sharpe ratios), in our simple 
simulation, seems to be negligible. However further researches are required on this important topic. 
For example other not strictly financial elements can justify the adoption of our proposed method, 
i.e. reputational costs and research costs related to the loss of current customers.   

Finally we have tested our model on a set of out-of-the sample returns. The model can reduce 
the standard deviations of the portfolios along the efficient frontier, even though with different 
intensities. The decline is variable and dependent upon the absolute risk of the portfolio. The higher 
the absolute risk the lower the reduction of the volatility. However the volatility decrease is not 
coupled with a correspondent decline of the real return. The differences between portfolio returns 
tend to be negative for the safer portfolios and positive for the riskier part of the efficient frontier. 

We leave for further research the introduction of a dynamic adjustment in the α-vector for the 
Clayton copula. Notice that these features require a substantial shift from the classical mean-
covariance framework to a more sophisticated method. However these tools are quite common in 
the risk and capital management and never applied, to our knowledge, in the asset management. 
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APPENDIX A 

Pre-filtering Ljung-Box-Pierce Q-test and Engle's ARCH test 
Ljung-Box-Pierce Q-test for vectors of returns

S&P 500 CAC 40 TSX Hang Seng MIB30 Nikkei AEX Straits Madrid SE FTSE 100 SMI
Lag Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ

1                 2.5762        0.2964        2.4336        0.0280        0.7842        1.1388        0.1171        2.3287        0.2543        2.3978        2.0378        
p-value 0.1085              0.5862              0.1188              0.8672              0.3759              0.2859              0.7323              0.1270              0.6141              0.1215              0.1534              

2                 3.8351        0.3165        3.0029        1.2053        0.8738        1.2993        5.2634        3.8304        0.2721        3.2506        2.1056        
p-value 0.1470              0.8537              0.2228              0.5474              0.6460              0.5222              0.0720              0.1473              0.8728              0.1969              0.3490              

3                 3.8417        1.3143        3.9255        1.5623        3.4537        2.5751        5.6056        4.4629        0.8325        3.3632        2.4970        
p-value 0.2791              0.7258              0.2696              0.6680              0.3268              0.4619              0.1325              0.2156              0.8417              0.3390              0.4758              

4                 4.7599        2.9395        4.5692        1.8164        3.5656        2.6982        6.4703        4.5586        2.1755        3.3659        3.1693        
p-value 0.3128              0.5680              0.3344              0.7695              0.4680              0.6095              0.1667              0.3357              0.7035              0.4986              0.5299              

5                 5.1346        3.0132        4.9819        2.0583        4.8459        3.4982        6.4851        6.0827        3.5182        3.3670        8.4941        
p-value 0.3997              0.6980              0.4181              0.8410              0.4350              0.6237              0.2618              0.2983              0.6206              0.6436              0.1310              

10               17.4380      8.5239        8.9882        9.0326        14.8710      6.8328        17.8170      10.9320      9.8558        10.5390      11.7570      
p-value 0.0652              0.5778              0.5332              0.5290              0.1369              0.7411              0.0581              0.3628              0.4532              0.3946              0.3017              

15               22.7120      15.9970      18.3450      14.8590      17.9180      13.5750      25.3170      22.1340      11.3290      12.6210      25.7770      
p-value 0.0904              0.3823              0.2449              0.4616              0.2670              0.5580              0.0458              0.1043              0.7289              0.6316              0.0404              

20               30.4490      19.1410      22.1800      17.3170      23.0530      15.5360      31.4810      25.1770      14.5220      13.8120      28.0160      
p-value 0.0629              0.5127              0.3308              0.6323              0.2862              0.7450              0.0492              0.1948              0.8031              0.8399              0.1090               

 
Ljung-Box-Pierce Q-test for vectors of squared returns

S&P 500 CAC 40 TSX Hang Seng MIB30 Nikkei AEX Straits Madrid SE FTSE 100 SMI
Lag Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ

1                 8.9037        6.9263        2.8220        0.0386        6.3849        0.4567        8.6803        0.0168        11.8150      11.9230      41.3450      
p-value 0.0028              0.0085              0.0930              0.8442              0.0115              0.4992              0.0032              0.8969              0.0006              0.0006              0.0000              

2                 18.5810      17.5280      6.0508        11.9330      6.6759        0.4844        27.8490      6.3389        24.9680      20.7780      50.3010      
p-value 0.0001              0.0002              0.0485              0.0026              0.0355              0.7849              0.0000              0.0420              0.0000              0.0000              0.0000              

3                 21.2850      18.9750      6.3324        12.2570      6.8343        0.4858        30.4870      6.7647        25.1190      23.2660      50.6470      
p-value 0.0001              0.0003              0.0965              0.0066              0.0774              0.9220              0.0000              0.0798              0.0000              0.0000              0.0000              

4                 21.2880      18.9770      6.7397        12.7460      7.2099        1.2712        30.6750      6.8314        25.2750      23.2860      50.7330      
p-value 0.0003              0.0008              0.1503              0.0126              0.1252              0.8663              0.0000              0.1451              0.0000              0.0001              0.0000              

5                 21.4300      23.6130      7.0523        13.5370      7.6141        2.2308        32.0650      15.1750      25.2750      24.9380      50.8690      
p-value 0.0007              0.0003              0.2168              0.0188              0.1788              0.8164              0.0000              0.0096              0.0001              0.0001              0.0000              

10               35.6700      30.9470      8.9014        18.6580      12.6120      5.4996        44.2400      29.6880      28.7860      29.6830      51.1540      
p-value 0.0001              0.0006              0.5415              0.0448              0.2462              0.8554              0.0000              0.0010              0.0013              0.0010              0.0000              

15               38.6780      42.8540      10.3710      27.6250      18.4260      11.1630      53.2510      41.9450      31.5470      30.1040      55.8010      
p-value 0.0007              0.0002              0.7958              0.0240              0.2410              0.7410              0.0000              0.0002              0.0074              0.0116              0.0000              

20               52.4290      47.7340      14.4900      28.8270      20.1830      14.7230      54.5120      50.9330      34.1520      32.5660      60.0690      
p-value 0.0001              0.0005              0.8048              0.0912              0.4466              0.7921              0.0000              0.0002              0.0251              0.0376              0.0000               

 
Engle ARCH-test for vectors of returns

S&P 500 CAC 40 TSX Hang Seng MIB30 Nikkei AEX Straits Madrid SE FTSE 100 SMI
Lag Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH

1                 8.7366        6.7906        2.7683        0.0379        6.2612        0.4479        8.5067        0.0165        11.5800      11.7200      40.4900      
p-value 0.0031              0.0092              0.0962              0.8457              0.0123              0.5033              0.0035              0.8979              0.0007              0.0006              0.0000              

2                 16.1150      14.6500      5.3435        11.5800      6.5570        0.3582        22.7540      6.2473        19.9200      17.5310      40.2650      
p-value 0.0003              0.0007              0.0691              0.0031              0.0377              0.8360              0.0000              0.0440              0.0000              0.0002              0.0000              

3                 15.4040      14.7820      5.3171        12.2840      6.9605        0.3222        22.6690      6.7252        20.8260      18.0240      44.8910      
p-value 0.0015              0.0020              0.1500              0.0065              0.0732              0.9558              0.0000              0.0812              0.0001              0.0004              0.0000              

4                 18.4790      15.7660      6.3708        14.8510      7.3710        1.1042        24.1250      7.5312        22.4420      19.2290      45.9690      
p-value 0.0010              0.0033              0.1731              0.0050              0.1175              0.8936              0.0001              0.1103              0.0002              0.0007              0.0000              

5                 19.0220      19.7260      6.8158        15.4810      8.1067        2.1514        24.7490      14.3890      22.6680      20.3640      45.6470      
p-value 0.0019              0.0014              0.2347              0.0085              0.1505              0.8278              0.0002              0.0133              0.0004              0.0011              0.0000              

10               25.2100      28.3390      8.0673        20.9270      12.9340      5.2875        35.4060      27.9610      27.5150      23.3830      44.6440      
p-value 0.0050              0.0016              0.6223              0.0216              0.2274              0.8712              0.0001              0.0018              0.0022              0.0094              0.0000              

15               26.5050      32.2970      9.4679        26.8300      18.7130      9.9191        35.7800      32.4660      32.7900      26.5380      47.3410      
p-value 0.0330              0.0059              0.8518              0.0302              0.2270              0.8248              0.0019              0.0056              0.0050              0.0327              0.0000              

20               34.9120      38.1170      13.5510      26.2250      19.6380      11.7880      35.8430      34.8550      37.6190      31.6490      47.4910      
p-value 0.0206              0.0086              0.8525              0.1585              0.4808              0.9232              0.0160              0.0209              0.0099              0.0472              0.0005               
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Post-filtering Ljung-Box-Pierce Q-test and Engle's ARCH test 
 

Ljung-Box-Pierce Q-test for vectors of standardized innovations
S&P 500 CAC 40 TSX Hang Seng MIB30 Nikkei AEX Straits Madrid SE FTSE 100 SMI

Lag Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ
1                0.0110       0.5767       0.4516       0.0088       0.6886       0.0003       3.4967       0.0020       0.3687       0.5529       1.1060       

p-value 0.9167              0.4476              0.5016              0.9251              0.4066              0.9861              0.0615              0.9647              0.5437              0.4571              0.2930              

2                0.9360       0.5767       1.3477       0.8608       1.2382       0.3338       7.1771       2.3589       0.5270       0.8520       1.2091       
p-value 0.6262              0.7495              0.5097              0.6502              0.5384              0.8463              0.0276              0.3075              0.7684              0.6531              0.5463              

3                0.9549       1.3160       2.4195       0.8791       4.4804       1.6510       7.1887       2.8673       1.7977       0.8525       2.1339       
p-value 0.8122              0.7253              0.4900              0.8305              0.2141              0.6479              0.0661              0.4125              0.6154              0.8369              0.5451              

4                1.3374       2.2339       2.6623       1.3249       4.5842       1.6902       7.4544       2.8676       2.4477       1.4364       2.6395       
p-value 0.8550              0.6928              0.6158              0.8571              0.3327              0.7925              0.1137              0.5802              0.6540              0.8379              0.6199              

5                1.8028       2.2983       3.3400       1.3262       5.1349       2.6570       7.6803       3.0799       3.7018       1.7466       6.9364       
p-value 0.8757              0.8065              0.6477              0.9322              0.3996              0.7527              0.1748              0.6877              0.5931              0.8830              0.2254              

10              11.0700     7.3449       8.7719       7.3955       15.9200     6.4199       17.5960     7.3324       10.7620     9.1980       8.8103       
p-value 0.3521              0.6925              0.5539              0.6877              0.1020              0.7788              0.0622              0.6937              0.3763              0.5134              0.5502              

15              17.3980     12.0380     18.5030     11.4590     19.4530     11.5840     23.7380     13.6630     11.9180     10.9450     18.7880     
p-value 0.2956              0.6762              0.2371              0.7194              0.1939              0.7102              0.0697              0.5512              0.6852              0.7565              0.2235              

20              22.3710     14.6360     22.2560     12.4640     24.8390     13.7820     26.4310     15.8190     17.5540     12.7740     20.5930     
p-value 0.3207              0.7969              0.3268              0.8992              0.2077              0.8414              0.1520              0.7278              0.6167              0.8869              0.4214               

 
Ljung-Box-Pierce Q-test for vectors of squared standardized innovations

S&P 500 CAC 40 TSX Hang Seng MIB30 Nikkei AEX Straits Madrid SE FTSE 100 SMI
Lag Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ Stat-LBQ

1                0.7379       0.0239       0.8338       0.5945       0.1448       0.8072       0.0846       1.8600       0.1644       0.5042       0.2426       
p-value 0.3903              0.8771              0.3612              0.4407              0.7036              0.3690              0.7712              0.1726              0.6851              0.4777              0.6223              

2                4.0063       0.6191       0.9348       6.8240       0.4438       0.8277       0.1466       3.3185       0.2756       0.9247       0.6661       
p-value 0.1349              0.7338              0.6266              0.0330              0.8010              0.6611              0.9293              0.1903              0.8713              0.6298              0.7167              

3                4.0291       0.8838       1.2450       6.9390       0.4450       0.8892       1.7395       3.4229       0.2822       0.9256       0.8453       
p-value 0.2583              0.8293              0.7422              0.0739              0.9308              0.8280              0.6282              0.3309              0.9633              0.8193              0.8386              

4                4.4503       3.4930       1.9024       7.5451       2.3049       1.6210       1.8771       3.6276       0.4649       1.1961       0.8518       
p-value 0.3485              0.4790              0.7537              0.1097              0.6799              0.8050              0.7584              0.4588              0.9768              0.8787              0.9314              

5                6.3006       5.2230       1.9821       7.6113       3.1298       2.8077       2.0237       5.0198       0.5070       1.2547       1.6164       
p-value 0.2781              0.3893              0.8516              0.1790              0.6800              0.7296              0.8459              0.4135              0.9919              0.9395              0.8993              

10              12.5110     10.7130     4.1698       9.1154       5.2478       6.1428       8.4880       7.5880       4.1045       4.3176       2.2559       
p-value 0.2523              0.3803              0.9394              0.5212              0.8740              0.8031              0.5813              0.6690              0.9425              0.9319              0.9940              

15              13.9510     18.3540     6.8927       15.1820     12.8650     12.0030     13.5000     16.6510     10.5780     6.7901       6.3352       
p-value 0.5293              0.2445              0.9606              0.4384              0.6127              0.6788              0.5637              0.3402              0.7819              0.9632              0.9736              

20              21.6880     22.7730     13.8880     17.4790     15.7480     16.0560     15.3180     20.2420     14.2120     9.6200       14.1130     
p-value 0.3577              0.3001              0.8362              0.6217              0.7322              0.7131              0.7579              0.4429              0.8196              0.9746              0.8247               

 
Engle ARCH-test for vectors of standardized innovations

S&P 500 CAC 40 TSX Hang Seng MIB30 Nikkei AEX Straits Madrid SE FTSE 100 SMI
Lag Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH Stat-ARCH

1                0.7239       0.0235       0.8190       0.5827       0.1418       0.7917       0.0830       1.8238       0.1611       0.4963       0.2376       
p-value 0.3949              0.8783              0.3655              0.4453              0.7065              0.3736              0.7733              0.1769              0.6882              0.4811              0.6260              

2                3.7709       0.5967       1.0862       6.4158       0.4708       0.6601       0.2012       2.8613       0.2478       1.4396       0.6232       
p-value 0.1518              0.7420              0.5809              0.0404              0.7903              0.7189              0.9043              0.2392              0.8835              0.4869              0.7323              

3                4.2356       0.8081       1.2312       6.6446       0.5063       0.6518       1.7793       2.8447       0.2686       2.0337       0.8362       
p-value 0.2371              0.8475              0.7455              0.0841              0.9175              0.8845              0.6195              0.4162              0.9658              0.5654              0.8408              

4                6.0001       3.6911       1.8208       8.2931       2.4794       1.4362       2.0343       3.4565       0.4729       1.9587       0.8471       
p-value 0.1991              0.4494              0.7687              0.0814              0.6483              0.8379              0.7295              0.4845              0.9761              0.7434              0.9320              

5                8.4610       5.4073       1.8042       8.5734       3.1196       2.8415       1.9179       4.7197       0.5465       2.1471       1.4851       
p-value 0.1326              0.3682              0.8755              0.1273              0.6816              0.7244              0.8604              0.4510              0.9903              0.8284              0.9148              

10              13.3880     10.8070     4.5640       9.3823       5.4673       6.0061       8.2398       7.8902       3.7484       5.7450       2.1991       
p-value 0.2028              0.3727              0.9183              0.4963              0.8579              0.8148              0.6054              0.6396              0.9580              0.8362              0.9946              

15              14.2410     16.8680     7.2544       14.7690     12.7910     11.0770     12.6560     17.0350     12.4040     9.2504       6.0028       
p-value 0.5074              0.3268              0.9502              0.4682              0.6185              0.7471              0.6289              0.3168              0.6482              0.8641              0.9797              

20              21.3910     20.9180     15.5230     16.7160     15.3650     13.1390     14.9420     20.3960     15.9500     10.5130     12.2020     
p-value 0.3744              0.4020              0.7458              0.6713              0.7552              0.8713              0.7797              0.4334              0.7197              0.9579              0.9089               
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APPENDIX B: Optimal weights in the classical optimization with positivity 
constraints (see 1) 

 



 26 

 
 

Exhibit 1: 10.000 standard normal random variables with ρ=0.7 and different structure of 
dependence. Parameters of copulas (α) are calculated using direct relationships between ρ, 
Kendall’s tau �(ρτ) and the parameter of the specific copula. 

  
 
 

Exhibit 2: Student’s t bivariate sample with 3 dof and linear correlation +0.7. Estimates of ρ 
and ρτ  
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Exhibit 3: Relevant coefficients for implicit and Archimedean copulas 
Copula type 
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Exhibit 4: Tail dependence coefficients (ρτ� �for several copulas 
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Exhibit 5: Descriptive Statistics 

Univariate Statistics
S_P500 SMI CAC40 TSX Hang_Seng Mib30 Nikkei AEX Straits Madrid FTSE

Minimum -0.1318 -0.1899 -0.1688 -0.2653 -0.3136 -0.1786 -0.1730 -0.2494 -0.2376 -0.2154 -0.1251
Date Aug-98 Aug-98 Sep-02 Aug-98 Oct-97 Sep-01 Dec-00 Jul-02 May-98 Aug-98 Jul-02
Maximum 0.1263 0.2024 0.1412 0.1458 0.2707 0.2315 0.2220 0.1406 0.3607 0.2020 0.1235
Mean 0.0085 0.0104 0.0070 0.0080 0.0100 0.0057 -0.0002 0.0086 0.0064 0.0081 0.0059
Std. Deviation 0.0507 0.0507 0.0575 0.0607 0.0854 0.0705 0.0725 0.0586 0.0790 0.0608 0.0453
Skewness -0.2401 -0.6037 -0.3021 -0.5358 -0.0027 0.2105 0.1138 -0.8933 0.1651 -0.3120 -0.4191
Kurtosis 3.0529 5.9853 3.0754 4.5375 4.5910 3.5641 2.9532 5.3063 5.8149 3.9492 2.8643

Normality tests
Jarque-Bera test 1.6736 69.5744 2.6483 23.2949 16.0753 2.9881 0.4784 57.8772 53.1028 8.2025 5.3052
p-value 0.4331 0.0000 0.2662 0.0000 0.0003 0.2245 0.7873 0.0000 0.0000 0.0166 0.0705

Schmid and Trede test
P-test 2.0969 1.6457 1.6367 1.6598 1.9883 1.7257 1.5171 1.6986 1.787 1.9188 1.9185
T-test 1.6636 1.9887 1.8997 1.7103 2.0545 2.0638 1.7456 1.9614 2.4306 1.8678 1.6057
L-test 3.4883 3.2729 3.1092 2.8388 4.0848 3.5616 2.6482 3.3315 4.3434 3.584 3.0804

Multivariate Statistics
Mardia's Test Coefficient p-value
Multivariate skewness 18.9718 0.0000
Multivariate kurtosis 181.0544 0.0000

Descriptive Statistics - Monthly asset returns

 
 
Exhibit 6: Parameter estimates for the ARMA/GARCH models 

Parameter S_P500 SMI CAC40 TSX Hang_Seng Mib30 Nikkei AEX Straits Madrid FTSE

C                            
(t -ratio)

0.0032   
0.6867

0.0024  
0.9125

0.0176   
0.7681

0.0036   
0.7681

0.00103  
0.2278

0.0077  
0.7199

(0.0002)  
(0.2145)

0.0243  
3.3586

0.0055    
0.8375

0.0102  
0.2056

0.0015  
0.3538

φ                            
(t -ratio)

0.6146  
1.0293

0.8213  
4.1197

(0.9421)  
(5.1466)

0.6728    
1.6453

0.8533     
1.3415

(0.0928)  
(0.0755)

(0.7609)  
(4.5922)

(0.9408)  
(14.8029)

0.4198  
0.6259

(0.2152)  
(0.0366)

0.8239    
1.6185

ϕ                                 
(t-ratio)

(0.5253)        
(1.0036)

(0.74311)                  
(3.1075)

0.9232      
4.3783

(0.5872)    
(1.2847)

(0.8356)      
(1.2394)

0.02130     
0.0172

0.8709       
7.1540

0.8920      
9.6063

(0.3329)     
(0.4741)

0.2038     
0.0346

(0.7938)     
(1.4505)

κ                                      
(t -ratio)

0.0001  
1.1519

0.0008  
1.2857

0.0002  
0.8669

0.0007  
1.1304

0.0002  
0.6385

0.0001  
1.5363

0.0036      
0.0011

0.0006  
2.0478

0.0001  
0.7428

0.0015  
1.8606

0.0001  
0.7878

α                                    
(t -ratio)

0.8037  
7.7271

0.4858  
1.6469

0.7358  
4.7310

0.6165  
2.7037

0.8631  
9.8423

0.5665    
3.7821

0.1801  
19.5750

0.3110  
1.7946

0.8776  
12.5507

0.2930  
0.9777

0.6462  
4.8661

β                                       
(t -ratio)

0.1407  
1.8685

0.1990  
1.7564

0.1886  
1.7913

0.1895   
1.7133

0.1008  
1.9053

0.2996  
2.3549

0              
0

0.5311   
3.5244

0.1003  
1.7655

0.2988  
1.4080

0.3128  
2.4472

DoF                     
(t -ratio)

200              
NA

6.3871            
2.3940

200       
NA

25.921      
0.5435

6.3793     
1.7228

12.028     
0.8811

71.737       
0.1647

38.887          
0.383

6.131         
1.7406

8.6457           
1.905

200         
NA
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Exhibit 7: Non parametric estimators for τ 

Hill Estimates
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Exhibit 8: Optimal value for the tail index (τ) through the Hill’s  
and Pickands’s estimator 

   
 
Exhibit 9: Kendall’s tau and Pearson’s rho 
The upper-right triangle shows the Pearson's rho. The lower-left triangle shows the implicit Kendall's tau
 S_P500 CAC40 TSX Hang_Seng Mib Nikkei AEX Straits Madrid FTSE SMI
S_P500 1.000 0.72 0.80 0.66 0.53 0.51 0.72 0.65 0.65 0.80 0.69
CAC40 0.508 1.000 0.66 0.55 0.61 0.43 0.83 0.52 0.74 0.78 0.68
TSX 0.590 0.445 1.000 0.69 0.58 0.49 0.65 0.65 0.65 0.68 0.57
Hang_Seng 0.494 0.406 0.527 1.000 0.42 0.40 0.57 0.76 0.55 0.63 0.52
Mib 0.369 0.473 0.398 0.316 1.000 0.33 0.57 0.41 0.70 0.52 0.40
Nikkei 0.353 0.291 0.342 0.265 0.249 1.000 0.44 0.44 0.46 0.47 0.44
AEX 0.536 0.629 0.458 0.452 0.435 0.295 1.000 0.56 0.73 0.80 0.76
Straits 0.469 0.364 0.464 0.551 0.313 0.271 0.412 1.000 0.51 0.61 0.47
Madrid 0.474 0.534 0.427 0.400 0.513 0.295 0.549 0.330 1.000 0.70 0.60
FTSE 0.600 0.567 0.479 0.468 0.384 0.300 0.600 0.415 0.491 1.000 0.71
SMI 0.470 0.468 0.348 0.377 0.292 0.258 0.513 0.291 0.391 0.488 1.000  

t(2) t(3) t(4) t(5)
MSE 6.8741 3.0734 1.7313 1.1652
qopt 16 9 6 5

Hill's estimator for tail index (ττττi ) - p-values are in parenthesis Pickands's estimator 
S_P500 0.2601

    
0.2887

p-value (0.2607)
CAC40 0.3375 

    
0.6898

p-value (0.3553)
TSX 0.2952 

    
0.4591

p-value (0.3136)
HS 0.2724 

    
0.0404

p-value (0.3891)
MIB 0.1280 

    
0.1435

p-value (0.22466) 
NIKKEI 0.0982 

    
-0.1275

p-value (0.12077) 
AEX 0.4009

    
-0.1802

p-value (0.39332)
STRAITS 0.3867 

    
-0.2674

p-value (0.37477) 
MADRID SE 0.1046

          
0.4443

p-value (0.26341)
FTSE100 0.2009 

    
0.6133

p-value (0.1317)
SMI 0.3790

          
-0.263

p-value (0.35684)
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Exhibit 10: Optimal portfolio weights with the tail dependence (τ) and with α-
parameterized Clayton copula 

 
 

Exhibit 11: Optimal portfolio weights with the resampling (QRMCSAA) method  
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Exhibit 12: Upper and lower bounds for both resampling and τ-EVT α-Clayton methods 

 
 
Exhibit 13: Main statistics for several portfolios with τ-EVT α-Clayton simulation and with resampling  

 
Critical Values with 20,000 observations are: for P-test 1.7330 (99%) and 1.7249 (95%); for T test 1.7325 (99%) 
and 1.7241 (95%); for L test 2.9691 (99%) and 2.9505 (95%) 

 

τ -EVT  α -Clayton efficient portfolios (Main Statistics) 
Portfolios (#) 1 20 40 60 80 100 120 140 160 180 200 

Mean 0.0065 
     0.0065 

     0.0066 
     0.0067 

     0.0067 
     0.0068 

     0.0069 
     0.0070 

     0.0071 
     0.0072 

     0.0073 
     Median 0.0060 

     0.0061 
     0.0062 

     0.0063 
     0.0064 

     0.0065 
     0.0066 

     0.0068 
     0.0069 

     0.0070 
     0.0071 

     Trimmed mean(1%) 0.0064 
     0.0064 

     0.0065 
     0.0066 

     0.0066 
     0.0067 

     0.0068 
     0.0069 

     0.0070 
     0.0071 

     0.0072 
     Min (0.5948) 

    (0.5967) 
    (0.5996) 

    (0.6026) 
    (0.6179) 

    (0.6469) 
    (0.6744) 

    (0.6832) 
    (0.7224) 

    (0.7599) 
    (0.7838) 

    Max 0.6310 
     0.6335 

     0.6381 
     0.6434 

     0.6499 
     0.6578 

     0.6681 
     0.6812 

     0.6960 
     0.7131 

     0.7364 
     Stand. Dev. 0.0608 

     0.0610 
     0.0614 

     0.0619 
     0.0625 

     0.0632 
     0.0640 

     0.0651 
     0.0662 

     0.0677 
     0.0695 

     Skewness 0.0418 
     0.0390 

     0.0347 
     0.0292 

     0.0220 
     0.0142 

     0.0061 
     (0.0018) 

    (0.0090) 
    (0.0163) 

    (0.0225) 
    Kurtosis 9.0640 

     9.0779 
     9.1016 

     9.1309 
     9.1724 

     9.2314 
     9.2051 

     9.2004 
     9.2026 

     9.2066 
     9.2116 

     P test 1.8056 
     1.8018 

     1.8050 
     1.8083 

     1.8057 
     1.8070 

     1.8028 
     1.8068 

     1.8063 
     1.8038 

     1.7967 
     T test 2.0513 

     2.0416 
     2.0551 

     2.0534 
     2.0697 

     2.0653 
     2.0610 

     2.0623 
     2.0645 

     2.0607 
     2.0745 

     L test 3.7512 
     3.7553 

     3.7573 
     3.7701 

     3.7408 
     3.7417 

     3.7245 
     3.7448 

     3.7339 
     3.7135 

     3.7036 
     Sharpe ratio 0.0793 

     0.0792 
     0.0796 

     0.0812 
     0.0813 

     0.0812 
     0.0813 

     0.0817 
     0.0820 

     0.0813 
     0.0814 

     
Resampled efficient portfolios (Main Statistics) 

Portfolios (#) 1 20 40 60 80 100 120 140 160 180 200 
Mean 0.0070 

     0.0073 
     0.0075 

     0.0078 
     0.0080 

     0.0082 
     0.0084 

     0.0085 
     0.0085 

     0.0085 
     0.0084 

     Median 0.0066 
     0.0069 

     0.0072 
     0.0076 

     0.0079 
     0.0080 

     0.0081 
     0.0082 

     0.0083 
     0.0086 

     0.0084 
     Trimmed mean(1%) 0.0069 

     0.0072 
     0.0075 

     0.0077 
     0.0080 

     0.0082 
     0.0083 

     0.0084 
     0.0085 

     0.0084 
     0.0084 

     Min (0.6256) 
    (0.6313) 

    (0.6376) 
    (0.6448) 

    (0.6535) 
    (0.6645) 

    (0.6786) 
    (0.6968) 

    (0.7233) 
    (0.7716) 

    (0.8469) 
    Max 0.6444 

     0.6405 
     0.6391 

     0.6406 
     0.6456 

     0.6551 
     0.6708 

     0.6959 
     0.7321 

     0.7832 
     0.8685 

     Stand. Dev. 0.0615 
     0.0617 

     0.0621 
     0.0627 

     0.0634 
     0.0644 

     0.0656 
     0.0671 

     0.0692 
     0.0720 

     0.0768 
     Skewness 0.0736 

     0.0656 
     0.0563 

     0.0461 
     0.0355 

     0.0252 
     0.0158 

     0.0081 
     0.0023 

     (0.0029) 
    (0.0062) 

    Kurtosis 9.4794 
     9.4155 

     9.3712 
     9.3458 

     9.3372 
     9.3422 

     9.3628 
     9.3990 

     9.4561 
     9.5467 

     9.7469 
     P test 1.8196 

     1.8199 
     1.8178 

     1.8197 
     1.8249 

     1.8241 
     1.8221 

     1.8177 
     1.8086 

     1.8020 
     1.7852 

     T test 2.0776 
     2.0842 

     2.0817 
     2.0849 

     2.0716 
     2.0706 

     2.0659 
     2.0726 

     2.0748 
     2.0722 

     2.0903 
     L test 3.7325 

     3.7155 
     3.7358 

     3.7365 
     3.7771 

     3.7672 
     3.7554 

     3.7485 
     3.7476 

     3.7380 
     3.7556 

     Sharpe ratio 0.0863 
     0.0908 

     0.0945 
     0.0976 

     0.1000 
     0.1016 

     0.1023 
     0.1014 

     0.0988 
     0.0945 

     0.0874 
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Exhibit 14: Main statistics for 100th portfolio with τ-EVT α-Clayton simulation and with resampling 
τ -EVT α -Clayton efficient portfolios (Main Statistics)

Multivariate t(3) t(4) t(5) t(6) t(7) t(8) t(9) t(10) t(15) t(20) t(25) t(30)
Std.Dev. 0.0779 0.0643 0.0603 0.0576 0.0542 0.0524 0.0516 0.0509 0.0505 0.0485 0.0477 0.0472
Kurtosis 17.98 9.2314 6.3349 5.3188 4.878 4.4641 4.0714 3.8816 3.816 3.3224 3.2013 3.2156

T-test 2.2212 2.0641 1.9452 1.9013 1.8931 1.8544 1.8327 1.8252 1.7927 1.7566 1.7316 1.7328
Sharpe ratio 0.0654 0.0812 0.0947 0.0951 0.0952 0.0963 0.0972 0.0978 0.0987 0.0991 0.0993 0.1054

Resampled efficient portfolios (Main Statistics)
Multivariate t(3) t(4) t(5) t(6) t(7) t(8) t(9) t(10) t(15) t(20) t(25) t(30)

Std.Dev. 0.0783 0.0644 0.0612 0.0594 0.0559 0.0543 0.0532 0.0531 0.0522 0.0501 0.0494 0.0487
Kurtosis 17.97 9.3422 7.4322 5.4771 4.9712 4.5255 4.1364 3.9956 3.8361 3.3096 3.2116 3.2344

T-test 2.2298 2.0706 1.9561 1.9122 1.8801 1.8573 1.8445 1.8419 1.7948 1.7718 1.7477 1.7605
Sharpe ratio 0.0824 0.1016 0.1184 0.1219 0.1261 0.1195 0.1246 0.1275 0.1288 0.1328 0.1279 0.148

 
 


