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Introduction

In this article, we focus our analysis on the pricing of financial contracts with
barriers in a stochastic interest rate environment. The applications of barrier
options are multiple and go far beyond the study of derivative products. Barrier
options are building blocks of diverse fields such as investment choice theory,
the study of the capital structure of the firm (see the standard reference of
Black and Cox (1976) for instance, or the interesting contribution of François
and Morellec (2004)), or life insurance (see for instance Grosen and Jorgensen
(2002)). Recall that these contracts payoffs depend on whether or not the price
of their underlying assets cross a barrier from above or from below. They are
the essential part of the standard structured products that are guaranteeing the
maximum of a capital and the performance of a financial index.

Barrier options have been studied in great detail for a long time. Under
the assumption of a unique and constant interest rate, closed-form solutions
were given by Merton (1974) for down and out calls, then by Rubinstein and
Reiner (1991) for vanilla barrier options. Other contributions include the works
of Geman and Yor (1996) and Pelsser (2000) who priced double barrier options,
and the innovative article of Chesney, Jeanblanc and Yor (1997) who introduced
Parisian barrier options. The payoff of the latter contracts depends on the time
spent above or below the barrier. Later on, Linetsky (1999) pioneered step
options. In all these papers, the standard Black and Scholes framework is the
starting point and in particular the risk-free interest rate is assumed constant.
For short term contracts, a constant term structure of interest rates can be con-
sidered reasonable; yet, for medium or long term notes this assumption cannot
hold.

The study of exotic barrier options in the context of stochastic interest rates
is a rather difficult problem. Although it arises frequently in practice, it is
usually solved in the financial industry by means of Monte-Carlo simulations
or partial differential equations. This article is, as far as we know, the first in
finance to take into account a stochastic term structure of interest rates to price
barrier options by means of closed or semi-closed form formulas in continuous
time. To do so, our framework considers a type of Markovian approximation
due to Fortet (1943) and used by Longstaff and Schwartz (1995) to value risky
debt. Collin-Dufresne and Goldstein (2001) generalized Fortet’s approximation
to the case of two-dimensional Markov processes. As suggested by these au-
thors, we use their extension to price exotic barrier options. In the actuarial
field, Bernard, Le Courtois and Quittard-Pinon (2005) priced successfully life
insurance contracts owning many covenants in a similar stochastic context. Our
paper goes beyond the article of these last authors to show how the extended
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Fortet’s method can be used in the finance realm for barrier options.

This article is organized as follows. In the first section, we show how stan-
dard barrier options can be priced with semi-closed-form formulas, when the
interest process is stochastic and of the Vasicek type. This section is therefore
the direct extension of the work of Rubinstein and Reiner (1991). The second
section illustrates our approach with a particular exotic contract, the shark op-
tion, which is in fact a barrier option with rebate. This section also develops
a subsetting where it is possible to reduce the semi-closed form formulas to
closed-form formulas, while keeping the randomness of the underlying interest
rate process. The last section applies our results in the context of a numerical
analysis.

1 Standard Barrier Options in a Vasicek Model

Let us start by considering a financial market with a primary asset, say a stock
S, on which a barrier option is written. The underlying asset price is assumed to
follow a geometric Brownian motion. The interest rate model is a Vasicek one,
in particular the instantaneous interest rate r enjoys the Markovian property.
The uncertainty is modeled by a filtered space (Ω, F, {Ft}t>0 ,Π) where Ω is the
usual fundamental space, {Ft}t>0 is the filtration generated by the Brownian
motions, and Π is the historical probability measure. Trading takes place con-
tinuously and the prices of all assets follow correlated diffusions. In particular,
the interest rate process is correlated to the stock process, or put differently, the
economy is driven by two correlated Brownian motions. The market is complete
and frictionless, and Q denotes the risk-neutral probability.

Because standard barrier options can be up or down, in or out, call or put

options, there are eight types of such options. For the sake of brevity, we will
only price in this section call options (the put option formulas can be obtained
straightforwardly from parity relationships), that is to say up and out, up and
in, down and out, and down and in barrier call options.

Denoting by T the maturity of the options, by K their strike, and by H their
barrier level, one can write the following arbitrage-free pricing formulas for the
up and out, and up and in call options:





Cuo = EQ


e

−
T∫
0

rsds

(ST − K)
+
1Smax6H




Cui = EQ


e

−
T∫
0

rsds

(ST − K)
+
1Smax>H




(1)

As concerns the down and out, and down and in calls, they admit the fol-
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lowing valuation formulas:




Cdo = EQ


e

−
T∫
0

rsds

(ST − K)
+
1Smin>H




Cdi = EQ


e

−
T∫
0

rsds

(ST − K)
+
1Smin<H




(2)

The goal of this section will be to show how the formulas in (1) and (2) can
be priced in semi-closed form.

1.1 Pricing Framework

We will need in the coming developments to use the forward-neutral dynamics of
the stock, of the default-free zero-coupons and of the stock expressed in units of
default-free zero-coupon. The dynamics of the default-free zero-coupons P (t, T )
classically write, in the historical world, as:

dP (t, T )

P (t, T )
= λ(t, T )dt − σP (t, T )dZ1 (t)

where λ(t, T ) is their expected return, σP (t, T ) their volatility, and Z1 a stan-
dard Brownian motion under Π.

The option’s underlying price at time t, denoted by St , is modeled by a
geometric Brownian motion:

dSt

St

= µdt + σdZ2 (t)

where Z2 is a standard Brownian motion correlated with Z1: we define the cor-
relation coefficient ρ by dZ1.dZ2 = ρdt.

These dynamics are given in the historical universe. Using standard re-
sults from risk-neutral analysis, we know that there exists a unique probability
measure Q under which the discounted price of securities are martingales. After
decorrelating the above Brownian motions, we can write under Q:

dP (t, T )

P (t, T )
= rtdt − σP (t, T )dẐ1 (t)

and for the underlying’s price:

dSt

St

= rtdt + σ
(
ρdẐ1 (t) +

√
1 − ρ2dẐ2 (t)

)

where Ẑ1 and Ẑ2 are now two uncorrelated Q-Brownian motions.
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Using Itō’s lemma, we can express the risk-neutral dynamics of St and
P (t, T ) as:

St = S0 exp

(∫ t

0

rudu − 1

2
σ2t +

∫ t

0

ρσdẐ1(u) +

∫ t

0

σ
√

1 − ρ2dẐ2(u)

)
(3)

and

P (t, T ) = P (0, T ) exp

(∫ t

0

rudu − 1

2

∫ t

0

σ2
P (u, T )du −

∫ t

0

σP (u, T )dẐ1(u)

)

(4)
We now aim at writing the dynamics of S in the T -forward-neutral universe.

First, we start using the martingale property of the relative price St

P (t,T ) , which

reads:

St

P (t, T )
=

S0

P (0, T )
exp

( ∫ t

0
(σP (u, T ) + ρσ) dZT

1 (u) +
∫ t

0
σ
√

1 − ρ2dZT
2 (u)

− 1
2

∫ t

0

(
(σP (u, T ) + ρσ)2 + σ2(1 − ρ2)

)
du

)

(5)
and we readily set:

P (t, T ) =
P (0, T )

P (0, t)
exp

(
−
∫ t

0
(σP (u, T ) − σP (u, t)) dZT

1 (u)

+ 1
2

∫ t

0
(σP (u, T ) − σP (u, t))

2
du

)

where ZT
1 and ZT

2 are two uncorrelated QT -Brownian motions, defined by the

two following relationships: dZT
1 (t) = dẐ1(t)+σP (t, T )dt and dZT

2 (t) = dẐ2(t).

Finally, we can obtain the forward-neutral expression of St that is going to
be used in the remainder of this paper:

St =
S0

P (0, t)
exp

( ∫ t

0

(
−σP (u, T )(σP (u, t) + ρσ) +

σ2
P (u,t)−σ2

2

)
du

+
∫ t

0
(σP (u, t) + ρσ)dZT

1 (u) +
∫ t

0
σ
√

1 − ρ2dZT
2 (u)

)
(6)

or equivalently:

ln (St) = ln

(
S0

P (0, t)

)
+

( ∫ t

0

(
−σP (u, T )(σP (u, t) + ρσ) +

σ2
P (u,t)−σ2

2

)
du

+
∫ t

0
(σP (u, t) + ρσ)dZT

1 (u) +
∫ t

0
σ
√

1 − ρ2dZT
2 (u)

)

Hence, under QT , the underlying price is lognormal, and ln (S) is a Gaussian
process. Denoting it by l, we can also remark that:

dlt =

(
rt −

σ2

2
− σ ρσP (t, T )

)
dt + σ ρ dZT

1 (t) + σ
√

1 − ρ2 dZT
2 (t) (7)
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We will also need the following moments: Mt, Vt and Cov (v, t), v 6 t, which
respectively denote the mean, variance and auto-covariance of the underlying.
Their generic expressions are:





Mt = ln
(

S0

P (0,t)

)
+
∫ t

0

(
−σP (u, T ) (σP (u, t) + ρσ) +

σ2
P (u,t)−σ2

2

)
du

Vt =
∫ t

0

(
σ2 + σ2

P (u, t) + 2ρσσP (u, t)
)
du

Cov (v, t) =
∫ v

0

(
σ2 + ρσ (σP (u, t) + σP (u, v)) + σP (u, v) σP (u, t)

)
du

Furthermore, using standard probabilistic results on bidimensional Gaussian
vectors, we know that the conditional law of ln (St) given (ln (Sv) = ln (H)),
where ln(H) = h is an arbitrary given level, is normal and possesses the following

mean M̂ and variance V̂ :





M̂ (v, t) = Mt + Cov (v,t)
Vv

(ln (H) − Mv)

V̂ (v, t) = Vt − Cov2 (v,t)
Vv

Standard computations enable computing explicitly the above moments in
the two cases of linear and exponential volatility structures. The results for M ,
V and Cov are given in appendix II (from them, one obtains straightforwardly

the expressions for M̂ and V̂ ) in the case of an exponential structure of volatility
which corresponds to the Vasicek model.

1.2 Semi-Closed Form formulas

We can now start deriving the quasi-closed expressions of the arbitrage-free
formulas (1) and (2) of barrier call options. We start with the up and in and
the up and out options.

Pricing up call options

To begin with, we can reexpress the formula of the up and in option in (1) in
the forward-neutral universe:

Cui = P (0, T )EQT

(
(ST − K)

+
1Smax>H

)

This can alternatively be written as:

Cui

P (0, T )
= EQT

(ST1ST >K1Smax>H − K1ST >K1Smax>H)
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or as:

Cui

P (0, T )
= EQT

(ST1ST >K 1Smax>H) − K QT (ST > K, Smax > H)

Finally, the up and in call option price Cui is given by:

Cui

P (0, T )
= A− K B (8)

where 



A = EQT
(ST 1ST >K 1Smax>H )

B = QT (ST > K, Smax > H)

Note the following problem that appears in the computation of A and B:
the explicit expression of the law of Smax, and a fortiori of the joint law of Smax

and ST , is not known. The event {Smax > H} is indeed equivalent to the first
passage time of the process S through the barrier level H occurring before the
maturity T of the option. Let us denote by γu this first passage time (“u” for an
“up” barrier). One readily has {Smax > H} = {γu 6 T}. We do not know the
explicit joint distribution of γu and rγu ; yet, a discretized version of it can be
obtained using the recursive argument of Collin-Dufresne and Goldstein (2001).
In Appendix I, we expose this algorithm, titled the extended Fortet’s method,
along a new and clean presentation (relying in particular on distributions and
not on densities).

The distribution function of the random vector (rγu , γu) at time t under the
T-forward-neutral measure QT is unknown, as previously said. We approximate
it by discretizing along the time and interest rate dimensions. The interval [0, T ]
is subdivided into nT subperiods of length δt = T/nT , and the interest rate is
subdivided between rmin and rmax into nr intervals of length δr = rmax−rmin

nr
.

Finally, we denote by tj = jδt and ri = rmin + iδr the discretized values of time
and interest rate. Next, denote also by:

qu(i, j) = QT (rγu ∈ [ri, ri+1], γu ∈ [tj , tj+1])

the discretized version of the first-passage time distribution. One obtains the
semi-closed-form formulas for A and B, according as:





A ≈
nT∑
j=0

nr∑
i=0

nr∑
k=0

δrfr(rk | ri)κ
(
µ̂tj ,T ; Σ̂tj ,T ; K

)
qu(i, j)

B ≈
nT∑
j=0

nr∑
i=0

nr∑
k=0

δrfr(rk | ri)N
(

ln(K)−µ̂tj ,T√
Σ̂2

tj ,T

)
qu(i, j)

(9)

where MT and VT are the moments of ln(ST ), and where κ is defined, for a
Gaussian random variable X following the law N (m,σ2), by:

κ(m;σ; a) = E
(
eX

1eX>a

)
= exp

(
m +

σ2

2

)
N
(

m + σ2 − ln(a)

σ

)
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and where fr is the transition density of r (whose conditional moments are
denoted by m and v):

frt
( r | rs) =

1√
2πv

e−
(r−m)2

2v

and where µ̂s,T = µ( rT , ls, rs ) and Σ̂2
s,T = Σ2( rT , ls, rs ) are the first two

centered moments of the law of lT conditional on Fs and given rT . Their ex-
pressions are given in Appendix II.

The above development of A can be justified as follows. Start with the
expression:

A = EQT

[
ST1 ln(ST )>ln(K)1γu6T

]

which can be simplified according as:

A = EQT

[
elT 1lT >ln(K)1γu6T

]

Using conditioning operators, we develop this formula as:

A =

T∫

0

+∞∫

−∞

EQT

[
elT 1lT >ln(K) | rγu = r, γu = s

]
QT (rγu ∈ dr, γu ∈ ds)

Because the process (lT , rT ) is a Gaussian vector, the conditional law of
lT given rT is normal. Using this conditional distribution and the transition
density fr of an Ornstein-Uhlenbeck process, together with Es

QT
the expectation

operator condition on the available information Fs, we can write:

A =

T∫

0

+∞∫

−∞

+∞∫

−∞

dr′frT |rs=r(r
′)Es

QT

[
elT 1lT >ln(K) | rT = r′

]
QT (rγu ∈ dr, γu ∈ ds)

This expectation can be rewritten as:

A =

T∫

0

+∞∫

−∞

+∞∫

−∞

dr′frT |rs=r(r
′) κ
(
µ̂s,T ; Σ̂s,T ; K

)
QT (rγu ∈ dr, γu ∈ ds)

and, finally, one obtains the discretized approximation of A:

A ≈
nT∑

j=0

nr∑

i=0

nr∑

k=0

δrfrT |rtj
=ri

(rk) κ
(
µ̂tj ,T ; Σ̂tj ,T ; K

)
qu(i, j)

This explains the discretized approximation of A in formula (9). The one
of B can be obtained in a similar way. Therefore, one has all the necessary ele-
ments to compute the up and in barrier call options formula (8). As mentioned
above, the terms qu(i, j) can be computed using the methodology in Appendix I.
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Now, to price an up and out call, it is sufficient to use the following parity
relationship:

Cuo = P (0, T )EQT

(
(ST − K)

+
)
− Cui

noting that:

P (0, T )EQT

(
(ST − K)

+
)

= P (0, T )

(
κ(MT , ST ,K) − K N

(
ln(K) − MT√

VT

))

(10)
where all the moments and symbols are the same as defined before. Let us now
come to the pricing of down barrier call options.

Pricing down call options

We will sketch the main ideas and formulas in this paragraph; clearly, all the
derivations are analogical to the ones of the previous paragraphs. We start with
the pricing of down and in call options. Their valuation formula in (2) can be
reexpressed in the forward-neutral universe as:

Cdi = P (0, T )EQT

(
(ST − K)

+
1Smin<H

)

Next, we denote by γd the first passage time by S of a down barrier H.
Defining Smin on [0, T ], one has: {Smin < H} =

{
γd 6 T

}
. By analogy with

(8), we write:
Cdi

P (0, T )
= C − K D (11)

where: 



C = EQT

(
ST1ST >K 1γd6T

)

D = QT

(
ST > K, , γd 6 T

)

and where these formulas can be discretized in semi-closed form as:




C =
nT∑
j=0

nr∑
i=0

nr∑
k=0

δrfr(rk | ri)κ
(
µ̂tj ,T ; Σ̂tj ,T ; K

)
qd(i, j)

D =
nT∑
j=0

nr∑
i=0

nr∑
k=0

δrfr(rk | ri)N
(

ln(K)−µ̂tj ,T√
Σ̂2

tj ,T

)
qd(i, j)

(12)

As concerns the down and out call, its pricing follows readily from the fol-
lowing parity relationship:

Cdo = P (0, T )EQT

(
(ST − K)

+
)
− Cdi

where the first term is given by Equation (10).
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To conclude this section, we have constructed semi-closed-form expressions
for standard barrier options under a Vasicek model for the interest rate dynam-
ics. The term “semi” in “semi-closed form” refers to the fact that the qu(i, j)
and qd(i, j) factors are only the discretized version of the first passage time dis-
tribution. In practice, and as the final section we show, these semi-closed form
formulas can be computed extremely quickly. The next section shows how this
methodology can be used to price a particular exotic contract.

2 Pricing a Structured Barrier Option

Our aim will now be to shed some light on the use of the above method to
price some exotic contracts. We start defining the “shark” option, which was
introduced a couple of years ago by the Equity desk of an international bank.

2.1 The Shark Index Option

In its most basic form, a shark option is an option whose holder is entitled to
receive a rebate at expiry if the underlying index hits a barrier and a European
payoff otherwise. The latter depends on the value of the underlying index at
expiry and may take the form of a European call or a functional of it, as the
following developments will show. The underlying index may be a financial as-
set, an interest rate, an exchange rate or an equity index. In full generality, it
is correlated to the interest rates. Here, we assume that payments are always
settled at expiry (ranging typically from one to five years for these options).
The presence of a barrier decreases the premium, compared to vanilla options.
The barrier can be hit from below or from above and can be a knock-in or a
knock-out one. It may also be constant, deterministic or stochastic.

For the sake of clarity, we shall consider from now on a special kind of
shark option. Yet, the reader should keep in mind that our method can be
applied to value many other similar products. Let us describe more precisely
our contract: it is a medium-term structured note, having a one to five year
maturity, guaranteeing the investor (purchaser of the shark) 100% of his capital,
and linearly linked to an Equity Index. However, this link is cut as soon as the
growth rate of the index is equal or greater than α% during the shark’s life,
in which case the investor receives β% of his initial investment at the end. In
formal terms, the investor receives at expiry time T :





M. (1 + RT ) if Smax 6 (1 + α) S0

M.β otherwise
(13)
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where RT = (ST −S0)
+

S0
, M is a notional amount, St is the index at time t or

the underlying shark’s price at time t, and Smax is the maximum of S before
the shark’s maturity, that is, over [0, T ].

As concerns α and β, they respectively describe the barrier level and the
value of the rebate, and we let them satisfy α > 0 and 0 < β < 1 + α. We
call this structured product a standard shark and, without loss of generality, we
assume M = 1 for the sake of simplicity. In our example and for our numerical
analysis in section 3: α = 0.35 and β = 1.1. We denote by H the barrier level:

H = (1 + α)S0

The payoff at maturity (assuming M = 1) then writes:

(1 + RT ) 1Smax6H + β 1Smax>H (14)

In fact, one has 1 + RT = 1 + (ST −S0)
+

S0
. This allows rewriting the payoff as:

1 +
1

S0
(ST − S0)

+
1Smax6H + (β − 1) 1Smax>H (15)

Technically, a shark option is merely an up and out barrier call option with
rebate. Indeed, (ST − S0)

+
1Smax6H is the payoff of an up and out call on the

underlying S, with a strike price K = S0, and a barrier H.

Denoting by r the risk-free interest rate, and using the fundamental result
of arbitrage pricing theory, and the expression of the final payoff (14), we can
express the shark’s option equilibrium price at time 0 as:

C(0, T ) = EQ

(
e−

∫
T

0
rsds

(
1 +

1

S0
(ST − S0)

+
1Smax6H + (β − 1) 1Smax>H

))

(16)
Coming now to the practical valuation of our barrier product, we set our-

selves in the forward-neutral world where the underlying follows (6). One readily
obtains using this latter world:

C(0, T )

P (0, T )
=

(
1 +

1

S0
Cuo(ST , K = S0, Barrier H) + (β − 1)QT (Smax > H)

)

(17)
The only term that cannot be computed using the first section is QT (Smax > H).

We denote it by E and this is in fact QT (γu 6 T ). Using the approximation of
the distribution of γu (see Appendix I), one obtains:

E = QT (γu
6 T ) ≈

nT∑

j=0

nr∑

i=0

qu(i, j)

Indeed, to obtain this formula, one should start writing:

E =

T∫

0

+∞∫

−∞

QT (rγu ∈ dr, γu ∈ ds)

11
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and then discretize along time and interest rate, and introduce the qu(i, j) terms.

Using this discretized version of the first-passage time distribution, one can
obtain the following formula for the shark contract value when the barrier is
constant:

C(0, T ) = P (0, T ) +
1

S0
Cuo(ST ,K = S0,H) + (β − 1)P (0, T ) E

which computes straightforwardly using our previous results. We shall now con-
centrate on the particular case where the barrier is slightly modified in terms
of a zero-coupon bond: this case is particularly interesting because fully closed-
form formulas can be obtained.

2.2 Discounted Barrier Options

In this subsection, we take into account the effect of discounting the barrier. At
first look, such a structured product seems difficult to value fully explicitly. In
fact, we show below that this is the contrary and that the pricing problem can
be solved in closed-form. We assume that the frontier is given by a discounted
constant barrier. Formally, K being a constant, the barrier is a stochastic process
(Dt)t∈[0,T ] such that:

Dt = KP (t, T ) (18)

where, only in this section, this expression replaces in the contract covenant the
barrier H = (1 + α) S0. The shark’s formula then becomes:

C(0, T ) = P (0, T )EQT

[
(1 + RT )1{∀t∈[0,T ], St6Dt} + β1{∃t∈[0,T ], St>Dt}

]

In fact, the factor 1 + RT = 1 + (ST −S0)
+

S0
can also be written as:

1 + RT = 1{ST <S0} +
ST

S0
1{ST >S0} (19)

which allows to write together with equation (18):

C(0, T ) = β P (0, T ) QT

(
sup

06t6T

(
St

P (t, T )

)
> K

)

+ P (0, T ) QT

(
ST < S0, sup

06t6T

(
St

P (t, T )

)
6 K

)

+ EQ


e−

∫
T

0
rsds ST

S0
1{

ST >S0, sup
06t6T

( St
P (t,T ) )6 K

}
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Notice that the third term is expressed under the risk-neutral probability
Q. To simplify the following developments, we divide the Shark contract into a
sum of three expressions according as:

C[0, T ] = P (0, T ) [βE1 + E2] + E3

where the three sub-contributions to the contract can be defined as:




E1 = QT

(
sup

06t6T

(
St

P (t,T )

)
> K

)

E2 = QT

(
ST < S0, sup

06t6T

(
St

P (t,T )

)
6 K

)

E3 = EQ


e−

∫
T

0
rsds ST

S0
1{

ST >S0, sup
06t6T

( St
P (t,T ) )6K

}




(20)

Then, against all expectations, one can obtain the following proposition:

Proposition 2.1. The three components of a shark contract, when the barrier

is proportional to a zero-coupon bond and under a Vasicek term structure of

interest rates, can be written in closed-form as follows:





E1 = N
(

ln( S0
KP (0,T ) )−

τ(T )
2√

τ(T )

)
+ S0

KP (0,T )N
(

ln( S0
KP (0,T ) )+

τ(T )
2√

τ(T )

)

E2 = N
(

ln(P (0,T ))+
τ(T )

2√
τ(T )

)
− S0

KP (0,T )N




ln

(
S2
0

K2P (0,T )

)
+

τ(T )
2√

τ(T )




E3 = N
(

ln
(

KP (0,T )
S0

)
−

τ(T )
2√

τ(T )

)
− KP (0,T )

S0
N
(

ln( S0
KP (0,T ) )−

τ(T )
2√

τ(T )

)

−N
(

ln(P (0,T ))−
τ(T )

2√
τ(T )

)
+ KP (0,T )

S0
N




ln

(
S2
0

K2P (0,T )

)
−

τ(T )
2√

τ(T )




(21)

where τ(T ) =
∫ T

0

[
(σP (u, t) + ρσ)

2
+ σ2(1 − ρ2)

]
du and N is the cumulative

standard normal distribution function.

The proof of this proposition can be found in Appendix III. To sum up, we
have obtained a closed-form formula for the shark option in the case of a stochas-
tic barrier defined as in (18). Moreover, this closed-form formula is very simple
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and has the same computational efficiency as the one we would obtain with a
constant term structure of interest rates (see Rubinstein and Reiner (1991) for
the pricing of barrier options in a Black and Scholes context).

Unfortunately, the simplicity of the above result does not hold when the
barrier is merely a constant one, as exposed in the beginning of this article:
semi-closed form formulas are then in order. In the coming section, we shall
compare the two main contracts (defined respectively with a discounted and a
constant barrier) ; a full sensitivity analysis of these products will be presented.

3 Numerical Analysis

One of the main goals of this article being to develop a new methodology to
study barrier products in the presence of stochastic interest rates, we start by
checking its accuracy by comparing the results it provides to the ones obtained
by means of Monte-Carlo simulations. By doing so, we show that the extended
Fortet’s method does indeed work correctly, and that it is much faster than the
Monte-Carlo method.

Secondly, and from subsection 3.3 on, we shall concentrate on the analysis of
the shark option, which is the core product example of our study. We compare
the prices and sensitivities of these contracts written either with a stochastically
discounted barrier, e.g. (1 + α)S0 P (t, T ), or with a constant barrier, e.g. (1 +
α)S0. Amongst the sensitivities studied here are the ones computed with respect
to the barrier level, to the underlying index’s volatility or to its correlation with
the interest rates. Let us start by giving the values of the parameters involved
in our numerical analysis.

3.1 Parameters

In Table 1, we give some values for the general parameters useful for the coming
option valuations. Some of them will vary later on, and this shall be indicated
in due time.

M S0 σ T α β ρ
1 100 20% 1 0.35 1.1 0.3

Table 1: Data

We briefly recall the meanings of the above coefficients. The nominal of
the contract, M , is set to one for the sake of simplicity. S0 stands for the
initial value of the Equity Index. σ is the underlying’s volatility and is set to
20%. The contract’s maturity, T , is equal to 1 year. As concerns the maximum
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yield, in other words the factor governing the level of the barrier, it is given
by 1 + α = 1.35. The barrier level is indeed given by H = (1 + α)S0 = 135.
The rebate’s percentage is equal to β = 110%. ρ is the correlation coefficient
between the Index process and the instantaneous interest rate process r.

We made our study with an exponential structure of the volatility of the
interest rates, specified by the two parameters a and ν. The values chosen for
the interest rate process parameters are given in Table 2.

a ν r0 θ
0.46 0.007 0.015 0.05

Table 2: Interest Rate Process

r0 and θ are necessary to specify the initial term structure of interest rates.
In the particular calibration subsetting chosen here, this is equivalent to knowing
the Government yield curve.

3.2 Fortet’s Methodology

We start by pricing a shark option when the main parameters are defined as
in Table 1 and 2. Table 3 displays numerical estimations of the option, done
implementing the extended Fortet’s method.

Extended Fortet Shark Price Time

nT = 100, nr = 30 1.0092 13 s
nT = 100, nr = 50 1.0175 40 s
nT = 200, nr = 50 1.0172 2 min
nT = 400, nr = 50 1.0168 8 min

Table 3: Shark Option Values

Table 4 gives numerical results obtained with Monte-Carlo simulations. To
obtain accurate results, when using the Monte-Carlo method to price path-
dependent derivatives, it is well known that one needs to choose a thin dis-
cretization time step and to simulate a lot of sample paths. In this context, N
refers to the number of paths, and δt is the time step. One of the first conclusions
stemming from the analysis of Table 4 is that setting a time step small enough
is of critical importance to the fairness of the evaluation. If not, a discretization
bias shifts the value of the contract, whatever the number of simulations. Note
that an alternative to increasing the number of time steps is to use a method
correcting for the bias induced by the hitting probabilities between two time
steps; see for instance the paper of Andersen and Brotherton-Ratcliffe (1996).
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Monte-Carlo Shark Price Time

N = 106, δt = 1/12 1.0375 2 min
N = 106, δt = 1/300 1.0344 40 min

N = 106, δt = 1/10 000 1.0336 2h30

Table 4: Shark Option Values

The main conclusion that can be drawn from the analysis of Table 4 is that
the extended Fortet’s method proves much faster than the Monte-Carlo one.
The extended Fortet’s method gives three digits of precision in ten minutes of
computation time, which if not instantaneous is yet extremely efficient, consid-
ering that we are doing the numerical valuation of a path-dependent contract
under a stochastic term structure of interest rates.

Furthermore, we observe a rather good convergence for the option values
with the extended Fortet’s method, whilst the Monte-Carlo method is very slow
to converge. Indeed, and not surprisingly, this path-dependent problem requires
a very thin time discretization and many sample paths. Hence to obtain a suf-
ficient precision with Monte-Carlo, it would be necessary to launch simulations
lasting many hours, which is unacceptable for practical use. Finally note that
the implementation of both methods has been done making an extensive use of
Matlab’s vectorization tools, on a 3GHz computer.

3.3 Comparison of Contracts

We want to compare the two types of contracts described in section 2.1 and
2.2 (shark contracts with respectively a constant barrier H and a discounted
barrier KP (t, T )). To enable an efficient comparison of both contracts, we
first set H = K = S0(1 + α) (identical levels at contract maturity) and then
K = (1 + α)S0 and H = (1 + α)S0P (0, T ) (identical levels at inception of the
contracts). The results of our computations are given in Table 5, where the
hitting probability and the contract value C(0, T ) are displayed.

Discounted Barrier Constant Barrier Constant Barrier
Values (1 + α)S0P (t, T ) H1 = (1 + α)S0 H2 = (1 + α)S0P (0, T )

Hitting Prob. 0.144 0.133 0.161
C(0, T ) 1.033 1.013 1.006

Table 5: Comparison of Several Contracts

When the underlying touches the barrier, the final payoff is worth β (see
Formula (13) where M is set to one); this is to be compared to 1 + α, the
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payoff obtained when the barrier remained unattained. Clearly, the crossing
upward of the barrier by the index is not advantageous to the optionholder
(because β < 1 + α). Then, it should be noticed that the constant barrier
H2 = (1 + α)S0P (0, T ) is inferior to the constant barrier H1 = (1 + α)S0. The
probability to hit H2 is higher than the probability to hit H1 (0.161 instead of
0.133). The contract built with H2 is therefore less interesting and its value is
smaller (1.006 instead of 1.013), compared to the one built with H1. The main
point here is that, whatever the choice of constant barrier, the contract with
a discounted barrier is always the most expensive and interesting one - though
the hitting probability of the stochastic barrier does not fall down.

3.4 Sensitivity to the Barrier Level

Let us now come to the numerical study of the sensitivities to the barrier level.
To do this, we plot the probability of hitting the barrier, in Figure 1, and C(0, T ),
the contract’s value, in Figure 2 with respect to the barrier level (defined re-
spectively by H = (1 + α)S0 and HP (t, T )). We keep the parameter values
from Table 1, except α which ranges between 0.1 and 1 (in correspondence to
H which ranges between 110 and 200).

110 120 130 140 150 160 170 180 190 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H=(1+α)S
0

E
1

Discounted Barrier
Constant Barrier

Figure 1: Hitting Prob. w.r.t. H

110 120 130 140 150 160 170 180 190 200
0.98

1

1.02

1.04

1.06

1.08

H=(1+α)S
0

C(0,T)

Discounted Barrier H P(t,T)
Constant Barrier H

Figure 2: C(0, T ) w.r.t. H

The interpretation of Figure 1 is straightforward: as the barrier increases,
the probability that it be hit sharply diminishes. When the barrier value is high
enough (say 170), the probability to reach it is nearly null.

Despite the gross appearance of Figure 2, the influence of the barrier level
on the price is indeed quite small. In particular, the contract’s price shows a
relative variation of less than 3% when the barrier goes from 110 to 200 (as-
suming β = 1.1 < 1 + α). The explanation of this phenomenon obtains directly
from a P&L analysis. At expiry time T , the investor gets back his initial invest-
ment, whether the barrier has been reached or not, and this payment mostly
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determines the price of the contract. Obviously, for a knock-out option without
rebate, we would observe a stronger influence of the barrier on the price.

Let us now come to a finer description of Figure 2. One can observe that
the price of the option is decreasing with respect to the barrier for low levels
of the barrier. This comes from the fact that for β = 1.1, the rebate is quite
important. Choosing a rebate β = 0.3 and ceteris paribus, one would obtain the
graph displayed in Figure 3.

110 120 130 140 150 160 170 180 190 200

0.8

0.9

1

1.1

H=(1+α)S
0

C(0,T)

Discounted Barrier H P(t,T)
Constant Barrier H

Figure 3: C(0, T ) w.r.t. H with β = 30%

Now, how can we explain the weird behavior of the shark price when the
barrier varies between 110 and 120 in Figure 2? In general, it is advantageous
not to hit the barrier; yet, in the presence of a high rebate, say when 1+α ≈ β,
the probability to get a yield strictly superior to β is equal to the joint proba-
bility that the following events occur: Smax < (1 + α)S0 and ST > βS0. As this
joint probability is very weak, it is in the interest of the optionholder that the
barrier be hit, in order to ensure a return at least equal to β. To conclude on
this particular situation, when the barrier level is increased, the probability to
reach it is diminished, and the contract becomes less interesting, which explains
the decrease of its price.

3.5 Sensitivity to the Index Volatility σ

Let us now come to a brief study of our product’s sensitivity with respect to the
underlying index volatility.

In Figure 4, we represent the hitting probability with respect to σ, the volatil-
ity of the Equity Index. All parameters are chosen as in subsection 3.1, except
σ which ranges between 1% and 80%. The conclusion of this study is straight-
forward: for both contracts, when the volatility of the underlying increases, the
hitting time probability is increased accordingly. This is indeed a standard fea-
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Figure 4: Hitting Probability w.r.t. σ

ture that we recover here and which is common to all barrier derivatives.

3.6 Sensitivity to the Correlation ρ

Figures 5 and 6 plot respectively the probability to hit the barrier (before the
contract maturity) and the contract value with respect to ρ, the correlation
coefficient between the Equity Index and the interest rate. We let the correlation
ρ vary between −0.8 and 0.8 in both graphs.
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Figure 5: Hitting Prob. w.r.t. ρ
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Figure 6: C(0, T ) w.r.t. ρ

Let us first consider the case of a discounted barrier. In this particular sit-
uation, the hitting time probability and contract price are nearly insensitive to
a change in the correlation. On the contrary, when the barrier is constant, the
shark’s price is a remarkably decreasing function of the correlation. Indeed, one
of the advantages of imposing a stochastic barrier appears here: it can help
cancel the impact of the randomness of interest rates on derivative prices.
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Conclusion

This article develops a general methodology useful for pricing barrier options
in a Vasicek framework. When the derivative’s barrier is a discounted one,
we show that it is possible to obtain closed-form formulas to price it, using
time change techniques. When the barrier is constant, quasi-closed-form formu-
las can be found. These latter formulas can be computed using the extended
Fortet’s method, exposed within a new and clean apparel in the first appendix
of this text, and whose first implementation dates back to Collin-Dufresne and
Goldstein (2001) in their seminal structural model of the firm. What we do
is indeed obtaining general formulas that extend the ones of Rubinstein and
Reiner (1991) for pricing barrier options when the driving risk-free interest rate
is a Vasicek process. We illustrate our approach on a particular exotic deriva-
tives, the shark index, which is indeed a type of up and out barrier option with
rebate. Concluding this paper, a numerical analysis on shark options gives a
practical illustration of the method, and shows how quickly it works.
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APPENDIX I

The extended Fortet’s Method.

Let assume that one initially observes ln(A0) = l0 > ln(H) = h. The process
lt is continuous. If at time t, the process lt = ℓ < h then the barrier has been
hit and the down condition is realized. We denote by γd this first hitting time.
It verifies γd ∈ [0, t]. Thanks to this remark, one has:

QT (lt ∈ [ℓ, ℓ + dℓ[, rt ∈ [r, r + dr[ | l0, r0)

=

t∫

0

+∞∫

−∞

QT

(
lt ∈ [ℓ, ℓ + dℓ[, rt ∈ [r, r + dr[ | ls = h, rs = r

′
)

QT

(
rγd ∈ [r′, r′ + dr′[

γd ∈ [s, s + ds[

)

Let integrate the previous equation with respect to ℓ between −∞ and h.
After inverting the two integrals, one obtains:

QT (lt 6 h, rt ∈ [r, r + dr[ | l0, r0)

=

t∫

0

+∞∫

−∞

QT

(
lt 6 h, rt ∈ [r, r + dr[ | ls = h, rs = r

′
)

QT

(
rγd ∈ [r′, r′ + dr′[

γd ∈ [s, s + ds[

)

(22)

To simplify the notations, we define respectively Φ and Ψ by:




Φ( r, t ) dr = QT ( lt 6 h, rt ∈ [r, r + dr[ | l0, r0)

Ψ( r, t, r′, s) dr = QT ( lt 6 h, rt ∈ [r, r + dr[ | ls = h, rs = r′)

Under these assumptions, Φ and Ψ could be expressed as closed-form for-
mulas. The previous equation (22) becomes:

Φ( r, t ) =

∫

s∈[0,t]

∫

r′∈R

Ψ( r, t, r
′
, s) QT

(
rγd ∈ [r′, r′ + dr

′[, γ
d ∈ [s, s + ds[

)
(23)

As the distribution function of γd is unknown, we approximate it. Dis-
cretizing along the time and interest rate, with nT discretization steps along
the time t0 = 0, t1, ..., tnT

= T and nr along the interest rate. One has
r1 = rmin, ..., rnr

= rmax where rmin and rmax are chosen such as the prob-
ability that r takes values outside the interval [rmin, rmax] is negligible. We
denote by qd(i, j):

qd(i, j) = QT

(
rγd ∈ [ri, ri+1], γ

d ∈ [tj , tj+1]
)
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Then, formula (23) could be written as:

Φ( ri, tj ) =

j∑

v=0

nr∑

u=0

Ψ( ri, tj , ru, tv ) qd(u, v)

If j = 0, the previous expression becomes:

Φ( ri, t0 ) =

nr∑

u=0

Ψ( ri, t0, ru, t0 ) qd(u, 0)

We then obtain the following expression: qd(i, 0) = QT

(
rγd ∈ [ri, ri+1], γ

d ∈ [t0, t1]
)
.

Noting that Ψ( ri, t0, ru, t0 ) = 1{ri=ru}, one readily has:

qd(i, 0) = Φ( ri, t0 )

The quantities qd( i, j ) can be computed by means of a recursive algorithm.
First, the quantities qd( i, 0 ) are computed for every i thanks to the above
expression. From them the quantities qd( i, j ) for j ≥ 1 are recursively obtained.

Φ( ri, tj ) =

j∑

v=0

nr∑

u=0

q
d( u, v ) Ψ( ri, tj , ru, tv )

=

nr∑

u=0

q
d(u, j) Ψ( ri, tj , ru, tj ) +

j−1∑

v=0

nr∑

u=0

q
d( u, v ) Ψ( ri, tj , ru, tv )

Thanks to Ψ( ri, tj , ru, tj ) = 1{ri=ru}, one has:

qd(i, j) = Φ( ri, tj ) −
j−1∑

v=0

nr∑

u=0

qd(u, v ) Ψ( ri, tj , ru, tv ) (24)

To sum up, we have now, with formula (24) the possibility to compute the terms
qd(i, j), which give us the approximated distribution function of γd we are look-
ing for because we have closed-form expressions for Φ( r, t ) and Ψ( r, t, r′, s ):





Φ( r, t ) dr = QT ( lt 6 h, rt ∈ dr | l0, r0)

Ψ( r, t, r′, s) dr = QT ( lt 6 h, rt ∈ dr | ls = h, rs = r′)

Note that X = (l, r) is a Gaussian Markov process whose dynamics are given
by:

dXt = d

[
lt
rt

]
=

[
rt − rg − σ2

2
− σρσP (t, T )

a
(
θ − ν

a
σP (t, T ) − rt

)
]

dt +

[
σρ σ

√
1 − ρ2

ν 0

]
.

[
dZT

1

dZT
2

]
.

Denote by flt,rt
the density function of (lt, rt) under QT . Thanks to condi-

tional results, one obtains:

flt,rt
(ℓ, r) = frt

(r) flt|rt
(ℓ)
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F0 and Fs represent the available information at time 0 and s. Using the Markov
property of (lt, rt), conditioning by Fs is like conditioning by (ls, rs). One then
obtains Ψ and Φ:





Φ( r, t ) = frt
( r| F0)

∫ h

−∞
flt|rt

(ℓ | F0) dℓ

Ψ( r, t, r′, s ) = frt
( r| Fs)

∫ h

−∞
flt|rt

(ℓ | Fs) dℓ

As the process (lt, rt) is Gaussian, the conditional law of lt|rt knowing the
available information at time s is Gaussian. We denote the conditional moments
by µ( rt, ls, rs ) and Σ2( rt, ls, rs ).





µ( rt, ls, rs ) = EQT
[lt | Fs ] + Cov(lt, rt | Fs )

V ar[rt | Fs ] (rt − EQT
[rt | Fs ])

Σ2( rt, ls, rs ) = V ar [lt | Fs ] − Cov(lt, rt | Fs )2

V ar[rt | Fs ]

The above moments are computed in Appendix II. Let N be the normal
standard distribution function. We then obtain:




Φ( r, t ) = frt
( r | r0) N

(
h−µ( r, l0, r0 )√

Σ2( r, l0, r0 )

)

Ψ( r, t, r′, s ) = frt
( r | rs = r′) N

(
h−µ( r, ls=h, r′ )√

Σ2( r, ls=h, r′ )

)

where fr is the transition density of r. Recall that:

frt
(r | rs) =

1√
2πv

e−
(r−m)2

2v

where m = E[rt|rs] and v = V ar[rt|rs] (given in Appendix II).

Remark: The up case.

The up case is in fact the case when l0 < h. We define as γu the first hitting
time of the process lt to the barrier’s level ln(H) = h. The proof is exactly
the same as in the down case. Thus, one obtains the following formulas for the
approximate density of (rγu , γu) (similar to formula (24)):
{

qu(i, 0) = Φu(ri, t0)

qu(i, j) = Φu( ri, tj ) −∑j−1
v=0

∑nr

u=0 qu(u, v ) Ψu( ri, tj , ru, tv )
(25)

where 



Φu( r, t ) = frt
( r | r0) N

(
µ( r, l0, r0 )−h√

Σ2( r, l0, r0 )

)

Ψu( r, t, r′, s ) = frt
( r | rs = r′) N

(
µ( r, ls=h, r′ )−h√

Σ2( r, ls=h, r′ )

)
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APPENDIX II

Moments of the Processes rt and lt.

We work under the forward-neutral measure QT . We compute in this ap-
pendix the moments of the instantaneous interest rate r and those of l associated
with the index process. We choose to do the study with the exponential struc-
ture of volatility. With ν > 0 and a > 0, the volatility structure can be written
as follows:

σP (t, T ) =
ν

a

(
1 − e−a(T−t)

)

Define Ba by:

Ba(u) =
1

a

(
1 − e−au

)

Under the forward-neutral measure, the interest rate process r follows the
dynamics given by:

drt = a (θt − rt) dt + νdZT
1 (t)

where θt = θ− ν2

a
Ba(T − t). Thanks to Itō’s lemma and an integration by parts,

one obtains:

rt = e−at

(
rueau +

∫ t

u

θse
asds + ν

∫ t

u

easdZT
1 (s)

)
.

In this particular case, the instantaneous interest rate r is an Ornstein-
Uhlenbeck process under the forward-neutral probability QT . The zero-coupon
bond maturing at T satisfies the relationship:

P (t, T ) = e−Ba(T−t)rt−η(T−t) (26)

where:

η(u) =

(
θ − ν2

2a2

)
(u − Ba(u)) +

ν2

4a
(Ba(u))2

Conditional moments of the process r

r is a gaussian process with the following conditional moments (with s < t):





EQT
[ rt | ru ] = e−a(t−u)ru +

(
θa − ν2

a

)
Ba(t − u) + ν2

a
e−a(T−t)B2a(t − u)

V arQT
[ rt | ru ] = ν2B2a(t − u)

CovQT
(rs, rt |ru) = ν2

2a
e−a(s+t)

(
e2as − e2au

)
= ν2e−a(t−s)B2a(s − u)
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Conditional moments of the process l

Integrating the dynamics (7) of the process l under QT between u and t,
one has:

lt = lu +

∫ t

u

rsds −
(

σ2

2
+

σρν

a

)
(t − u) + σρν

∫ t

u

e−a(T−s)ds

+ σρ

∫ t

u

dZT
1 (s) + σ

√
1 − ρ2

∫ t

u

dZT
2 (s)

Now remark that the integral
∫ t

u
rsds is also a gaussian process: whose con-

ditional moments are given by the following formulas:





EQT

[ ∫ t

u
rsds | Fu

]
= ruBa(t − u) +

∫ t

u
e−as

∫ s

u
eaxθxdxds

V arQT

[ ∫ t

u
rsds | Fu

]
= ν2

a2 (t − u + B2a(t − u) − 2Ba(t − u))

CovQT

(∫ t

u
rvdv,

∫ t

u
dZT

1 (s) | Fu

)
= ν

a
(t − u − Ba(t − u))

This enables us to obtain the following conditional moments for the process
lt when s < t:





EQT
[ lt | Fu ] = lu −

(
rg + σ2

2 + σρν
a

− θ + ν2

a2

)
(t − u) − ν2

a2 e−a(T−t)B2a(t − u)

+
(
ru − θ + ν2

a2 + ν2

a2 e−a(T−t) + σρν
a

e−a(T−t)
)

Ba(t − u)

V arQT
[ lt | Fu ] =

(
σ2 + ν2

a2 + 2σρν
a

)
(t − u) − 2

(
ν2

a2 + σρν
a

)
Ba(t − u) + ν2

a2 B2a(t − u)

Cov(ls, lt | Fu ) = ν2

a2 e−a(t−s)B2a(s − u) +
(
σ2 + 2σρν

a
+ ν2

a2

)
(s − u)

−
(

ν2

a2 + σρν
a

) (
e−a(t−s) + 1

)
Ba(s − u)

Covariance between lt and rt

CovQT
( lt, rt | Fu ) =

(
ν2

a
+ ρσν

)
Ba(t − u) − ν2

a
B2a(t − u)

Moments of the first and second order for the process lt = ln (St)
Replacing u by 0 in the above expressions of the conditional moments of lt, we

27



Pricing Derivatives with Barriers in a Stochastic Interest Rate Environment

obtain the following formulas:





Mexp(t) = ln
(

S0

P (0,t)

)
+ ν2

4a3 −
(

ν2

2a2 + ρσν
a

+ σ2

2

)
t − ν2

4a3 e−2at

+
(

ν2

2a3 + ρσν
a2

)
e−a(T−t) −

(
ν2

a3 + ρσν
a2

)
e−aT + ν2

2a3 e−a(T+t)

Vexp (t) =
(
σ2 + ν2

a2 + 2ρσν
a

)
t − 3ν2

2a3 − 2ρσν
a2 + 2ν(ν+aρσ)

a3 e−at − ν2

2a3 e−2at

Cexp(v, t) = −
(

ρσν
a2 + ν2

a3

)
+
(
σ2 + 2ρσν

a
+ ν2

a2

)
v − ν2

2a3 e−a(t+v)

+
(

ρσν
a2 + ν2

a3

)
(e−av + e−at) −

(
ρσν
a2 + ν2

2a3

)
e−a(t−v)

APPENDIX III

Proof of Proposition 2.1

We show here how one can compute the three terms (depending on the supre-
mum of the underlying process). Our main tool is the Dubins-Schwarz theorem
which says that a continuous local martingale (say M) can be represented as
a Brownian motion time-changed by the quadratic variation of the continuous
local martingale (say B<M>).

Let us denote by N the stochastic integral in formula (5):

Nt =

∫ t

0

(σP (u, T ) + ρσ) dZT
1 (u) +

∫ t

0

σ
√

1 − ρ2dZT
2 (u)

Let also τ be its quadratic variation: τ(t) =< N >t. N is a martingale, with
N(0) = 0, and its quadratic variation satisfies:

τ(t) =

∫ t

0

[
(σP (u, T ) + ρσ)

2
+ σ2(1 − ρ2)

]
du

Consequently, we may write (5) as:

St

P (t, T )
=

S0

P (0, T )
exp

[
Nt −

τ(t)

2

]

Computation of E1:

Finally, the expression of E1, the first term of (20), can be expressed as:

E1 = QT

(
sup

t∈[0,T ]

{
−τ(t)

2
+ Nt

}
> ln

(
KP (0, T )

S0

))
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Using the Dubins-Schwarz theorem, N is a τ time-changed QT -Brownian
motion B. This readily yields:

E1 = QT

(
sup

τ∈[τ(0),τ(T )]

{
−τ

2
+ Bτ

}
> ln

(
KP (0, T )

S0

))

Then, armed with the law of the supremum of an arithmetic Brownian mo-
tion (see for instance the third chapter of Jeanblanc, Yor, Chesney (2005)), we
can obtain the closed-form formula:

E1 = N



− ln

(
KP (0,T )

S0

)
− τ(T )

2√
τ(T )


+

S0

KP (0, T )
N



− ln

(
KP (0,T )

S0

)
+ τ(T )

2√
τ(T )




Computation of E2:

To compute E2, we start noting that:

E2 = QT

(
−τ(T )

2
+ Bτ(T ) < ln (P (0, T )) , sup

τ∈[τ(0),τ(T )]

{−τ

2
+ Bτ} 6 ln

(
KP (0, T )

S0

))

Here, the problem is solved using the joint law of an arithmetic Brownian
motion and its supremum (see the same reference as above). This yields directly:

E2 = N
(

ln (P (0, T )) + τ(T )
2√

τ(T )

)
− S0

KP (0, T )
N




ln
(

S2
0

K2P (0,T )

)
+ τ(T )

2√
τ(T )




Computation of E3:

To compute E3 we recall from equation (3) that

exp

(
−
∫ T

0

rudu

)
ST

S0
= exp

(
−σ2T

2
+

∫ T

0

σρdẐ1(u) +

∫ T

0

σ
√

1 − ρ2dẐ2(u)

)

Using Girsanov’s Theorem, we know that Z̃1(u) = Ẑ1(u)−σρu and Z̃2(u) =

Ẑ2(u) − σ
√

1 − ρ2u are two standard Brownian motions under the appropriate

measure Q̃ built with the Radon-Nikodym density process:

dQ̃

dQ
= exp

(
−σ2T

2
+

∫ T

0

σρdẐ1(u) +

∫ T

0

σ
√

1 − ρ2dẐ2(u)

)

After changing the measure, one obtains:

E3 = Q̃

(
ST > S0, sup

06t6T

(
St

P (t, T )

)
6 K

)
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We need the expressions of St

P (t,T ) under Q̃. After changing probability mea-

sure in the dynamics (3) and (4) of St and P (t, T ), we can write:

St

P (t, T )
=

S0

P (0, T )
exp

(
τ̃t

2
+ Ht

)

where Ht =
∫ t

0
(σP (u, T ) + ρσ) dZ̃1(u)+

∫ t

0
σ
√

1 − ρ2dZ̃2(u) and τ̃t =< H >t.

Then, one obtains:

E3 = Q̃

(
τ̃

2
+ B̃τ̃ > ln (P (0, T )) , sup

τ̃∈[τ̃(0),τ̃(T )]

(
τ̃

2
+ B̃τ̃

)
6 ln

(
KP (0, T )

S0

))

where B̃ is a standard Q̃-Brownian motion. Using the same classical results as
for E2 and noting that τ̃t =< N >t= τt, one finally obtains:

E3 = N




ln
(

KP (0,T )
S0

)
− τ(T )

2√
τ(T )


− KP (0, T )

S0
N




ln
(

S0

KP (0,T )

)
− τ(T )

2√
τ(T )




−N
(

ln (P (0, T )) − τ(T )
2√

τ(T )

)
+

KP (0, T )

S0
N




ln
(

S2
0

K2P (0,T )

)
− τ(T )

2√
τ(T )


 .

30


	Standard Barrier Options in a Vasicek Model
	Pricing Framework
	Semi-Closed Form formulas

	Pricing a Structured Barrier Option
	The Shark Index Option
	Discounted Barrier Options

	Numerical Analysis
	Parameters 
	Fortet's Methodology
	Comparison of Contracts
	Sensitivity to the Barrier Level
	Sensitivity to the Index Volatility 
	Sensitivity to the Correlation 

	Bibliography

