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Abstract

This paper estimates 3-factor extended and essentially affine mod-
els and asks whether 3-factor extended models better capture time-
varying risk premia and volatility. The answer with regards to risk
premia is yes: risk premia in extended affine models do match histori-
cal risk premia better and the improvement increases with the number
of stochastic volatility factors. Regarding time-varying volatility ex-
tended models capture volatility slightly better but none of the mod-
els capture the high volatility during the Fed experiment. Also, it
is shown that extended models match the distribution of yields bet-
ter than essentially affine models, but the Feller condition limits the
ability of the extended model with one stochastic factor to generate
strongly skewed and fat-tailed distributions of long-maturity yields
under the risk-neutral measure.
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1 Introduction

Empirical evidence suggests that risk premia and volatility in U.S. interest
rates are time-varying. The excess return on a bond - the return of the bond
in one period minus the short interest rate - is documented to be time-varying
and positively related to the slope of the yield curve. It is also documented
that volatility of yields is time-varying and positively related to the level of
yields. Using more than 50 years of U.S. Treasury bond data, this paper asks
the question whether these facts of U.S. interest rates along with the first
four moments of yields can be better captured by 3-factor extended than
3-factor essentially affine term structure models. The two types of affine
models are the most popular term structure models due to their analytic
tractability and rich risk premium specifications, but while essentially affine
models have been compared to completely affine and quadratic affine models
in earlier literature, little is known about the properties of extended affine
models relative to essentially affine models.

A general characterization of N -factor affine models is given by Dai and
Singleton (2000) who decompose the N factors into m stochastic volatility
factors and N −m factors not entering volatility (denoted Am(N)) and pro-
pose completely affine models by letting risk premia be proportional to the
volatility of the state variables. The essentially affine model of Duffee (2002)
lets the risk premia of non-volatility factors be affine functions of all factors
but evidence in Dai and Singleton (2002) and Duffee (2002) suggests that es-
sentially affine models might fit the first or second moment of yields but not
both. The extended affine model of Cheridito, Filipovic, and Kimmel (2006)
allows the risk premium of each volatility factor to be an affine function of
all volatility factors and their risk premium specification has the potential
to solve the volatility-risk premium tension in essentially affine models since
the tight restrictions on the risk premium of volatility factors are relaxed1.
However, there are two reasons why extended affine models might fail this
task. First, the risk premium of a volatility factor cannot depend on the
non-volatility factors and the dependence on other volatility factors is re-
stricted because correlations between volatility processes have to be positive.
Second, the (multivariate) Feller restriction is imposed under P and Q which
restricts the dynamics of volatility factors. Because of the Feller condition

1Collin-Dufresne, Goldstein, and Jones (2005) also propose this modification of risk
premia.
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the extended affine models do not nest neither essentially nor completely
affine models.

Campbell and Shiller (1991) show that the regression coefficient of yield
changes regressed on the slope of the term structure is negative and increas-
ingly so with maturity implying that excess returns are positively related
to the slope of the term structure. This result contradicts the Expectation
Hypothesis which predicts a coefficient of one if risk premia are constant.
In addition, a model’s risk premium specification can be tested by adjusting
the Campbell-Shiller regressions for model-implied risk premia such that co-
efficients of 1 are restored as shown in Dai and Singleton (2002). Using the
two sets of regression coefficients as measuring sticks the results in this paper
show that extended models capture risk premia better than essentially affine
models. Although none of the extended and essentially affine models with
stochastic volatility match the A0(3) model, the three extended models with
stochastic volatility outperform their essentially affine counterparts and the
difference increases with the number of volatility factors. In essentially affine
models the ability to capture time-varying risk premia decreases strongly
with the number of volatility factors but in the extended models there is not
a large difference between models with 1, 2, and 3 volatility factors and all
three extended models do as well or better than the essentially affine A1(3)
model.

The level effect in volatility is documented by among others Chapman
and Pearson (2001) and this effect can be measured by regressing squared
yield changes on the level, slope, and curvature of the yield curve and finding
a positive and highly significant coefficient on the level of the yield curve.
All models predict a positive level effect but none of the models capture
the magnitude of the effect or simultaneously match the correct sign on the
slope and curvature coefficients. Brandt and Chapman (2003) conclude that
quadratic term structure models perform better than essentially affine models
and point to these regression results as the most important factor in the
difference of fit. However, comparing model-implied volatility with historic
volatility I show that both model classes capture time-varying volatility quite
well with exception of the volatile Fed experiment period in the beginning
of the 80’s, and the A1(3) extended and essentially affine models largely
match the size and sign of the level, slope, and curvature coefficients for
the subperiods before and after the Fed experiment. The results also show
that extended models capture time-varying volatility slightly better than
essentially affine models although the ability decreases with the number of
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stochastic volatility factors for both models.
Both extended and essentially affine models capture the first two uncon-

ditional moments of yields at all maturities, but the moments are estimated
with more precision in extended models. More importantly, the distribution
of yields in extended models are more in accordance with the historical dis-
tribution than in essentially affine models: skewness and kurtosis of yields
in extended models are much closer to historical skewness and kurtosis. The
intuition behind this result is clear when examining the A1(3) model. Em-
pirically, skewness and kurtosis of yields with long time to maturity depend
largely on a single parameter and while this parameter is shared by the actual
and risk-neutral dynamics in the essentially affine A1(3) model it is allowed
to take different values under the two measures in the extended counterpart.
In the essentially affine model, the historical distribution of long yields ’in-
herits’ a skewed and fat-tailed model skewness and kurtosis can differ such
that the historical distribution is better captured.

While the distribution of yields in extended models is more in accordance
with the historical distribution, I show that the essentially affine A1(3) model
generates more skewed and fat-tailed risk-neutral distributions than the ex-
tended A1(3) model and argue that due to the Feller restriction the extended
A1(3) model cannot generate the skewness and kurtosis that the data calls for
without sacrificing the cross-sectional fit of yields. Therefore, the extended
A1(3) might not price instruments that are sensitive to the tail-behavior of
yields well - such as out-of-the-money options.

Related to this paper is Cheridito, Filipovic, and Kimmel (2006) who
estimate and compare 1, 2, and 3-factor extended and essentially affine mod-
els. However, they impose the Feller condition in all models and restrict
some of the volatility parameters in the A1(3) and A2(3) models to be zero.
In addition, they only look at the first two unconditional moments of yield
changes. In another related paper, Almeida, Graveline, and Joslin (2006)
examine whether the inclusion of options in estimation of extended affine
models helps predict excess returns and volatility. While they focus on the
effect of observing options in extended models, I focus on comparing the
non-nested essentially and extended affine models.

The paper is organized as follows. Section 2 describes the features in the
U.S. term structure that affine models should match. The affine framework
is set up in section 3 and the estimation methodology MCMC is explained
in 4. Results are presented in section 5 and section 6 concludes.
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2 Features of the U.S. Term Structure

In this paper 3-factor essentially and extended affine term structure models
are compared across a set of U.S. term structure ’features’ that are easily
interpretable and has proven difficult for term structure models to match.
Earlier studies have used a subset of the features to compare completely
affine, essentially affine, and/or quadratic term structure models. This study
tries to answer whether extended affine models can overcome the inability of
completely/essentially affine models to match some of these features.

I use month-end (continuously compounded) 1, 2, 3, 4, and 5 years zero-
coupon yields extracted from US Treasury security prices by the method of
Fama and Bliss (1987). The data are from the Center for Research in Security
Prices and cover the period 1952:6 to 2004:12. The data is discussed in Elton
and Green (1998) who suggest that CRSP bond prices contain more noise
than industry-used prices, but higher quality data is not available for long
sample periods. The data set is used both in this section to illustrate the
U.S. term structure features and in the later estimation of affine models.

The yield curve is on average upward sloping.

The first feature of the U.S. term structure is that the unconditional mean
of yields is rising with maturity. This is illustrated by taking the mean of
yields across maturity which is done in Table 1. On average the five-year
yield is 59 basis points higher than the one-year yield and it is higher in 79
% of the months.

[Table 1 about here.]

Expected excess returns are time-varying and positively related to the slope of

the yield curve.

Expected excess returns in U.S. Treasury bonds vary across time and ma-
turity. This well-established fact is documented in a series of papers starting
with Fama (1984) and is stable across time periods and data sets. Expected
excess returns tend to be positive when the slope of the yield curve is steep
and negative when the yield curve is flat or downward-sloping and the effect
increases with the maturity of the bond. Campbell and Shiller (1991) docu-
ment this phenomenon by regressing future yield changes (inversely related
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to excess returns) on the current slope of the yield curve. Specifically, the
regression is

Y (t + 1, n − 1) − Y (t, n) = const + φn[
Y (t, n) − Y (t, 1)

n − 1
] + res, (1)

where Y (t, n) is the n-year zero-coupon yield at time t and for the data set in
this paper the coefficients are given in Table 2. Dai and Singleton (2002) call
the regression LPY (i). With constant risk premia the expectation theory
predicts that the coefficients equal 1, but the actual coefficients are negative
and increasingly so with maturity.

[Table 2 about here.]

Dai and Singleton (2002) show that the regression coefficients of one in
the Campbell-Shiller regressions are restored by adjusting for time-varying
risk premiums and for completeness their derivation is restated in Appendix
A. Dai and Singleton (2002) call this regression for LPY (ii).

Volatility of yield changes is on average downward sloping for large ma-

turities.

In contrast to the unconditional mean of yields, the unconditional volatil-
ity - defined as standard deviation - of yield changes is falling with maturity.
As illustrated in Table 1 the monthly volatility falls from 49.3 basis points for
the one-year yield to 36.2 basis points for the 5-year yield. This phenomenon
is not consistent for short maturities over different time periods since the
volatility curve is hump-shaped when using data only from the Greenspan
era 1987:8-2004:12 but it seems to be consistent for maturity 2-3 years and
more2. However, for the sample period used in this paper, the volatility curve
is downward-sloping for all maturities.

Volatilities of yields are time-varying and positively related to the level of

yields.

Yield volatility has historically been time-varying and positively corre-
lated with interest rates, which is documented in Brandt and Chapman
(2003) and Piazzesi (2003). This is seen in the data set by regressing squared
monthly yield changes on the level, slope, and curvature of the yield curve -

2See Piazzesi (2005) for a detailed discussion.
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the three components identified by Litterman and Scheinkman (1991) that
explain most return variability across the maturity spectrum3. Table 3 shows
the regression coefficients for the data and the level factor is strongly signif-
icant across all maturities. The table also shows that the relation between
volatility and curvature is positive (although mostly insignificant). This is
consistent with Christiansen and Lund (2005) who argue that curvature mea-
sures the cost of convexity and this cost is high when volatility is high. Fi-
nally, the table shows an insignificant but mostly negative relation between
slope and volatility. This is slightly surprising since the slope of the yield
curve depends on the risk premium for the long-maturity bond and therefore
a positive relationship is expected but as discussed in section 5.3 the negative
regression coefficients are due to the combination of high volatility and on
average inverted yield curves during the Fed experiment 1979-1982 (see also
Christiansen and Lund (2005)).

[Table 3 about here.]

To sum up, essentially affine and extended affine models are compared by
matching averages and regression coefficients found in the actual U.S. term
structure data with model-implied averages and coefficients.

3 Affine Term Structure Models

In this section affine term structure models are characterized using the Dai
and Singleton (2000) framework.

3.1 Bond Pricing

The short rate rt is an affine vector of unobserved state variables Xt =
(X1

t , ..., XN
t )′,

rt = δ0 + δ′xXt, (2)

and Xt follows an affine diffusion,

dXt = (KQ
0 − K

Q
1 Xt)dt + Σ

√
StdW̃t, (3)

3Regressing on level, slope, and curvature instead of yields directly strongly reduces
the correlation of the regressors.

7



where W̃t is an N -dimensional standard Brownian motion under Q, K
Q
0 is

a vector of length N while K
Q
1 , Σ, and St are N × N matrices. St is a

diagonal matrix with elements [St]ii = αi + β′
iXt, where αi is a scalar while

βi is an N -vector. Parameter restrictions ensuring that the dynamics of Xt

are well-defined are given in Dai and Singleton (2000).
Duffie and Kan (1996) show that bond prices are exponential-affine

P (t, τ) = eA∗(τ)−B∗(τ)′Xt ,

where P (t, τ) denotes the price of a zero coupon bond at time t that matures
at time t + τ and the functions A∗(τ) and B∗(τ) solve the ODEs

dA∗(τ)

dτ
= −K

Q′

0 B∗(τ) +
1

2

N∑

i=1

[Σ′B∗(τ)]2i αi − δ0, (4)

dB∗(τ)

dτ
= −K

Q′

1 B∗(τ) − 1

2

N∑

i=1

[Σ′B∗(τ)]2i βi + δx. (5)

The corresponding (continuously compounded) yield of bond P (t, τ) is

Y (t, τ) = A(τ) + B(τ)Xt,

where A(τ) = −A∗(τ)
τ

and B(τ) = B∗(τ)′

τ
.

I adopt the normalizations in the canonical form of Dai and Singleton
(2000) and the restrictions for all 3-factor models are given in Appendix B.

3.2 Risk Premia

The stochastic discount factor M determining Q can be written as

dMt

Mt

= −rtdt − Λ′
tdWt,

where Wt is a Brownian motion under the actual measure P . The dynamics
of Xt under P is given as

dXt = (KQ
0 − K

Q
1 Xt)dt + ΣS

1
2
t Λtdt + ΣS

1
2
t dWt

and Dai and Singleton (2000) choose the completely affine market price of
risk as

S
1
2
t Λt = StΦ1
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and all variation in the price of risk vector is then due to variation in St.
Duffee (2002) proposes an essentially affine market price of risk

S
1
2
t Λt = StΦ1 + I−Φ2Xt, (6)

where I− is an N × N diagonal matrix with I−
ii = 1{inf(αi+β′

iXt)>0} and Φ2

is a N × N matrix. The essentially affine market price of risk nests the
completely affine and extends the flexibility of the price of risk of the N −m

non-volatility factors.
Cheridito, Filipovic, and Kimmel (2006) propose an extended affine price

of risk

S
1
2
t Λt = λ1 + λ2Xt, (7)

where λ1 is an N -vector and λ2 is an N × N matrix that possibly has re-
strictions ensuring that the process X is well defined under P . Compared
to essentially affine models their specification adds flexibility to the price of
risk of the m volatility factors without restricting the flexibility in the price
of risk of the N − m non-volatility factors. However, the flexibility comes
at a cost. To avoid arbitrage opportunities the volatility matrix St must be
strictly positive and therefore the parameter vector has to satisfy the multi-
variate generalization of the Feller condition. As a consequence the extended
affine models do not nest neither the essentially nor the completely affine
models.

In Appendix B the parametrization of all 3-factor essentially and extended
affine models is explained in detail.

4 Estimation

In estimating the affine models I adopt a Bayesian approach and estimate
the models by MCMC as proposed by Eraker (2001)4. The approach has
several advantages which are useful for the following analysis. First of all,
every yield can be observed with error. Usually, it is assumed that three

4For a general introduction to MCMC see Robert and Casella (2004) and for a survey
of MCMC methods in financial econometrics see Johannes and Polson (2003). Examples
of estimating affine term structure models in a single-factor setting are Mikkelsen (2001)
and Sanford and Martin (2005) while multi-factor examples are Lamoureux and Witte
(2002) and Bester (2004).
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yields are observed without error such that state variables can be extracted
from yields5. Second, the models can be estimated without imposing addi-
tional parameter restrictions not implied by the theoretical model. Dai and
Singleton (2002) restrict the volatility factors in the A2(3) and A3(3) to be
independent. Cheridito, Filipovic, and Kimmel (2006) restrict the volatility
of the non-volatility factors to be constant, thereby restricting the two β

parameters in the A1(3) and A2(3) models to be zero. Since I am interested
in comparing models both across different risk premium specifications and
across the number of volatility factors, I do not want to disadvantage some
models compared to others by imposing parameter restrictions. Third, the
main interest in the analysis is whether the models can capture the size and
sign of certain regression coefficients obtained by running the regressions on
the actual data. MCMC facilitates the construction of the marginal den-
sity of any function of the parameters and state variables and therefore the
marginal density of any regression coefficient of interest can be obtained tak-
ing into account uncertainty about parameters and state variables6. Fourth,
MCMC can easily handle parameter restrictions, while optimization algo-
rithms of traditional frequentist methods often perform poorly in presence
of hard parameter constraints7.

4.1 Estimating Affine Term Structure Models

At time t = 1, ..., T k yields are observed and they are stacked in the k-vector
Yt = (Y (t, τ1), ..., Y (t, τk))

′. The yields are all observed with a measurement
error

Yt = A + BXt + ǫt

where A is a k-vector and B a k×N matrix. I assume that the measurement
errors are independent and normally distributed with zero mean and common
variance such that

ǫt ∼ N(0, D), D = σ2Ik.

5See for example Dai and Singleton (2002), Duffee (2002), Cheridito, Filipovic, and
Kimmel (2006).

6An example of this approach is found in Lamoureux and Witte (2002) who find the
density of coefficients of an ”Expectation Hypothesis” regression from 2- and 3-factor CIR
models with independent factors.

7See for example Cheridito, Filipovic, and Kimmel (2006).
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I could allow for a more flexible parametrization of the error variances, letting
for example each measurement error have its own variance. However, the
effect of individual variances is that in the MCMC estimation of some of the
models the shortest yield is fit almost perfectly - an effect which is difficult
to interpret from an economic point of view8.

The parameters of the model and the variances of the measurement er-
rors are stacked in the vector Φ = (KQ

0 , K
Q
1 , β, λ, δ,D). In the estimation

the latent variables (Xt) are treated as parameters but for clarity they are
separated in the vector X.

I am interested in samples from the target distribution p(Φ, X|Y ). The
Hammersley-Clifford Theorem (Hammersley and Clifford (1970) and Besag
(1974)) implies that samples are obtained from the target distribution by
sampling from the full conditionals

p(KQ
0 |KQ

1 , β, λ, δ,D,X, Y )

p(KQ
1 |KQ

0 , β, λ, δ,D,X, Y )
...

p(X|KQ
0 , K

Q
1 , β, λ, δ,D, Y )

so MCMC solves the problem of simulating from the complicated target dis-
tribution by simulating from simpler conditional distributions. Specifically,
draw i + 1 of the parameters (KQ

0 , K
Q
1 , β, λ,D,X) in the MCMC algorithm

is obtained by drawing from the full conditionals

p(KQ
0 |(KQ

1 )i, βi, λi, δi, Di, Xi, Y )

p(KQ
1 |(KQ

0 )i+1, βi, λi, δi, Di, Xi, Y )
...

p(X|(KQ
0 )i+1, (K

Q
1 )i+1, βi+1, λi+1, δi+1, Di+1, Y ).

If one samples directly from a full conditional the resulting algorithm is the
Gibbs sampler (Geman and Geman (1984)). If it is not possible to sam-
ple directly from the full conditional distribution one can sample by using
the Metropolis-Hastings algorithm (Metropolis et al. (1953)). I use a hy-
brid MCMC algorithm that combines the two since not all the conditional
distributions are known.

8See Lamoureux and Witte (2002) for an example of this phenomenon in the estimation
of a 3-factor model.
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4.1.1 The Conditionals p(X|Φ) and p(Y |Φ, X)

The conditional p(X|Φ) is used in several steps of the MCMC procedure and
is calculated as

p(X|Φ) =
( T∏

t=1

p(Xt|Xt−1, Φ)
)
p(X0).

The continuous-time specification in (3) is approximated using an Euler
scheme (letting Σ = IN)9

Xt+1 = Xt + µP
t ∆t +

√
∆tStǫt+∆t

,

ǫt+1 ∼ N(0, IN),

where ∆t is the time between two observations and µP
t = K

Q
0 −K

Q
1 Xt+S

1
2
t Λt

is the drift under P . Since St is diagonal

p(X|Φ) ∝
N∏

i=1

([ T∏

t=1

[St−1]
− 1

2
ii

]
exp

(
− 1

2∆t

T∑

t=1

[∆Xt − µP
t−1∆t]

2
i

[St−1]ii

))
p(X0).

If the difference between the actual yields and the model implied yields at
time t is denoted by êt = Yt − (A(Φ) + B(Φ)Xt), the density p(Y |Φ, X) can
be written as

p(Y |Φ, X) ∝
k∏

i=1

(
D

−T
2

ii exp(− 1

2Dii

T∑

t=1

ê2
t,i)

)

∝ σ−kT exp(− 1

2σ2

T∑

t=1

ê′têt)

4.1.2 The Hybrid MCMC algorithm

According to Bayes’ theorem the conditional of the risk premium parameters
is given as

p(λ|Φ\λ, X, Y ) ∝ p(Y |Φ, X)p(λ|Φ\λ, X)

∝ p(X|Φ)p(λ|Φ\λ)

9The Euler scheme introduces some discretization error which may induce bias in the
parameter estimates. This possible bias can be reduced using Tanner and Wong (1987)’s
data augmentation scheme. However, Bester (2004), using also monthly yield data, report
that data augmentation does not significantly affect parameter estimates. For the effect
of data augmentation in a one-factor model see Sanford and Martin (2005).
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where Φ\λ denotes the parameter vector without the parameters λ and it is
used that p(Y |Φ, X) does not depend on λ. I assume that the priors are a
priori independent and in order to let the data dominate the results a stan-
dard diffuse, noninformative prior, is adopted so p(λ|Φ\λ, X, Y ) ∝ p(X|Φ)
and the λ’s can be Gibbs sampled one column at a time from a multivariate
normal distribution.

The conditional of the variance of the measurement errors is given as

p(D|Φ\D, X, Y ) ∝ p(Y |Φ, X)p(D|Φ\D, X)

∝ p(Y |Φ, X)p(X|Φ)p(D|Φ\D)

∝ p(Y |Φ, X),

since p(X|Φ) does not depend on D. σ2 can therefore be Gibbs sampled from
the inverse Wishart distribution, σ ∼ IW (

∑T

t=1 ê′têt, kT )10.
The conditional of the other model parameters is given as

p(Φj|Φ\Φj
, X, Y ) ∝ p(Y |Φ, X)p(Φj|Φ\Φj

, X)

∝ p(Y |Φ, X)p(X|Φ)p(Φj|Φ\Φj
)

∝ p(Y |Φ, X)p(X|Φ),

which for none of the parameters K
Q
0 , K

Q
1 , β, and δ is a known distribu-

tion. To block sample the four sets of parameters I use the Random Walk
Metropolis-Hastings algorithm (RW-MH). To sample Φj at MCMC step i+1,
I propose Φi+1

j by drawing a multivariate normal distributed variable cen-

tered around Φi
j and accept it with probability min

(
1,

f(Φi+1
j )

f(Φi
j)

)
where f is

the density p(Φj|Φ\Φj
, X, Y ).

The latent processes are sampled by sampling Xt, t = 0, ..., T one at a
time using the RW-MH procedure. For t = 1, ..., T − 1 the conditional of Xt

is given as

p(Xt|X\t, Φ, Y ) ∝ p(Xt|Xt−1, Xt+1, Φ, Yt)

∝ p(Yt|Xt, Φ)p(Xt|Xt−1, Xt+1, Φ)

∝ p(Yt|Xt, Φ)p(Xt|Xt−1, Φ)p(Xt+1|Xt, Φ).

For t = 0 the conditional is

p(X0|X1, Φ, Y ) ∝ p(X1|X0, Φ, Y )p(X0)

∝ p(X1|X0, Φ)p(X0),

10Equivalent to an inverted gamma distribution.
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while for t = T the conditional is

p(XT |X\XT
, Φ, Y ) ∝ p(XT |XT−1, Φ, Y )

∝ p(YT |XT , XT−1, Φ, Y\YT
)p(XT |XT−1, Φ, Y\YT

)

∝ p(YT |XT , Φ)p(XT |XT−1, Φ).

Both the parameters and the latent processes are subject to constraints
and if a draw is violating a constraint it can simply be discarded (Gelfand
et al. (1992)). However, I use RW-MH to sample the risk premium pa-
rameters in the extended affine models since practically all the draws would
otherwise be discarded due to the non-attainment parameter constraints. In
estimating each model I use an algorithm calibration period of eight million
draws, where the variances of the normal proposal distributions are set, a
burn-in period of two million draws and an estimation period of four million
draws. Due to lack of computer memory I keep every 200’th draw in the
estimation period which leaves 20.000 draws11. Implementation details are
given in Appendix C.

5 Results

In this section I compare affine models across the averages and regression
coefficients defined in section 2 to see which models successfully capture the
level and time-variability in mean and volatility. The parameter estimates
are given in Table 4 through 7.

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

11All random numbers in the estimation are draws from Matlab 7.0’s generator which is
based on Marsaglia and Zaman (1991)’s algorithm. The generator has a period of almost
21430 and therefore the number of random draws in the estimation is not anywhere near
the period of the random number generator.
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There are several ways of calculating the coefficients for each model and
the implications can vary strongly depending on how the coefficients are cal-
culated. First, the coefficients can be calculated using fitted yields. Second,
they can be derived analytically. Third, they can be calculated by simulating
yields from the model. As Dai and Singleton (2002) note the dynamics of fit-
ted yields is determined by both the model used in calculating them and the
historic properties of yields, and therefore assessments of fit based on fitted
yields can give very misleading impressions of the actual population distri-
bution. Population moments and moments calculated from simulated yields
(of length equal to the length of the data) may differ because of finite-sample
biases. To see whether this is the case, I find the density of the Campbell-
Shiller regression coefficients both in population and from simulated data.
First the density of each population coefficient is obtained by analytically
calculating the regression coefficient for each MCMC draw and empirically
estimating a density based on the 20.000 analytical coefficients. Details of
how to analytically calculate the regression coefficient are given in Appendix
D. The second set of regression coefficients are calculated from simulated
data. For every MCMC draw the regression coefficients are calculated by
repeating a simulation of 631 months 100 times, calculating the regression
coefficients for every draw, and taking the average regression coefficient over
the 100 simulations. Ideally, this should be repeated for every MCMC draw
to get the distribution of regression coefficients but since this is too time-
consuming, this is done for every 50’th MCMC draw. This amounts to an
average over 400 averages - averaging over a total of 40.000 simulations12.
The results are given in Table 8.

[Table 8 about here.]

It is seen in the table that the finite-sample bias is small for some of the
models (0.1 or less for the A0(3) model) but sizeable for others (0.5 or more for

12To assure that the difference is due to finite-sample bias and not the simulation method
two checks is performed. First, I simulate once from every MCMC draw and average over
the 20.000 simulations. This should give approximately the same coefficient estimates
while giving larger confidence bands. The estimates for the A3(3) essentially affine model
from this procedure only differs from the simulation method in the text on the third
decimal. Second, I calculate the population coefficients using the estimated parameters and
using the same parameters the average coefficients from 1.000 simulations are calculated.
The difference between the model-implied coefficients and the coefficients from simulating
is of the same sign and magnitude for the essentially affine A3(3) model as in Table 8.
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the A2(3) and A3(3) essentially affine models). While the bias for all models
go in the same direction, the magnitude is different and it is important to
take this bias into account. For the rest of the paper the results are therefore
based on simulated data using the aforementioned simulation procedure.

5.1 Risk Premia

Focusing now on the Campbell-Shiller regression coefficient instead of finite-
sample bias, we see in Table 8 that the ability of the essentially affine models
to capture the Campbell-Shiller regression coefficients decrease in the number
of volatility factors. Only the A0(3) model is able to capture the downward
sloping curve of CS coefficients and has confidence bands that contain the
actual CS coefficients. All essentially affine models with stochastic volatility
miss the slope and sign of the CS coefficients. This is consistent with findings
in Dai and Singleton (2002). While the extended affine models are not able to
beat the A0(3) model in terms of capturing the CS coefficients, they do better
than their essentially affine counterparts. The coefficients of the extended
affine A2(3) and A3(3) models are comparable to the coefficients of the best
essentially affine model with stochastic volatility, A1(3), and the extended
A1(3) matches the coefficients better than any of the essentially affine models
with stochastic volatility.

The estimates of the risk-adjusted CS coefficients are given in Table 9.
and the results are similar to those of the unadjusted CS coefficients. For
essentially affine models the ability to capture the risk-adjusted coefficients
of 1 decreases with the number of stochastic factors and only the A0(3)
model captures the coefficients. All extended models do better than the
essentially affine A1(3) model and the extended A1(3) has estimated risk-
adjusted coefficients closer to 1 than the A2(3) and A3(3) extended models
(except for the 5-year maturity).

[Table 9 about here.]

Figure 1 compares the essentially and extended affine models with the
same number of stochastic volatility factors. The left panel shows the density
of the 4-year CS coefficients while the right panel shows the density of the
4-year adjusted CS coefficients.

[Figure 1 about here.]
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We see a sizeable improvement in time-varying predictability in the A2(3)
model and a dramatic improvement in the A3(3) model. In the literature the
essentially affine A0(3) and A1(3) models have generally been preferred over
the A2(3) and A3(3) models partly because of the latter models’ inability
to capture time-varying risk-premia. The results with regards to risk pre-
mia indicate that the extended A1(3) model captures time-varying risk pre-
mia better than any other 3-factor essentially affine or extended model with
stochastic volatility, but the difference between the extended A1(3), A2(3),
and A3(3) models are much smaller than they are in the essentially affine
models. Using 11 years of swap rates and cap data Almeida, Graveline, and
Joslin (2006) show that the A1(3) and A2(3) extended models are able to
capture the size and slope of the CS regression coefficients when options are
included in estimation. In contrast, Duffee (2002) show that completely affine
models cannot capture the time-varying risk premia and since the A3(3) com-
pletely and essentially affine models are identical, this suggests that at least
the A(3) essentially affine model cannot capture the time-variability whether
or not options are included. Altogether, this suggests that 3-factor extended
models do have the flexibility to fit the CS regression coefficients although
options might be needed in the estimation to fully capture the exact level,
while the risk premium specification in essentially affine models, at least the
A3(3) model and possibly the A2(3) model, is too restrictive to let the models
capture the time-variability in risk premia even when other instruments are
included in estimation.

5.2 Unconditional Mean and Volatility

Turning to the average of yields, Table 10 shows the estimated unconditional
mean of yields in the affine models.

[Table 10 about here.]

All models capture the level of yields reasonably well but there are large
differences in the precision of the different models. The extended models
estimate the mean more precisely than the essentially affine. For example,
the length of the confidence band for the 5-year yield in the essentially affine
A1(3) model is 38.1 while it is 8.9 in the extended A1(3) model. While
Table 10 shows estimates and confidence bands Figure 2 depicts the whole
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distribution in the models by showing box plots of the distribution of the
5-year yield13.

[Figure 2 about here.]

The box plot shows that the distribution is right-skewed in all models with
stochastic volatility and the skew is stronger for essentially affine models.
This is due to the difference in risk premium specification in the models but
a discussion of this is deferred until Section 5.4.

Extended models estimate the unconditional mean of yields more pre-
cisely and as it is seen in Table 11 they also estimate the unconditional
volatility with larger precision than essentially affine models.

[Table 11 about here.]

All models capture the level of unconditional volatility but there is a
large difference in the precision with which it is captured. The A0(3) model
does not allow for time-varying volatility and therefore it can estimate the
unconditional volatility with high precision. The confidence bands in the
A0(3) model is a 4-6 times smaller than confidence bands in the extended
affine models. While the extended models estimate the volatility with much
less precision than the A0(3) model they are far better than the essentially
affine models in terms of the size of confidence which are a factor 3-4 times
smaller. For example, the confidence band for the 5-year volatility is 3.6 basis
points wide in the A0(3) model, 17.4 − 27.5 wide in the extended models,
and 88.2 − 105.7 wide in the essentially affine models. From the table we
can therefore conclude that while all models statistically capture the level
of unconditional volatility (meaning that the estimated coefficients in data
are contained in the confidence bands) there is a very large difference in the
precision with the A0(3) model having the tightest confidence bands and the
essentially affine stochastic volatility models having the widest.

Figure 3 shows a box plot of the density of the unconditional 5-year
volatility in the models. We see a similar pattern as in the unconditional
mean: all distributions in models with stochastic volatility are right-skewed
and the skew is stronger in essentially affine models than in extended models.

[Figure 3 about here.]

13In a box plot the box ends with the first and third quartile and has the median
horizontally drawn inside. The ”whiskers” extend to the farthest points that are within
1.5 times the interquartile range of the first and third quartiles, and dots are outliers.
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5.3 Conditional Volatility

In section 2 a significant level effect in volatility is shown by regressing
squared monthly yield changes on the level, slope, and curvature of the term
structure, and if a model captures the dynamics of time-varying volatility
correctly the model should replicate this coefficient. Table 12 shows the
model-implied regression coefficients.

[Table 12 about here.]

The A0(3) model estimates the coefficient for every maturity to zero which
is expected since the model does not accommodate stochastic volatility. All
models with stochastic volatility capture the positive sign of the coefficients
and the downward sloping curve of level coefficients with respect to maturity.
The models largely agree on the size of the level coefficients although the
extended A1(3) model estimates the coefficients somewhat lower than the
other stochastic volatility models, but the actual size of the coefficients in
the data is approximately twice as big as the model-implied coefficients, so
none of the models capture the coefficients in the data. For example, the
actual 3-year coefficient is 0.057 while in the affine models with stochastic
volatility it is estimated to be in the range 0.022-0.033 and this difference
is statistically significant according to the confidence bands of the model-
implied coefficients.

In addition to the failure of replicating the correct level coefficients none
of the models simultaneously replicate the correct sign of the slope and cur-
vature regression coefficients. While the actual slope coefficients are negative
(except for the 5-year maturity) and the curvature coefficients are positive,
the models with 1 and 2 volatility factors predict positive coefficients on slope
and curvature while the models with 3 stochastic factors predict negative co-
efficients for long maturities and positive coefficients for short maturities.

The evidence on conditional volatility is largely consistent with the results
in Brandt and Chapman (2003) who conclude that quadratic term structure
models provide a better fit to US term structure data than essentially affine
models and point to conditional volatility regression results similar to the
regression in Table 12 as the most important factor in the difference of fit
between the two model classes14.

14To test the robustness of the results a volatility regression is run in Appendix E where
the dependent variable is yearly instead of monthly volatility and an ARCH term is added
as an explanatory variable. The results are very similar.
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Why do three-factor affine models fail to replicate the conditional re-
gression coefficients? To provide a possible answer it is useful to compare
model-implied conditional volatility with an estimate of actual conditional
volatility. As a proxy for actual conditional volatility the conditional volatil-
ity from a EGARCH(1,1) model is estimated. Figure 4 and 5 graphs the
model-implied and EGARCH(1,1) conditional volatility for the 1-year and
5-year yields15.

[Figure 4 about here.]

[Figure 5 about here.]

The figures show that all models largely capture the persistence in con-
ditional volatility apart from the period in the beginning of the 80’s. While
the EGARCH estimate is outside the confidence band for the models in some
periods the trend is the same. It is also clear from the figures that both es-
sentially and extended affine models fail to capture the high volatility during
the Fed experiment from October 1979 to October 1982. Volatility in the 1-
year yield across the models is about half the size of the EGARCH volatility
and for the 5-year yield the model-implied volatility is roughly 50 % lower.
To investigate the influence of the Fed experiment on the volatility regression
results Table 13 shows the regression coefficients for the period before and
after the Fed experiment.

[Table 13 about here.]

Compared to the coefficients obtained using the whole sample the results
are quite different: the level coefficient is only about half the size before
the Fed experiment and about one-third after the Fed experiment. In both
subperiods the level effect is still highly significant. In addition, the slope
coefficient is positive in both periods while it is negative for four out of five
maturities when looking at the whole sample. The sign of the curvature
coefficient is positive in the whole sample and both periods.

The positive slope and curvature coefficients are consistent with results
in Christiansen and Lund (2005) (who argue that 1979-1982 should be ex-
cluded in analysis of the relation between the yield curve and volatility) and

15The model-implied conditional volatility is calculated for each of the 20,000 draws in
the MCMC sampler and the mean and confidence band of the time t = 1, ..., 631 conditional
volatility is estimated on basis of the 20,000 draws of time t conditional volatility.
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the volatility regression results for the two subperiods are more in line with
model-implied regression coefficients. The size of the level effect in the affine
models are largely consistent with the size in the two subperiods. For exam-
ple, the essentially affine A2(3) model has level coefficients that statistically
match the actual level coefficients for all maturities for the period before the
Fed experiment while the extended affine A1(3) model has level coefficients
matching all the coefficients for the period after the Fed experiment. For
the A1(3) and A2(3) models the positive slope and curvature coefficients are
consistent with the positive coefficients found in the subperiods while the
negative coefficients for the A3(3) models are not. The size of the positive
slope and curvature coefficients in the A1(3) models are comparable with
those estimated in the two subperiods while they are generally too high in
the A2(3) models. Therefore, comparing the model-implied coefficients with
the coefficients from the subperiods leads to the conclusion that A1(3) mod-
els capture volatility well and that the ability to capture volatility dynamics
of yields does not improve with the number of stochastic volatility factors.
The choice of risk premium does not change the conclusion. This might be
because the advantage of increasing the number of factors entering volatility
is outweighed by the more restricted correlation structure between factors.

Table 14 shows that the correlations between EGARCH and model-implied
volatility are positive and in the range of 69.3% to 81.4% across models and
maturity for the whole sample and similar correlations are found in the sub-
periods before and after the Fed experiment although the latter period has
somewhat smaller correlations. This result is consistent with Almeida, Grav-
eline, and Joslin (2006) who find similar positive correlations between con-
ditional volatilities of yields of different maturities and GARCH estimates,
while Collin-Dufresne, Goldstein, and Jones (2005) find that an extended
A1(3) model generates a time series of volatility that is negatively correlated
with a GARCH estimate of the short rate volatility. The differences might
be due to different sample periods and that the short rate has quite different
volatility dynamics from longer-maturity yields16.

[Table 14 about here.]

Comparing essentially and extended models, the correlations suggest that
extended A2(3) and A3(3) models do slightly better in terms of capturing con-
ditional volatility than their essentially affine counterparts since they have

16See Joslin (2006) for an elaboration on this points.
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higher average correlations in the whole period and all subsamples. Ahn,
Dittmar, and Gallant (2002) find that completely affine models fare very
poorly in capturing the conditional volatility of yield changes and evidence
in Dai and Singleton (2003) suggests that persistence of volatility is larger
in essentially affine models than in completely affine models. Therefore, the
literature suggests that there are gains in terms of matching time-varying
volatility in moving from completely affine to essentially affine models and
the correlations suggest that gains in moving from essentially affine to ex-
tended affine models are positive but small for the A2(3) and A3(3) models.
However, the results also show that there is no clear difference between the
essentially and extended affine A1(3) models and the regression coefficients
and correlations suggest that the A1(3) model does better than the A2(3)
and A3(3) models. Therefore, there is no clear evidence showing that any of
the extended models match volatility better than the essentially affine A1(3)
model.

The comparison between model-implied conditional volatility and an EGARCH
estimate is sensitive to possible misspecification of the EGARCH model and
as an alternative procedure to compare the models I employ the use of re-
alized volatility in testing volatility dynamics as suggested by Andersen and
Benzoni (2006). They show that in affine models the quadratic variation
of zero coupon yields is affine in average yields and they term this relation
the fundamental affine yield variation spanning condition. Using intra-day
data they approximate quadratic variation with realized volatility and test
the spanning condition on daily data over the period 1991-2001 by regressing
realized volatility on average yields. They find low R2’s and conclude that
volatility factors are largely unrelated to the cross-section of yields.

To test the spanning condition for the longer time series in this paper
I calculate a monthly realized volatility measure by summing squared daily
returns over the month and regress it on the average level, slope, and curva-
ture. The data are U.S. Treasury yield curve estimates of the Federal Reserve
Board from July 1961 to the end of the sample17. Table 15 shows actual and
model-implied R2’s for the period with available daily data 1961-2004 and
the subperiod after the Fed experiment 1982-2004. The results for the sub-

17Gürkaynak, Sack, and Wright (2006) explain the estimation methodology by
which the zero coupon yields are extracted and the data can be downloaded at
http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html. The total num-
ber of daily observations is 10,834 for each maturity. Daily data are not available before
1961.
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period before the Fed experiment are similar to the results for the whole
sample period and are not shown.

[Table 15 about here.]

The results in the table show that for the whole sample period the R2’s
between 31.1% and 34.5% are in line with those implied from the models:
both A2(3) models and the extended A1(3) model have lower model-implied
R2’s while the other three models have higher R2’s. Only the essentially
affine A3(3) model has statistically significant different R2’s. Compared to
the whole period 1961-2004 the subperiod 1982-2004 has lower R2’s ranging
from 5.2% to 8.8%. All models have higher model-implied R2’s but the
difference between actual and model-implied R2’s are insignificant for all but
the A3(3) models. The spanning test therefore provides further evidence
against the ability of the A3(3) models to model volatility while the A1(3)
and A2(3) models pass the test.

Overall, the results in this section show that extended A2(3) and A3(3)
models have slightly better volatility dynamics than their essentially affine
counterparts, but volatility dynamics in A1(3) models - where the difference
between extended and essentially affine is small - are most in accordance with
moments in historical data. The evidence that an essentially or extended
affine A1(3) model captures time-varying volatility well in a time span of
more than 50 years apart from the 3 years during the Fed experiment suggests
that if it is of importance to fit volatility correctly within a 3-factor affine
framework in the whole period a regime-switching model might be needed.
Results in Bansal, Tauchen, and Zhou (2004) support this conclusion. On the
other hand, if it is not believed that an event such as the Fed experiment is
likely to happen again an A1(3) essentially or extended affine model captures
the volatility dynamics well.

5.4 Distribution of Yields: Extended Risk Premium

and the Feller Condition

In the earlier sections we have seen how well essentially and extended affine
models capture the first two moments of bond yields. In this section we will
see how well the models capture higher-order moments. To see this, Figure 6
shows the unconditional distribution of the 5-year yield. The density of the
actual 5-year yield is based on 631 historical observations while the densities
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of the model-implied 5-year yields are based on 10,000 years of simulated
data taking the estimated parameters as the true parameters.

[Figure 6 about here.]

From the figure it is clear that the extended models capture the distri-
bution better than the essentially affine models. The distribution in the
essentially affine models is more skewed than the distribution of the actual
data and the skew is stronger with fewer number of volatility factors. In con-
trast, the extended models do a reasonable job of capturing the distribution
although the models put too little weight on low yields.

To help shed light on the reason why the distribution of the 5-year yield
is so skewed in the essentially affine models it is helpful to compare the
essentially affine and extended A1(3) models. The A1(3) models are chosen
for comparison since they are the most commonly used 3-factor models with
stochastic volatility, their distributions differ the most, and they provide the
clearest intuition behind the difference.

Empirically, the volatility factor in A1(3) models is typically highly cor-
related with the yield with longest maturity - in this case the 5-year yield
- and has a slow mean-reversion under the risk-neutral measure while the
other two factors has a higher mean-reversion and often correspond to the
slope and curvature of the yield curve. This is also the case in the A1(3)
models estimated in this paper. In principle there might be more than one
factor with a slow mean-reversion but this would limit the model’s ability
to fit a wide variety of term-structure shapes18. Since the two non-volatility
factors ’die out’ rather quickly the 5-year yield is close to being modelled as
an affine function of a one-factor CIR process. As an approximation it is
therefore reasonable to assume that the 5-year yield is an affine function of
the volatility factor Xt,

Y 5
t ≃ δ0 + δx(1)Xt

dXt = (K0(1) − K1(1, 1)Xt)dt +
√

XtdWt.

Xt is unconditionally gamma distributed with skewness
√

2
K0(1)

and excess

kurtosis 3
K0(1)

and since kurtosis and the absolute value of skewness are

18For a more detailed discussion on why one of the factors typically has a slow mean-
reversion and the other two factors a higher mean-reversion see Duffee (2002).
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unchanged by an affine transformation the 5-year yield Y 5 has skewness

sign(δx(1))
√

2
K0(1)

and kurtosis 3
K0(1)

. While all the parameters δ0, δx(1), K0(1),

and K1(1, 1) determine the mean of Xt and three of the parameters determine
the variance of Xt the only parameter determining kurtosis and the absolute
value of skewness is K0(1). When the Q and P dynamics share parameters
the Q dynamics usually dominate the P dynamics in terms of determining
the parameters in estimation and therefore in the essentially affine A1(3)
model the skewness and kurtosis of Y 5 under P is primarily determined by
the skewness and kurtosis under Q since the Q and P dynamics share the
parameter K0(1)19. In contrast, the parameter K0(1) is allowed to differ
under P and Q in the extended A1(3) model and this dramatically changes
the skewness and kurtosis under P such that the model-implied 3. and 4.
moments of the 5-year yield more closely resembles the historical 3. and 4.
moments. To put it simple, the actual distribution of the 5-year yield in the
essentially affine A1(3) model inherits a counterfactual skewed and fat-tailed
distribution from the risk-neutral dynamics while the extra risk premium pa-
rameter in the extended affine A1(3) model allows the skewness and kurtosis
of the distribution under P and Q to be different.

Although extended models have more flexibility in generating distribu-
tions with different skewness and kurtosis under P and Q, the models are
more restricted in generating highly skewed and fat-tailed distributions. The
Feller condition requires K0(1) > 0.5 and therefore the skewness and ex-
cess kurtosis in the unconditional distribution of the 5-year yield cannot be
higher than 2 and 1.5 in the A1(3) model. This restriction is even tighter
when looking at the conditional distribution of Y 5

t+τ |t given the information
at time t. As shown in Appendix F excess kurtosis and the absolute value
of skewness of Y 5

t+τ |t are monotone increasing in τ , go to zero as τ goes to
zero, and go to the excess kurtosis and the absolute value of skewness of the
unconditional distribution as τ → ∞. While this restriction is not binding
under P according to the estimates of the extended A1(3) model - KP

0 (1)
is estimated to be much larger than 0.5 - it appears to be binding under
the risk-neutral measure since the estimate of K

Q
0 (1) is less than 0.5 in the

19An indication that the cross-section of yields seems to dominate the time-series prop-
erties of yields in terms of estimating parameters can be seen in the parameter estimates
in the A1(3) models. When the parameter KP

0 (1) is allowed to differ from K
Q
0 (1) in

the extended model it is estimated at 2.2731 while in the essentially affine model where
KP

0 (1) = K
Q
0 (1) it is estimated at the much smaller value 0.3741.
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essentially affine A1(3) model. Apparently the data calls for a skewed and
fat-tailed distribution for the 5-year yield under the risk-neutral measure and
the extended models cannot accommodate this because of the Feller restric-
tion. The limited ability of the extended A1(3) model to generate strongly
skewed and fat-tailed distributions is illustrated in Figure 7.

[Figure 7 about here.]

In the figure, the conditional distribution under the risk-neutral measure
of the 5-yield in December 2009 given information up to December 2004 - the
end of the sample - is graphed20. It is seen that the essentially affine A1(3)
model is more skewed than the extended A1(3) model and put more weight
on high interest rates, while the smaller skew in the extended model has the
effect of moving probability mass from the right tail to the left tail implying
higher risk-neutral probabilities of small interest rates and smaller probabil-
ities of high interest rates. As an example, the risk-neutral probability of a
5-year rate higher than 9% is 2.1% in the essentially affine model and 0.9%
in the extended model while rates lower than 2% is 0.8% respectively 1.8%.
While I have focused on the longest maturity in the sample for interpretation
purposes, Figure 6 and 7 are very similar for shorter maturities suggesting
that the conclusions in this section are relevant for all maturities.

This example indicates how the Feller condition limits the ability of the
extended A1(3) model in generating skewed distributions for the 5-year yield
under the risk-neutral measure and therefore the extended models might be
less successful in valuing instruments that are sensitive to the tail-behavior
of yields under the risk-neutral measure such as out-of-the-money options.
As an example of such instruments, Gupta and Subrahmanyam (2005) stress
that for accurate pricing of out-of-the-money caps and floors it is impor-
tant for the chosen term structure model to be able to fit the skew in the
underlying interest rate distribution.

6 Conclusion

This paper compares extended affine models with essentially affine models
to see whether the risk premium specification in extended models is able to
improve essentially affine models’ ability to capture risk premia and volatility.

20The conditional distributions are calculated on basis of parameter and latent factors
estimates in the last of the 20,000 simulations in each model.
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Extended affine models do better capture the positive relation between
the slope of the yield curve and excess returns and their risk premia match the
historical risk premia better. The improvement increases with the number
of stochastic volatility factors. However, none of the extended models with
stochastic volatility match the A0(3) model.

With regards to volatility both extended and essentially affine models
capture the historical dynamics quite well except in the period of the Fed ex-
periment in the beginning of the 80s. The extended models capture volatility
slightly better than essentially affine models. In both models, the ability to
capture time-varying volatility decreases with the number of volatility factors
and an A1(3) model - essentially or extended - captures best the historical
volatility dynamics.

Finally, it is shown that extended models match the unconditional distri-
bution of yields better than essentially affine models. However, an examina-
tion of the A1(3) model shows that due to the Feller condition the extended
model cannot generate the skewness and kurtosis under the risk-neutral mea-
sure in long yields that the data calls for.

The results have important implication for the choice of affine model. If
one is mostly interested in the P -dynamics of yields, for example for risk
management purposes, one should choose an extended affine model since
extended models have better P -dynamics. In contrast, if the focus is on the
Q dynamics, for example in pricing out-of-the-money options, an essentially
affine model is preferred because the Feller condition restricts the risk-neutral
moments in yields.

27



A Adjusting the Campbell-Shiller Regressions

for Time-varying risk premia

In Dai and Singleton (2002) it is shown how the regression coefficients of one
can be restored in the Campbell-Shiller regressions by adjusting for time-
varying risk premia. In this section I restate their results.

Rearranging the terms in the definition of the one-period excess return
on an n-period bond, D(t+1, n) = ln(P (t+1,n−1)

P (t,n)
)−rt and using the definition

of zero-coupon yields results in

Y (t + 1, n − 1) − Y (t, n) +
1

n − 1
D(t + 1, n) =

1

n − 1
(Y (t, n) − r(t)). (8)

Defining the yield term premium and the forward term premium as

c(t, n) ≡ Y (t, n) − 1

n

n−1∑

i=0

Et[r(t + i)]

p(t, n) ≡ f(t, n) − Et[r(t + n)],

where f(t, n) ≡ − ln P (t,n+1)
P (t,n)

is the n-forward rate, the realized excess return

can be decomposed in a premium part D∗(t+1, n) and an expectations part21,

D(t + 1, n) = D∗(t + 1, n) +
n−1∑

i=1

[
Et[r(t + i)] − Et+1[r(t + i)]

]
,

where

D∗(t + 1, n) = −(n − 1)[c(t + 1, n − 1) − c(t, n − 1)] + p(t, n − 1). (9)

Since Et[D(t + 1, n)] = Et[D
∗(t + 1, n)] economic content to equation (8) is

added by taking conditional expectation

Et

[
Y (t + 1, n − 1) − Y (t, n) +

1

n − 1
D∗(t + 1, n)

]
=

1

n − 1
(Y (t, n) − r(t)).

The regression coefficients in these ”risk-premium adjusted” Campbell-Shiller
regressions are calculated using historical yields and model implied risk pre-
mia.

21For detailed calculations see Dai and Singleton (2002).
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B Three-Factor Affine Models

In this section I review the canonical representation of all 3-factor affine
models. For all models the process X is restricted to be stationary under
P which is ensured by restricting the real part of the eigenvalues of the
mean-reversion matrix to be positive.

B.1 A0(3)

The representation of the A0(3) model is

d




X1
t

X2
t

X3
t


 = −




K
Q
1 (1, 1) 0 0

K
Q
1 (2, 1) K

Q
1 (2, 2) 0

K
Q
1 (3, 1) K

Q
1 (3, 2) K

Q
1 (3, 3)







X1
t

X2
t

X3
t


 dt + dW̃ (t).

The matrix K1 is lower triangular to ensure identification. The essentially
affine market price of risk is

S
1
2
t Λt =




λ1(1) + λ2(1, 1)X1
t + λ2(1, 2)X2

t + λ2(1, 3)X3
t

λ1(2) + λ2(2, 1)X1
t + λ2(2, 2)X2

t + λ2(2, 3)X3
t

λ1(3) + λ2(3, 1)X1
t + λ2(3, 2)X2

t + λ2(3, 3)X3
t


 .

The extended affine market price of risk does not extend the flexibility of the
essentially affine market price of risk. For the purpose of identification the
vector δx in equation (2) has to be non-negative.

B.2 A1(3)

The A1(3) has the representation
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BBB@
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q
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tq
1 + β2(1)X1

tq
1 + β3(1)X1

t

3
7775

1
CCCA dfW (t).

For the process to be well defined the restrictions K
Q
0 (1) > 0, β2(1) > 0,

β3(1) > 0, and K
Q
1 (1, 1) > 0 apply22. For identification the second and third

22This parameterization is used in Cheridito, Filipovic, and Kimmel (2006) and is
a consequence of employing the invariant affine transformation TAX(t) = X(t) +

(0,

[
k22 k23

k32 k33

]−1 (
k21

k31

)
)′ to the canonical A1(3) model in Dai and Singleton (2000).

The transformation leaves all parameters unchanged except δ and θ. The condition
K

Q
1 (1, 1) > 0 is due to the condition [(KQ

1 )−1K
Q
0 ]1 > 0.
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element of δx in equation (2) has to be non-negative.
The extended affine market price of risk is given as

S
1
2
t Λt =




λ1(1) + λ2(1, 1)X1
t

λ1(2) + λ2(2, 1)X1
t + λ2(2, 2)X2

t + λ2(2, 3)X3
t

λ1(3) + λ2(3, 1)X1
t + λ2(3, 2)X2

t + λ2(3, 3)X3
t


 . (10)

For X to be well defined under P λ1(1) has to satisfy the constraint λ1(1) ≥
1
2
− K

Q
0 (1).

The extended affine model allows λ1(1) to be non-zero in contrast to
the essentially affine model23. Since the essentially affine model nests the
completely affine, the extended affine model has a larger number of risk
premium parameters than the completely affine. The cost of this flexibility is
that the inequality K

Q
0 (1) > 1

2
has to be satisfied in contrast to the inequality

K
Q
0 (1) > 0 in both the essentially and completely affine model. Because of

this constraint - which turns out to be binding when turning to the data
- the extended affine model nests neither the essential nor the completely
affine models.

B.3 A2(3)

The representation of the A2(3) model is24
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with restrictions K
Q
0 (i) > 0, β3(i) > 0, [(KQ

1 )−1K
Q
0 ]i > 0, i = 1, 2, K

Q
1 (2, 1) ≤

0, K
Q
1 (1, 2) ≤ 0, and δx(3) > 0.

The extended market price of risk is given as

S
1
2
t Λt =




λ1(1) + λ2(1, 1)X1
t + λ2(1, 2) X2

t

λ1(2) + λ2(2, 1) X1
t + λ2(2, 2)X2

t

λ1(3) + λ2(3, 1)X1
t + λ2(3, 2)X2

t + λ2(3, 3)X3
t


 .

23StΦ1 + I−Φ2Xt in equation (6) can be reparameterized as in equation (10) with
λ1(1) = 0. In the rest of the paper I will use the latter parametrization for the essentially
affine models for easier comparison of risk premium parameter estimates.

24The affine transformation TAX(t) = X(t) + (0, 0,− K
Q
0

(3)

K
Q
1

(3,3)
)′ is performed on the

canonical A2(3) model of Dai and Singleton (2000).

30



The risk premium parameters are subject to the constraints λ1(i) ≥ 1
2
−

K
Q
0 (i), [(KP

1 )−1KP
0 ]i > 0, i = 1, 2, λ2(1, 2) ≥ K

Q
1 (1, 2), and λ2(2, 1) ≥

K
Q
1 (1, 2). The four boxed parameters are the extra parameters the extended

affine model provides in comparison with the essentially affine model.
The added restrictions the extended affine model places on the Q-parameters

in contrast to the essentially and completely affine models are K
Q
0 (i) > 1

2
, i =

1, 2.

B.4 A3(3)

The representation of the A3(3) model is
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and restrictions for existence are K
Q
1 (i, j) ≤ 0, i, j = 1, .., 3, j 6= i,KQ

0 > 0,
and (KQ

1 )−1K
Q
0 > 0. The extended market price of risk is given as

S
1
2
t Λt =




λ1(1) + λ2(1, 1)X1
t + λ2(1, 2) X2

t + λ2(1, 3) X3
t

λ1(2) + λ2(2, 1) X1
t + λ2(2, 2)X2

t + λ2(2, 3) X3
t

λ1(3) + λ2(3, 1) X1
t + λ2(3, 2) X2

t + λ2(3, 3)X3
t




subject to the constraints λ2(i, j) ≤ K
Q
1 (i, j), i, j = 1, .., 3, j 6= i, λ1 > 1

2
−K

Q
0 ,

and (KP
1 )−1KP

0 > 0.
The extended affine model has the nine boxed parameters extra compared

to the essential and completely affine models. The necessary extra conditions
in the extended model are K

Q
0 > 1

2
.

C Implementation Details

As explained in the text draws violating parameter constraints can simply
be discarded according to Gelfand et al. (1992). However, in the extended
affine model this procedure leads to practically rejecting every draw and
therefore the RW-MH algorithm is used when sampling these parameters in
the extended affine models25.

25According to Gelfand, Smith, and Lee (1992) a risk premium element λ can be drawn
conditional on the parameter constraint. For example, an element of λ1 is restricted to
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The efficiency of the RW-MH algorithm depends crucially on the variance
of the proposal normal distribution. If the variance is too low, the Markov
chain will accept nearly every draw and converge very slowly while it will
reject a too high portion of the draws if the variance is too high. I therefore
do an algorithm calibration and adjust the variance in the first million draws
in the MCMC algorithm. Within each parameter block (KQ

0 , K
Q
1 , β, d,X,

and in the extended affine models λ1 and λ2) the variance of the individual
parameters is the same, while across parameter blocks the variance may be
different. Roberts, Gelman, and Gilks (1997) recommend acceptance rates
close to 1

4
for models of high dimension and therefore the standard deviation

during the algorithm calibration is chosen as follows: Every 100’th draw the
acceptance ratio of each block is evaluated. If it is less than 5 % the standard
deviation is doubled while if it is more than 40 % it is cut in half. This step
is prior to the burn-in period since the convergence results of RW-MH only
applies if the variance is constant (otherwise the Markov property of the
chain is lost). Despite this calibration the Markov chain has in some of the
models not converged after an additional five million draws. In this case
additional simulations in the burn-in period are carried out until there is no
visible non-stationary behavior of the time-series of the univariate parameter
draws.

The normal distribution of the risk premium parameters are found as
follows. According to Bayes’ theorem

p(λ|Φ\λ, X, Y ) ∝ p(Y |Φ, X)p(λ|Φ\λ, X)

∝ p(X|Φ)p(λ|Φ\λ)

∝
N∏

i=1

(
exp

(
− 1

2∆t

T∑

t=1

[∆Xt − µP
t−1∆t]

2
i

[St−1]ii
]
)

In the last line it is used that the priors are assumed to be independent
and proportional to a constant such that the data dominate the results.
Furthermore

µP
t = K

Q
0 − K

Q
1 Xt +

√
StΛt

= K
Q
0 − K

Q
1 Xt + λ1 + λ2Xt,

[a;∞) due to the multivariate Feller condition. Denoting F as the unconditional dis-
tribution function of λ and drawing a uniform random variable U , λ can be drawn as
λ = F−1[F (a) + U(1 − F (a))]. However, this procedure is not computationally feasible
since the constrained interval lies far in the tail of the unconditional distribution and
therefore F (a) cannot reliably be computed.
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so in the expression [∆Xt − µP
t−1∆t]i all the individual elements λind in the

vector λ1 and matrix λ2 can be written as atλ
ind − bt,

p(λind|Φ\λind , X, Y ) ∝ exp
(
− 1

2∆t

T∑

t=1

(atλ
ind − bt)

2

[St−1]ii
]
)
.

Using the result in Frühwirth-Schnatter and Geyer (1998) p. 10 I have that
p(λind|Φ\λind , X, Y ) is a normal distribution with

E(λind) = Qm

var(λind) = Q

where

m =
T∑

t=1

atbt

∆t[St]ii

Q−1 =
T∑

t=1

a2
t

∆t[St]ii
.

The conditional of Xt depends only on neighboring X’s and the sampling
of the latent process X can for computational speed be done in two steps.
First X0, X2, ... are sampled and second X1, X3, ... are sampled. Of the total
computing time, solving the ODEs (4)-(5) takes up 70-80% of the computing
time.

D Model-Implied Campbell-Shiller Regression

Coefficients

In the text the coefficent φn from the Campbell-Shiller regression

Y (t + 1, n − 1) − Y (t, n) = const + φn[
Y (t, n) − Y (t, 1)

n − 1
] + res

is calculated. The model-implied coefficient φn is calculated as follows26.
First

cov(Yt+1(n − 1) − Yt(n),
Yt(n)−Yt(1)

n−1
)

var(
Yt(n)−Yt(1)

n−1
)

=
(n − 1)cov(B(n − 1)Xt+1 − B(n)Xt, Xt)[B(n) − B(1)]′

[B(n) − B(1)]var(Xt)[B(n) − B(1)]′
.

26The error term in the measurement equation is ignored since this is a statistical tool
and not part of the equilibrium model underlying the term structure model.
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The well known formulas EZ = E(E(Z|Xt)) and EZXt = E(E(Z|Xt)Xt)
yield

Ψ(Xt) ≡ E[B(n − 1)Xt+1 − B(n)Xt|Xt] = B(n − 1)[(I − e−Kτ )θ + e−Kτ Xt] − B(n)Xt

where it is used that E(Xt+τ |Xt) = (I − e−Kτ )θ + e−KτXt. Furthermore

cov(B(n − 1)Xt+1 − B(n)Xt, Xt) = E[Ψ(Xt)Xt] − E[Ψ(Xt)]E[Xt]

= [B(n − 1)e−Kτ − B(n)]var(Xt),

and var(XT ) = limt→−∞var(XT |Xt) where analytic formulas for var(XT |Xt)
is given in the Appendix in Duffee (2002). The formulas in Duffee (2002)
require the mean-reversion matrix K under the actual measure P to be diag-
onalizable. Occasionally this requirement is not satisfied and in this case the
variance is calculated using the results in Fisher and Gilles (1996). Specifi-
cally, the expression in equation (3.8) in Fisher and Gilles (1996) is numeri-
cally integrated to obtain the desired result.

E Yearly Volatility Regression

To check the robustness of the volatility regression results in the text an al-
ternative regression using the residuals from the Campbell-Shiller regressions
is examined in this Appendix.

The squared residuals from the CS regressions in equation (1),

[Et(Y (t + 1, n − 1) − Y (t, n)) − (Y (t + 1, n − 1) − Y (t, n)]2 = [Y (t + 1, n − 1) − Et(Y (t + 1, n − 1))]2,

regressed on the level, slope, and curvature of the yield curve and an ARCH
term yields the regression

[Y (t + 1, n) − Et(Y (t + 1, n))]2 = const +

φn+1(1)[Y (t, 5)] +

φn+1(2)[Y (t, 5) − Y (t, 1)] +

φn+1(3)[Y (t, 5) + Y (t, 1) − 2Y (t, 3)] +

φn+1(4)[Y (t, n) − Et−1(Y (t, n))]2 +

res.

Regression results for the data are given in Table 16. The level and ARCH
factors are strongly significant while the slope and curvature factors are in-
significant. Table 17 and 18 shows results for the affine models using simu-
lated data as explained in the text. The results are nearly identical to the
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results in the text: a) the A0(3) estimates the coefficients to 0, b) the models
get the correct sign of the level coefficient but only roughly half the actual
magnitude and the differences are statistically significant, and c) the A1(3)
and A2(3) models imply positive slope and curvature coefficients while the
A3(3) models imply negative coefficients.

[Table 16 about here.]

[Table 17 about here.]

[Table 18 about here.]

F Conditional Moments of the CIR Process

According to Cox, Ingersoll, and Ross (1985) the CIR process

dX = k(θ − X)dt + σ
√

XdW,

has a density of the conditional distribution of Xt+τ |Xt given by

f(Xt+τ |Xt) = ce−u−v
(v

u

) q

2
Iq(2(uv)

1
2 ),

where

c =
2k

σ2(1 − e−kτ )
,

u = cXte
−kτ ,

v = cXt+τ ,

q =
2kθ

σ2
− 1,

and Iq(·) is the modified bessel function of the first kind of order q. It is seen
that 2v has a non-central χ2 distribution with f = 4kθ

σ2 degrees of freedom
and non-centrality parameter λ = 2u. The mean, variance, skewness, and
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excess kurtosis are

E(Xt+τ ) =
1

2c
(f + λ) = θ(1 − e−kτ ) + Xte

−kτ

V (Xt+τ ) =
1

4c2
(2f + 4λ) =

σ2(1 − e−kτ )2

2k
θ +

σ2e−kτ (1 − e−kτ )

k
Xt

skew(Xt+τ ) =
2

3
2 (f + 3λ)

(f + 2λ)
3
2

= 2
3
2

4kθ
σ2 + 6cXte

−kτ

(4kθ
σ2 + 4cXte−kτ )

3
2

=
1√
kσ

4θ + 12
1−e−kτ Xte

−kτ

(2θ + 4
1−e−kτ Xte−kτ )

3
2

=

√
2√

kθσ

2
√

2 + 3√
2
K

(2 + K)
3
2

exkurt(Xt+τ ) =
12(f + 4λ)

(f + 2λ)2
= 12

4kθ
σ2 + 8cXte

−kτ

(4kθ
σ2 + 4cXte−kτ )2

=
12

kσ2

4θ + 16
1−e−kτ Xte

−kτ

(4θ + 8
1−e−kτ Xte−kτ )2

=
3

kθσ2

4 + 4K

(2 + K)2

where

K =
4

ekτ − 1

Xt

θ
.

It is easily seen that skewness and excess kurtosis are monotone decreasing
in K so they are monotone increasing in τ . As τ → 0 skewness and excess
kurtosis go to zero and as τ → ∞ they go to the skewness and excess kurtosis

of the unconditional distribution of X -
√

2
kθσ2 and 3

kθσ2 .
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Figure 1: Density of unadjusted and adjusted Campbell-Shiller regression
coefficients. The first column of this figure shows for each affine model the density of
the Campbell-Shiller regression coefficient estimated according to equation (1). The
coefficients are for the 4-year excess return (n=4) and the actual coefficient estimated
from the data is -1.520 and is marked with a vertical solid line. The second column
of this figure shows the adjusted Campbell-Shiller regression coefficient estimated
using actual yields and model-implied risk premia. The coefficients are for the 4-year
excess return (n=4) and the coefficient of 1 which the models should match if they
are capturing time-varying risk premia correctly is marked with a vertical solid line.
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Figure 2: Box-plot of unconditional mean. This figure depicts for each affine
model a box-plot of the density of the unconditional 5-year yield. The black horizontal
line is the mean in the 5-year yield of 6.19 percent.
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Figure 3: Box-plot of unconditional volatility. This figure depicts for each
affine model a box-plot of the density of the unconditional 5-year volatility (standard
deviation). The black horizontal line is the unconditional volatility in the 5-year yield
of 36.2 basis points.
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Figure 4: Actual and model-implied 1-year conditional volatility. This
figure depicts for the affine models with stochastic volatility the estimate and con-
fidence band of the monthly conditional volatility in the 1-year yield along with an
EGARCH(1,1) estimate.
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Figure 5: Actual and model-implied 5-year conditional volatility. This
figure depicts for the affine models with stochastic volatility the estimate and con-
fidence band of the monthly conditional volatility in the 5-year yield along with an
EGARCH(1,1) estimate.
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Figure 6: Actual and model-implied distribution of the 5-year yield. This
figure shows for the actual 5-year yield and the 7 models the unconditional distribution
of the 5-year yield.
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Figure 7: Conditional distribution of 5-year yield under the risk-neutral
measure. This figure shows for the last observation in the sample, December 2004,
the conditional distribution of the 5-year yield at December 2009 under the risk-
neutral measure. The skewness and excess kurtosis for the distribution are 0.92 and
1.23 in the essentially affine A1(3) model while they are 0.51 and 0.47 in the extended
A1(3) model.
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n 1 2 3 4 5
mean 5.60 5.81 5.98 6.11 6.19

vol. of yield changes 49.3 43.2 40.1 38.8 36.2

Table 1: Yield Curve Statistics. This table shows the unconditional mean of yields
along with the volatility (standard deviation) of monthly yield changes for maturities
1, 2, 3, 4, and 5 year. The mean is given in percent while the volatility is measured
in basis points. Data: Fama and Bliss (1987) monthly observations from 1952:6 to
2004:12.
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n 2 3 4 5
φn −0.775∗∗ −1.1311∗∗∗ −1.5198∗∗∗ −1.4941∗∗∗

s.e. (0.546) (0.637) (0.683) (0.745)

Table 2: Campbell-Shiller regressions. This table shows the slope coefficients from

the regressions Y (t + 1, n − 1)− Y (t, n) = const + φn[Y (t,n)−Y (t,1)
n−1 ] + residual where

n and t are measured in years. In parenthesis are shown Hansen and Hodrick (1980)
standard errors and a significant difference from 1 at the 5%, 1%, or 0.1% level is
denoted by ∗, ∗∗, or ∗ ∗ ∗. Data: Fama and Bliss (1987) monthly observations from
1952:6 to 2004:12.
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n 1 2 3 4 5

level
0.1095∗∗∗

(0.0202)
0.0713∗∗∗

(0.0132)
0.0565∗∗∗

(0.0102)
0.0519∗∗∗

(0.0075)
0.0438∗∗∗

(0.0058)

slope
−0.1415
(0.0960)

−0.0785
(0.0631)

−0.0316
(0.0479)

−0.0196
(0.0362)

0.0156
(0.0286)

curvature
0.2712

(0.1968)
0.1082

(0.1304)
0.1657

(0.0974)
0.0776

(0.0755)
0.1262∗

(0.0603)

Table 3: Volatility regression. This table shows the coefficents from the regressions
[Y (t+1, n)−Y (t, n)]2 = const+φn(1)[Y (t, 5)]+φn(2)[Y (t, 5)−Y (t, 1)]+φn(3)[Y (t, 5)+
Y (t, 1) − 2Y (t, 3)] + residual where t is measured in months, n in years, and Y in
percent. In parenthesis are shown Hansen and Hodrick (1980) standard errors with 6
lags and significance at the 5%, 1%, or 0.1% level is denoted by ∗, ∗∗, or ∗ ∗ ∗. Data:
Fama and Bliss (1987) monthly observations from 1952:6 to 2004:12.
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A0(3) A1(3) ess A2(3) ess A3(3) ess

K
Q
1 (1, 1)

0.6250
(0.5344; 0.7075)

0.0318
(0.0100; 0.0550)

1.1323
(0.9843; 1.2964)

0.2357
(0.1987; 0.2850)

K
Q
1 (1, 2) 0 0

−0.0770
(−0.1439;−0.0182)

−0.0461
(−0.1067;−0.0026)

K
Q
1 (1, 3) 0 0 0

−0.4445
(−0.6668;−0.2844)

K
Q
1 (2, 1)

4.6914
(4.0994; 5.2303)

3.5617
(3.1709; 3.9545)

−0.1634
(−0.2978;−0.0301)

−0.1661
(−0.1884;−0.1385)

K
Q
1 (2, 2)

8.6864
(8.3999; 9.1701)

0.0982
(0.0107; 0.1700)

0.0549
(0.0222; 0.0978)

0.1590
(0.1355; 0.1894)

K
Q
1 (2, 3) 0

4.0489
(3.5131; 4.5243)

0
−0.0781

(−0.1988;−0.0011)

K
Q
1 (3, 1)

1.5609
(0.9862; 1.8184)

1.9465
(1.7062; 2.3039)

2.4236
(2.1944; 2.7326)

−0.0033
(−0.0117;−0.0001)

K
Q
1 (3, 2)

2.8678
(2.2982; 3.3807)

−0.0735
(−0.1056;−0.0459)

−0.2465
(−0.4159;−0.0620)

−0.2937
(−0.3181;−0.2667)

K
Q
1 (3, 3)

0.0163
(−0.0002; 0.0355)

1.0179
(0.8830; 1.1557)

0.3566
(0.2945; 0.4368)

1.9138
(1.8115; 1.9833)

K
Q
0 (1) 0

0.3741
(0.1742; 0.5917)

0.2169
(0.0082; 0.6824)

0.7475
(0.3025; 1.2112)

K
Q
0 (2) 0 0

0.5095
(0.0579; 1.4771)

0.0764
(0.0049; 0.1831)

K
Q
0 (3) 0 0 0

0.0427
(0.0011; 0.1596)

λ2(1, 1)
−0.0580

(−0.4829; 0.3163)
0.0005

(−0.0551; 0.0413)
0.1185

(−0.1091; 0.3513)
0.0998

(0.0300; 0.1652)

λ2(1, 2)
−0.2414

(−0.7987; 0.2982)
0 0 0

λ2(1, 3)
0.0237

(−0.0962; 0.1429)
0 0 0

λ2(2, 1)
4.1679

(3.5749; 4.7157)
1.7675

(−4.8665; 8.4713)
0 0

λ2(2, 2)
6.9890

(6.2871; 7.7656)
−0.2431

(−0.5787; 0.0709)
0.0208

(−0.0247; 0.0634)
−0.0838

(−0.1626;−0.0093)

λ2(2, 3)
−0.1225

(−0.2451;−0.0023)
3.0486

(0.4158; 5.7882)
0 0

λ2(3, 1)
1.2327

(0.6157; 1.7127)
−1.3007

(−2.6867;−0.0567)
0.9776

(−0.7547; 2.7431)
0

λ2(3, 2)
2.9864

(2.1810; 3.7600)
0.0665

(0.0030; 0.1378)
−0.1865

(−0.4248;−0.0308)
0

λ2(3, 3)
−0.0781

(−0.1976; 0.0319)
−0.5906

(−1.1165;−0.1028)
−0.0267

(−0.2714; 0.2161)
0.0251

(−0.2209; 0.2709)

σ2 4.90e − 7
(4.57; 5.24)e − 7

4.93e − 7
(4.61; 5.28)e − 7

5.21e − 7
(4.86; 5.59)e − 7

5.11e − 7
(4.78; 5.48)e − 7

Table 4: Model estimates, essentially affine models (part 1). This Table
shows parameter estimates along with confidence bands for all 3-factor essentially
affine models as defined in section B. Data used in estimation is Fama and Bliss
(1987) monthly zero yields from 1952:6 to 2004:12. The estimation method is MCMC.
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A0(3) ess/ext A1(3) ess A2(3) ess A3(3) ess

λ1(1)
0.5289

(0.1485; 0.9139)
0 0 0

λ1(2)
−0.1127

(−0.5192; 0.2938)
0.3850

(−56.14; 55.90)
0 0

λ1(3)
0.2210

(−0.1697; 0.6163)
−0.2580

(−10.90; 10.74)
0.2958

(−2.0638; 2.7795)
0

δ0
0.0790

(0.0762; 0.0826)
0.0187

(0.0184; 0.0191)
0.0227

(0.0218; 0.0236)
0.0112

(0.0100; 0.0124)

δx(1)
0.0192

(0.0134; 0.0282)
0.0027

(0.0025; 0.0029)
0.0071

(0.0052; 0.0089)
−0.0014

(−0.0015;−0.0012)

δx(2)
0.0684

(0.0637; 0.0750)
0.00006

(0.00004; 0.00008)
0.0007

(0.0006; 0.0010)
0.0030

(0.0028; 0.0033)

δx(3)
0.0109

(0.0098; 0.0128)
0.00040

(0.00032; 0.00051)
0.0030

(0.0019; 0.0055)
0.0158

(0.0149; 0.0167)

β2(1) 0
1474.3

(1155.9; 1833.0)
0 0

β3(1) 0
54.1

(33.4; 77.2)
9.3479

(0.9447; 18.633)
0

β3(2) 0 0
0.2369

(0.0073; 0.9411)
0

KP
1 (1, 1)

0.6830
(0.3312; 1.0770)

0.0312
(0.0013; 0.0836)

1.0137
(0.7318; 1.2684)

0.1358
(0.0739; 0.2096)

KP
1 (1, 2)

0.2414
(−0.2988; 0.7986)

0
−0.0770

(−0.1439;−0.0182)
−0.0461

(−0.1067;−0.0026)

KP
1 (1, 3)

−0.0237
(−0.1430; 0.0961)

0 0
−0.4445

(−0.6668;−0.2844)

KP
1 (2, 1)

0.5235
(0.1273; 0.9580)

1.7942
(−4.9003; 8.4018)

−0.1634
(−0.2978;−0.0301)

−0.1661
(−0.1884;−0.1385)

KP
1 (2, 2)

1.6974
(1.1654; 2.2582)

0.3413
(0.0348; 0.6569)

0.0342
(0.0073; 0.0777)

0.2429
(0.1633; 0.3267)

KP
1 (2, 3)

0.1225
(0.0022; 0.2450)

1.0003
(−1.6247; 3.6542)

0
−0.0781

(−0.1988;−0.0011)

KP
1 (3, 1)

0.3282
(−0.0344; 0.6967)

3.2472
(1.9469; 4.7258)

1.4461
(−0.3262; 3.1707)

−0.0033
(−0.0117;−0.0001)

KP
1 (3, 2)

−0.1186
(−0.6588; 0.4359)

−0.1400
(−0.2254;−0.0681)

−0.0601
(−0.2725; 0.0882)

−0.2937
(−0.3181;−0.2667)

KP
1 (3, 3)

0.0944
(−0.0121; 0.2100)

1.6085
(1.1046; 2.1460)

0.3833
(0.1446; 0.6255)

1.8887
(1.6339; 2.1414)

KP
0 (1)

0.5289
(0.1485; 0.9139)

0.3741
(0.1742; 0.5917)

0.2169
(0.0082; 0.6824)

0.7475
(0.3025; 1.2112)

KP
0 (2)

−0.1127
(−0.5192; 0.2938)

0.3850
(−56.1; 55.9)

0.5095
(0.0579; 1.4771)

0.0764
(0.0049; 0.1831)

KP
0 (3)

0.2210
(−0.1697; 0.6163)

−0.2580
(−10.90; 10.74)

0.2958
(−2.0638; 2.7795)

0.0427
(0.0011; 0.1596)

Table 5: Model estimates, essentially affine models (part 2). This Table
shows parameter estimates along with confidence bands for all 3-factor essentially
affine models as defined in section B. The parameters KP

0 and KP
1 are showed for

completeness although they are functions of the other parameters and are not esti-
mated. Data used in estimation is Fama and Bliss (1987) monthly zero yields from
1952:6 to 2004:12 and the estimation method is MCMC.
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A1(3) ext A2(3) ext A3(3) ext

K
Q
1 (1, 1)

0.0393
(0.0053; 0.0811)

1.1400
(1.0204; 1.2842)

0.2380
(0.1575; 0.3219)

K
Q
1 (1, 2) 0

−0.0457
(−0.0752;−0.0218)

−0.0803
(−0.2062;−0.0027)

K
Q
1 (1, 3) 0 0

−0.0959
(−0.1995;−0.0048)

K
Q
1 (2, 1)

0.0950
(0.0313; 0.1209)

−0.1713
(−0.3081;−0.0112)

−0.1115
(−0.1675;−0.0763)

K
Q
1 (2, 2)

0.4465
(0.3096; 0.5770)

0.0758
(0.0344; 0.1283)

0.2505
(0.1532; 0.4441)

K
Q
1 (2, 3)

1.1754
(1.0330; 1.3771)

0
−0.0437

(−0.1256;−0.0010)

K
Q
1 (3, 1)

0.0235
(0.0027; 0.0478)

3.2571
(3.1596; 3.4077)

−0.01393
(−0.2492;−0.0495)

K
Q
1 (3, 2)

−0.1507
(−0.2083;−0.0944)

−0.3601
(−0.5204;−0.1801)

−1.5435
(−1.8783;−1.2389)

K
Q
1 (3, 3)

0.4294
(0.3313; 0.5361)

0.3221
(0.2517; 0.4396)

1.4639
(1.0538; 1.9630)

K
Q
0 (1)

1.2579
(0.5305; 2.4484)

0.6003
(0.5022; 0.9402)

0.6566
(0.5043; 1.0310)

K
Q
0 (2) 0

0.6245
(0.5039; 0.8813)

0.5516
(0.5011; 0.6853)

K
Q
0 (3) 0 0

1.9349
(0.5268; 4.1132)

λ2(1, 1)
−0.0326

(−0.1089; 0.0402)
0.1368

(−0.2757; 0.5365)
−0.2922

(−0.4798;−0.1080)

λ2(1, 2) 0
−0.0041

(−0.0347; 0.0242)
0.0495

(−0.1520; 0.3744)

λ2(1, 3) 0 0
0.4981

(0.1888; 0.8087)

λ2(2, 1)
0.0183

(−0.0325; 0.0712)
1.6225

(0.3304; 2.9590)
−0.0679

(−0.1451; 0.0167)

λ2(2, 2)
0.0290

(−0.1770; 0.2240)
−0.0880

(−0.1876; 0.0105)
−0.4263

(−0.7744;−0.0951)

λ2(2, 3)
0.6129

(0.1223; 1.1497)
0

0.3264
(0.0933; 0.6674)

λ2(3, 1)
−0.0819

(−0.1365;−0.0223)
0.4763

(−1.9484; 2.9752)
−0.1179

(−0.2337;−0.0208)

λ2(3, 2)
−0.0512

(−0.2929; 0.1936)
−0.3019

(−0.5545;−0.0963)
−0.4727

(−0.9290;−0.0444)

λ2(3, 3)
−1.2157

(−1.6774;−0.7926)
−0.0246

(−0.1969; 0.1468)
0.5495

(0.2107; 0.9574)

σ2 5.09e − 7
(4.70e − 7; 5.54e − 7)

5.25e − 7
(4.90e − 7; 5.63e − 7)

5.20e − 7
(4.84e − 7; 5.58e − 7)

Table 6: Model estimates, extended affine models (part 1). This Table shows
parameter estimates along with confidence bands for all 3-factor essentially affine
models as defined in section B. Data used in estimation is Fama and Bliss (1987)
monthly zero yields from 1952:6 to 2004:12. The estimation method is MCMC.
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A1(3) ext A2(3) ext A3(3) ext

λ1(1)
1.0152

(−0.6526; 2.7914)
0.0753

(−0.1420; 0.3477)
0.4850

(−0.2748; 1.9402)

λ1(2)
−0.0752

(−0.7097; 0.5245)
0.3875

(−0.1767; 1.4118)
0.4729

(−0.0291; 1.5230)

λ1(3)
0.0364

(−0.5922; 0.6914)
0.7649

(−1.8154; 3.4713)
−0.1342

(−1.8128; 1.5689)

δ0
0.0113

(0.0078; 0.0149)
0.0226

(0.0198; 0.0239)
0.0017

(−0.0016; 0.0047)

δx(1)
0.0024

(0.0023; 0.0026)
0.0106

(0.0095; 0.0117)
−0.0016

(−0.0021;−0.0012)

δx(2)
0.0074

(0.0066; 0.0083)
0.0012

(0.0007; 0.0015)
0.0016

(0.0010; 0.0024)

δx(3)
0.0036

(0.0022; 0.0053)
0.0018

(0.0014; 0.0025)
0.0043

(0.0032; 0.0058)

β2(1)
0.0550

(0.0101; 0.1233)
0 0

β3(1)
0.0460

(0.0101; 0.1233)
17.60

(2.31; 41.50)
0

β3(2) 0
1.846

(0.481; 3.798)
0

KP
1 (1, 1)

0.0719
(0.0168; 0.1331)

1.0032
(0.6080; 1.4148)

0.5302
(0.3747; 0.6944)

KP
1 (1, 2) 0

−0.0415
(−0.0762;−0.0140)

−0.1298
(−0.4398;−0.0039)

KP
1 (1, 3) 0 0

−0.5939
(−0.9026;−0.3109)

KP
1 (2, 1)

0.0767
(0.0201; 0.1313)

−1.7937
(−3.1157;−0.5323)

−0.0436
(−0.1214;−0.0018)

KP
1 (2, 2)

0.4175
(0.2358; 0.6045)

0.1638
(0.0749; 0.2606)

0.6768
(0.3098; 1.0599)

KP
1 (2, 3)

0.5625
(0.0538; 1.0734)

0
−0.3701

(−0.7065;−0.1287)

KP
1 (3, 1)

0.1054
(0.0326; 0.1725)

2.7808
(0.2578; 5.2090)

−0.0215
(−0.0746;−0.0005)

KP
1 (3, 2)

−0.0994
(−0.3563; 0.1339)

−0.0583
(−0.2439; 0.1089)

−1.0708
(−1.5926;−0.6526)

KP
1 (3, 3)

1.6451
(1.2099; 2.1238)

0.3467
(0.1764; 0.5238)

0.9144
(0.5486; 1.3692)

KP
0 (1)

2.2731
(1.0089; 3.8133)

0.6757
(0.5083; 1.0301)

1.1416
(0.5175; 2.5748)

KP
0 (2)

−0.0752
(−0.7097; 0.5245)

1.0119
(0.5188; 2.0401)

1.0245
(0.5165; 2.0921)

KP
0 (3)

0.0364
(−0.5922; 0.6914)

0.7649
(−1.8154; 3.4713)

1.8007
(0.5679; 3.7045)

Table 7: Model estimates, extended affine models (part 2). This Table
shows parameter estimates along with confidence bands for all 3-factor essentially
affine models as defined in section B. The parameters KP

0 and KP
1 are showed for

completeness although they are functions of the other parameters and are not esti-
mated. Data used in estimation is Fama and Bliss (1987) monthly zero yields from
1952:6 to 2004:12 and the estimation method is MCMC.

56



n 2 3 4 5

Actual −0.775 −1.131 −1.520 −1.494

A0(3)ess

Implied
−0.311

(−1.155; 0.464)
−0.415

(−1.382; 0.473)
−0.531

(−1.588; 0.447)
−0.657

(−1.811; 0.406)

Simulated
−0.206

(−1.089; 0.497)
−0.316

(−1.338; 0.519)
−0.447

(−1.561; 0.479)
−0.591

(−1.798; 0.417)

A1(3)ess

Implied
−0.119

(−0.950; 0.706)
−0.166

(−0.877; 0.702)
−0.066

(−0.767; 0.777)
−0.100

(−0.647; 0.879)

Simulated
0.302

(−0.364; 0.887)
0.243

(−0.425; 0.892)
0.262

(−0.430; 0.971)
0.314

(−0.418; 1.075)

A2(3)ess

Implied
−0.007

(−0.927; 0.910)
0.029

(−0.818; 0.977)
0.100

(−0.704; 1.062)
0.185

(−0.598; 1.137)

Simulated
0.558

(−0.087; 1.169)
0.587

(−0.124; 1.231)
0.636

(−0.110; 1.338)
0.690

(−0.084; 1.415)

A3(3)ess

Implied
0.567

(−0.604; 1.026)
0.631

(−0.482; 1.078)
0.728

(−0.312; 1.135)
0.835

(−0.135; 1.194)

Simulated
1.080

(0.796; 1.323)
1.158

(0.827; 1.424)
1.236

(0.870; 1.530)
1.309

(0.946; 1.602)

A1(3)ext

Implied
0.070

(−0.479; 0.506)
−0.057

(−0.575; 0.383)
−0.067

(−0.571; 0.377)
−0.005

(−0.504; 0.441)

Simulated
0.231

(−0.293; 0.649)
0.089

(−0.443; 0.541)
0.071

(−0.502; 0.532)
0.134

(−0.441; 0.598)

A2(3)ext

Implied
0.120

(−0.484; 0.682)
0.086

(−0.509; 0.677)
0.095

(−0.498; 0.713)
0.130

(−0.468; 0.768)

Simulated
0.381

(−0.138; 0.872)
0.340

(−0.232; 0.878)
0.337

(−0.289; 0.924)
0.359

(−0.302; 0.981)

A3(3)ext

Implied
0.191

(−0.270; 0.670)
0.135

(−0.370; 0.679)
0.084

(−0.454; 0.676)
0.030

(−0.538; 0.669)

Simulated
0.282

(−0.184; 0.765)
0.233

(−0.326; 0.826)
0.192

(−0.421; 0.851)
0.147

(−0.502; 0.846)

Table 8: Model-implied Campbell-Shiller regression coefficients. This table
shows the regression coefficients from the regressions Y (t + 1, n − 1) − Y (t, n) =

const + φn[Y (t,n)−Y (t,1)
n−1 ] + residual where n and t are measured in years. The first

set is the model-implied coefficients calculated according to Appendix D. The second
set takes into account finite-sample bias by simulating as explained in the text.
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n 2 3 4 5

Actual 1 1 1 1

A0(3) ess
0.525

(−0.237; 1.362)
1.099

(−0.171; 2.616)
0.881

(−0.452; 2.542)
1.068

(−0.337; 2.887)

A1(3) ess
−0.150

(−0.677; 0.418)
0.060

(−0.757; 1.032)
−0.299

(−1.107; 0.762)
−0.292

(−1.106; 0.880)

A2(3) ess
−0.328

(−0.916; 0.342)
−0.333

(−1.235; 0.802)
−0.651

(−1.558; 0.590)
−0.588

(−1.536; 0.820)

A3(3) ess
−0.672

(−0.748;−0.590)
−0.921

(−1.095;−0.744)
−1.282

(−1.536;−1.032)
−1.276

(−1.582;−0.975)

A1(3) ext
0.058

(−0.289; 0.416)
0.490

(−0.046; 1.071)
0.124

(−0.398; 0.728)
0.088

(−0.425; 0.714)

A2(3) ext
−0.086

(−0.554; 0.441)
0.137

(−0.615; 1.001)
−0.125

(−0.896; 0.774)
−0.022

(−0.828; 0.937)

A3(3) ext
0.033

(−0.383; 0.419)
0.310

(−0.343; 0.900)
0.037

(−0.587; 0.588)
0.184

(−0.441; 0.721)

Table 9: Risk-premium adjusted Campbell-Shiller regression coefficients.
This table shows the slope coefficents from the regressions Y (t + 1, n− 1)− Y (t, n) +

D∗(t + 1, n) = const + φn[Y (t,n)−Y (t,1)
n−1 ] + residual where n and t are measured in

years. In the regression actual yields and model-implied risk premia D∗ defined in
equation (9) are used.
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n 1 2 3 4 5

Actual 5.60 5.81 5.98 6.11 6.19

A0(3) ess

mean
median

6.12
5.86

(1.22; 13.75)

6.37
6.09

(1.48; 14.01)

6.57
6.31

(1.63; 14.17)

6.71
6.45

(1.74; 14.25)

6.81
6.55

(1.83; 14.28)

A1(3) ess

mean
median

9.56
4.63

(2.29; 39.29)

10.06
4.80

(2.48; 38.98)

10.44
4.92

(2.72; 39.46)

10.71
5.02

(2.82; 40.39)

10.88
5.10

(2.84; 40.90)

A2(3) ess

mean
median

28.69
5.25

(2.44; 49.77)

30.74
5.49

(2.57; 52.85)

32.17
5.66

(2.70; 53.60)

33.10
5.76

(2.76; 54.09)

33.63
5.83

(2.76; 55.24)

A3(3) ess

mean
median

15.42
5.77

(2.59; 49.81)

15.89
6.02

(2.71; 50.98)

16.23
6.22

(2.80; 52.04)

16.43
6.39

(2.88; 52.74)

16.52
6.53

(2.94; 53.08)

A1(3) ext

mean
median

6.83
6.27

(4.15; 13.18)

7.09
6.54

(4.37; 13.40)

7.29
6.72

(4.54; 13.56)

7.44
6.89

(4.67; 13.66)

7.53
7.02

(4.78; 13.71)

A2(3) ext

mean
median

6.39
5.97

(4.50; 11.19)

6.68
6.23

(4.68; 11.89)

6.90
6.46

(4.84; 12.34)

7.06
6.54

(4.95; 12.51)

7.18
6.64

(5.04; 12.67)

A3(3) ext

mean
median

6.23
6.00

(4.04; 9.61)

6.46
6.24

(4.29; 9.86)

6.65
6.42

(4.50; 10.10)

6.79
6.55

(4.67; 10.26)

6.88
6.64

(4.80; 10.36)

Table 10: Unconditional mean of yields. The first line in this Table shows the
unconditional mean in percent of the yields in the data where n denotes maturity.
The next lines show the model-implied unconditional mean, median, and confidence
bands of yields for the estimated models. These are calculated on basis of simulated
yields as explained in the text.
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n 1 2 3 4 5

Actual 49.3 43.2 40.1 38.8 36.2

A0(3) ess

mean
median

48.8
48.7

(46.3; 51.6)

43.6
43.6

(41.4; 45.9)

39.8
39.8

(37.9; 41.9)

37.2
37.2

(35.3; 39.2)

35.4
35.4

(33.6; 37.3)

A1(3) ess

mean
median

47.2
35.7

(18.1; 134.2)

42.5
32.3

(16.4; 121.1)

39.9
30.4

(15.4; 113.6)

37.9
28.8

(14.7; 107.5)

36.1
27.5

(14.0; 102.2)

A2(3) ess

mean
median

54.6
39.0

(15.3; 159.8)

48.9
35.1

(13.1; 141.3)

45.6
32.6

(12.0; 130.5)

42.8
30.7

(11.1; 122.9)

40.4
28.9

(10.4; 116.1)

A3(3) ess

mean
median

63.6
48.6

(27.8; 158.8)

56.8
43.5

(24.9; 142.3)

52.9
40.5

(23.1; 132.6)

49.9
38.2

(21.8; 125.0)

47.5
36.3

(20.6; 118.7)

A1(3) ext

mean
median

45.6
44.2

(35.3; 67.1)

40.5
39.4

(31.5; 57.7)

37.6
36.6

(29.5; 52.7)

35.3
34.5

(27.6; 49.6)

33.4
32.4

(26.0; 47.0)

A2(3) ext

mean
median

48.3
46.6

(36.9; 71.1)

42.9
41.4

(32.1; 63.9)

40.0
38.6

(29.9; 60.0)

37.9
36.6

(28.3; 57.0)

36.2
35.0

(27.0; 54.5)

A3(3) ext

mean
median

45.9
45.4

(35.8; 58.8)

42.8
42.1

(33.0; 54.9)

40.3
39.6

(31.2; 51.5)

37.9
37.2

(29.5; 48.2)

35.6
35.0

(27.9; 45.3)

Table 11: Unconditional volatility of yields. The first lines in this Table
shows the unconditional volatility (standard deviation) in basispoints of monthly
yield changes in the data where n denotes maturity. The next lines show the model-
implied unconditional mean, median, and confidence bands of volatility of monthly
yield changes for the estimated models. These are calculated on basis of simulated
yields as explained in the text.
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n 1 2 3 4 5
Actual
level 0.110 0.071 0.057 0.052 0.044
slope −0.142 −0.079 −0.032 −0.020 0.016

curvature 0.271 0.108 0.166 0.078 0.126
A0(3)

level
0.000

(−0.002; 0.002)
0.000

(−0.001; 0.001)
0.000

(−0.001; 0.001)
0.000

(−0.001; 0.001)
0.000

(−0.001; 0.001)

slope
0.000

(−0.009; 0.010)
0.000

(−0.007; 0.008)
0.000

(−0.006; 0.006)
0.000

(−0.005; 0.006)
0.000

(−0.005; 0.005)

curvature
0.001

(−0.021; 0.025)
0.001

(−0.018; 0.020)
0.001

(−0.016; 0.016)
0.000

(−0.013; 0.014)
0.000

(−0.011; 0.012)
A1(3) ess

level
0.045

(0.040; 0.051)
0.036

(0.032; 0.041)
0.032

(0.029; 0.036)
0.029

(0.026; 0.032)
0.026

(0.024; 0.029)

slope
0.065

(0.049; 0.087)
0.052

(0.039; 0.070)
0.045

(0.034; 0.062)
0.041

(0.030; 0.055)
0.037

(0.028; 0.049)

curvature
0.117

(0.082; 0.159)
0.093

(0.065; 0.128)
0.081

(0.054; 0.112)
0.072

(0.047; 0.101)
0.065

(0.042; 0.091)
A2(3) ess

level
0.043

(0.033; 0.052)
0.035

(0.027; 0.041)
0.030

(0.023; 0.035)
0.026

(0.020; 0.031)
0.023

(0.018; 0.028)

slope
0.128

(0.070; 0.169)
0.096

(0.055; 0.127)
0.080

(0.050; 0.107)
0.068

(0.044; 0.092)
0.059

(0.039; 0.080)

curvature
0.359

(0.141; 0.513)
0.255

(0.106; 0.365)
0.204

(0.097; 0.293)
0.169

(0.085; 0.245)
0.142

(0.075; 0.207)
A3(3) ess

level
0.051

(0.048; 0.054)
0.039

(0.037; 0.041)
0.033

(0.031; 0.035)
0.029

(0.028; 0.031)
0.027

(0.025; 0.028)

slope
0.020

(0.007; 0.038)
−0.006

(−0.016; 0.007)
−0.012

(−0.021;−0.002)
−0.012

(−0.020;−0.005)
−0.011

(−0.018;−0.005)

curvature
0.130

(0.096; 0.171)
0.013

(−0.014; 0.042)
−0.016

(−0.040; 0.007)
−0.023

(−0.044;−0.004)
−0.023

(−0.042;−0.006)
A1(3) ext

level
0.032

(0.024; 0.040)
0.025

(0.019; 0.032)
0.022

(0.016; 0.027)
0.019

(0.015; 0.024)
0.018

(0.014; 0.022)

slope
0.038

(0.024; 0.055)
0.030

(0.019; 0.042)
0.026

(0.016; 0.036)
0.022

(0.014; 0.031)
0.021

(0.013; 0.028)

curvature
0.079

(0.045; 0.118)
0.061

(0.037; 0.091)
0.052

(0.031; 0.077)
0.046

(0.028; 0.067)
0.042

(0.025; 0.059)
A2(3) ext

level
0.047

(0.039; 0.055)
0.037

(0.031; 0.043)
0.032

(0.027; 0.037)
0.029

(0.025; 0.033)
0.026

(0.023; 0.030)

slope
0.136

(0.095; 0.181)
0.097

(0.066; 0.130)
0.080

(0.056; 0.108)
0.070

(0.049; 0.093)
0.062

(0.044; 0.083)

curvature
0.370

(0.201; 0.567)
0.238

(0.122; 0.384)
0.186

(0.100; 0.294)
0.156

(0.088; 0.242)
0.135

(0.079; 0.205)
A3(3) ext

level
0.039

(0.030; 0.050)
0.033

(0.025; 0.043)
0.029

(0.022; 0.038)
0.025

(0.019; 0.034)
0.022

(0.017; 0.030)

slope
0.024

(0.006; 0.049)
0.004

(−0.011; 0.026)
−0.003

(−0.016; 0.014)
−0.005

(−0.016; 0.009)
−0.005

(−0.014; 0.006)

curvature
0.062

(0.025; 0.107)
0.002

(−0.029; 0.038)
−0.017

(−0.044; 0.012)
−0.022

(−0.045; 0.001)
−0.022

(−0.041;−0.004)

Table 12: Volatility regression. This table shows for the affine models the coefficents
from the regressions [Y (t+1, n)−Y (t, n)]2 = const+φn(1)[Y (t, 5)]+φn(2)[Y (t, 5)−
Y (t, 1)]+φn(3)[Y (t, 5)+Y (t, 1)−2Y (t, 3)]+residual where t is measured in months, n

in years, and Y in percent. The regression coefficients are calculated using simulated
yields (in percent) .
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Whole sample period 1952:6 to 2004:12
n 1 2 3 4 5

level
0.1095∗∗∗

(0.0202)
0.0713∗∗∗

(0.0132)
0.0565∗∗∗

(0.0102)
0.0519∗∗∗

(0.0075)
0.0438∗∗∗

(0.0058)

slope
−0.1415
(0.0960)

−0.0785
(0.0631)

−0.0316
(0.0479)

−0.0196
(0.0362)

0.0156
(0.0286)

curvature
0.2712

(0.1968)
0.1082

(0.1304)
0.1657

(0.0974)
0.0776

(0.0755)
0.1262∗

(0.0603)

Period before the Fed experiment 1952:6 to 1979:9
n 1 2 3 4 5

level
0.0465∗∗∗

(0.0097)
0.0285∗∗∗

(0.0068)
0.0266∗∗∗

(0.0067)
0.0253∗∗∗

(0.0061)
0.0183∗∗

(0.0056)

slope
0.0551

(0.0483)
0.0368

(0.0349)
0.0272

(0.0326)
0.0236

(0.0303)
0.0201

(0.0263)

curvature
0.1330

(0.0795)
0.0014

(0.0583)
0.0107

(0.0531)
0.0240

(0.0498)
0.0539

(0.0419)

Period after the Fed experiment 1982:11 to 2004:12
n 1 2 3 4 5

level
0.0306∗∗∗

(0.0051)
0.0195∗∗∗

(0.0048)
0.0174∗∗∗

(0.0046)
0.0198∗∗∗

(0.0049)
0.0180∗∗∗

(0.0049)

slope
0.0254

(0.0209)
0.0316

(0.0195)
0.0511∗∗

(0.0191)
0.0639∗∗

(0.0199)
0.0605∗∗

(0.0200)

curvature
0.0368

(0.0601)
0.0577

(0.0564)
0.0750

(0.0560)
0.1268∗

(0.0584)
0.1116

(0.0575)

Table 13: Volatility regression in subperiods. This table shows the coefficients from
the same regression as Table 3 except that the regression is split into the period before
the Fed Experiment and after the Fed Experiment. The regression is [Y (t + 1, n) −
Y (t, n)]2 = const + φn(1)[Y (t, 5)] + φn(2)[Y (t, 5)−Y (t, 1)] + φn(3)[Y (t, 5) + Y (t, 1)−
2Y (t, 3)]+residual and in parenthesis are shown Hansen and Hodrick (1980) standard
errors with 6 lags and significance at the 5%, 1%, or 0.1% level is denoted by ∗, ∗∗,
or ∗ ∗ ∗.
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Whole sample period 1952:6 to 2004:12
A0(3)ess A1(3)ess A2(3)ess A3(3)ess A1(3)ext A2(3)ext A3(3)ext

1-year 0.0 70.2 69.3 73.2 72.7 69.9 73.0
2-year 0.0 74.3 73.0 72.3 75.3 74.0 74.0
3-year 0.0 78.4 78.0 74.3 78.9 79.0 76.2
4-year 0.0 81.0 80.4 76.1 81.1 81.4 78.0
5-year 0.0 79.0 79.5 73.2 78.8 80.2 74.9
average 0.0 76.6 76.1 73.8 77.4 76.9 75.2

.
Period before the Fed experiment 1952:6 to 1979:9

A0(3)ess A1(3)ess A2(3)ess A3(3)ess A1(3)ext A2(3)ext A3(3)ext

1-year 0.0 77.6 75.3 72.0 77.0 76.2 75.6
2-year 0.0 72.7 68.3 67.2 70.7 70.9 70.4
3-year 0.0 75.9 73.6 71.5 74.3 76.3 73.8
4-year 0.0 77.2 75.9 72.8 75.7 78.5 74.9
5-year 0.0 67.7 68.6 62.5 66.1 70.3 64.2
average 0.0 74.2 72.3 69.2 72.8 74.4 71.8

.
Period after the Fed experiment 1982:11 to 2004:12
A0(3)ess A1(3)ess A2(3)ess A3(3)ess A1(3)ext A2(3)ext A3(3)ext

1-year 0.0 74.8 56.0 74.1 74.9 61.9 76.1
2-year 0.0 66.5 54.3 67.5 66.6 60.6 68.4
3-year 0.0 72.5 61.0 76.0 73.1 67.7 76.0
4-year 0.0 61.9 52.7 66.4 62.8 58.2 66.4
5-year 0.0 54.1 46.0 59.5 55.1 50.6 59.3
average 0.0 66.0 54.0 68.7 66.5 59.8 69.2

Table 14: Correlation between conditional volatility and an EGARCH estimate.
This table shows the correlation between model-implied monthly conditional volatility
and an EGARCH(1,1) estimate of montly conditional volatility.
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Period with daily data available 1961:7 to 2004:12
n 1 2 3 4 5

Actual 34.5 33.2 32.8 31.9 31.1
A1(3)ess 45.1 45.1 45.1 45.1 45.1

(9.5; 75.8) (9.4; 76.2) (9.3; 76.5) (9.1; 76.4) (8.9; 76.2)
A2(3)ess 19.8 21.0 22.2 23.4 24.8

(0.8; 50.4) (0.8; 52.4) (1.2; 54.6) (1.2; 56.7) (1.2; 58.1)
A3(3)ess 62.7 62.8 63.2 63.3 63.2

(38.8; 82.8) (38.1; 82.8) (39.1; 83.1) (39.0; 83.1) (39.0; 83.1)
A1(3)ext 28.7 28.6 28.5 28.6 29.1

(7.0; 56.6) (5.8; 56.7) (5.8; 56.5) (6.4; 56.7) (6.3; 57.6)
A2(3)ext 21.9 25.3 27.6 29.2 30.4

(1.9; 51.8) (2.6; 55.2) (3.5; 58.0) (4.0; 58.8) (4.8; 59.5)
A3(3)ext 43.7 46.2 47.7 48.6 49.1

(21.2; 65.8) (25.5; 67.9) (26.4; 69.2) (27.8; 70.0) (28.7; 70.3)

Period after Fed experiment 1982:11 to 2004:12
n 1 2 3 4 5

Actual 5.2 5.5 6.9 8.1 8.8
A1(3)ess 36.1 36.1 36.1 36.1 36.1

(3.0; 75.4) (2.7; 75.4) (2.7; 75.4) (2.9; 74.9) (3.1; 74.6)
A2(3)ess 19.2 18.7 18.7 19.1 19.6

(0.4; 50.8) (0.6; 52.6) (0.8; 53.7) (0.9; 54.9) (0.7; 55.8)
A3(3)ess 55.2 55.2 55.7 55.9 55.7

(27.9; 81.1) (28.1; 81.6) (28.9; 81.9) (29.5; 82.0) (28.8; 81.8)
A1(3)ext 21.2 21.2 21.0 21.2 21.7

(2.2; 47.5) (2.4; 48.6) (2.6; 48.6) (2.7; 50.0) (2.8; 50.6)
A2(3)ext 19.5 21.3 22.9 24.0 25.0

(0.8; 49.3) (0.1; 51.0) (1.8; 54.0) (2.1; 55.9) (2.7; 56.7)
A3(3)ext 35.4 38.2 40.0 41.0 41.6

(12.2; 61.6) (15.7; 63.3) (17.8; 65.4) (18.7; 66.0) (19.4; 66.4)

Table 15: Testing the fundamental affine yield variation spanning con-
dition. This table shows the R2’s (in percent) from regressing monthly realized
volatility (calculated using daily data) on average monthly level, slope, and curva-
ture. ’Actual’ are the R2’s from historical data. Model-implied mean R2’s and 95%
confidence bands are calculated by simulating 500 data sets of equal length as the
historical data. In the simulations mean parameter estimates are used.
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n 2 3 4 5

level
0.00183

(0.00031)
0.00138

(0.00023)
0.00121

(0.00019)
0.00127

(0.00020)

slope
0.00070

(0.00183)
0.00094

(0.00141)
0.00099

(0.00116)
0.00132

(0.00112)

curvature
0.00529

(0.00456)
0.00291

(0.00361)
0.00206

(0.00301)
0.00248

(0.00280)

ARCH
0.76347

(0.02870)
0.78226

(0.02855)
0.77349

(0.02885)
0.74372

(0.02913)

Table 16: Volatility regression. This table shows the slope coefficents from the re-
gressions [Y (t+1, n−1)−Et(Y (t+1, n−1))]2 = const+φn(1)[Y (t, 5)]+φn(2)[Y (t, 5)−
Y (t, 1)]+φn(3)[Y (t, 5)+Y (t, 1)−2Y (t, 3)]+φn(4)[Y (t, n−1)−Et−1(Y (t, n−1))]2 +
residual where n and t are measured in years. In parentheses are shown Hansen and
Hodrick (1980) standard errors with 12 lags. Data: Fama and Bliss (1987) monthly
observations from 1952:6 to 2004:12.
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n 2 3 4 5

Actual

level 0.183 0.138 0.121 0.127
slope 0.070 0.094 0.099 0.132

curvature 0.529 0.291 0.206 0.248
ARCH 0.763 0.782 0.773 0.733

A0(3)

level
0.000

(−0.010; 0.011)
0.000

(−0.008; 0.008)
0.000

(−0.007; 0.006)
0.000

(−0.006; 0.005)

slope
−0.001

(−0.059; 0.054)
−0.001

(−0.047; 0.043)
0.000

(−0.038; 0.036)
0.000

(−0.033; 0.032)

curvature
−0.003

(−0.139; 0.135)
−0.002

(−0.114; 0.112)
−0.001

(−0.095; 0.096)
−0.001

(−0.081; 0.085)

ARCH
0.809

(0.790; 0.828)
0.809

(0.790; 0.828)
0.808

(0.791; 0.827)
0.808

(0.791; 0.825)

A1(3) ess

level
0.088

(0.069; 0.113)
0.074

(0.060; 0.092)
0.066

(0.053; 0.080)
0.059

(0.048; 0.071)

slope
0.059

(−0.013; 0.121)
0.049

(−0.008; 0.096)
0.047

(−0.004; 0.085)
0.046

(0.003; 0.080)

curvature
0.125

(−0.016; 0.272)
0.083

(−0.035; 0.203)
0.070

(−0.030; 0.172)
0.068

(−0.021; 0.150)

ARCH
0.787

(0.766; 0.811)
0.786

(0.766; 0.808)
0.785

(0.762; 0.805)
0.785

(0.763; 0.806)

A2(3) ess

level
0.076

(0.053; 0.101)
0.064

(0.045; 0.084)
0.056

(0.039; 0.072)
0.050

(0.035; 0.063)

slope
0.130

(0.051; 0.221)
0.105

(0.041; 0.174)
0.091

(0.037; 0.152)
0.081

(0.034; 0.138)

curvature
0.285

(0.096; 0.531)
0.217

(0.060; 0.393)
0.180

(0.046; 0.325)
0.153

(0.040; 0.281)

ARCH
0.794

(0.765; 0.820)
0.797

(0.771; 0.823)
0.798

(0.771; 0.821)
0.798

(0.771; 0.821)

A3(3) ess

level
0.080

(0.065; 0.095)
0.067

(0.056; 0.079)
0.059

(0.050; 0.069)
0.053

(0.045; 0.062)

slope
−0.041

(−0.119; 0.026)
−0.035

(−0.099; 0.022)
−0.026

(−0.084; 0.025)
−0.017

(−0.068; 0.028)

curvature
−0.159

(−0.345; 0.015)
−0.149

(−0.322; 0.001)
−0.127

(−0.277; 0.004)
−0.103

(−0.245; 0.015)

ARCH
0.791

(0.773; 0.807)
0.796

(0.777; 0.813)
0.798

(0.779; 0.813)
0.799

(0.780; 0.814)

Table 17: Fitted volatility regressions. This table shows for the essentially
affine models the regression coefficients from the regressions [Y (t+1, n−1)−Et(Y (t+
1, n−1))]2 = const+φn(1)[Y (t, 5)]+φn(2)[Y (t, 5)−Y (t, 1)]+φn(3)[Y (t, 5)+Y (t, 1)−
2Y (t, 3)]+φn(4)[Y (t, n−1)−Et−1(Y (t, n−1))]2+residual where n and t are measured
in years. The regression coefficients are calculated using simulated yields (in percent)
.
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n 2 3 4 5

Actual

level 0.183 0.138 0.121 0.127
slope 0.070 0.094 0.099 0.132

curvature 0.529 0.291 0.206 0.248
ARCH 0.763 0.782 0.773 0.733

A1(3) ext

level
0.057

(0.044; 0.075)
0.048

(0.037; 0.063)
0.042

(0.032; 0.055)
0.037

(0.029; 0.049)

slope
0.041

(−0.004; 0.085)
0.034

(−0.004; 0.071)
0.031

(−0.001; 0.062)
0.029

(0.000; 0.057)

curvature
0.104

(−0.003; 0.205)
0.079

(−0.015; 0.163)
0.068

(−0.019; 0.138)
0.062

(−0.013; 0.123)

ARCH
0.799

(0.784; 0.812)
0.797

(0.781; 0.812)
0.795

(0.778; 0.812)
0.796

(0.778; 0.813)

A2(3) ext

level
0.077

(0.061; 0.095)
0.066

(0.053; 0.081)
0.059

(0.047; 0.071)
0.053

(0.043; 0.064)

slope
0.134

(0.070; 0.195)
0.115

(0.060; 0.172)
0.106

(0.059; 0.157)
0.099

(0.056; 0.145)

curvature
0.317

(0.146; 0.503)
0.253

(0.105; 0.402)
0.223

(0.091; 0.360)
0.204

(0.083; 0.329)

ARCH
0.795

(0.780; 0.810)
0.797

(0.783; 0.810)
0.797

(0.785; 0.810)
0.797

(0.785; 0.810)

A3(3) ext

level
0.063

(0.045; 0.085)
0.055

(0.040; 0.074)
0.048

(0.035; 0.065)
0.043

(0.031; 0.058)

slope
−0.036

(−0.089; 0.014)
−0.039

(−0.083; 0.006)
−0.034

(−0.075; 0.007)
−0.028

(−0.066; 0.010)

curvature
−0.086

(−0.219; 0.021)
−0.105

(−0.211;−0.015)
−0.099

(−0.186;−0.024)
−0.086

(−0.159;−0.017)

ARCH
0.791

(0.773; 0.807)
0.788

(0.770; 0.808)
0.787

(0.768; 0.808)
0.786

(0.767; 0.808)

Table 18: Fitted volatility regressions. This table shows for the extended affine
models the slope coefficients from the regressions [Y (t+1, n−1)−Et(Y (t+1, n−1))]2 =
const + φn(1)[Y (t, 5)] + φn(2)[Y (t, 5)− Y (t, 1)] + φn(3)[Y (t, 5) + Y (t, 1)− 2Y (t, 3)] +
φn(4)[Y (t, n−1)−Et−1(Y (t, n−1))]2 +residual where n and t are measured in years.
The regression coefficients are calculated using simulated yields (in percent) .
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