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ABSTRACT

This article aims to examine a new type of exotic option, namely the external writer-

extendible option. Compared to traditional options, such option has two characteristics: first, 

its maturity is extended by the optionwriter for a given period as soon as the option is not in-

the-money at the initial maturity date, without any additional premium payment from the 

optionholder; second, once extended, the initial underlying asset is replaced by a new 

underlying asset until the extended maturity date. We derive closed-form valuation formulas 

for this kind of European-style call and put options, and show that firms may use these 

instruments in their warrant issues as well as in their risk management.
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1. Introduction

To make stock issues or bond issues more attractive, warrants, namely traditional call options

on the stock of the issuing firm, are typically attached to stocks or bonds to be issued1. To 

make warrant issues still more attractive, additional clauses, such as the “extension clause”, 

are added to warrant contracts. Originally, the extension clause was designed to protect 

investors against a stock market crisis2. For example, some warrants have the possibility to be 

extended if the benchmark index decreases more than 15% within the last month before the 

maturity date. Such extension clauses constitute effectively a sort of “anti-crash” instrument, 

as they work only when stock markets fall within a short time. Compared to a traditional 

warrant, an extendible warrant has at least two advantages. First, by extending the maturity of 

the contract, it reduces the warrantholder’s non-exercise risk. Second, with a higher price 

than a plain-vanilla warrant, it permits the issuing firm to collect more funds.

However, the extension clause may be used in a more general context by making the 

extension condition less restrictive. For instance, the warrant can be extended as soon as the 

underling stock price falls below the strike price at the maturity date. In this way, investors 

are not only protected against a significant decrease of the stock price within a short time, but 

also against a progressive, but continual decrease along the maturity of the contract. 

Longstaff (1990) distinguishes the “buyer-extendible option” (or simply the “extendible 

option”) from the “writer-extendible option”. For the first one, the extension decision is made 

by the optionholder with the payment of an additional premium, whereas for the second one, 

the extension decision is made by the optionwriter when the option is at-the-money or out-of-

the-money at the maturity date, without any additional premium payment from the 

optionholder. 
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On the basis of extendible options, optionholder’s non-exercise risk can be reduced even 

more by replacing the initial underlying asset by another one over the extended period. In 

order that such replacement makes sense, the new underlying asset should not be perfectly 

correlated with the initial one. For example, within the framework of a warrant, the new 

underlying asset could be the stock price of a parent or subsidiary of the initial underlying 

stock. In this way, we are led to the conception of a new type of option, entitled “external 

extendible options”. In fact, as traditional extendible options (Longstaff, 1990), the maturity 

date of these options can be postponed for a specified period. Unlike traditional extendible 

options, the underlying asset of these options is replaced by another one over the extended 

period. In the sense that two or more underlying assets are involved in the option contract, 

external extendible options are also similar to multi-asset options (Margrabe, 1978; Stulz, 

1982; Johnson, 1987).

This article aims to study external writer-extendible options, henceforth called “external 

extendible options”. The mechanism of such options is as follows: at the initial maturity date, 

the option is exercised as a plain-vanilla European option if it is in-the-money; if not, it is 

extended as a new European option with an extended maturity date and a new underlying 

asset. In Section 2, the closed-form valuation formulas are derived within the framework of 

the model of Black & Scholes for this type of European options, and on this basis, analytical 

properties are analyzed. In Section 3, two examples are presented as corporate applications of 

these options. The fourth and last section summarizes the main results obtained and presents 

concluding remarks.
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2. Pricing external extendible options

2.1. Valuation framework

Option valuation is made in the framework of the model of Black and Scholes (1973), 

generalized by Harrison and Kreps (1979), Harrison and Pliska (1981). We assume that the 

prices of the initial underlying asset, S1, and of the second underlying asset, S2, are two basic 

assets whose prices follow a joint geometric Brownian motion (GBM):

  )t(W
~

ddt
)t(S

)t(dS
1111

1

1   (1a)

  )t(W
~

ddt
)t(S

)t(dS
2222

2

2   (1b)

Where t is time, 1W
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d 1221  . In Equations (1a) 

and (1b), 1 and 2 can be interpreted as the expected total returns (resulting from capital 

gain as well as dividend income) on the underlying assets, 1 and 2 as the continuous 

dividend yields, 1 and 2 as the instantaneous volatility rates. Furthermore, we designate the 

riskless interest rate as r and we assume that the valuation is made at time 0. For simplicity, 

Si(0) is noted as Si.
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2.2. External extendible calls

2.2.1. Analytical pricing formula

We designate the value at time t of an external extendible call option as WECO(S1(t), S2(t), 

K1, T1 – t, K2, T2 – t), where T1 and T2 represent the initial and the extended maturity dates, K1

and K2 represent the initial and the new strike prices, and S1 and S2 represent the initial and 

the new underlying assets. At time T1, if S1(T1) > K1, then the call option is exercised as a 

plain-vanilla call option; on the contrary, if S1(T1)  K1, then the call option is extended by the 

optionwriter and no additional amounts are paid by the optionholder. The payoff of the option 

at T1 is:
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Where )TT,K),T(S(C 12212  represents the value of a traditional European-style call option 

with an underlying asset price S2(T1), a strike price K2, and a maturity T2 – T1. The right-hand 

term of Equation (2) can be transformed as follows:
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(3), the first component is the payoff at the maturity date of a traditional call option with an 

underlying asset price S1(T1), a strike price K1, and a maturity date T1, whereas the second 

component is the payoff of the extension clause. Thus, the value of the external extendible 

call option is the sum of the value of the traditional European-style call option and that of the 

extension clause. As the Black and Scholes formula derives the value of a traditional 

European-style call option, the valuation problem consists in valuing the extension clause. 

According to the valuation theory of contingent securities, the value at time t (with t  [0, 
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T1]) of the extension clause, designated as WECC(S1(t), S2(t), K1, T1 – t, K2, T2 – t), can be 

written as:
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Where EP*[.] is the mathematical expectation with the risk-neutral probability P*. As we 

assume that the valuation is made at time 0, we have:
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To get the closed-form formula from Equation (4), the mathematical development could be 

realized in three steps. 

1) In the first step, the value at T1 of the extended call option, )TT,K),T(S(C 12212  , can 

be written with its closed-form expression thanks to the Black & Scholes formula. 

Namely, we have:
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consists in calculating the mathematical expectation of a function of S1(T) and S2(T).

2) In the second step, S1(T) and S2(T) can be written as a function of their respective 

initial levels, S1 and S2:
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Where (1, 2) follows a standard bivariate normal distribution with a correlation 

coefficient 12, which is the same as the correlation coefficient between 1W
~  and 2W

~  .

3) In the third and last step, )TT,K),T(S(C 12212  , S1(T), and S2(T) are replaced by their 

expressions written in Equations (5), (6a), and (6b), respectively. Then, the right-hand 

term of Equation (4) can be transformed into a function of bivariate normal 

distributions. These developments lead to (for more details, see Appendix):
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In Equation (7), the first component represents the present value of the average price of the 

second underlying asset when the option is extended and exercised at the extended maturity 

date, whereas the second one represents the present value of the second strike price in the 

same case. The value of the extension clause can be delimited by some rational bounds. For 

example, it can never be negative, but is smaller than )T,K,S(C 222 , the value of the 

traditional European-style call option with the second underlying asset, the second strike 
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price, and the extended maturity date. In other words, the value of the external extended call 

option is bigger than that of the initial traditional call option, but smaller than the sum of the 

initial traditional call option and the extended call option.

The extension clause has a certain number of interesting special cases. For example, if the 

prices of the two underlying assets are perfectly correlated (i.e., 12 = 1) and the two strike 

prices are the same (i.e., K1 = K2 = K), then the closed-form formula derived by Longstaff 

(1990) can be obtained. If S2  0 and K2  , then the value of the extension clause tends 

towards zero, as the probability of the extension approaches zero. If S1  0 and K1  , 

then the value of the extension clause tends towards )T,K,S(C 222 , as the probability of the 

extension approaches one. If the prices of the two underlying assets are independent (i.e., 12

= 0), then the value of the extension clause is equal to the multiplication of the value of the 

extended call option and the probability of the extension.

2.2.2. Analytical properties

In deriving comparative statics, we focus especially on the differences between the classical 

extension clause (i.e., without changing the underlying asset over the extended period) and 

the external extension clause (i.e., with a new underlying asset over the extended period). It is 

also noteworthy that the computation of the cumulative probability of the standard bivariate 

normal density is based on Drezner’s algorithm (Drezner, 1978).

As indicated in Longstaff (1990), the classical extension clause is not always a monotone 

increasing function of S1, the initial underlying asset price. In fact, an increase in S1 reduces

the probability of the extension at T1, and on the other hand, increases the value of the 
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extended option at T2. This is no longer the case with the external extension clause, which is 

a monotone decreasing function of S1 (cf. Figure 1), as an increase in S1 reduces only the 

probability of the extension, without having any effect on the extended option whose 

underlying asset is no more S1. This is effectively the most important advantage that external 

extendible call options have compared to classical extendible options: even if S1 tends 

towards zero, as soon as S2 does not approach zero, the value of the option tends towards the 

value of the extended option, rather than zero.

(Insert Figure 1 here)

As for the classical extension clause, the external extension clause is not always a monotone 

function of 1 – the volatility of the initial underlying asset price. In fact, a high volatility 

may lead to a high level of S1, which leads to a low probability of the extension, as well as a 

low level of S1, which leads to a high probability of the extension. As a result, 1 may have a 

positive or negative effect on the value of the extension clause.

As for the classical extension clause, an increase in T1 has an indeterminate effect on the 

value of the external extension clause (cf. Figure 2). In fact, on the one hand, a longer 

duration of T1 gives more chance for the initial underlying asset to exceed the initial strike 

price, which reduces the probability of the extension. On the other hand, a longer duration of 

T1 gives more chance for the new underlying asset to exceed the new strike price, which 

increases the value of the extended option. As a result, T1 may have a positive or negative 

effect on the value of the extension clause.

(Insert Figure 2 here)

As for a traditional European-style call option, the value of the external extension clause is a 
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monotone increasing function of S2 (cf. Figure 3), 2 and T2, but a monotone decreasing 

function of K2 and 2. However, its sensitivity to these variables is lower than that for the 

traditional option, as the probability of the extension is smaller than one.

(Insert Figure 3 here)

As shown in Figure 4, the value of the external extension clause is a monotone decreasing 

function of 12 – the correlation coefficient between the two underlying asset prices. In fact, 

what finally accounts for the extension clause is the value of the extended option at its 

maturity date. For this reason, analysis should be concentrated on the case when S2 exceeds 

K2 at the extended maturity date: if S1 and S2 are positively correlated (i.e., 12 > 0), when S2

rises, S1 also tends to rise, which reduces the probability of the extension, and so the value of 

the extension clause; on the contrary, if S1 and S2 are negatively correlated (i.e., 12 <0), when 

S2 rises, S1 rather tends to decrease, which increases the probability of the extension, and so 

the value of the extension clause. As a result, a positive correlation between S1 and S2 is more 

favorable for the extension of the initial option and for the exercise of the extended option. 

When 12 = +1, the value of the external extension clause reaches its minimum, which is also 

the value of the extension clause of a traditional extendible option. On the contrary, when 12

= –1, it reaches its maximum.

(Insert Figure 4 here)

2.3. External extendible puts

2.3.1. Analytical pricing formula

We designate the value at time t of an external extendible put option as WEPO(S1(t), S2(t), 
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K1, T1 – t, K2, T2 – t). At time T1, if S1(T1) < K1, then the put option is exercised as a plain-

vanilla put option; on the contrary, if S1(T1)  K1, then the put option is extended by the 

optionwriter and no additional amounts are paid by the optionholder. The payoff of the option 

at time T1 is:
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Where )TT,K),T(S(P 12212  represents the value of a traditional European-style put option 

with an underlying asset price S2(T1), a strike price K2, and a maturity T2 – T1. We designate 

the value at t of the extension clause as WECP(S1(t), S2(t), K1, T1 – t, K2, T2 – t). Proceeding 

as before, the value of the extension clause can be derived as follows:
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As for the call option, the value of the extension clause for the put option should be superior 

or equal to zero, but inferior to )T,K,S(P 222 , the value of the traditional European-style put 

option with the second underlying asset, the second strike price, and the extended maturity 

date. It also has a certain number of interesting special cases. For example, if the prices of the 

two underlying assets are perfectly correlated (i.e., 12 = 1) and the two strike prices are the 

same (i.e., K1 = K2 = K), then the closed-form valuation formula derived by Longstaff (1990) 

can be obtained. If S2   and K2  0, then the value of the extension clause tends towards 

zero, as the probability of the extension approaches zero. If S1   and K1  0, then the 

value of the extension clause tends towards )T,K,S(P 222 , as the extension probability 

approaches one. If the prices of the two underlying assets are independent (i.e., 12 = 0), then

the value of the extension clause is equal to the multiplication of the value of the extended 
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put option and the probability of the extension.

2.3.2. Analytical properties

As for call options, similar properties can be derived for the extension clause for external 

extendible put options. More precisely, unlike the extension clause of traditional extendible 

put options, the value of the external extension clause is a monotone increasing function of 

S1, but may increase or decrease with 1 and T1. As a traditional put option, the value of the 

external extension clause is a monotone increasing function of K2, 2, 2, and T2, and is a 

monotone decreasing function of S2. As for call options, the value of the external extension 

clause for put options decreases with 12, the correlation coefficient between S1 and S2.

3. Examples of external extendible options

External extendible options can be used by firms in different contexts. In this section, two 

applications are presented, one for corporate warrants and the other for corporate risk 

management.

3.1. Corporate warrants

Corporate warrants constitute an important financing tool for firms (Smith, 1977). To make 

warrants even more attractive for investors, the external extension clause may be added to 

traditional warrants. In fact, to protect warrantholders against a general fall that is common 

for the whole stock market, the extension clause can be introduced as a first measure. For 

example, the CAC40 index fell 17% in 1994, whereas it rose 0.5% in 1995 and 25% in 1996. 
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In such a context, the extension, for the duration of one year, of a warrant expiring in 1995 

gives warrantholders an additional period to exercise their options. Furthermore, to protect 

warrantholders against a fall that is rather specific to the stock price of the issuing firm, it 

may be useful to change the underlying stock price over the extended period. For example, 

though the CAC40 index rose 20% within the first semester of 1996, the real estate sector fell 

0.81% and the financial sector rose only 0.56%. In this case, for investors holding warrants 

issued by a bank, it is more interesting to change the initial underlying stock by a new stock 

that is in an industrial sector, such as automobiles, petroleum, or pharmaceuticals. 

Compared to a traditional extendible warrant, an external extendible warrant has at least three 

advantages. First, by changing the underlying asset over the extended period, it reduces 

warrantholders’ non-exercise risk, which is not only due to the systematic risk related to the 

whole stock market, but also due to the specific risk related to the issuing firm. Second, with 

a higher price than a traditional extendible warrant, it permits the issuing firm to collect more 

funds. It is noteworthy that the underlying asset substitution over the extended period is 

particularly interesting for small firms, which are still at their start-up stage. In fact, even 

though the growth of these firms needs to be financed, their high risk dissuades investors 

from buying their stocks or warrants. In case these firms experience difficulties, the 

substitution of their stocks by those of their mother firms3 may reassure investors, and such 

reassurance may facilitate firms’ financing operation. The third and last advantage is that, for 

existing stockholders of the issuing firm, the dilution effect is inferior or equal to that 

resulting from a traditional extendible warrant. In fact, when the warrant is exercised at its 

initial maturity date, both of these two warrants lead to dilution and the dilution effect is the 

same; when the warrant is extended, but the extended warrant is not exercised at the extended 

maturity, neither of these warrants leads to dilution; when the warrant is extended, and the 
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extended warrant is exercised at the extended maturity, the traditional extendible warrant 

leads to dilution for the stock of the issuing firm, whereas the external extendible one does 

not, as in the second case the stock of the issuing firm is no more involved during the 

extended period4.

3.2. Risk management

Industrial firms are exposed to the risk resulting from fluctuation in both raw material prices

and product prices. Let us take the example of a firm whose activity consists in transforming

crude oil into a refined product. Assume that the firm plans to buy a certain quantity of crude 

oil at a future date T1, and that the refined product will be sold on the market at another future 

date T2, with T2 > T1 > 0. The firm is exposed to two risks at two different dates, namely the 

increase in the buying price of crude oil at T1, and/or the decrease in the selling price of the 

refined product at T2. Assume that T1 and T2 are so close that crude oil price at T1 and the 

refined product price at T2 are significantly correlated, for example, with a correlation 

coefficient that is higher than 0.80.

To hedge the firm’s risks, one classical solution is to buy two traditional options, namely a 

call option on crude oil price with T1 as maturity and a put option on the refined product price 

with T2 as maturity. However, this solution over-hedges the firm’s risks insofar as, in most 

cases, the firm cannot exercise both of these two options. In fact, if crude oil price increases 

at T1, then the refined product price tends to increase at T2. In this case, the firm can exercise 

its call option on crude oil price at T1, but is not able to exercise its put option on the refined 

product price at T2. On the contrary, if crude oil price decreases at T1, then the refined 

product price tends to decrease at T2. In this case, the firm will not be able to exercise its call 
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option on crude oil price at T1, but can exercise its put option on the refined product price at 

T2.

The firm needs a solution that is more appropriate to its situation. In fact, what it needs is an 

option that works as a traditional call option on crude oil price with T1 as maturity if the call 

option is in-the-money at T1; as soon as the call option is not in-the-money at T1, it is 

transformed into a traditional put option on the refined product price with T2 as maturity. The 

payoff at T1 of the option can be written as:

  K)T(S)TT,K),T(S(PK)T(S,max 
1112212110 1 (10)

The last formula can be transformed as follows:

  K)T(S)TT,K),T(S(P)TT,K),T(S(PK)T(S,max 
111221212212110 1 (11)

In Formula (11), the first component represents the payoff at T1 of the traditional call option

on S1 with T1 as maturity, the second component represents the value at T1 of a traditional put 

option on S2 with T2 as maturity, and the third component represents the value of the 

extension clause of an external extendible put option. This means that the new solution is the 

same as the classical one, except that the extension clause of an external extendible put option 

is sold in addition. In fact, if the call option on crude oil price is in-the-money at its maturity

T1, then the firm exercises its call option and sells at the same time its put option, as it needs 

no more to be protected against the decrease of the refined product price at T2; on the 

contrary, if the call option on crude oil price is at-the-money or out-of-the-money at its 

maturity T1, then the firm, not being able to exercise its call option, holds on to its put option, 

as it needs to be protected against the decrease of the refined product price at T2. The price 

difference between the classical hedging solution and the new one is the value of the external 



15

extension clause. According to Formulas (9) and (11), the closed-form expression of the 

value of the new option contract can be written as:

);x,T)(x(NeS)T,K,S(C T
12212121122111

22   

);Tx),Tx((NeK rT
1222211122

2    (12)

4. Discussions

In this article, a new type of exotic options, called “external writer-extendible options”, is 

designed. These options have two characteristics compared to traditional ones. First, their 

maturity is extended for a given period by the optionwriter without any additional payment 

from the optionholder as soon as the option is not in-the-money at the initial maturity date. 

Second, once extended, their initial underlying asset is replaced by a second underlying asset 

until the extended maturity date. Such options enable optionsholders to reduce their non-

exercise risk due to a “general” decline related to the whole stock market as well as a fall that 

is rather “specific” to the initial underlying stock. Within the framework of the model of 

Black and Scholes (1973), the closed-form valuation formulas have been derived for 

European call options as well as for European put options. It has also been shown that such 

options can be used by firms in their warrant issues and in their risk management.
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Appendix: Pricing the extension clause of the external writer-extendible call option

This appendix aims at deriving the analytical pricing formula at time 0 of the extension 

clause of an external extendible call option. The payoff at T1 of the extension clause is:

 K)T(S*P
rT )TT,K),T(S(CEe)T,K,T,K,S,S(WECC 

 
11

1 112212221121 (4)

where EP*[.] is the mathematical expectation with the risk-neutral probability P*, and

)TT,K),T(S(C 12212 
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122212 12
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From Equations (4) and (5), we have:

)(WECC)(WECC)T,K,T,K,S,S(WECC 21221121  (A1)

where

 K)T(S)T(S
)TT(

*P
rT )Z(Ne)T(SEe)(WECC 


1112

1221 11 12
 (A2)

 K)T(S)T(S
)TT(r

*P
rT )TTZ(NeKEe)(WECC 

 
1112

121 12 1222  (A3)

The pricing of the extension clause consists now in deriving the closed-form expression of 

WECC(1) and WECC(2). For this, we write:

2

1222

1
12










)T(x
Z )T(S (A4)
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2
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

)/(Tx
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)Tx(K)T(S 111111
11    (A6)

A.1. Closed-form expression of WECC(1)

From Equations (A2), (A4), (A6), and (6b), we have:
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As (1, 2) follows a standard bivariate normal distribution with a correlation coefficient 12, 

the last mathematical expectation can be written by using the density function of (1, 2), 

which is:
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We have:
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where

dvdu
)(

vuvu
exp

)Tv(x
NeIntegral

)Tx(
vT

 















































111
12

2
12

2
12

2
12

2

2

122

12

12

2

1
1












 (A10)

We replace the standard normal distribution function N[.] by an integral of the standard 

normal density function as follows:
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We have:
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In the last equation, we need to withdraw the variable v from the superior bound of the 

integral relative to w. For this, we resort to a variable change, namely 
21 
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In order to withdraw the integral relative to the variable v from Equation (A12) by the fact 

that 1)(
2

2/2
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This variable change leads to:
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To transform the integral into a standard bivariate normal distribution function relative to u 

and w’, we need to use the following variable changes:

1212 Tu'u  (A17)
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These variable changes lead to:
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Equations (A9) and (A19) lead to:
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A.2. Closed-form expression of WECC(2)

From Equations (A3), (A5), and (A6), we have:
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By using the standard normal density function of (1, 2), we have:
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By replacing the standard normal distribution function N[.] by an integral of the standard 

normal density function, we have:
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In the last equation, we need to withdraw the variable v from the superior bound of the 

integral relative to w. For this, we resort to a variable change, namely,
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In order to withdraw the integral relative to the variable v from Equation (A26) by the fact 
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This variable change leads to:
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Equations (A23) and (A29) lead to:
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Equations (A1), (A20), and (A30) lead to:
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Liste of figure captions

Figure 1: Option value in function of S1

Figure 2: Option value in function of T1

Figure 3: Option value in function of S2

Figure 4: Option value in function of 12
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1 Once issued, the warrants are detached from stocks or bonds to be traded independently.

2 For instance, in France, holders of warrants expiring at the end of 1987 were not able to exercise their options 

due to the stock market crash in October. To reduce their losses, companies having issued these warrants asked 

the COB (or Commission des Opérations de Bourse) – the equivalent Security Exchange Committee in France –

to give its permission to extend the warrant contracts. Such request was systematically rejected by the COB due 

to the fact that no extension clause had been planned in the contracts. Since then, some companies have added to 

their warrant contracts an extension clause in order to protect warrantholders against an eventual stock market 

debacle.

3 Legally, this mechanism is possible. For example, the warrants issued in June 1996 by Northumbrian Water 

Group (NWG) gave to their holders the right to buy a stock of Lyonnaise des Eaux, the mother firm of NWG, 

rather than a stock of NWG.

4 In other words, for an external extended warrant, the exercise of the extended warrant leads to dilution for the 

new underlying stock, rather than dilution for the initial underlying one.


