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A General Characterization of the

Early Exercise Premium

Abstract

Under the (weak) assumption of a Markovian underlying price process, and based on its �rst

passage time density to the exercise boundary, an alternative characterization of the early

exercise premium is proposed. This new representation is automatically consistent with the

value-matching condition, possesses appropriate asymptotic properties, and is valid for any

parameterization of the exercise boundary. A non-linear but one-dimensional integral equa-

tion is obtained for the optimal stopping time density, which is shown to be easily recovered

from the underlying asset price transition density function. Several exercise boundary spec-

i�cations are tested under the standard geometric Brownian motion assumption and for the

CEV model.



I. Introduction

The absence of a closed-form pricing solution for the American put (or call, but on a dividend-

paying asset) stems from the fact that the option price and the early exercise boundary

must be determined simultaneously as the solution of the same free boundary problem set

up by McKean (1965). Consequently, the vast literature on this subject, which is reviewed

for instance in Barone-Adesi (2005), has proposed only numerical solution methods and

analytical approximations.

The numerical methods include the �nite di¤erence schemes introduced by Brennan and

Schwartz (1977), and the binomial model of Cox, Ross, and Rubinstein (1979). These

methods are both simple and convergent, in the sense that accuracy can be improved by

incrementing the number of time or state space steps. However, they are also too time-

consuming and do not provide the comparative statics attached to an analytical solution.

One of the �rst quasi-analytical approximations is due to Barone-Adesi and Whaley

(1987), who use the quadratic method of MacMillan (1986). Despite its high e¢ ciency

and the accuracy improvements brought by subsequent extensions (see for example, Ju and

Zhong (1999)), this method is not convergent. Another non-convergent approach is proposed

by Johnson (1983) and Broadie and Detemple (1996). These papers provide lower and

upper bounds for American options, which are based on regression coe¢ cients that are

estimated through a time-demanding calibration to a large set of option contracts. Moreover,

as argued by (Ju (1998), p. 642), this econometric approach can generate less accurate

hedging ratios, because the regression coe¢ cients are optimized only for pricing purposes.

More recently, Sullivan (2000) approximates the option value function through Chebyshev

polynomials and employs a Gaussian quadrature integration scheme at each discrete exercise

date. Although the speed and accuracy of the proposed numerical approximation can be

enhanced via Richardson extrapolation, its convergence properties are still unknown.

Concerning convergent pricing methodologies, Geske and Johnson (1984) approximate the

American option price through an in�nite series of multivariate normal distribution functions.

Although the pricing accuracy can be increased as more terms are added, only the �rst few
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terms are considered and a Richardson extrapolation scheme is employed in order to reduce

the computational burden.1 Another convergent method, which is also fast and accurate,

is the randomization approach of Carr (1998), which also uses Richardson extrapolation. It

must be noted, however, that one of the main disadvantages of extrapolation schemes is the

indetermination of the sign for the approximation error.

Kim (1990), Jacka (1991), Carr, Jarrow, and Myneni (1992), and Jamshidian (1992)

proposed the so-called �integral representation method�, which provides a quasi-analytical

characterization of the early exercise premium through an integral equation. The numer-

ical e¢ ciency of this approach depends on the speci�cation adopted for the early exercise

boundary. For instance, Ju (1998) derives fast and accurate approximate solutions based on

a multipiece exponential representation of the early exercise boundary. Adopting simpler

parameterizations of the exercise boundary (which is assumed to be constant or of expo-

nential type), Ingersoll (1998) and Sbuelz (2004) are able to decompose the American put

price into a down-and-out European put and a non-deferrable rebate. Hence, they provide

closed-form approximations that are fast to implement but not very accurate.

As argued by (Carr (1998), p. 616) and as shown by the numerical experiments run by

Broadie and Detemple (1996) and Ju (1998), the most e¢ cient and accurate analytical pric-

ing methods correspond to the econometric approach of Broadie and Detemple (1996); the

randomization method of Carr (1998); and the multipiece exponential boundary approxima-

tion of Ju (1998). But, given the lower accuracy of the Broadie and Detemple (1996) method

with respect to the computation of hedging ratios, the last two approaches seem to be the

more promising ones to date. Notice, however, that all the studies already mentioned are

based on the Black and Scholes (1973) geometric Brownian motion assumption, and most of

them di¤er only in the speci�cation adopted for the exercise boundary. Kim and Yu (1996)

and Detemple and Tian (2002) constitute two notable exceptions: they extend the �integral

representation method� to alternative di¤usion processes. However, and in opposition to

the standard geometric Brownian motion case, such an extension does not o¤er a closed-

1Chung and Shackleton (2007) generalize the Geske-Johnson method through a two-point scheme based

not only on the inter-exercise time dimension but also on the time to maturity of the option contract.

2



form solution for the integral equation characterizing the early exercise premium (even for

the simplest early exercise boundary speci�cations), which undermines the computational

e¢ ciency of this approach.

Based on the optimal stopping approach initiated by Bensoussan (1984) and Karatzas

(1988), the main purpose of this paper is to derive an alternative characterization of the

American option price that is valid for any continuous representation of the exercise boundary

and for any Markovian di¤usion process describing the dynamics of the underlying asset

price. The proposed characterization possesses at least three advantages over the extended

integral representation of (Kim and Yu (1996), equations 10 or 13): 1) it is automatically

consistent with the value-matching condition; 2) it converges to the perpetual American

option price as the option maturity tends to in�nity; and 3) it is more e¢ cient for the same

level of accuracy. Although knowledge of the �rst passage time density of the underlying

price process to the exercise boundary is required by the proposed pricing solution, it is

shown that such optimal stopping time density can be recovered easily from the transition

density function. Hence, the proposed characterization of the American option price requires

only an e¢ cient valuation formula for its European counterpart, as well as knowledge of the

underlying asset price transition density function.

To exemplify the proposed pricing methodology, several parameterizations of the early

exercise boundary are tested under the usual geometric Brownian motion assumption and the

Constant Elasticity of Variance (CEV) model. Special attention will be devoted to this last

framework since it is consistent with two well-known facts that have found empirical support

in the literature: the existence of a negative correlation between stock returns and realized

stock volatility (leverage e¤ect), as documented for instance in Bekaert and Wu (2000); and

the inverse relation between the implied volatility and the strike price of an option contract

(implied volatility skew), which is observed, for example, by Dennis and Mayhew (2002).

The following sections of this paper are organized as follows. Based on the optimal

stopping approach, section II separates the American option into a non-deferrable rebate and

a European down-and-out option. In section III, such a barrier option approach is shown to

be equivalent to the usual decomposition between a European option and an early exercise
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premium. Moreover, an alternative, quasi-analytical, and more general characterization is

o¤ered for the early exercise premium, and its asymptotic properties are tested. Section

IV provides an e¢ cient algorithm for the computation of the �rst hitting time density of

the underlying price process, which allows the comparison, in section VI, of the di¤erent

speci�cations of the early exercise boundary discussed in section V. Section VII concludes.

II. Model Setup

The valuation of American options will be explored in the context of a stochastic intertempo-

ral economy with continuous trading on the time-interval [t0; T ], for some �xed time T > t0,

where uncertainty is represented by a complete probability space (
;F ;Q). Throughout the

paper, Q will denote the martingale probability measure obtained when the numéraire of

the economy under analysis is taken to be a money market account Bt, whose dynamics are

governed by the following ordinary di¤erential equation:

(1) dBt = rBtdt;

where r denotes the riskless interest rate, which is assumed to be constant.

Although the alternative representation of the early exercise premium that will be pro-

posed in Theorem 1 requires only that the underlying asset price process St be Markovian,

the subsequent empirical analysis will be based on the following one-dimensional di¤usion

process:

(2)
dSt
St

= (r � q) dt+ � (t; S) dWQ
t ;

where q represents the dividend yield for the asset price, � (t; S) corresponds to the instanta-

neous volatility (per unit of time) of the asset returns and WQ
t 2 R is a standard Brownian

motion, initialized at zero and generating the augmented, right continuous, and complete

�ltration F = fFt : t � t0g. Nevertheless, equation (2) encompasses several well known op-

tion pricing models as special cases: for example, it corresponds to the geometric Brownian

motion if � (t; S) = � is a constant; and it yields the CEV process when

(3) � (t; S) = �S
�
2
�1

t ;
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for �; � 2 R.2

Hereafter, the analysis will focus on the valuation of an American option on the asset

price S, with strike price K, and with maturity date T , whose time-t (� T ) value will be

denoted by Vt (S;K; T ;�), where � = �1 for an American call or � = 1 for an American put.

Since the American option can be exercised at any time during its life, it is well known� see,

for example, (Karatzas (1988), Theorem 5.4)� that its price can be represented by the Snell

envelope:

(4) Vt0 (S;K; T ;�) = sup
�2T

EQ
�
e�r[(T^�)�t0] (�K � �ST^� )+

��Ft0	 ;
where T is the set of all stopping times for the �ltration F generated by the underlying price

process and taking values in [t0;1].3

Since the underlying asset price is a di¤usion and both interest rates and dividend yields

are assumed to be deterministic, for each time t 2 [t0; T ] there exists a critical asset price Et
below (above) which the American put (call) price equals its intrinsic value and, therefore,

early exercise should occur� see, for instance, (Carr, Jarrow, and Myneni (1992), equations

1.2 and 1.3). Consequently, the optimal policy should be to exercise the American option

when the underlying asset price �rst touches its critical level. Representing the �rst passage

time of the underlying asset price to its moving boundary by

(5) � e := inf fu � t0 : Su = Eug

and considering that the American option is still alive at the valuation date (i.e., �St0 >

�Et0), equation (4) can then be restated as:

Vt0 (S;K; T ;�) = EQ
�
e�r[(T^�e)�t0] (�K � �ST^�e)

+
��Ft0	

= EQ
�
e�r(�e�t0)� (K � E�e) 11f�e<Tg

��Ft0�(6)

+e�r(T�t0)EQ
�
(�K � �ST )+ 11f�e�Tg

��Ft0� ;
2The underlying asset can be thought of as a stock, a stock index, an exchange rate, or a �nancial futures

contract, so long as the parameter q is understood as, respectively, a dividend yield, an average dividend

yield, the foreign default-free interest rate, or the domestic risk-free interest rate.
3EQ (Xj Ft) denotes the expected value of the random variable X, conditional on Ft, and computed

under the equivalent martingale measure Q. Similarly, Q (!j Ft) will represent the probability of event !,

conditional on Ft, and computed under the probability measure Q.
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where the �rst line of equation (6) follows from equation (5), and 11fAg denotes the indicator

function of the set A. Note that K � E�e for the American put, because the exercise

boundary is limited from above bymin
�
K; r

q
K
�
� see, for instance, (Huang, Subrahmanyam,

and Yu (1996), footnote 5). For the American call, K � E�e because the early exercise

boundary is limited from below by max
�
K; r

q
K
�
� see, for example, (Kim and Yu (1996),

p. 67).

For � = 1, equation (6) is equivalent to (Kim and Yu (1996), eq. 7) and decomposes

the American put into two components. The �rst one corresponds to the present value

of a non-deferrable (and, in general, also non-constant) rebate (K � E�e), payable at the

optimal stopping time � e. The second component is simply the time-t0 price of a European

down-and-out put on the asset S, with strike price K, maturity date at time T , and (time-

dependent) barrier levels fEt; t0 � t � Tg. Assuming a convenient parametric speci�cation

for the barrier function Et, it is possible to convert equation (6) into a closed-form solution.

Such an approach was pursued, for instance, by Ingersoll (1998) using both constant and

exponential speci�cations, and by Sbuelz (2004), also under a constant barrier formulation.

Unfortunately, the time path fEt; t0 � t � Tg of critical asset prices, which is called the

exercise boundary, is not known ex ante and therefore the assumption of a speci�c parametric

form for the barrier function simply transforms equation (6) into a lower bound for the true

American put option value.

The �integral representation approach�adopted by Kim and Yu (1996) also starts from

equation (6). By imposing an exogenously speci�ed value-matching condition, these authors

are able to rewrite equation (6) only in terms of the underlying asset transition density

function. In contrast, this paper proposes an alternative characterization of the American

option price, which is endogenously consistent with the value-matching condition, although

it involves knowledge of the �rst hitting time density function for the underlying asset price.
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III. The Early Exercise Premium

Similarly to Kim (1990), Jacka (1991), and Carr, Jarrow, and Myneni (1992), the American

option price can be divided into two components: the corresponding European option price

and an early exercise premium. For this purpose, and because 11f�e�Tg = 1 � 11f�e<Tg,

equation (6) can be rewritten as:

Vt0 (S;K; T ;�) = EQ
�
e�r(�e�t0)� (K � E�e) 11f�e<Tg

��Ft0�
+e�r(T�t0)EQ

�
(�K � �ST )+

��Ft0�
�e�r(T�t0)EQ

�
(�K � �ST )+ 11f�e<Tg

��Ft0� :
And, since

(7) e�r(T�t0)EQ
�
(�K � �ST )+

��Ft0� := vt0 (S;K; T ;�)
can be understood (under a deterministic interest rate setting) as the time-t0 price of the

corresponding European option (with technical features identical to those of the American

contract under analysis), then

Vt0 (S;K; T ;�) = vt0 (S;K; T ;�)(8)

+EQ
�
e�r(�e�t0)� (K � E�e) 11f�e<Tg

��Ft0�
�e�r(T�t0)EQ

�
(�K � �ST )+ 11f�e<Tg

��Ft0� :
The last two terms on the right-hand-side of equation (8) correspond to the early exercise

premium, for which a quasi-analytical solution will be proposed in the next theorem.

A. An alternative characterization

The theorem presented below provides a new characterization for the early exercise premium.

Theorem 1 Assuming that the underlying asset price process St is Markovian and that

the interest rate r is constant, the time-t0 value of an American option Vt0 (S;K; T ;�)
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on the asset price S, with strike price K, and with maturity date T can be decomposed

into the corresponding European option price vt0 (S;K; T ;�) and the early exercise premium

eept0 (S;K; T ;�), i.e.,

(9) Vt0 (S;K; T ;�) = vt0 (S;K; T ;�) + eept0 (S;K; T ;�) ;

with

(10) eept0 (S;K; T ;�) :=

Z T

t0

e�r(u�t0) [� (K � Eu)� vu (E;K; T ;�)]Q (� e 2 duj Ft0) ;

where Q (� e 2 duj Ft0) represents the probability density function of the �rst passage time � e,

as de�ned by equation (5), � = �1 for an American call and � = 1 for an American put.

Proof. Noting that the only random variable contained in the second term on the right-

hand-side of equation (8) is the �rst passage time, then

EQ
�
e�r(�e�t0)� (K � E�e) 11f�e<Tg

��Ft0�(11)

=

Z T

t0

e�r(u�t0)� (K � Eu)Q (� e 2 duj Ft0) :

Concerning the third term on the right-hand-side of equation (8), it is necessary to

consider the joint density of the two random variables involved: the �rst passage time � e

and the terminal asset price ST . Hence,

(12) EQ
�
(�K � �ST )+ 11f�e<Tg

��Ft0� = Z
R
(�K � �S)+Q (ST 2 dS; � e < T j Ft0) ;

where the integration can be restricted to the domain R+ if, for example, the geometric

Brownian motion assumption is imposed. Because the underlying asset price is assumed to

be a Markov process, the joint density contained in equation (12) is simply the convolution

between the density of the �rst passage time � e and the transition probability density function

of the terminal asset price ST :

(13) Q (ST 2 dS; � e < T j Ft0) =
Z T

t0

Q (ST 2 dSjSu = Eu)Q (� e 2 duj Ft0) :
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Therefore, combining equations (12) and (13),

EQ
�
(�K � �ST )+ 11f�e<Tg

��Ft0�
=

Z T

t0

�Z
R
(�K � �S)+Q (ST 2 dSjSu = Eu)

�
Q (� e 2 duj Ft0)

=

Z T

t0

EQ
�
(�K � �ST )+

��Su = Eu�Q (� e 2 duj Ft0) :(14)

Moreover, considering equation (7), the expectation contained in the right-hand-side of equa-

tion (14) can be expressed in terms of a European option price:

(15) EQ
�
(�K � �ST )+ 11f�e<Tg

��Ft0� = Z T

t0

er(T�u)vu (E;K; T ;�)Q (� e 2 duj Ft0) :

Finally, combining equations (8), (11) and (15), the early exercise representation (10)

follows.

Under the usual geometric Brownian motion assumption, equation (10) yields a closed-

form solution to the early exercise premium (modulo to the speci�cation of the �rst passage

time density), because the term vu (E;K; T ;�) can be computed using the Merton (1973)

formulae. The same reasoning applies to the CEV model since, in this case, European option

prices can be computed through the analytical solutions provided by Emanuel and MacBeth

(1982), or by Schroder (1989), for � > 2 or � < 2, respectively. Note, however, that the

proof of Theorem 1 relies only on the much weaker assumption of a Markovian asset price.

That is, the early exercise representation (10) is still valid for other asset price processes

beyond the general class represented by the stochastic di¤erential equation (2).

The representation o¤ered by Theorem 1 is also amenable to an intuitive interpretation.

As shown in Proposition 1,

lim
S!Eu

Vu (S;K; T ;�) := Vu (E;K; T ;�) = � (K � Eu) :

Hence, equation (10) can be rewritten as

eept0 (S;K; T ;�)

=

Z T

t0

e�r(u�t0) [Vu (E;K; T ;�)� vu (E;K; T ;�)]Q (� e 2 duj Ft0) :
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Using equation (9), today�s early exercise premium can now be easily understood as the

discounted expectation of the early exercise premium stopped at the �rst passage time:4

(16) eept0 (S;K; T ;�) = EQ
�
e�r(�e�t0)eep�e (E;K; T ;�) 11f�e<Tg

��Ft0� :
That is, the discounted and stopped early exercise premium is, as expected, a martingale

under measure Q.5

Such an interpretation is substantially di¤erent from the one implicit in the characteri-

zation of the American option already o¤ered by Kim (1990), Jacka (1991), Carr, Jarrow,

and Myneni (1992), Kim and Yu (1996), and Detemple and Tian (2002). For all these au-

thors, the early exercise premium corresponds to the compensation that the option holder

would require (in the stopping region) in order to postpone exercise until the maturity date.

Under the geometric Brownian motion assumption, and for some early exercise boundary

speci�cations� see, for example, Ju (1998)� it is possible to obtain closed-form solutions

for such early exercise representation. However, for more general underlying di¤usion price

processes, as the ones proposed by Kim and Yu (1996), and Detemple and Tian (2002), it is

necessary to solve numerically and recursively a set of exogenously speci�ed value-matching

implicit integral equations, which can be too time-consuming for practical purposes. To im-

prove e¢ ciency, Huang, Subrahmanyam, and Yu (1996) calculate only option values based

on a few points on an approximation to the exercise boundary, and then use Richardson ex-

trapolation. Such accelerated recursive scheme is very fast but not very accurate, especially

for medium- and long-term options� see, for example, (Ju (1998), Tables 1 and 2).

Alternatively, the new characterization o¤ered by Theorem 1 can be e¢ ciently applied

for any early exercise boundary speci�cation, and under any Markovian (and di¤usion)

4It is well known that the discounted price process of an American option is a supermartingale under the

risk-neutral measure. Nevertheless, such relative price process behaves as a martingale during any period

of time in which it is not optimal to exercise the option. Therefore, the same result obtains until the �rst

passage time to the exercise boundary.
5Alternatively and as suggested by an anonymous referee, the right-hand-side of equation (10) is simply

the expected value of the cash �ow that arises from liquidating (at the �rst passage time to the exercise

boundary) a static portfolio that includes a long position on an American option and a short position on the

corresponding European contract.
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underlying price process, which constitutes an innovation with respect to the representations

of the early exercise premium already o¤ered in the literature.

B. Asymptotic properties

Before implementing Theorem 1 and in order to investigate its limits, the asymptotic prop-

erties of the early exercise representation (10) are �rst explored.

Proposition 1 Under the assumptions of Theorem 1, the early exercise premium and the

American option value satisfy the following boundary conditions for t � T :

(17) lim
r#0
eept (S;K; T ; 1) = 0;

(18) VT (S;K; T ;�) = (�K � �ST )+ ;

(19) lim
S"1

Vt (S;K; T ; 1) = 0;

(20) lim
S#0
Vt (S;K; T ;�1) = 0;

and

(21) lim
S!Et

Vt (S;K; T ;�) = � (K � Et) ;

where � = �1 for an American call or � = 1 for an American put.

Proof. See Appendix A.

Once the general di¤usion process (2) is adopted, the usual parabolic partial di¤erential

equation follows for the price of the American option.

Proposition 2 Under the di¤usion process (2), the American option value function given

by Theorem 1 satis�es, for �St > �Et and t � T , the partial di¤erential equation

(22) LVt (S;K; T ;�) = 0;
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where L is the parabolic operator

(23) L := � (t; S)2 S2

2

@2

@S2
+ (r � q)S @

@S
� r + @

@t
;

� = �1 for an American call and � = 1 for an American put.

Proof. See Appendix B.

The relevance of Propositions 1 and 2 emerges from the fact that the American option

price is, under the stochastic di¤erential equation (2), the unique solution of the initial value

problem represented by the partial di¤erential equation (22) and by the boundary conditions

(18) through (21). Moreover, according to equation (21), and contrary to the characterization

o¤ered by Kim (1990), Jacka (1991), Carr, Jarrow, and Myneni (1992), Kim and Yu (1996),

and Detemple and Tian (2002), the American option representation contained in Theorem 1

is automatically consistent with the so-called value-matching condition. Hence, the proposed

early exercise premium formulae is, also in this sense, more general than the alternative

representations already available in the literature.6

Next proposition shows that the American option representation contained in Theorem 1

converges to the appropriate perpetual limit. This result contrasts with the characterization

o¤ered by Carr, Jarrow, and Myneni (1992) or Kim and Yu (1996), and can be relevant for

the pricing of long-term option contracts. Explicit pricing solutions are also given for both

the Merton (1973) and the CEV models, which will be used in the subsequent empirical

analysis. The latter result constitutes an innovation with respect to the previous literature.

6It is well known, at least since the analysis of McKean (1965), that in order to uniquely determine both

the American option value and the exercise boundary, the initial value problem represented by equations

(18) through (22) must be transformed into a larger free boundary problem through the inclusion of an

additional high contact condition. Unfortunately and as with all previous early exercise representations, the

general solution proposed in Theorem 1 is not automatically consistent with this last smooth �t condition.
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Proposition 3 Under the geometric Brownian motion assumption, that is for � (t; S) = �

in equation (2), the American option value function given by Theorem 1 converges, in the

limit, to the perpetual formulae given by McKean (1965) or Merton (1973), i.e.

(24) lim
T"1

Vt (S;K; T ;�) = � (K � E1)
�
E1
St

�(�)
;

where �St > �E1, E1 denotes the constant exercise boundary,

(25)  (�) :=
r � q � �2

2
+ �

q�
r � q � �2

2

�2
+ 2�2r

�2
;

� = �1 for an American call and � = 1 for an American put.

Under the CEV model and for r 6= q, the perpetual American option price is equal to

lim
T"1

Vt (S;K; T ;�) = � (K � E1)
�
St
E1

��(�)
exp f� (�) [x (St)� x (E1)]g

M�(��2)

h
� (�) + (�1)�(�) �; ��1�2�(�)

��2 ; (�1)�(�) x (St)
i

M�(��2)

h
� (�) + (�1)�(�) �; ��1�2�(�)

��2 ; (�1)�(�) x (E1)
i ;(26)

where

(27) � (�) :=

8<: 11fr>q;�<2g ( � = 1

1� 11fr>q;�>2g ( � = �1
;

(28) � :=
r

(� � 2) (r � q) ;

(29) x (S) :=
2 (r � q)
�2 (� � 2)

S2��;

and

(30) M� (a; b; z) :=

8<: M (a; b; z)( � > 0

U (a; b; z)( � < 0
;

with M (a; b; z) and U (a; b; z) representing the con�uent hypergeometric Kummer�s func-

tions.7 For r = q,

(31) lim
T"1

Vt (S;K; T ;�) = � (K � E1)
r
St
E1

I 1
j��2j ;�(��2)

�
" (St)

p
2r
�

I 1
j��2j ;�(��2)

�
" (E1)

p
2r
� ;

7As de�ned by (Abramowitz and Stegun (1972), equations 13.1.2 and 13.1.3).
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where

(32) " (S) :=
2S1�

�
2

� j� � 2j ;

and

(33) I�;� (z) :=

8<: I� (z)( � > 0

K� (z)( � < 0
;

with I� (z) and K� (z) representing the modi�ed Bessel functions.8

Proof. See Appendix C.

IV. The First Passage Time Density

To implement the new American option value representation o¤ered by Theorem 1, it is

necessary to compute the �rst passage time density of the underlying asset price to the

moving exercise boundary.

Following (Buonocore, Nobile, and Ricciardi (1987), eq. 2.7), a Fortet (1943)-type in-

tegral equation can be obtained for the optimal stopping time density under consideration.

Notably, such non-linear integral equation involves only the transition density function of

the underlying asset price. This result, contained in the next proposition, is valid for any

Markovian underlying price process and for any continuous representation of the exercise

boundary.

Proposition 4 Under the assumptions of Theorem 1 and considering that the optimal exer-

cise boundary is a continuous function of time, the �rst passage time density of the underlying

asset price to the moving exercise boundary is the implicit solution of the following non-linear

integral equation:

(34)
Z u

t0

Q (�Su � �EujSv = Ev)Q (� e 2 dvj Ft0) = Q (�Su � �Euj Ft0) ;

8See, for instance, (Abramowitz and Stegun (1972), p. 375).
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for �St0 > �Et0, where u 2 [t0; T ], and with � = �1 for an American call or � = 1 for an

American put.

Proof. Assuming that the exercise boundary is continuous on [t0; u] and that �St0 > �Et0,

while using de�nition (5), the distribution function of the optimal stopping time can be

written as:9

Q (� e � uj Ft0) = Q
�
inf

t0�v�u
[� (Sv � Ev)] � 0; �Su � �Eu

����Ft0�
+Q

�
inf

t0�v<u
[� (Sv � Ev)] � 0; �Su > �Eu

����Ft0� :
SinceQ f inft0�v�u [� (Sv � Ev)] � 0; �Su � �Euj Ft0g = Q (�Su � �Euj Ft0) and because the

underlying price process is assumed to be Markovian,

Q (� e � uj Ft0) = Q (�Su � �Euj Ft0)(35)

+

Z u

t0

Q (�Su > �EujSv = Ev)Q (� e 2 dvj Ft0) :

Finally, considering that Q (� e � uj Ft0) =
R u
t0
Q (� e 2 dvj Ft0), equation (34) follows imme-

diately from equation (35).

Theorem 1 and Proposition 4 show that an explicit solution for the European option and

knowledge of the transition density function of the underlying price process are the only

requirements for the analytical valuation of the American contract. Hence, the proposed

pricing methodology can be fruitfully applied to many other Markovian pricing systems

besides the one-dimensional case covered by equation (2). Nevertheless and for the sake of

brevity, the extension to alternative Markovian di¤usion processes is left for future research.

Proposition 4 can be specialized easily for the Merton (1973) and the CEV models, which

will be used in the numerical analysis to be presented in section VI. For � (t; S) = �, the

underlying price process� as given by equation (2)� becomes lognormally distributed, and

equation (34) can be restated as

(36)
Z u

t0

�

�
�
Ezv � Ezup
u� v

�
Q (� e 2 dvj Ft0) = �

�
�� Ezup

u� t0

�
;

9Notice that inft0�v<u [� (Sv � Ev)] = � supt0�v<u (Sv � Ev).

15



with

(37) Ezv :=
ln
�
St0
Ev

�
+
�
r � q � �2

2

�
(v � t0)

�
;

and where � (�) represents the cumulative density function of the univariate standard normal

distribution. Equation (36) is consistent with (Park and Schuurmann (1976), Theorem 1)

and similar to the integral equation used by (Longsta¤ and Schwartz (1995), eq. A6). For

� (t; S) = �S
�
2
�1

t , it is well known� see, for example, (Schroder (1989), eq. 1) for � < 2, or

(Emanuel and MacBeth (1982), eq. 7) for � > 2� that

(38) Q (Su � EujSv = Ev) =

8<: Q�2( 2
2�� ;2�E

2��
u )

�
2�E2��v e(2��)(r�q)(u�v)

�
( � < 2

Q�2(2+ 2
��2 ;2�E

2��
v e(2��)(r�q)(u�v))

�
2�E2��u

�
( � > 2

;

with

(39) � :=
2 (r � q)

(2� �) �2 [e(2��)(r�q)(u�v) � 1]
;

and where Q�2(a;b) (x) represents the complementary distribution function of a non-central

chi-square law with a degrees of freedom and non-centrality parameter b. Combining equa-

tions (34) and (38), a non-linear integral equation follows immediately for the optimal stop-

ping time density under the CEV model.

Except for such crude critical asset price speci�cations as, for example, the constant and

exponential functional forms used by Ingersoll (1998) under the geometric Brownian motion

assumption, the optimal stopping time density is not known in closed-form. Following Kuan

and Webber (2003), the next proposition shows that such �rst passage time density can be

e¢ ciently computed, for any exercise boundary speci�cation, through the standard partition

method proposed by Park and Schuurmann (1976).

Proposition 5 Under the assumptions of Proposition 4, and dividing the time-interval

[t0; T ] into N sub-intervals of (equal) size h := T�t0
N
, then

eept0 (S;K; T ;�) =
NX
i=1

n
�
h
K � E

t0+
(2i�1)h

2

i
� v

t0+
(2i�1)h

2

(E;K; T ;�)
o

(40)

e�r
(2i�1)h

2 [Q (� e = t0 + ih)�Q (� e = t0 + (i� 1)h)] ;
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where � = �1 for an American call or � = 1 for an American put. The probabilities

Q (� e = t0 + ih) are obtained from the following recurrence relation:

Q (� e = t0 + ih)(41)

= Q (� e = t0 + (i� 1)h) +
n
F�

h
Et0+ih;Et0+ (2i�1)h

2

io�1
(
F� (Et0+ih;St0)�

i�1X
j=1

F�

h
Et0+ih;Et0+ (2j�1)h

2

i
[Q (� e = t0 + jh)�Q (� e = t0 + (j � 1)h)]g ;

for i = 1; : : : ; N , where Q (� e = t0) = 0, and with

(42) F� (Eu;St0) := Q (�Su � �Euj Ft0)

representing the risk-neutral cumulative density function, for � = 1, or the complementary

distribution function, for � = �1, of the underlying price process.

Proof. See Appendix D.

V. Speci�cation of the Exercise Boundary

The pricing solution o¤ered by Theorem 1 depends on the speci�cation adopted for the ex-

ercise boundary fEt; t0 � t � Tg. Although such an optimal exercise policy is not known

ex ante (i.e., before the solution of the pricing problem), its main characteristics have al-

ready been established in the literature: i) The exercise boundary is a continuous function

of time� see, for instance, (Jacka (1991), Propositions 2.2.4 and 2.2.5); ii) Et is a non-

decreasing function of time t for the American put, but non-increasing for the American

call contract� see (Jacka (1991), Proposition 2.2.2); iii) the exercise boundary is limited by

ET = min
�
�K; � r

q
K
�
� as stated in Van Moerbeke (1976); and iv) limt"1Et = E1, where

E1 represents the (constant) critical asset price for the perpetual American case.

As described by (Ingersoll (1998), p. 89), in order to price an American option, it is

necessary to choose a parametric family E of exercise policies Et (�), where each policy is
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characterized by an n-dimensional vector of parameters � 2 Rn. Then, the early exercise

value (as given by equation (10)) is expressed as a function of � and maximized with respect

to the parameters. Since the chosen family E may not contain the optimal exercise boundary,

the resulting American option price constitutes a lower bound for the true option value.

Of course, the more general the speci�cation adopted for the exercise boundary, the

smaller the approximation error associated with the American price estimate should be.

Moreover, the chosen parametric family should at least satisfy requirements (i)�(iv) de-

scribed at the start of this section. However, the parametric families already proposed in the

literature have been chosen not for their generality but because they provide fast analytical

pricing solutions. In order to measure the accuracy improvement provided by more general

families of exercise policies, section VI will consider the following parametric speci�cations:

1. Constant exercise boundary:

(43) Et (�) = �1; �1 > 0:

This is the simplest speci�cation one can adopt and has already been used by In-

gersoll (1998) and Sbuelz (2004), under the geometric Brownian motion assumption.

Although it yields a closed-form solution for equation (10), such an exercise boundary

cannot simultaneously satisfy previously stated requirements (iii) and (iv).

2. Exponential family:

(44) Et (�) = �1e
�2(T�t); �1 > 0; ��2 < 0:

This speci�cation, already proposed by Ingersoll (1998) for the geometric Brownian

motion process, also yields an analytical solution for equation (10), but again cannot

simultaneously satisfy requirements (iii) and (iv).

3. Exponential-constant family:

(45) Et (�) = �1 + e
�2(T�t); ��2 < 0:
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This new parameterization corresponds to a simple modi�cation of equation (44) and

has never been proposed in the literature. Nevertheless, section VI will show that it can

produce smaller pricing errors than equation (44) for the same number of parameters.

4. Polynomial family:

(46) Et (�) =

nX
i=1

�i (T � t)i�1 :

Because the exercise boundary is assumed to be continuous and de�ned on the closed

interval [t0; T ], the Weierstrass approximation theorem implies that Et can be uni-

formly approximated, for any desired accuracy level, by the polynomial (46). By in-

creasing the degree of the polynomial (and therefore, the number of parameters to be

estimated), this new class of exercise policies allows the pricing error to be arbitrarily

reduced. Section VI will reveal that with only �ve parameters (that is, a polynomial

of degree 4) it is possible to obtain smaller pricing errors than with many alternative

speci�cations already proposed in the literature.

5. CJM family:

(47) Et (�) = min

�
�K; �

r

q
K

�
e��1

p
T�t + E1

�
1� e��1

p
T�t
�
; �1 � 0:

Equation (47) corresponds to an exponentially weighted average between the terminal

bound and the perpetual limit of the exercise boundary, and ful�lls all of requirements

(i)�(iv). Such a speci�cation was proposed by (Carr, Jarrow, and Myneni (1992), p.

93), but has never been tested since it does not yield an analytical solution for the

American option price. The next section will show that, with only one parameter, the

magnitude of pricing errors produced by this speci�cation is similar to that associated

with the best parameterizations already available in the literature.
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VI. Numerical Results

In order to test both the accuracy and e¢ ciency of the pricing solutions proposed in Theorem

1 and the in�uence of the exercise boundary speci�cation on the early exercise value, all the

parametric families described in section V will be compared for di¤erent constellations of

the pricing model coe¢ cients contained in equation (2), and under two special cases: the

geometric Brownian motion and the CEV processes. For this purpose, the maximization

of the early exercise value (with respect to the parameters de�ning the exercise policy) is

implemented through Powell�s method, as described in (Press, Flannery, Teukolsky, and

Vetterling (1994), section 10.5).10

To enhance the e¢ ciency of the proposed valuation method, the parameters de�ning the

exercise policy are �rst estimated by discretizing both Theorem 1 and Proposition 4 using

only N = 24 time-steps. Then, and based on such an approximation for the optimal exercise

boundary, the early exercise premium is computed from Proposition 5 using N = 28 time

steps. The crude discretization adopted in the optimization stage should not compromise the

accuracy of the pricing formulae proposed because, as noted by (Ju (1998), p. 642) in the

context of the Merton (1973) model, a detailed description of the early exercise boundary is

not necessary to generate accurate American option values.

Table 1 compares, in terms of both accuracy and e¢ ciency, the valuation of short maturity

American put options under di¤erent speci�cations of the exercise boundary, and by using

the option parameters contained in (Broadie and Detemple (1996), Table 1), and (Ju (1998),

Table 1) for the Black and Scholes (1973) model. Accuracy is measured by the average

absolute percentage error (over the 20 contracts considered) of each valuation approach and

with respect to the exact American option price. This proxy of the �true�American put value

(fourth column) is computed through the binomial tree model with 15; 000 time steps, as

10This method requires evaluations only of the function to be maximized and therefore is faster than a

conjugate gradient or a quasi-Newton algorithm. Nevertheless, it is always possible to use a more robust

optimization method that also requires evaluations of the derivatives of the function to be maximized, because

the derivatives of the �rst passage time density can be computed through a recurrence relation similar to

equation (41). Details are available upon request.
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suggested by (Broadie and Detemple (1996), p. 1222). E¢ ciency, that is, the computational

speed of each valuation method, is evaluated by the total CPU time (expressed in seconds)

spent to value the whole set of contracts considered. All computations were made with

Pascal programs running on an Intel Pentium 4 2.80 GHz processor under a Linux operating

system.

Insert Table 1 about here.

To get an idea of the magnitude of the early exercise value associated with each American

option contract, the third column of Table 1 shows the price of the corresponding European

put contract, which is computed using the Merton (1973) formulae. The American put prices

produced by the analytical pricing solutions associated with the constant and exponential

boundary speci�cations (�fth and sixth columns), as given by equations (43) and (44), re-

spectively, are obtained from (Ingersoll (1998), sections 4 and 5). For comparison purposes,

the last three columns of Table 1 contain the American put prices generated by the full

(with 2; 000 time steps)11 and the 10-point accelerated recursive methods of Huang, Sub-

rahmanyam, and Yu (1996), and by the three-point multipiece exponential function method

proposed by Ju (1998). The choice of the multipiece exponential approximation as a bench-

mark for the best pricing methods already proposed in the literature, under the geometric

Brownian motion assumption, follows from (Ju (1998), Tables 3 and 5): it is faster than

the Carr (1998) approach (for the same accuracy level) and much more accurate for hedging

purposes, than the lower and upper bound approximation of Broadie and Detemple (1996).

All the other early exercise boundary approximations (i.e., from the seventh to the tenth

columns of Table 1) are implemented through Proposition 5. For the exponential-constant

(seventh column) and polynomial (of degree 4 and 5, on the eighth and ninth columns,

respectively) boundary speci�cations, the parameter corresponding to the constant term in

equations (45) and (46) is initialized at the Barone-Adesi and Whaley (1987) estimate (and

11As suggested by (Detemple and Tian (2002), p. 924).
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at zero, for the other parameters). For the CJM exercise boundary approximation, the initial

guess for the single parameter involved in equation (47) is also set at zero.

Table 2 presents the same information, but for long maturity option contracts, and yields

results similar to the ones contained in Table 1 as a consequence of the asymptotic property

described in Proposition 3. In general, one may conclude that the fastest approximations (in

terms of CPU time) are the constant, the exponential, and the three-point multipiece expo-

nential speci�cations, as well as the accelerated recursive method of Huang, Subrahmanyam,

and Yu (1996): they all possess computational times below 0:2 seconds for the range of all

contracts under consideration. However, the pricing errors generated by the constant and

the exponential parameterizations can be signi�cant. For instance, in Table 1, the average

mispricing of the constant parameterization equals 41 basis points. Moreover, and as shown

by Table 2, the accuracy of the 10-point recursive scheme deteriorates as the option matu-

rity increases: its mean absolute percentage pricing error is now about four times the error

associated with the full recursive scheme, whereas in Table 1 both errors had the same order

of magnitude.

As expected, the pricing errors produced by the speci�cations described in section V are

negative because any approximation of the optimal exercise policy can yield only a lower

bound for the true American put price. The only exceptions correspond to the approximation

suggested by Ju (1998), for which the pricing errors are consistently positive, and to the 10-

point recursive method, when valuing long-term options. This behavior might be explained

by the non-uniform convergence of the Richardson extrapolation employed.

Insert Table 2 about here.

With the same number of parameters as the already known exponential approximation,

the new exponential-constant parameterization can yield pricing errors about three times

smaller, as shown in Tables 1 and 2. Even more interestingly, the CJM approximation sug-

gested by Carr, Jarrow, and Myneni (1992) and tested here possesses an accuracy similar

to the three-point multipiece exponential approach: the average absolute pricing errors are

22



between two and three basis points. This result is relevant since the CJM approximation

satis�es all the requirements described in section V for the early exercise boundary speci�-

cation.

Tables 1 and 2 also show that the implementation of a polynomial approximation is able

to achieve smaller pricing errors than the Ju (1998) approach. The Huang, Subrahmanyam,

and Yu (1996) full recursive method yields an even higher precision level, but at the expense

of a prohibitive computational e¤ort. Overall, taking into consideration both accuracy and

e¢ ciency, the best pricing methodology, under the geometric Brownian motion assumption,

is still the multipiece exponential approach of Ju (1998). Even though such parameterization

does not obey the requirements enunciated in section V, it seems to be �exible enough to

capture the behavior of the critical asset prices. Nevertheless, the disparity of pricing errors

contained in Tables 1 and 2 shows that the early exercise premium depends largely on the

speci�cation adopted for the early exercise boundary.

Insert Table 3 about here.

Tables 3 and 4 repeat the analysis contained in Tables 1 and 2 for the same parameter

values, but under the CEV model. Table 3 assumes � = 3 (> 2) and prices American

put contracts with a time-to-maturity of three years, while Table 4 considers a square root

process with � = 1 (< 2) and American call options with a time-to-maturity of �ve years.12

Parameter � is computed from equation (3) by imposing the same instantaneous volatility

as in Tables 1 and 2.

The proxy of the exact American option price (fourth column) is now computed through

the Crank-Nicolson �nite di¤erence method with 15; 000 time intervals and 10; 000 space

steps. Besides the early exercise boundary speci�cations described in section V, Tables 3

12The test of the proposed pricing solution for American call options is restricted to the CEV process be-

cause, under the Merton (1973) model, the pricing accuracy for American calls would be perfectly correlated

with the results already obtained in Tables 1 and 2 for American puts since both contracts can be linked

through the parity relation derived by McDonald and Schroder (1998).
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and 4 also contain the full recursive scheme (eleventh column), as suggested by (Detemple

and Tian (2002), Proposition 3), and a 10-point accelerated recursive approach (last column),

along the lines of (Kim and Yu (1996), subsection 3.4).13

To implement Proposition 4, using equation (38), the non-central chi-square cumulative

density function is computed from routine �cumchn�, which is contained in the Fortran

library of Brown, Lovato, and Russell (1997). This routine is based on (Abramowitz and

Stegun (1972), eq. 26.4.25), and is found to be more precise than the algorithm o¤ered by

Schroder (1989) or theWiener germ approximations proposed by Penev and Raykov (1997),

especially for large values of the non-centrality parameter or of the upper integration limit.

Insert Table 4 about here.

As before, the constant speci�cation generates excessively large (absolute) pricing er-

rors and the new exponential-constant parameterization yields an accuracy higher than the

exponential speci�cation for American put contracts (see Table 3). In contrast, Table 4

shows that the exponential boundary is more accurate for American call contracts than the

new formulation given by equation (45). Under the CEV model, the CJM approximation

presents an excellent performance even though the pricing errors are now a¤ected by the

approximation employed to evaluate the non-central chi-square distribution function, as well

as by the root-�nding routine used to extract the optimal constant exercise boundary E1

from equations (26) and (31).

In terms of accuracy, the Detemple and Tian (2002) approach constitutes the best pric-

ing method for the CEV model. However, this approach is based on the full recursive

method (with 2; 000 time steps) of Huang, Subrahmanyam, and Yu (1996), which is very

time consuming� six times slower than the exact Crank-Nicolson implicit �nite-di¤erence

13The trinomial approach developed by Boyle and Tian (1999) for the valuation of barrier and lookback

options under the CEV model (for 0 � � < 2) can also be used to price American standard calls and puts.

However, the numerical experiments run have shown that the adopted Crank-Nicolson scheme possesses

better convergence properties.
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scheme. The accelerated recursive scheme of Kim and Yu (1996) is much more e¢ cient but

can also be very inaccurate for medium- and long-term options. The last column of Table 4

shows a mean absolute percentage error of about 28 basis points. On the contrary, Tables

1 through 4 show that the accuracy of the pricing methodology proposed in Theorem 1 is

not a¤ected by the time-to-maturity of the option contract under valuation. Moreover, for

almost all the parameterizations tested (with the single exception of the polynomial speci-

�cation), the computational time of the proposed pricing methodology corresponds to less

than one second per contract.

Insert Table 5 about here.

Under the CEV model, the best trade-o¤ between accuracy and e¢ ciency is given by the

polynomial approximations presented in Tables 3 and 4, since their accuracy can always be

improved by increasing their degree. Table 5 applies di¤erent polynomial speci�cations to

a random sample of 1; 250 American put options, where all the option parameters, with

the exception of � and �, are extracted from the same uniform distributions as in (Ju

(1998), Table 3).14 With a six-degree polynomial it is possible to obtain an average absolute

percentage error (computed against the Crank-Nicolson solution) of only 1:5 basis points

and a maximum absolute percentage error of about 9 basis points, which corresponds to a

higher accuracy than that associated with the 10-point accelerated recursive scheme.

In summary, the numerical results presented in Tables 3, 4 and 5 con�gure the imple-

mentation of Theorem 1 through a polynomial speci�cation of the early exercise boundary

as the best pricing alternative, under the CEV model, for medium- and long-term American

option contracts.

14From the uniform distribution adopted for the instantaneous volatility, the parameter � is obtained from

equation (3). Parameter � is assumed to possess a uniform distribution between 0 and 4:0. The scenario

� < 0 is ignored because it would imply unrealistic economic properties for the CEV process; namely,

bankruptcy would be attainable for su¢ ciently negative values of � (which is implausible, for instance, when

considering options on stock indices), and underlying asset price volatility would explode as the spot price

tends to the origin.
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VII. Conclusions

The main theoretical contribution of this paper consists in deriving an alternative character-

ization of the early exercise premium, which is valid for any Markovian representation of the

underlying asset price and for any parameterization of the exercise boundary. Moreover, the

proposed characterization is shown to be automatically consistent with the value-matching

condition and to possess appropriate asymptotic properties.

The intuitive representation o¤ered by Theorem 1 is simply based on the observation that

the discounted and stopped early exercise premium must be a martingale under the risk-

neutral measure. Additionally, the Markov property ensures analytical tractability since

it enables the decomposition of the joint density between the �rst hitting time and the

underlying asset price through the convolution of their marginal densities.

To test the proposed pricing methodology and to highlight its generality, several parame-

terizations of the exercise boundary were compared under the geometric Brownian motion

assumption and for the CEV process. For both option pricing models, the single-parameter

approximation suggested by Carr, Jarrow, and Myneni (1992) was shown to be extremely

accurate. Moreover, the continuity of the early exercise boundary allows the pricing errors to

be arbitrarily reduced through a polynomial speci�cation, which can be easily accommodated

by the proposed methodology.

Under the Merton (1973) model, the multipiece exponential approach of Ju (1998) o¤ers

the best compromise between accuracy and e¢ ciency. However, under the CEV model, The-

orem 1 provides the best pricing alternative for medium- and long-term American options.

Whereas the early exercise premium formula proposed in equation (10) involves only a sin-

gle time-integral, the representations o¤ered by Kim and Yu (1996) or Detemple and Tian

(2002) pose a more demanding two-dimensional integration problem (with respect to time

and to the underlying asset price). Moreover, although Theorem 1 requires the numerical

evaluation of the �rst passage time density (which is shown to be easily recovered from the

transition density function), the formulas o¤ered by Kim and Yu (1996), and Detemple and

Tian (2002) rely on the numerical and recursive solution of a set of (exogenously speci�ed)
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value-matching (or high-contact) implicit integral equations, which are too time-consuming

for practical purposes. And, even though such a recursive scheme can be accelerated through

Richardson extrapolation, the pricing methodology proposed by Huang, Subrahmanyam, and

Yu (1996) yields inaccurate results for medium- and long-term options.

Since the analytical pricing of American options under the geometric Brownian motion

process is already well established through the randomization approach of Carr (1998) or the

multipiece exponential boundary approximation of Ju (1998), the characterization proposed

in Theorem 1 can be more fruitfully applied under alternative (but Markovian) stochastic

processes for the underlying asset price, as exempli�ed, in this paper, by the CEV model.

For this purpose to be accomplished in an e¢ cient way, it is required only that the selected

price process provides a viable valuation method for European options and for its transition

density function. This should be the case for multivariate Markovian models accommodating

stochastic volatility and/or stochastic interest rates, for which the recursive scheme of Kim

and Yu (1996) cannot be applied. Nevertheless, given space constraints, both extensions are

left for further research.
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Appendix A. Proof of Proposition 1

Concerning the boundary condition (17), since

lim
r#0
ET = min

�
K; lim

r#0

r

q
K

�
= 0;

and because the exercise boundary fEu; t � u � Tg is a non-decreasing function of u for an

American put, then

(A-1) lim
r#0
Eu = 0; 8u 2 [t; T ] :

Combining equations (10) and (A-1),

(A-2) lim
r#0
eept (S;K; T ; 1) =

Z T

t

�
K � lim

r#0
vu (0; K; T ; 1)

�
lim
r#0
Q (� e 2 duj Ft) :

Finally, since
�
e�r(T�u)K � Su

�+ � vu (S;K; T ; 1) � e�r(T�u)K follows from straightforward

no-arbitrage arguments, then limr#0 vu (0; K; T ; 1) = K and equation (A-2) can be rewritten

as

lim
r#0
eept (S;K; T ; 1) =

Z T

t

(K �K) lim
r#0
Q (� e 2 duj Ft)

= 0:

The terminal condition (18) follows immediately from equation (9) because vT (S;K; T ;�) =

(�K � �ST )+ and eepT (S;K; T ;�) = 0.

Concerning the boundary condition (19), because limS"1 vt (S;K; T ; 1) = 0, equations

(9) and (10) imply that:

lim
S"1

Vt (S;K; T ; 1)(A-3)

=

Z T

t

e�r(u�t) [(K � Eu)� vu (E;K; T ; 1)] lim
S"1

Q (� e 2 duj Ft) :

Assuming that limS"1 Su =1; 8u � t, then

lim
S"1

Q (� e 2 duj Ft) = lim
S"1

Q
�
Su = Eu; inf

t�v<u
(Sv � Ev) > 0

����Ft�
= 0;(A-4)
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because the exercise boundary is independent of the current asset price and �nite. Combining

equations (A-3) and (A-4), the boundary condition (19) is obtained.

Similar reasoning can be applied to derive the boundary condition (20). Considering that

limS#0 vt (S;K; T ;�1) = 0, equations (9) and (10) yield:

lim
S#0
Vt (S;K; T ;�1)(A-5)

=

Z T

t

e�r(u�t) [(Eu �K)� vu (E;K; T ;�1)] lim
S#0
Q (� e 2 duj Ft) :

Since, for an American call, ET = max
�
K; r

q
K
�
> 0, it follows that the exercise bound-

ary fEu; t � u � Tg is also strictly positive because it is a non-increasing function of u.

Therefore, the spot price Su can never touch (from below) the critical price Eu (> 0), i.e.,

(A-6) lim
S#0
Q (� e 2 duj Ft) = 0;

as long as limS#0 Su = 0; 8u � t.

Finally, the value-matching condition (21) is also easily derived from equations (9) and

(10):

lim
S!Et

Vt (S;K; T ;�)(A-7)

= vt (E;K; T ;�)

+

Z T

t

e�r(u�t) [� (K � Eu)� vu (E;K; T ;�)] lim
S!Et

Q (� e 2 duj Ft) :

Since

lim
S!Et

Q (� e 2 duj Ft0) = � (u� t) ;

where � (�) is the Dirac-delta function, equation (A-7) yields

lim
S!Et

Vt (S;K; T ;�) = vt (E;K; T ;�) + e
�r(t�t) [� (K � Et)� vt (E;K; T ;�)]

= � (K � Et) :
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Appendix B. Proof of Proposition 2

Applying the parabolic operator L to equations (9) and (10), and using Leibniz�s rule,

LVt (S;K; T ;�)(B-1)

= Lvt (S;K; T ;�)

+

Z T

t

re�r(u�t) [� (K � Eu)� vu (E;K; T ;�)]Q (� e 2 duj Ft)

+

Z T

t

e�r(u�t) [� (K � Eu)� vu (E;K; T ;�)]LQ (� e 2 duj Ft)

�e�r(t�t) [� (K � Et)� vt (E;K; T ;�)]Q (� e = tj Ft) :

Because Lvt (S;K; T ;�) = 0, considering that Q (� e = tj Ft) = 0� since Proposition 2 as-

sumes that �St > �Et� and using de�nition (23), equation (B-1) can be simpli�ed to

LVt (S;K; T ;�)(B-2)

=

Z T

t

e�r(u�t) [� (K � Eu)� vu (E;K; T ;�)]
�
@

@t
+A

�
Q (� e 2 duj Ft) ;

where

A := � (t; S)2 S2

2

@2

@S2
+ (r � q)S @

@S

is the in�nitesimal generator of S. Since�
@

@t
+A

�
Q (� e 2 duj Ft) = 0

can be interpreted as a Kolmogorov backward equation, the partial di¤erential equation (22)

is obtained.
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Appendix C. Proof of Proposition 3

For the perpetual American option, the critical asset price is a time-invariant constant, that

is, Eu = E1;8u 2 [t; T ]. Hence, the limit of equation (9), as the option�s maturity date

tends to in�nity, is given by

lim
T"1

Vt (S;K; T ;�)

= lim
T"1

vt (S;K; T ;�)

+ lim
T"1

Z T

t

e�r(u�t) [� (K � E1)� vu (E1; K; T ;�)]Q (� e 2 duj Ft) :

Furthermore, the fair value of a perpetual European put or call option on a dividend-paying

asset is equal to zero and, consequently,

lim
T"1

Vt (S;K; T ;�) = � (K � E1)
Z 1

t

e�r(u�t)Q (� e 2 duj Ft)

= � (K � E1)EQ
�
e�r(�e�t)11f�e<1g

��Ft� ;(C-1)

where � e is the �rst passage time of the underlying asset price to the constant exercise

boundary. Hence, equation (C-1) shows that the proposed characterization of the American

option converges to the correct perpetual limit for any Markovian underlying price process.

Under the geometric Brownian motion assumption and for �St > �E1, solving the

stochastic di¤erential equation (2), for � (t; S) = �, and rede�ning the optimal stopping

time � e as

� e = inf fu � t : Su = E1g

= inf

�
u � t : ��

�

�
r � q � �

2

2

�
(u� t)� �

Z u

t

dWQ
v =

�

�
ln

�
St
E1

��
;

the dividend-adjusted (Merton (1973), p. 174) solution shown in equation (24) follows after

applying (Shreve (2004), Theorem 8.3.2).

Under the CEV model, the expectation contained on the right-hand-side of equation

(C-1) can easily be computed using, for instance, (Davydov and Linetsky (2001), equations

2 and 38), which yields equations (26) and (31) for � = 1. For the perpetual American

call case (� = �1), equations (26) and (31) also follow from (Davydov and Linetsky (2001),

equations 4 and 37), and (Abramowitz and Stegun (1972), equations 13.1.27 and 13.1.29).

31



Appendix D. Proof of Proposition 5

Equation (40) is simply the discretization of equation (10) for the partition t0 < t1 < : : : <

tN = T , where ti = t0 + ih (i = 1; : : : ; N), and u =
ti+ti�1

2
.

The representation (42) follows from the Markovian nature of the adopted pricing model.

Therefore, equation (34) can be rewritten as

(D-1)
Z u

t0

F� (Eu;Ev)Q (� e 2 dvj Ft0) = F� (Eu;St0) :

Applying the same discretization to equation (D-1), then

F� (Et0+ih;St0)(D-2)

=
iX
j=1

F�

h
Et0+ih;Et0+ (2j�1)h

2

i
[Q (� e = t0 + jh)�Q (� e = t0 + (j � 1)h)] ;

for i = 1; : : : ; N . Finally, solving equation (D-2) in order to the probability Q (� e = t0 + ih),

equation (41) arises.
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Table 1: Prices of American put options under the Merton (1973) model, with St0 = $100 and T − t0 = 0.5 years
American put

Option Early exercise boundary specification
parameters Strike Europ. Exact Const. Exp. ExpC. 4d Pol. 5d Pol. CJM HSY2000 HSY10 EXP3

80 0.215 0.219 0.218 0.219 0.219 0.219 0.219 0.219 0.219 0.219 0.220
r = 7% 90 1.345 1.386 1.376 1.385 1.386 1.386 1.386 1.386 1.386 1.386 1.387
q = 3% 100 4.578 4.783 4.750 4.778 4.781 4.782 4.782 4.781 4.782 4.782 4.784
σ = 20% 110 10.421 11.098 11.049 11.092 11.097 11.097 11.097 11.095 11.097 11.098 11.099

120 18.302 20.000 20.000 20.000 19.999 19.999 19.999 19.996 20.000 20.002 20.000
80 2.651 2.689 2.676 2.687 2.688 2.688 2.688 2.688 2.689 2.689 2.690

r = 7% 90 5.622 5.722 5.694 5.719 5.721 5.721 5.721 5.720 5.722 5.722 5.724
q = 3% 100 10.021 10.239 10.190 10.233 10.237 10.237 10.237 10.236 10.239 10.238 10.240
σ = 40% 110 15.768 16.181 16.110 16.173 16.180 16.179 16.179 16.177 16.181 16.181 16.183

120 22.650 23.360 23.271 23.350 23.358 23.358 23.358 23.355 23.359 23.359 23.362
80 1.006 1.037 1.029 1.036 1.037 1.037 1.037 1.037 1.037 1.037 1.038

r = 7% 90 3.004 3.123 3.098 3.120 3.122 3.122 3.122 3.122 3.123 3.123 3.125
q = 0% 100 6.694 7.035 6.985 7.029 7.034 7.034 7.034 7.032 7.035 7.035 7.037
σ = 30% 110 12.166 12.955 12.882 12.946 12.953 12.953 12.953 12.951 12.955 12.953 12.957

120 19.155 20.717 20.650 20.710 20.716 20.716 20.716 20.713 20.717 20.718 20.719
80 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664

r = 3% 90 4.495 4.495 4.495 4.495 4.495 4.495 4.495 4.495 4.495 4.495 4.495
q = 7% 100 9.251 9.250 9.251 9.251 9.251 9.251 9.251 9.251 9.251 9.251 9.251
σ = 30% 110 15.798 15.798 15.798 15.798 15.798 15.798 15.798 15.798 15.798 15.798 15.798

120 23.706 23.706 23.706 23.706 23.706 23.706 23.706 23.706 23.706 23.706 23.706
Mean Absolute Percentage Error 0.407% 0.054% 0.020% 0.017% 0.015% 0.026% 0.003% 0.005% 0.023%

CPU (seconds) 451.32 0.01 0.03 2.12 8.87 10.07 1.91 3,215.35 0.17 0.08

Table 1 values American put options under the Merton (1973) model and for different specifications of the exercise boundary. The third column

contains European put prices, while the exact American put values (fourth column) are based on the binomial model with 15,000 time steps. The

fifth, sixth and seventh columns report the American put prices associated with the constant, the exponential, and the exponential-constant boundary

specifications, as given by equations (43), (44), and (45). The eighth and ninth columns are both based on a polynomial boundary–see equation (46)–

with four and five degrees of freedom, respectively. The American put prices contained in the tenth column are obtained from the exercise boundary

of equation (47). The next two columns implement the full (with 2,000 time steps) and the 10-point recursive methods of Huang, Subrahmanyam,

and Yu (1996). The last column presents the American put prices generated by the three-point multipiece exponential method of Ju (1998).
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Table 2: Prices of American put options under the Merton (1973) model, with St0 = $100 and T − t0 = 5 years
American put

Option Early exercise boundary specification
parameters Strike Europ. Exact Const. Exp. ExpC. 4d Pol. 5d Pol. CJM HSY2000 HSY10 EXP3

80 2.828 3.617 3.585 3.609 3.614 3.615 3.615 3.616 3.617 3.619 3.619
r = 7% 90 4.792 6.394 6.347 6.383 6.390 6.391 6.391 6.392 6.393 6.393 6.397
q = 3% 100 7.382 10.305 10.247 10.292 10.301 10.302 10.302 10.303 10.304 10.300 10.309
σ = 20% 110 10.582 15.502 15.441 15.488 15.499 15.499 15.499 15.500 15.500 15.515 15.506

120 14.353 22.122 22.071 22.111 22.119 22.120 22.120 22.120 22.119 22.099 22.125
80 12.224 14.456 14.353 14.434 14.449 14.449 14.450 14.449 14.454 14.463 14.461

r = 7% 90 15.863 19.044 18.920 19.018 19.036 19.036 19.037 19.036 19.042 19.048 19.050
q = 3% 100 19.850 24.184 24.043 24.155 24.177 24.176 24.177 24.176 24.182 24.171 24.192
σ = 40% 110 24.144 29.845 29.690 29.813 29.838 29.837 29.838 29.836 29.842 29.825 29.854

120 28.709 35.998 35.832 35.964 35.991 35.989 35.990 35.988 35.995 35.994 36.007
80 5.313 7.092 7.033 7.077 7.086 7.087 7.088 7.088 7.090 7.095 7.095

r = 7% 90 7.666 10.564 10.491 10.547 10.558 10.559 10.560 10.560 10.562 10.553 10.568
q = 0% 100 10.458 14.881 14.797 14.861 14.876 14.876 14.877 14.876 14.879 14.878 14.886
σ = 30% 110 13.662 20.078 19.988 20.057 20.073 20.072 20.073 20.073 20.075 20.099 20.083

120 17.246 26.181 26.094 26.161 26.177 26.176 26.177 26.176 26.177 26.181 26.186
80 17.504 17.610 17.606 17.610 17.610 17.610 17.610 17.610 17.610 17.609 17.609

r = 3% 90 23.113 23.291 23.285 23.291 23.291 23.291 23.291 23.291 23.291 23.290 23.289
q = 7% 100 29.231 29.508 29.500 29.508 29.508 29.508 29.508 29.508 29.508 29.511 29.506
σ = 30% 110 35.769 36.179 36.166 36.178 36.178 36.178 36.178 36.178 36.178 36.182 36.176

120 42.653 43.230 43.214 43.230 43.230 43.230 43.230 43.230 43.230 43.229 43.227
Mean Absolute Percentage Error 0.438% 0.098% 0.030% 0.027% 0.023% 0.023% 0.011% 0.040% 0.027%

CPU (seconds) 448.46 0.01 0.04 1.81 9.95 12.50 1.96 2,926.52 0.17 0.09

Table 2 values American put options under the Merton (1973) model and for different specifications of the exercise boundary. The third column

contains European put prices, while the exact American put values (fourth column) are based on the binomial model with 15,000 time steps. The

fifth, sixth and seventh columns report the American put prices associated with the constant, the exponential, and the exponential-constant boundary

specifications, as given by equations (43), (44), and (45). The eighth and ninth columns are both based on a polynomial boundary–see equation (46)–

with four and five degrees of freedom, respectively. The American put prices contained in the tenth column are obtained from the exercise boundary

of equation (47). The next two columns implement the full (with 2,000 time steps) and the 10-point recursive methods of Huang, Subrahmanyam,

and Yu (1996). The last column presents the American put prices generated by the three-point multipiece exponential method of Ju (1998).
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Table 3: Prices of American put options under the CEV model, with β = 3, St0 = $100 and T − t0 = 3 years
American put

Option Early exercise boundary specification
parameters Strike Europ. Exact Const. Exp. ExpC. 4d Pol. 5d Pol. CJM DT KY

80 1.903 2.238 2.213 2.232 2.235 2.236 2.236 2.235 2.238 2.237
r = 7% 90 4.130 4.986 4.939 4.976 4.982 4.983 4.984 4.982 4.986 4.989
q = 3% 100 7.401 9.184 9.115 9.170 9.180 9.180 9.181 9.178 9.184 9.179
δ = 0.02 110 11.646 14.864 14.783 14.849 14.861 14.861 14.861 14.858 14.866 14.875

120 16.728 21.967 21.891 21.954 21.965 21.964 21.965 21.961 21.971 21.964
80 9.404 10.475 10.385 10.458 10.469 10.470 10.471 10.466 10.472 10.469

r = 7% 90 13.718 15.409 15.288 15.387 15.403 15.403 15.404 15.397 15.404 15.409
q = 3% 100 18.636 21.100 20.950 21.073 21.093 21.093 21.094 21.085 21.094 21.100
δ = 0.04 110 24.049 27.435 27.258 27.403 27.427 27.426 27.427 27.416 27.427 27.422

120 29.867 34.315 34.116 34.279 34.307 34.305 34.306 34.293 34.307 34.293
80 4.051 4.982 4.929 4.971 4.978 4.979 4.980 4.976 4.982 4.984

r = 7% 90 6.934 8.668 8.588 8.652 8.663 8.664 8.665 8.659 8.667 8.671
q = 0% 100 10.594 13.453 13.346 13.432 13.447 13.447 13.448 13.441 13.452 13.443
δ = 0.03 110 14.943 19.256 19.130 19.233 19.251 19.251 19.252 19.242 19.256 19.261

120 19.880 25.979 25.843 25.954 25.974 25.973 25.974 25.963 25.979 25.996
80 11.349 11.350 11.350 11.350 11.350 11.350 11.350 11.350 11.350 11.350

r = 3% 90 16.963 16.968 16.968 16.968 16.968 16.968 16.968 16.968 16.968 16.968
q = 7% 100 23.348 23.363 23.362 23.363 23.363 23.363 23.363 23.363 23.364 23.364
δ = 0.03 110 30.327 30.361 30.360 30.361 30.361 30.361 30.361 30.361 30.362 30.362

120 37.759 37.827 37.825 37.826 37.827 37.827 37.827 37.826 37.828 37.827
Mean Absolute Percentage Error 0.564% 0.108% 0.033% 0.029% 0.025% 0.057% 0.012% 0.031%

CPU (seconds) 1,090.96 5.16 6.82 7.22 22.52 30.11 5.88 6,216.83 0.39

Table 3 values American put options under the CEV model and for different specifications of the exercise boundary. The third column contains

European put prices, while the exact American put values (fourth column) are based on the Crank-Nicolson method with 15,000 time intervals

and 10,000 space steps. The fifth, sixth and seventh columns report the American put prices associated with the constant, the exponential, and

the exponential-constant boundary specifications, as given by equations (43), (44), and (45). The eighth and ninth columns are both based on a

polynomial boundary–see equation (46)–with four and five degrees of freedom, respectively. The American put prices contained in the tenth column

are obtained from the exercise boundary specification of equation (47). The last two columns implement the full (with 2,000 time steps) and the

10-point recursive methods of Huang, Subrahmanyam, and Yu (1996), as suggested by Detemple and Tian (2002) and Kim and Yu (1996), respectively.
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Table 4: Prices of American call options under the CEV model, with β = 1, St0 = $100 and T − t0 = 5 years
American call

Option Early exercise boundary specification
parameters Strike Europ. Exact Const. Exp. ExpC. 2d Pol. 3d Pol. CJM DT KY

80 32.989 33.082 33.080 33.082 33.081 33.082 33.082 33.082 33.082 33.083
r = 7% 90 27.736 27.773 27.772 27.773 27.773 27.773 27.773 27.773 27.773 27.766
q = 3% 100 23.014 23.029 23.028 23.028 23.028 23.028 23.028 23.028 23.029 23.014
δ = 2 110 18.848 18.853 18.853 18.853 18.853 18.853 18.853 18.853 18.853 18.831

120 15.238 15.240 15.240 15.240 15.240 15.240 15.240 15.240 15.240 15.212
80 43.211 43.967 43.919 43.943 43.937 43.944 43.944 43.941 43.944 44.025

r = 7% 90 39.275 39.802 39.769 39.786 39.782 39.787 39.787 39.785 39.787 39.933
q = 3% 100 35.633 36.000 35.978 35.989 35.986 35.990 35.990 35.989 35.990 36.189
δ = 4 110 32.272 32.528 32.512 32.520 32.518 32.520 32.520 32.520 32.520 32.757

120 29.179 29.357 29.346 29.352 29.350 29.352 29.352 29.352 29.352 29.615
80 49.762 49.765 49.762 49.762 49.762 49.762 49.762 49.762 49.762 49.746

r = 7% 90 44.754 44.756 44.754 44.754 44.754 44.754 44.754 44.754 44.754 44.754
q = 0% 100 40.093 40.094 40.093 40.093 40.093 40.093 40.093 40.093 40.093 40.107
δ = 3 110 35.780 35.780 35.780 35.780 35.780 35.780 35.780 35.780 35.780 35.805

120 31.812 31.812 31.812 31.812 31.812 31.812 31.812 31.812 31.812 31.846
80 20.226 27.016 26.894 26.989 26.964 27.006 27.006 27.012 27.010 27.114

r = 3% 90 16.711 21.880 21.756 21.853 21.825 21.871 21.871 21.877 21.876 21.963
q = 7% 100 13.718 17.657 17.538 17.631 17.602 17.648 17.648 17.654 17.654 17.727
δ = 3 110 11.193 14.194 14.086 14.171 14.143 14.187 14.187 14.192 14.192 14.272

120 9.080 11.367 11.270 11.346 11.320 11.360 11.360 11.365 11.365 11.444
Mean Absolute Percentage Error 0.184% 0.045% 0.088% 0.021% 0.021% 0.014% 0.013% 0.278%

CPU (seconds) 1,048.92 6.80 9.08 8.16 11.08 12.02 6.80 5,927.45 0.51

Table 4 values American call options under the CEV model and for different specifications of the exercise boundary. The third column contains

European call prices, while the exact American call values (fourth column) are based on the Crank-Nicolson method with 15,000 time intervals

and 10,000 space steps. The fifth, sixth and seventh columns report the American call prices associated with the constant, the exponential, and

the exponential-constant boundary specifications, as given by equations (43), (44), and (45). The eighth and ninth columns are both based on a

polynomial boundary–see equation (46)–with four and five degrees of freedom, respectively. The American call prices contained in the tenth column

are obtained from the exercise boundary specification of equation (47). The last two columns implement the full (with 2,000 time steps) and the

10-point recursive methods of Huang, Subrahmanyam, and Yu (1996), as suggested by Detemple and Tian (2002) and Kim and Yu (1996), respectively.
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Table 5: Accuracy of the polynomial specification for a large sample of randomly generated American puts
Polynomial specifications KY

2nd degree 3rd degree 4th degree 5th degree 6th degree
Percentage Errors

mean -0.0289% -0.0223% -0.0198% -0.0175% -0.0144% 0.0070%
maximum 0.0164% 0.0180% 0.0225% 0.0277% 0.0315% 0.3953%
minimum -0.1691% -0.1162% -0.1071% -0.1003% -0.0902% -0.0563%

99th percentile 0.0039% 0.0043% 0.0046% 0.0051% 0.0054% 0.1898%
1st percentile -0.1308% -0.1037% -0.0949% -0.0889% -0.0758% -0.0480%

Absolute Percentage Errors
mean 0.0293% 0.0228% 0.0203% 0.0181% 0.0150% 0.0168%

maximum 0.1691% 0.1162% 0.1071% 0.1003% 0.0902% 0.3953%
minimum 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

99th percentile 0.1308% 0.1037% 0.0949% 0.0889% 0.0758% 0.1898%

Table 5 reports the pricing errors associated with the valuation of 1,250 randomly generated American put options, under the CEV model and through

different polynomial parameterizations of the exercise boundary, as given by equation (46). For comparison purposes, the last column contains the

pricing errors associated with the 10-point recursive scheme of Huang, Subrahmanyam, and Yu (1996), as suggested by Kim and Yu (1996). The strike

price is always set at $100 while the other option features were generated from uniform distributions and within the following intervals: instantaneous

volatility between 10% and 60%; interest rate and dividend yield between 0% and 10%; underlying spot price between $70 an $130; beta between 0

and 4.0; and time-to-maturity ranging from 0 to 3.0 years. The pricing errors produced by the alternative boundary specifications were computed

against the Crank-Nicolson method with 15,000 time intervals and 10,000 space steps.
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