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Abstract 

 In this paper we capture the implied distribution from option market data 

using a non-recombining (binary) tree, allowing the local volatility to be a 

function of the underlying asset and of time. The problem under 

consideration is a non-convex optimization problem with linear constraints. 

We elaborate on the initial guess for the volatility term structure and use 

nonlinear constrained optimization to minimize the least squares error 

function on market prices.  The proposed model can accommodate European 

options with single maturities and, with minor modifications, options with 

multiple maturities. It can provide a market-consistent tree for option 

replication with transaction costs (often this requires a non-recombining tree) 

and can help pricing of exotic and Over The Counter (OTC) options. We test 

our model using options data of the FTSE 100 index obtained from LIFFE. The 

results strongly support our modelling approach. 
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I. Introduction 

 

Calibrating a tree, otherwise known as constructing an implied tree, 

means finding the stock price and/or associated probability at each node in 

such a way that the tree reproduces the current market prices for a set of 

benchmark instruments. The main benefit of calibrating a model to a set of 

observed option prices is that the calibrated model is consistent with today’s 

market prices. The calibrated model can then be used to price other more 

complex or less liquid securities, such as (OTC) options whose prices may not 

be available in the market. 

The binomial tree is the most widely used tool in the financial pricing 

industry. The classic Cox-Ross-Rubinstein (CRR, 1979) binomial tree is a 

discretization of the Black-Scholes (BS, 1973) model since it is based on the 

assumption of the BS model that the underlying asset evolves according to a 

geometric Brownian motion with a constant volatility factor. This, however, 

contradicts the observed implied volatility, which suggests that volatility 

depends on both the strike and maturity of an option, a relationship 

commonly known as the volatility smile. This problem has motivated the 

recent literature on “smile consistent” no-arbitrage models. Consistency is 

achieved by extracting an implied evolution for the stock price from market 

prices of liquid standard options on the underlying asset. There are two 

classes of methodologies within this approach. Smile consistent deterministic 

volatility models (Rubinstein, 1994, Derman and Kani, 1994, Dupire, 1994, 

Barle and Kakici, 1995, Rubinstein and Jackwerth, 1996, Jackwerth, 1997, etc.); 

and stochastic volatility smile consistent models which allow for smile-

consistent option pricing under the no-arbitrage evolution of the volatility 

surface (Derman and Kani, 1998, Ledoit and Santa-Clara, 1998, Britten-Jones 

and Neuberger, 2000, etc.). The latter class of models is more general and it 

nests the former class of models (Skiadopoulos, 2001). There also exist non-

parametric methods, like Stutzer (1996) who uses the maximum entropy 

concept to derive the risk neutral distribution from the historical distribution 
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of the asset price and Ait-Sahalia and Lo (1998) who propose a non-

parametric estimation procedure for state-price densities using observed 

option prices. 

Smile consistent deterministic volatility models are based on the 

assumption that the local volatility of the underlying asset is a known 

function of time and of the path and level of the underlying asset price. 

However, they do not specify local volatility in advance, but derive it 

endogenously from the European option prices. Therefore, they preserve the 

“pricing by no-arbitrage” property of the BS model, and the markets are 

complete since the option’s pay-off can be synthesized from existing assets.  

Rubinstein (1994) finds the implied risk-neutral terminal-node 

probability distribution which is in the least-squares sense, closest to the 

lognormal subject to some constraints. The probabilities must add up to one 

and be non-negative. Moreover, they are calculated so that the present value 

of the underlying assets and all the European options calculated with these 

probabilities, fall between their respective bid-ask prices. This methodology 

allows for an arbitrary terminal-node probability distribution, but assumes 

that path probabilities leading to the same ending node are equal. 

Rubinstein’s (1994) methodology suffers from the fact that options expiring at 

early time steps cannot be used for the construction of the tree. Thus, options 

with maturity other than the maturity of the options used during the 

construction of the tree are not consistent with market prices. 

Jackwerth (1997) introduced generalized binomial trees as an extension 

of Rubinstein (1994). His model allows for an arbitrary terminal-node 

probability distribution, but also allows path probabilities leading to the same 

node to take different values.  

Derman and Kani (1994) and Dupire (1994) constructed recombining 

binomial trees using a large set of option prices. For each node they need a 

corresponding option price with strike price equal to the node’s stock price 

and expiring at the time associated with that node. Since they have fewer 

option prices than required, they need to interpolate and extrapolate from 



 5 

given option prices. Their trees are sensitive to the interpolation and 

extrapolation method and require adjustments to avoid arbitrage violations.  

Barle and Cakici (1995) introduced a number of modifications which 

aimed to eliminate negative probabilities and improve the general stability of 

Derman’s and Kani’s (1994) model. Although their modified method fits the 

smile accurately, negative probabilities may still occur with increases in the 

volatility smile and interest rate. As they state, this is because of their “… 

strict requirement that continuous diffusion be modeled as a binomial process 

and on a recombining tree “. This problem can be referred to as a problem of 

interdependencies between nodes. 

Possible methods that can be used to reduce the problem of inter-

dependencies are the calibration of trinomial (or multinomial) trees or non-

recombining trees. These extra degrees of freedom allow for more flexibility 

in the estimation of the distribution of the underlying asset.  

Trinomial trees provide a much better approximation to the continuous 

time process than the binomial trees for the same number of steps. However, 

the extra degrees of freedom (additional number of nodes) require a larger 

number of simultaneous equations to be solved. Derman, Kani and Chriss 

(1996) proposed implied trinomial trees. In their model they use the 

additional parameters to conveniently choose the “state space” of all node 

prices in the tree, and let only the transition probabilities be constrained by 

market options prices. Chriss (1996) generalized their method for American 

style options. 

In this paper we propose a method for calibrating a non-recombining 

(binary) tree, based on optimization. Specifically, we minimize the 

discrepancy between the observed market prices and the theoretical values 

with respect to the underlying asset at each node, subject to constraints that 

maintain risk neutrality and prevent arbitrage opportunities. Our model is 

built on a non-recombining tree1 so as to allow the local volatility to be a 

                                                 
1 Other work we are aware of that uses a non-recombining tree is of Talias (2005) where for 
the calibration he uses genetic algorithms. 
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function of the underlying asset and of time and to enable each node of the 

tree to act as an independent variable.  Effectively, the problem under 

consideration is a non-convex optimization problem with linear constraints. 

We elaborate on the initial guess for the volatility term structure, and using 

methods from nonlinear constrained optimization we minimize the least 

squares error function. Specifically, we adopt a penalty method and for the 

optimization we use a Quasi-Newton algorithm. Because of the combinatorial 

nature of the tree and the large number of constraints, the search for an 

optimum solution as well as the choice of an algorithm that performs well 

becomes a very challenging problem.  

Our model was created as a response for the need of a non-

recombining implied tree. The main benefit of the model is its analytical 

structure which enables us to use efficient methods for nonlinear optimization. 

Although the method uses a large number of variables, due to the fact that we 

use efficient methods for optimization the model is not computationally 

intensive. Also, the proposed methodology can be easily modified to capture 

the observed bid/ask spreads in the market. This is very useful since the 

reported closing prices may not always be accurate, or may be inaccurate due 

to various market frictions. In addition, calibration of the non-recombining 

tree can be used for option replication with transaction costs as in Edirisinghe 

et al. (1993) and other related methodologies that require non-recombining 

trees.  

In contrast to Rubinstein (1994), the proposed methodology can be 

easily modified to account for European contracts with different maturities. 

Our method does not need any interpolation or extrapolation across strikes 

and time to find hypothetical options as opposed to Derman and Kani (1994). 

Finally, the extra degrees of freedom and the analytical structure of the model 

would allow us to impose smoothness constraints on the distribution of the 

underlying asset if required.  

We test our model using options data on the FTSE 100 index, for the 

year 2003 obtained from LIFFE. The results strongly support our modelling 
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approach. Pricing results are smooth without the presence of an over-fitting 

problem and the derived implied distributions are realistic. Also, the 

computational burden is not a major issue.  

The paper continues as follows: In section II we describe the proposed 

methodology and the initialization of the non-recombining tree. In section III 

we discuss the imposed risk neutrality and no-arbitrage constraints. In section 

IV we describe the optimization algorithm. In section V we test the model 

using FTSE 100 options data. Conclusions are in section VI. In Appendix 1A 

we prove the feasibility of the initialized tree, in Appendix 1B we prove the 

feasibility of the initialized tree taking into account that the risk-free rate, 

dividend yield and time step are time dependent and in Appendix 2 we 

adjust the formulas for time dependent  risk free rate, dividend yield and step 

size. 

 
 
II. The proposed methodology and initialization of the non-recombining 
tree 
 

 

Our goal is to develop an arbitrage-free risk neutral model that fits the 

smile, is preference-free, and can be used to value options from easily 

observable data. In order to allow more degrees of freedom, we use a non-

recombining tree.  In the following section we present the proposed 

methodology, and describe the initialization of the tree.  

Figure 1 shows a non-recombining tree with four steps. 

[Insert figure 1 here] 

The point ),( ji  on the tree denotes:  

i : the time dimension, ni ...,,1=  

j : the asset (time specific) dimension, 12...,,1 −= ij  

),( jiS  is the value of the underlying asset at node ),( ji . 

Figure 2 shows a typical triplet in a non-recombining tree. 

[Insert figure 2 here] 
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Let )(kCMkt , Nk ...,,1= denote the market prices of N European calls, 

with strikes )(kK  and single maturities T. Also, let ),( kxCMod , Nk ...,,1=  

denote the theoretical prices of the N calls obtained using the model. x 

denotes a vector containing the variables of the model which are the values of 

the underlying asset at each node of the tree, excluding its current value. The 

ideal solution is to find the values of the underlying asset (the model 

variables) at each node of the tree such that a perfect match is achieved 

between the option market prices and those predicted by the tree. However, 

due to market imperfections and other factors perfect matching may not 

always be possible. Therefore, we minimize the discrepancy between the 

observed market prices and the theoretical values produced by the model 

subject to constraints that prevent arbitrage opportunities. 

We have to solve a non-convex constrained minimization problem with 

respect to the values of the underlying asset at each node: 

( )∑
=

N

k
MktModk

x
kCkxCfw

1

)(),,(min                               (1)                                

where f denotes a suitable objective function on the error between the 

observed and market prices. We can also allow for a weight factor, wk 2. In this 

paper we use the least squares error function which is defined as the sum of 

square differences between market prices and theoretical prices produced by 

the tree. The method can be adjusted easily for any other objective function. 

The philosophy of the initialization of the non-recombining tree is the 

same as that of the construction of the standard CRR binomial tree, but we 

adjust the formulas so that the tree does not necessarily recombine. 

We denote with ),( jiu and ),( jid  the up and down factors by which 

the underlying asset price can move in the single time step, t∆ , given that we 

are at node ),( ji . t∆ , ),( jiu  and ),( jid  factors are given by the following 

formulas3: 

                                                 
2 Weights can be related for example to the trading volume of the options. 
3
 For simplicity, we make the assumption that the risk free rate, the dividend yield and the 
step size do not change across time. Formulas adjusted for time dependence can be found in 
Appendix 1B and 2. 
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1−
=∆

n

T
t                                                                                              (2) 

ti
ejiu

∆= )(),( σ                              (3a) 

                       12...,,1,1...,,1 −=−= i
jni  

),(

1
),( )(

jiu
ejid ti == ∆−σ                                                                              (3b) 

where T is the option’s time to maturity and  )(iσ  is the volatility term 

structure at time step i. 

We initialize the tree using the following volatility term structure:  

tiei ∆−= )1()1()( λσσ ,  R∈λ ,  i = 1, …, n-1                            (4)                     

where λ is a constant parameter and )1(σ  is a properly chosen initial value 

for the volatility. If λ is positive, then volatility increases as we approach 

maturity and if λ is negative, then volatility decreases as we approach 

maturity4. 

In order to preserve the risk neutrality at every time step and hence 

obtain a feasible initial tree, we choose λ to belong in the following interval 

(for proof see Appendix 1A): 














∞+













 ∆−
∈ ,

)1(
log

1

σ

δ
λ

tr

T

f
                                        (5) 

By choosing λ from the above interval, we allow the initial volatility to 

increase or decrease across time. We make several consecutive draws from 

interval (5) until we find the value of λ that gives the “optimal” tree5. 

We denote with )1,1(S the current value of the underlying asset. The 

odd nodes of the tree ),( jiS , are initialized using the following equation: 

)
2

1
,1()

2

1
,1(),(

+
−

+
−=

j
id

j
iSjiS , 12...,,3,1,...,,2 1 −== −ijni           (6a)                    

The even nodes of the tree ),( jiS , are initialized using the following equation: 

                                                 
4
 Other non-monotonic functions could also be used for σ(i) but what we have tried proved 
adequate for our purposes. 
5 Optimal tree is the one that gives the lowest-value objective function subject to the initial 
constraints. 
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)
2

,1()
2

,1(),(
j

iu
j

iSjiS −−= ,  12...,,4,2,...,,2 −== ijni                         (6b)         

We want to point out that equations (3) to (6) are used only for initialization. 

Once the optimization process starts, each value of the underlying asset 

(except from )1,1(S ) acts as an independent variable in the system.  

Upward transition probabilities give the probability of moving from 

node ),( ji  to node )2,1( ji + whereas downward transition probabilities give 

the probability of moving from node ),( ji to node )12,1( −+ ji  for 1...,,1 −= ni  

and 12...,,1 −= ij . For the upward transition probabilities ),( jip  between the 

various nodes of the tree we use the risk-neutral probability formula: 

)12,1()2,1(

)12,1(),(
),(

)(

−+−+
−+−

=
∆−

jiSjiS

jiSejiS
jip

tr f δ

,  12...,,1,1...,,1 −=−= ijni            (7)                            

where fr  denotes the annually continuously compounded riskless rate of 

interest and δ  denotes the annually continuously compounded dividend 

yield. Their respective downward probability is equal to one minus the 

upward probability. 

The call option value at the last time step is given by: 

}0,),(max{),( KjnSjnC −= ,  12...,,1 −= nj                                       (8)          

 However, the function max is non differentiable at KjnS =),( . To overcome 

this problem, we propose the following smoothing approximation to ),( jnC : 



















+<<−







+






 −

+≥−

−≤

=

2/1/),(2/1
2

1
),(

2

1

2/1/),(1
),(

2/1/),(0

),(

2

zKjnSzfor
z

K

jnS

z

zKjnSfor
K

jnS

zKjnSfor

K

jnCα            (9a)  

                                                        12,...,1 −= nj  

where z is a small positive constant, for example 0.01 (see Fig. 3). 

[Insert figure 3 here] 
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 The value of the call at intermediate nodes is given by the following 

equation: 

( ) tr fejiCjipjiCjipjiC
∆−−+−++= )12,1()),(1()2,1(),(),(                       (9b)            

1....,,1−= ni ,   12...,,1 −= ij   

 

III. Risk neutrality and no-arbitrage constraints 

 
In this section we describe the risk neutrality and no-arbitrage 

constraints. In order for the transition probabilities ),( jip  defined in Eq.(7) to 

be well specified, they should take values between zero and one. This implies 

the following risk-neutrality constraints: 

)2,1(),(
)(

jiSejiS
tr f +≤∆−δ

                              (10a) 

12...,,1,1...,,1 −=−= i
jni  

   )12,1(),(
)( −+≥∆−

jiSejiS
trf δ

                                                                    (10b) 

Risk neutrality constraints in the non-recombining tree prevent nodes 12 −j  

and j2  to cross, for ni ...,,1=  and 12...,,1 −= ij (see Fig.1). 

Options (puts and calls) have upper and lower bounds that do not 

depend on any particular assumptions on the factors that affect option prices. 

If the option price is above the upper bound or below the lower bound, there 

are profitable opportunities for arbitrageurs. To avoid such opportunities, we 

include the no-arbitrage constraints. Specifically, a European call with 

dividends should lie between the following bounds: 

( ) )1,1(0,)1,1(max SCKeeS Mod

TrT f ≤≤− −−δ                                      (11) 

 Also, every value of the underlying asset on the tree should be greater 

or equal to zero. Thus, we also impose the following constraint:  

0),( ≥jiS ,  12...,,1,...,,2 −== ijni                            (12)              
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IV. The optimization algorithm 

 

The objective of the problem is to minimize the least squares error 

function of the discrepancy between the observed market prices and the 

theoretical values produced by the model. Thus, we have the following 

optimization problem: 

( )∑ −
=

N

k
MktMod

x
kCkxC

1

2
)(),(

2

1
min                                       (13) 

where )(kCMod  and )(kCMkt  denote the model and market price respectively of 

the kth call, Nk ...,,1= , subject to the constraints: 

i) 0)12,1(),(),(
)(

1 ≥−+−= ∆−
jiSejiSjig

tr f δ
, 12...,,1,1...,,1 −=−= ijni  (14a)              

ii) 0),()2,1(),(
)(

2 ≥−+= ∆− tr fejiSjiSjig
δ

,  12...,,1,1...,,1 −=−= ijni               (14b) 

iii) 0)()1,1()(3 ≥−= kCSkg Mod ,  Nk ...,,1=                          (14c)   

iv) 0)0,)()1,1(max()()(4 ≥−−= −Τ− Tr

Mod

fekKeSkCkg
δ ,  Nk ...,,1=           (14d)     

v) ,0),(),(5 ≥= jiSjig 12...,,1,...,,2 −== ijni                                                   (14e) 

Since the problem under consideration is a non-convex optimization 

problem with linear constraints we adopt an exterior penalty method (Fiacco 

and McCornick, 1968) to convert the nonlinear constrained problem into a 

nonlinear unconstrained problem. The Exterior Penalty Objective function 

that we use is the following: 

( )∑ −=
=

N

k
MktMod kCkxCxP

1

2
)(),(

2

1
),( α

 ( )[ ] ( )[ ]( )∑ ∑ ++
−

= =

−1

1

2

1

2

2

2

1

1

0),,(min0),,(min
2

n

i j

i

jigjig
α

 

( )[ ] ( )[ ]( )∑ ++
=

N

k

kgkg
1

2

4

2

3 0),(min0),(min
2

α
       

      ( )[ ]( )∑ ∑+
= =

−
n

i j

i

jig
2

2

1

2

5

1

0),,(min
2

α
                     (15) 

The second, third and fourth terms in ),( αxP  give a positive 

contribution if and only if x is infeasible. Under mild conditions it can be 

proved that minimizing the above penalty function for strictly increasing 
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sequence α  tending to infinity the optimum point )(αx  of P tends to x*, a 

solution of the constrained problem.  

  For the optimization we use a Quasi-Newton algorithm. Specifically 

we use the BFGS formula6 (Fletcher, 1987). For the procedure of Line Search in 

the algorithm we use the Charalambous (1992) method. To achieve the best 

feasible solution, i.e. the solution that gives us a feasible tree with the smallest 

error function we force the algorithm to draw consecutively values of λ from 

the specified interval (5) until the objective function is smaller than 1.E-4 and 

also the penalty term equals zero, i.e. we have a feasible solution.  

 

Implementation 

 For the implementation of the optimization method, we need to 

calculate the partial derivatives of )(kCMod  7 with respect to the value of the 

underlying asset at each node, for Nk ...,,1=  i.e. we want to find ,
),(

),1,1(

jiS

kC

∂
∂

  

ni ...,,2= , 12...,,1 −= ij 8 and Nk ...,,1= . For notational simplicity in the 

following, we assume that we have only one call option. For the computation 

of ji
jiS

C
,,

),(

)1,1(
∀

∂
∂

 we implement the following steps: 

We define the triplet vector (see Fig.2): 

)]12,1()2,1(),([)(

, −++= jiSjiSjiSS
l

ji                                      (16)        

1
st
 step: Compute the partial derivatives of the risk neutral transition 

probabilities,
),(

),(

jiS

jip

∂
∂

, 
)2,1(

),(

jiS

jip

+∂
∂

 and 
)12,1(

),(

−+∂
∂

jiS

jip
 for 1...,,1 −= ni , 

and 12...,,1 −= ij . We summarize the derivatives in vector form (17). 

                                                 
6 The BFGS formula was discovered in 1970 independently by Broyden, Fletcher, Goldfarb 
and Shanno.  
7 From now on we will use C(1,1) instead of CMod. 
8
 We do not calculate 

)1,1(

),1,1(

S

kC

∂

∂ since S(1,1) is a known, fixed parameter, and thus does not take 

part in the optimization. 
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∂
∂
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∆−

)),(1(

),(
)12,1()2,1(

1

)12,1(
),(

)2,1(
),(

),(
),(

),(

)(

)(
,

jip

jip

e

jiSjiS

jiS
jip

jiS
jip

jiS
jip

jip

tr

S

f

l
ji

δ

    (17) 

 

2nd step: Compute the partial derivatives
),(

),(

jiS

jiC

∂
∂

, for 1...,,2 −= ni , and 

12...,,1 −= ij ,
)2,1(

),(

jiS

jiC

+∂
∂

 and 
)12,1(

),(

−+∂
∂

jiS

jiC
 for 1

2...,,1,1...,,1
−=−= i

jni . 

We summarize the derivatives in vector form (18). 

( )
( )( ) 
















∆−−+∆−

∆−+∆

∆

=























−+∂
∂

+∂
∂

∂
∂

≡∇
∆−∆

∆−∆

trt

trt

S

f

f

l
ji

eejijijip

eejijijip

ji

jiS
jiC

jiS
jiC

jiS
jiC

jiC

δ

δ

),()12,1(),(1

),()2,1(),(

),(

)12,1(
),(

)2,1(
),(

),(
),(

),()(
,

  (18) 

where  

RatioDelta
jiS

jiC
e

jiSjiS

jiCjiC
ji t ≡

∂
∂

=
−+−+
−+−+

=∆ ∆−

),(

),(

)12,1()2,1(

)12,1()2,1(
),( δ                          (19)

          

3rd step: Compute the partial derivatives 
),(

),(

jnS

jnC

∂

∂ α  for 12...,,1 −= nj . They are 

given by the following formula: 

( )

( )

( ) ( )

















+<<−







+






 −

+≥

−≤

=
∂

∂

2/1),(2/1
2

1
),(1

2/1),(1

2/1),(0

),(

),(

zKjnSzKfor
z

K

jnS

z

zKjnSfor

zKjnSfor

jnS

jnCα            (20) 
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4th step: Compute the partial derivatives 
),(

)1,1(

jiS

C

∂
∂

 for 3≥i . 

}{

tri fe
jiS

kiC

kinodetonodefromustakethatpaththeoniesprobabilittheof
jiS

C

∆−−

∂
−∂

∏ −=
∂
∂

)2(

),(

),1(
x

),1()1,1(
),(

)1,1(

    

            (21)         







+
=

joddforj

jevenforj
k

2/)1(

2/
 

 

For example, 

( ) tr fe
S

C
pp

S

C ∆−

∂
∂

−=
∂
∂ 2

)6,4(

)3,3(
)2,2(1)1,1(

)6,4(

)1,1(
 

( )( ) tr fe
S

C
ppp

S

C ∆−

∂
∂

−−=
∂
∂ 3

)3,5(

)2,4(
)1,3()1,2(1)1,1(1

)3,5(

)1,1(
 

 

 

V. Application using FTSE 100 options data 

 

We use the daily closing prices of FTSE 100 call options of January 2003 

to December 2003 as reported by LIFFE 9. For the risk-free rate fr , we use 

nonlinear cubic spline interpolation for matching each option contract with a 

continuous interest rate that corresponds to the option’s maturity, by utilizing 

the 1-month to 12-month LIBOR offer rates, collected from Datastream. 

Our initial sample (for the 12 months period) consists of 99051 

observations. We adopt the following filtering rules: 

                                                 
9
 FTSE 100 options are traded with expiries in March, June, September, and December. 
Additional serial contracts are introduced so that options trade with expiries in each of the 
nearest 3 months. FTSE 100 options expire on the third Friday of the expiry month. FTSE 100 
options positions are marked-to-market daily based on the daily settlement price, which is 
determined by LIFFE and confirmed by the Clearing House.  
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i) Eliminate calls for which the call price is greater than the value of the   

underlying asset, i.e. )1,1(SCMkt > . No observations are eliminated from 

this rule. 

ii) Eliminate calls if the call price is less than its lower bound i.e. 

TrT

Mkt

feKeSC
−− −< δ)1,1( . This rule eliminates 3206 observations. 

iii) Eliminate calls with time to maturity less than 6 days, i.e. 6<T . This 

rule eliminates 3109 observations. 

iv) Eliminate calls if their closing price is less than 0.5 index points. This 

rule eliminates 11373 observations. 

v)  Eliminate calls for which the trading volume is zero (since we want 

highly liquid options for calibration). This rule eliminates 66826 

observations. 

The final sample consists of 14537 observations. 

 In the implementation, for )1(σ   we use the at-the-money implied 

volatility given by LIFFE and for time to maturity, T we use the calendar days 

to maturity. Also, since the underlying asset of the options on FTSE 100 is a 

futures contract, we make the standard assumption that the dividend yield 

equals the risk free rate. The model is applied every day, with n = 6 and also 

with n = 7. For each implementation, the options used have the same 

underlying asset and the same time to maturity. 

 The evidence for the behaviour of the futures volatility in the literature 

is not clear. According to Samuelson (1965) the volatility of futures price 

changes should increase as the delivery date nears. However, Bessembinder 

et al. (1996) find that the Samuelson hypothesis is not supported for options 

on financials futures. In order to choose the value of λ that gives the best 

feasible solution we make consecutive draws from interval (5), which allows 

for both, positive and negative values of λ. The first value of λ is that of its 

lower bound. However, since dividend yield equals risk free rate, instead of 

δ−fr  we set 1.E-8. The next value of λ equals the old plus an appropriately 

chosen step size.  
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For brevity, we present results only for the first trading day of each 

month of the year 2003 and only for n = 6 (Table 1). Trading Day is the trading 

day of each contract, Expiry is the expiration month of each contract, Asset is 

the value of the underlying asset at the specified trading day, N is the number 

of contracts used for the calibration (the contracts that on the same trading 

day, have the same underlying asset and the same expiration day), Error is the 

value of the objective function, Penalty is the value of the penalty term. Ideally 

we want the error function and the penalty term to tend to zero. Maturity is 

the calendar days till the maturity of the contract, and lambda is the value of λ 

that gives the best feasible solution. Also, we present results only when the 

number of option contracts is greater than 3, since with fewer options the 

distribution of the underlying asset taken will not be reliable10. 

[Insert Table 1 here] 

 The results obtained support our modeling approach. As we can see in 

Table 1, in all cases the solution strictly satisfies the constraints since the 

penalty term equals zero. Also, we see that in 67 out of 69 cases, i.e. in 97.1% 

of the cases the error function tends to zero with an average value of 2.34E-08. 

In the other 2 cases, where the error function is greater than 1.E-4, the average 

error is 0.01. Similar results were found for n = 7.    

Even though the problem requires a constrained non-convex 

optimization in )12(2 1 −−n  variables, the use of efficient optimization 

algorithms prevents the calibration of the model from becoming 

computationally too intensive. On average, the computational time in minutes 

required for each calibration had a mean (median) 1.10 (0.03) for n = 6 and 

2.27 (0.08) for n = 7. The computer used for the calibration of the model had 

the following specifications: a Pentium 4 (3.2 GHz) CPU, Memory 1GB 

(RAM), and Windows XP Professional operating system.  The codes were 

written in Matlab R2006a. The computational time needed would have 

decreased if the codes were written in the C/C++ language. 

                                                 
10 In Table 1 we note that for the same contract (same underlying asset, same expiration) the 
number of contracts used in the model changes across months. That is because some contracts 
were removed because of the filtering rules.  
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When models provide an exact fit there is always the concern of over-

fitting. We checked the model for over-fitting by pricing options with strikes 

in-between those used for the optimization (calibration). Then we made plots 

of the call prices (market prices and estimated from the model) versus 

moneyness. Over-fitting was also checked using a restricted sample consisting 

only of options with moneyness between 0.8 and 1.1, since these options are 

expected to be more liquid and more accurately priced11. For brevity, we 

exhibit only the plots for optimizations done in the first trading day of June 

(middle of the year) for the two samples using a tree with n = 6. As we see, for 

both samples the estimated call values increase smoothly with increasing 

moneyness without any evidence of over-fitting (see Fig.4). Similar results 

were obtained when a tree with n = 7 was used for the calibration procedure. 

[Insert figure 4 here] 

As a further check for over-fitting we use only part of the information 

to calibrate the tree and the other part to check the model using n = 6, 7, 8. 

Specifically, we leave out consecutively one of the N options at each time and 

we calibrate our model with the remaining options. In order to preserve the 

options’ moneyness range stable and avoid problems of extrapolation, we do 

not remove the options with the highest and lowest moneyness. Over-fitting 

is checked like before using the full and the restricted sample of options. For 

the calibration only cases consisting of 8>N  were used. Results for the mean 

and median absolute errors are given in Table 2. We see that the error (given 

an average contract size of 90 for the full and 74.4 for the restricted sample) is 

small and rather stable12.  

                                                 
11 This sub-sample has a total of 13696 observations for the year 2003. 
12

 Also, we compare our model (with respect to over-fitting) with the Black-Scholes model 
using the Whaley (1982) approach. According to this approach we find the volatility that 
minimizes the sum of square differences of the Black-Scholes option prices with their 
corresponding market prices using nonlinear minimization. Results show that the mean 
(median) absolute error using this approach is 7.36 (5.94) for the full sample and 6.61 (5.60) 
for the restricted sample which are much higher than the errors obtained using our model for 
n=6, 7, 8. 
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[Insert Table 2 here] 

Since implied volatility changes with strike and time to maturity 

(volatility smile) the index should have a non-lognormal distribution which 

implies that the log-returns will deviate from normality. In order to see how 

realistic is the distribution obtained from our model for year 2003, we 

calculate the statistics of the 1-month log-returns obtained from our model 

and compare them with the historical 1-month log-returns for the year 2003 

and the years 2001-2005. Specifically, for each calibration (with n = 6 and n = 

7) for which the options maturity was between 28 and 32 calendar days, we 

calculate the first four moments (mean, variance, skewness and kurtosis). 

Then, in order to get a feeling for the representative statistics of 1-month log-

returns we provide for each of those moments the mean and the median. The 

statistics for n = 6 are summarized in Table 3. Similar statistics were found for 

n = 7. Liu et al. (2005) discuss the derivations of historical, and implied real 

and risk-neutral distributions for the FTSE 100 index. They demonstrate that 

the needed adjustments to get the implied real variance, skewness and 

kurtosis from the implied risk-neutral ones are minimal. Thus, knowing that 

our implied risk-neutral moments (beyond the mean) are very close to the 

implied real ones, we can then compare them with the historical ones 

(without expecting the two distributions to be identical). As we would expect, 

the mean of the implied risk-neutral distribution of log-returns differs from 

that of the historical distribution. Also, as we see, both the implied risk-

neutral and the historical distribution deviate from normality since they 

exhibit negative skewness and (mostly) excess kurtosis. This is an indication 

that the implied distribution is realistic. 

[Insert Table 3 here] 

In order to give further evidence for the implied distributions obtained 

by our model, representative implied distributions (histograms) for the 1-

month log-returns in June 2003 are shown in Figures 5a (full sample) and 5b 

(restricted sample) for n = 6 and n = 7. To make the histograms of the implied 
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distributions we make use of the Pearson system of distributions13 as applied 

in Matlab14. Using the first four moments of the data it is easy to find in the 

Pearson system the distribution that matches these moments and to generate 

a random sample in order to produce a histogram corresponding to the 

implied distribution. From the figures, it is obvious that the implied 

distributions have negative skewness and positive kurtosis which is 

consistent with historical data. These figures are representative of the vast 

majority of cases15. Another interesting thing we observe is that distributions 

for n = 6 and n = 7 are practically indistinguishable for both samples. 

 [Insert Figures 5a, 5b here] 

VI. Conclusions 

 

In most options markets, the implied Black–Scholes volatilities vary 

with both strike and expiration, a relationship commonly known as the 

volatility smile. In this paper we capture the implied distribution from option 

market data using a non-recombining (binary) tree allowing the local 

volatility to be a function of the underlying asset and of time. The problem 

under consideration is a non-convex optimization problem with linear 

constraints. We elaborate on the initial guess for the volatility term structure, 

and use nonlinear constrained optimization to minimize the least squares 

error function on market prices. Specifically we adopt a penalty method and 

the optimization is implemented using a Quasi-Newton algorithm. 

Appropriate constraints allow us to maintain risk neutrality and to prevent 

arbitrage opportunities. The proposed model can accommodate European 

options with single maturities and, with minor modifications, options with 

multiple maturities. Also, this method is flexible since it applies to arbitrary 

underlying asset distributions, which implies arbitrary local volatility 

distributions. Market implied information embodied in the constructed tree 

                                                 
13 In the Pearson system there is a family of distributions that includes a unique distribution 
corresponding to every valid combination of mean, standard deviation, skewness, and 
kurtosis. 
14 Copyright 2005 The MathWorks, Inc. 
15 In rare exceptions only we have implied distributions close to normal or even leptokurtic. 
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can help the pricing and hedging of exotic options and of OTC options on the 

same underlying process. We test our model using FTSE 100 options data. The 

results obtained strongly support our modelling approach. Pricing results are 

smooth without the presence of an over-fitting problem, and the derived 

implied distributions are realistic. Also, the computational burden is not a 

major issue.  
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APPENDIX 1A: Feasibility of the initialized non-recombining tree 

 

We initialize the tree using the following volatility term structure:  

tiei ∆−= )1()1()( λσσ  , R∈λ  where i=1, …, n 

The feasibility of the initial tree depends on the right choice of the local 

volatility term structure; hence to obtain a feasible initial tree we must find an 

interval with the appropriate values of λ. In order to preserve the risk 

neutrality at every time step, the following constraints must be satisfied: 

)2,1(),(
)(

jiSejiS
trf +≤∆−δ

             (A 1a)  

)12,1(),(
)( −+≥∆−

jiSejiS
tr f δ

                                                        (A 1b)                                        

Also, 

ti
ejiSjiujiSjiS

∆==+ )(),(),(),()2,1( σ                                             (A 2a) 

ti
ejiSjidjiSjiS

∆−==−+ )(),(),(),()12,1( σ                                 (A 2b) 

                               

Substituting (A 2a) and (A 2b) to (A 1a) and (A 1b) respectively we get the 

following inequalities: 

tri f ∆−≥ )()( δσ                                                     (A 3a)                          

tri f ∆−−≥ )()( δσ                                                                      (A 3b)                                      

Thus we have that 

tri f ∆−≥ δσ )(  i∀                                                                      (A 4)                     

For 0≥λ , tiei ∆−= )1()1()( λσσ  is strictly increasing.  

Since (A 4) holds for every i this means that 

tri f ∆−≥ δσ )(min   or   

 tr f ∆−≥ δσ )1(                 (A 5) 

The minimum value of )(iσ  is for 1=i ( )1(σ ), thus (A 5) is independent of λ. 

Therefore, if λ is positive there is no upper bound for λ.    
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For 0<λ , tiei ∆−= )1()1()( λσσ  is strictly decreasing.  

Since (A 4) holds for every i this means that  

=>∆−≥ tri f δσ )(min   

=>∆−≥ trn f δσ )(   

)1(

)1(

σ

δ
λ

tr
e

ftn
∆−

≥∆−  

But, Ttn =∆− )1( , thus, 













 ∆−
≥

)1(
log

1

σ

δ
λ

tr

T

f
                                 (A 6) 

If we allow λ to take both negative and positive values, then λ should belong 

in the interval, 
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APPENDIX 1B: Feasibility of the initialized non-recombining tree 

assuming time dependent rf, δ and ∆t 

 

We denote with )(ir f  and )(iδ  the risk free rate and dividend yield 

respectively between two consecutive time steps, i.e. between time step i and 

i+1, 1...,,1 −= ni . 

[Insert Figure A1] 

We initialize the tree using the following volatility term structure:  

∑
=

−

=

∆
1

1

)(

)1()(

i

j

jt

ei
λ

σσ  , R∈λ  where i=1, …, n 

The feasibility of the initial tree depends on the right choice of the local 

volatility term structure; hence to obtain a feasible initial tree we must find an 

interval with the appropriate values of λ. In order to preserve the risk 

neutrality at every time step, the following constraints must be satisfied: 

)2,1(),(
)())()((

jiSejiS
itiir f +≤∆−δ

           (A 1a’)  

)12,1(),(
)())()(( −+≥∆−

jiSejiS
itiir f δ

                                                       (A 1b’)                                        

Also, 

)()(),(),(),()2,1( iti
ejiSjiujiSjiS

∆==+ σ                                            (A 2a’) 

)()(),(),(),()12,1( iti
ejiSjidjiSjiS

∆−==−+ σ                                (A 2b’) 

                               

Substituting (A 2a’) and (A 2b’) to (A 1a’) and (A 1b’) respectively we get the 

following inequalities: 

)())()(()( itiiri f ∆−≥ δσ                                                   (A 3a’)                          

)())()(()( itiiri f ∆−−≥ δσ                                                         (A 3b’)                                      

Thus we have that 

)()()()( itiiri f ∆−≥ δσ  i∀                                                         (A 4’)          

For 0≥λ , 
∑

=

−

=

∆
1

1

)(

)1()(

i

j

jt

ei
λ

σσ is strictly increasing.  

Let )()()(max itiir f
i

M ∆−= δξ                
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Then (A 4’) holds for every i if 

M
i

i ξσ ≥)(min   or       

Mξσ ≥)1(                            (A 5’) 

 

The minimum value of )(iσ is for 1=i  ( )1(σ ), thus (A 5’) is independent of λ. 

Therefore, if λ is positive there is no upper bound for λ.    
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If we allow λ to take both negative and positive values, then λ should belong 
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Appendix 2: Formulas adjusted for time dependent rf, δ and ∆t 

 

We denote with )(ir f  and )(iδ  the risk free rate and dividend yield 

respectively between two consecutive time steps, i.e. between time step i and 

i+1, 1...,,1 −= ni  and with fr ′  and δ ′  we denote the risk free rate and 

dividend yield respectively from today till the maturity of the option, i.e. from 

i = 1 to i = n. 

If we allow fr , δ and t∆  to be time dependent the equations of the main text 

are replaced with the following: 

 

)()(),( iti
ejiu

∆= σ                                                    (3a’)     

),(

1
),( )()(

jiu
ejid iti == ∆−σ , 12...,,1,1...,,1 −=−= i

jni                                 (3b’) 
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where, 

)()()(min itiir f
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m ∆−= δξ  
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jiSejiS
itiir f +≤∆−δ
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0)12,1(),(),(
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FIGURES 

 
 

 

Figure 1: Non-recombining tree with 4 steps. 

 

 
 

 
Figure 2: A typical triplet in a non-recombining tree. 
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Figure 3: Smoothing of the option pay-off function at maturity. 
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Figure 4: Plots of the call prices (market and estimated) for the FTSE 100 
index, for the 1st trading day of June 2003. S denotes the value of the 
underlying asset and T the calendar days to maturity. 
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Figure 5a: Implied probability distributions (histograms) obtained for the 1-
month log-return of June 2003 using the full sample for n = 6 and n = 7. 
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Figure 5b: Implied probability distributions (histograms) obtained for the 
1-month log-return of June 2003 using the restricted sample for n = 6 and n 
= 7. 
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Figure A1: A typical triplet in the initialization of the non-recombining tree 

assuming fr , δ and t∆ to be time dependent. 
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TradingDay Expiry Asset N Error Penalty Maturity lambda 
01/02/2003 Jan-03 4014 17 7.933E-11 0 15 4.3429 

01/02/2003 Feb-03 4019 19 4.2E-05 0 50 -1.3851 

01/02/2003 Mar-03 3991 12 5.855E-12 0 78 -6.6823 

01/02/2003 Jun-03 3995 11 2.721E-13 0 169 -0.3963 

01/02/2003 Dec-03 3999 6 0.0208333 0 351 0.4096 

02/03/2003 Feb-03 3675.5 16 7.254E-08 0 18 -3.9616 

02/03/2003 Mar-03 3646 14 8.611E-11 0 46 -1.5180 

02/03/2003 Apr-03 3644.5 15 2.722E-12 0 73 -6.4346 

02/03/2003 May-03 3645 6 2.355E-14 0 102 -6.6918 

02/03/2003 Jun-03 3647 7 2.196E-12 0 137 -4.9425 

02/03/2003 Sep-03 3640 5 1.337E-14 0 228 -1.1252 

02/03/2003 Dec-03 3653.5 7 5.859E-11 0 319 -0.9666 

03/03/2003 Mar-03 3657 16 6.572E-13 0 18 -3.9616 

03/03/2003 Apr-03 3655 13 2.573E-11 0 45 -1.5455 

03/03/2003 May-03 3655 9 2.466E-12 0 74 -8.3274 

03/03/2003 Jun-03 3655.5 7 9.825E-14 0 109 -6.2312 

03/03/2003 Sep-03 3645 9 1.735E-12 0 200 -3.3359 

04/01/2003 Apr-03 3684.5 16 4.548E-11 0 16 5.0218 

04/01/2003 May-03 3683.5 16 4.396E-12 0 45 -1.5510 

04/01/2003 Jun-03 3686.5 10 2.096E-11 0 80 -5.0920 

04/01/2003 Jul-03 3693 7 1.222E-11 0 108 -6.1873 

04/01/2003 Sep-03 3676.5 5 4.563E-11 0 171 -3.9295 

04/01/2003 Mar-04 3667 5 1.301E-11 0 352 -1.8670 

 
Table 1: Results for the application of the model on the 1st trading day of each month of the year 2003: Trading Day is the trading day of each 
contract, Expiry is the expiration month of each contract, Asset is the value of the underlying asset at the specified trading day, N is the number 
of contracts used for the calibration, Error is the value of the objective function, Penalty is the value of the penalty term, Maturity is the calendar 
days till the maturity of the contract and lambda is the value of λ that gives the best feasible solution 
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TradingDay Expiry Asset N Error Penalty Maturity lambda 
05/01/2003 May-03 3874 15 8.178E-08 0 15 -4.1763 

05/01/2003 Jun-03 3879 14 1.581E-11 0 50 -1.3588 

05/01/2003 Jul-03 3885.5 10 2.535E-11 0 78 -8.6239 

05/01/2003 Sep-03 3870.5 4 2.657E-12 0 141 -2.1062 

05/01/2003 Mar-04 3869 5 2.448E-13 0 322 -1.8172 

06/02/2003 Jun-03 4132 16 3.535E-09 0 18 25.1320 

06/02/2003 Jul-03 4138.5 9 6.685E-12 0 46 -1.4751 

06/02/2003 Aug-03 4128.5 9 9.668E-13 0 74 -9.0523 

06/02/2003 Sep-03 4124 11 5.437E-11 0 109 -6.0923 

06/02/2003 Dec-03 4136.5 9 3.798E-14 0 200 -3.2689 

06/02/2003 Jun-04 4124 5 1.825E-11 0 381 -1.6875 

07/01/2003 Jul-03 3967 13 0.0007343 0 17 13.5874 

07/01/2003 Aug-03 3958 12 4.422E-12 0 45 0.1871 

07/01/2003 Sep-03 3955 12 3.807E-11 0 80 -1.5851 

07/01/2003 Oct-03 3959 4 5.92E-14 0 108 -6.1578 

07/01/2003 Dec-03 3964 11 1.544E-12 0 171 -1.8451 

07/01/2003 Mar-04 3956 7 1.265E-13 0 261 -2.4906 

08/01/2003 Aug-03 4091.5 11 7.597E-12 0 14 1.1396 

08/01/2003 Sep-03 4088.5 14 7.022E-11 0 49 5.6305 

08/01/2003 Oct-03 4094.5 4 5.318E-11 0 77 -8.6243 

08/01/2003 Nov-03 4096.5 5 2.43E-13 0 112 -5.8741 

08/01/2003 Dec-03 4100.5 5 1.804E-14 0 140 -0.4681 

08/01/2003 Mar-04 4097 4 1.013E-12 0 230 -1.7231 

 
Table 1 (continued): Results for the application of the model on the 1st trading day of each month of the year 2003:  Trading Day is the 
trading day of each contract, Expiry is the expiration month of each contract, Asset is the value of the underlying asset at the specified trading 
day, N is the number of contracts used for the calibration, Error is the value of the objective function, Penalty is the value of the penalty term, 
Maturity is the calendar days till the maturity of the contract and lambda is the value of λ that gives the best feasible solution.       
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TradingDay Expiry Asset N Error Penalty Maturity lambda 
08/01/2003 Jun-04 4098.5 6 7.7014E-12 0 321 0.9996 

09/01/2003 Sep-03 4215 16 9.231E-11 0 18 -3.8161 

09/01/2003 Oct-03 4222 9 4.986E-13 0 46 -1.4569 

09/01/2003 Nov-03 4225 9 4.4323E-12 0 81 -8.1673 

09/01/2003 Dec-03 4229 12 1.0014E-12 0 109 -0.6026 

09/01/2003 Mar-04 4224.5 4 1.1111E-11 0 199 -32.5850 

10/01/2003 Oct-03 4162.5 12 1.1715E-06 0 16 -4.3573 

10/01/2003 Nov-03 4167 12 1.7641E-13 0 51 -1.3282 

10/01/2003 Dec-03 4169.5 19 2.796E-12 0 79 -8.4832 

10/01/2003 Jan-04 4173.5 5 5.4217E-13 0 107 -62.1642 

10/01/2003 Mar-04 4162 8 1.1045E-11 0 169 -3.8885 

10/01/2003 Jun-04 4171.5 5 1.0698E-13 0 260 -2.4977 

11/03/2003 Nov-03 4330 12 9.9737E-12 0 18 26.2023 

11/03/2003 Dec-03 4333 15 4.1511E-11 0 46 0.5538 

11/03/2003 Jan-04 4344 9 3.2388E-12 0 74 -8.7229 

11/03/2003 Feb-04 4354 7 2.0997E-12 0 109 -2.1552 

11/03/2003 Mar-04 4329 7 2.6622E-13 0 136 -4.7931 

11/03/2003 Jun-04 4343.5 7 4.4587E-13 0 227 -28.4200 

12/01/2003 Dec-03 4415.5 13 6.9791E-11 0 18 15.2128 

12/01/2003 Jan-04 4426 10 2.5172E-13 0 46 -1.4475 

12/01/2003 Feb-04 4433.5 13 3.7691E-12 0 81 -8.1270 

12/01/2003 Mar-04 4410.5 10 5.3369E-12 0 108 -6.0614 

12/01/2003 Jun-04 4423.5 4 9.9101E-16 0 199 -3.2410 

 
Table 1 (continued): Results for the application of the model on the 1st trading day of each month of the year 2003:  Trading Day is the 
trading day of each contract, Expiry is the expiration month of each contract, Asset is the value of the underlying asset at the specified trading 
day, N is the number of contracts used for the calibration, Error is the value of the objective function, Penalty is the value of the penalty term, 
Maturity is the calendar days till the maturity of the contract and lambda is the value of λ that gives the best feasible solution. 
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Model Full Sample Restricted Sample

n=6 Mean 1.2458 1.1065

Median 0.9163 0.8709

n=7 Mean 1.1375 0.9792

Median 0.8005 0.6929

n=8 Mean 1.1286 0.9350

Median 0.7928 0.6886

Observations 446 405

Absolute Errors

 

 

Table 2: Mean and median absolute errors using our model for n=6, 7, 8 and 
data from the full and the restricted sample. 
 

 

 
Implied (2003, n = 6) Mean Variance Skewness Kurtosis Observations

Mean -0.0024 0.0048 -0.6938 4.5075 58

Median  -0.0013 0.0027 -0.6653 3.6405 58

Historical Mean Variance Skewness Kurtosis Observations

2003 0.0106 0.0014 -0.6572 2.7689 12

2001-2005 -0.0021 0.0018 -1.1177 4.4749 59  
 
Table 3: Implied risk-neutral and historical statistics of the distribution of 
the FTSE 100 1-month log-returns 
 


