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Abstract

Banks and data vendors record data at different times of the day.
This is known as ’fixing’. With daily exchange data, we first show that
different fixings give rise to significant different estimation of realized
volatility, and that some series of realized volatility are consistently
higher /lower than others, which has important implications for trading
volatility derivatives. We propose that the pattern is due to the intra-
day seasonality of volatility and hence use 30-minute high frequency
exchange rate data to explore the issue. Empirical and simulation re-
sults support our conjecture that the fixings are different mainly due

to the intraday variation in volatility.



When data is needed for empirical finance research, we go to a data provider
such as the DataStream, only to find a number of different sources for the
same data to choose from. To make the matter worse, the data from these
sources are slightly but evidently different. What is less obvious however
is how we should choose from them and in doing so what the economic
implications are. In this article, we are going to explore this issue in the

context of foreign exchange rate market.

Banks and data vendors record data at different times of the day. This
is known as ’fixing’. For example, the Bloomberg London close records
the exchange rate between the US dollar and the pound sterling at 18hr00
Greenwich Mean Time (GMT), whereas the Federal Reserve Bank at New
York records the buying rate between the same currencies at 12hr00 Eastern
Standard Time (EST), which is 17hr00 GMT.! Because the exchange rate
fluctuates over time, the same exchange rate recorded by Bloomberg in

London will differ from that recorded by the Fed in New York.

We focus on eight pairs of frequently traded exchange rates from six different

sources. The exchange rates include:

Canadian dollar against US dollar (CAD/USD)

US dollar against pound sterling (USD/GBP)

Japanese Yen against US dollar (JPY/USD)

Swiss franc against US dollar (CHF/USD)

e US dollar against Euro (USD/EUR)

!"Buropean countries change into summer time on the last Sunday of March, whereas
northern American countries do so on the first Sunday of April. All countries change back
from summer time on the last Sunday of October. As a result, except the first week of

April, the time lag between Europe and North America is 5 hours.



e US dollar against Australian dollar (USD/AUD)
e Norwegian krone against US dollar (NOK/USD)
e Swedish krone against US dollar (SEK/USD)
They are recorded by different banks and data vendors, including:
e Bloomberg London close (BLN) at 18hr00 GMT

e Bloomberg New York close (BNY) at 17hr00 EST, which is 22hr00
GMT

e European Central Bank mid rate (ECB) at 14hr15 Central European
Time, which is 13hrl5 GMT

e Federal Reserve Bank at New York buying rate (FNN) at 12hr00 EST,
which is 17hr00 GMT

e Federal Reserve Bank at New York spot rate (FAM) at 10hr00 EST,
which is 15hr00 GMT

e WMR rate (WMR) at 16hr00 GMT

We download daily data from the DataStream and the website for the Fed

and ECB for the period from January 1999 to December 2005 inclusive.

Using a simple measure of realized volatility, we first show that for the same
exchange rate, different sources give rise to very different levels of realized
volatility. We find that the Bloomberg London close and the Bloomberg
New York close always provide the highest realized volatility among the
fixings, while WMR often leads to the lowest realized volatility. We also
make pairwise comparisons between different fixings for each exchange rate

and find that many of the differences are statistically significant.

The issue of volatility fixing is important for many volatility derivatives.



For example, in a variance swap, the parties involved trade between a pre-
specified variance and a measure of realized variance over the life of the
contract. The payoff at expiry is N(o% — K?), in which op is the realized
volatility, K is the volatility strike price at the start of the contract, and N
is the notional amount of the swap per unit of volatility. If one volatility
fixing is always higher/lower than another, it will have significant impact on

the final payoff of the variance swap.

This naturally leads to the question: Why are they different? We conjecture
that this is mainly due to the intraday seasonality of volatility. Empirical
evidence of distinct intraday pattern is first identified by Wood et al (1985)
and Harris (1986) in the cash market, and Muller et all (1990) and Bailie and
Bollerslev (1991) in the foreign exchange market. Since the release of data
by Olsen & Associates (O&A), studies in this area have been burgeoning.
They have documented a strikingly regular intraday periodicity for realized
volatility, in that the intraday volatility is high at opening and closing hours
of major exchanges and low during the middle of the day.?2 As different
fixings are recorded at different times of a trading day, it is only natural

that different fixings are systematically different.

In order to explore this possibility, we want to filter out the intraday season-
ality from the volatility process and see if the remaining GARCH processes
are still different.? With 30-minute high frequency data from 3 January 2005
to 3 March 2006 for the eight exchange rates under scrutiny, we first esti-

mate the intraday seasonality using flexible Fourier form (FFF), following

*Taylor (2005) provides an excellent summary and literature review.
3In the literature of modelling and forecasting high frequency volatility, there is a

consensus that the dynamics of the total volatility can be described as the product of a

seasonality component and the remaining ARCH process. See Martens et al (2002).



Anderson and Bollerslev (1997) and Martens et al (2002). Seasonality can
then be filtered out from the intraday returns to give de-seasoned 30-minute

returns.

We then fit GARCH (1,1)- MA(1) to the de-seasoned high frequency returns
to estimate the GARCH parameters, which we will use to simulate the 30-
minute return process without the seasonality component. Using these pure
GARCH process, we define different daily volatility fixings, and make pair-
wise comparisons between them, as we did with market data. We find that
the volatility fixings from simulated processes without seasonality are no
longer statistically different from each other: there are still small differences
but they are not significant anymore. In this way, we demonstrate that
volatility fixings are different mainly because of the intraday seasonality.
Once we remove the seasonality from the processes, the resulting volatility

fixings are no longer statistically different.

The rest of the article is organized as follows. In the next section, we present
the statistical differences between volatility fixings with daily data. This
is followed by contrasting the payoffs of a variance swap to demonstrate
the economic significance. We then use high frequency data to explore the
possibility that these differences arise from the intraday seasonality pattern.

The last section concludes.

Daily Data and Volatility Fixing Patterns

Daily data for eight exchange rates are downloaded from the DataStream

and the website of ECB and Fed for the period from January 1999, when

“Martens et al (2002) have performed a horse race between a number of measures of

seasonality and recommend FFF as accurate and computationally efficient.



the Euro was formally launched, to December 2005 inclusive. We calculate

the annualized monthly realized volatility as follows,

vol:$ ! xi:(rt—qi)zx\/ﬁ (1)

n—1 =

where
St
Si—1

e = In
and 7 is the sample mean.

We choose a simple measure to test whether the difference between any two
fixings is statistically different from zero: the ratio between average real-
ized volatility and its standard deviation, called z-statistic, follows standard

normal distribution, with the null hypothesis that the different is zero.

Table 1 reports the average of annualized volatilities for the currencies.
There is some pattern among the results. Bloomberg London (BLN) and
Bloomberg New York (BNY) always produce higher realized volatility. Out
of the eight currencies, Bloomberg London fixing has the highest realized
volatility for three currencies: USD/GBP, JPY/USD, and USD/AUD, while
Bloomberg New York fixing has the highest realized volatility for four cur-
rencies: CHF/USD, NOK/USD, SEK/USD, and USD/EUR. On the other
hand, WMR consistently produces lower realized volatility. Out of the eight
currencies, it has the lowest for five currencies: CHF/USD, USD/AUD,
NOK/USD, SEK/USD, and USD/EUR. The Fed am fixing has the lowest
realized volatility for two currencies: USD/GBP and JPY/USD.

With this general picture in mind, we want to know exactly whether the
differences are significant or not. We make pairwise comparisons between
the currencies for the 15 pairs of fixings. The results are reported in Table 2.

The first column of Table 2 shows the two fixings that we compare and the



difference is calculated as the fixing before the slash minus the one behind
it. For example, for USD/GBP, we know from Table 1 that BLN has the
highest realized volatility. Therefore, we are not surprised to see that the
difference between BLN and all the other fixings are positive. Among them,
the difference is significant between BLN and FNN (0.0026), between BLN
and FAM (0.0039), and between BLN and WMR (0.0035).

There are some interesting patterns in Table 2. Across currencies, because
NOK/USD and SEK/USD are relatively less frequently traded exchange
rates, they have the largest number of significantly different fixings. Out of
the 15 pairs of fixings, 11 are significantly different for SEK/USD, and 9 are
significantly different for NOK/USD. Across fixings, because BLN and BNY
are always high, and WMR is always low, the differences between realized
volatilities from BLN/WMR and BNY/WMR are always significant: out of
8 currencies, 6 of them are significantly different realized volatilities for both

pairs.

Furthermore, we want to examine whether the differences between fixings are
significant en masse. We employ a multiple comparison test [Scheffe (1959)
ppH5-59] with the null hypothesis test that the the average volatilities are
all equal for different fixings. The test statistic follows the F' distribution,
and the results are reported in Table 3. Consistently with the results in
Table 2, the two northern European currencies NOK/USD and SEK/USD
comprehensively reject the null at high statistical level, indicating again
that the differences are significant. The exchange rate between Swiss franc
and US dollar rejects the null at 90% level, giving reason ground that the

differences between fixings are significant.



Payoffs from Trading Variance Swaps

We now put the results in Table 1 to 3 into perspective by looking at the
payoffs of a variance swap. Given our discussion of volatility swap previously,
the holder of a volatility swap, who profits from higher realized volatility,
might be tempted to go with either BLN fixing or BNY fixing, while the

seller may want to choose the WMR  fixing.

In a variance swap contract, the terms and conditions would typically specify

the following?,
e Trading date, observation start date and end date

e Variance buyer and seller: The buyer profits from a higher realized

volatility, while a seller profits from a lower realized volatility

e Vega amount and variance amount: Typically, the vega amount is the
nominal amount of money for the contract, say $100,000. The variance

amount is defined as

vega amount
strike x 2

(2)

variance amount =

It is a market practice to define the variance notional in volatility
terms, so that if the realized volatility is 1 ’vega’ (volatility point)
above the strike at maturity, the payoff is approximately equal to the

variance notional.

e The underlying and the strike price: The strike is the annualized per-
centage of volatility multiply by 100. Therefore a strike of 10 refers
to 10% annualized volatility. The fixing will also be specified, say

Bloomberg New York ticker.

SThese are based on a sample used by JP Morgan Securities, Ltd.



e Equity amount: This is the payoff of the variance swap calculated as

equity amount = variance amount x (ﬁnal reazlied volatility? — strike2> .
(3)

Based on the information above, Table 4 tabulates the payoffs for BNY
fixing and WMR fixing as reported in Table 1. Possible strikes are evenly
spaced between 6.50 and 10.50. The table summarizes the payoffs and the
percentage differences between the fixings, the latter calculated as the ratio
between the payoffs divided by the greater absolute payoff from the two

fixings.

Variance swaps are attractive to investors who want to take on volatility
risk and take directional bets on volatility. As we can see from Table 4,
slight differences between the realized volatility and the strike are geared
up. Therefore, a slight difference in realized volatility fixings can give rise
to distinct payoffs. For example, for the exchange rate between USD/GBP
when strike is 7.50, the BNY fixing provides a profit of 27,382 while the
WMR fixing leads to a loss of 2,097. These lead to a percentage difference of
108%. For the exchange rate between NOK/USD when the strike is 9.50, the
BNY fixing provides a profit of 68,827 while the WMR fixing leads to a loss
of 22,917, with a percentage difference of 133%. It is easy to see significant
economic benefits in choosing the ‘right’ fixing. Generally speaking, a buyer
would favor higher fixings like the BNY and the BLN, while a seller would

prefer lower fixings like the WMR.

So the natural question is: What are the reasons behind the differences?
As fixings are recorded at different times during the day, we conjecture that
the pattern is due to the intraday seasonality of volatility. This intraday

seasonality sees a clear U-shape for volatility during a trading day, possi-



bly as a result of the subsequent opening and closing of the three major
trading venues in Asia, Europe, and North America. This stylized fact has
been documented extensively in the volatility literature, especially with the

advent of high frequency data.

In the next section, we are going to investigate whether the intraday sea-

sonality can explain the volatility fixing pattern.

High Frequency Data, De-seasonalization, and ARCH

simulations

We use 30-minute exchange rates from 3rd January 2005 to 3 March 2006.
The exchange rates are mid-rate between the Euro and the US dollar, the
Japanese Yen, the Australian dollar, the Canadian dollar, the Swiss franc,
the pound sterling, the Norwegian krone, and the Swedish krone. Cross-

rates between the currencies can be derived®.

To model the intraday seasonality, we follow Andersen and Bollerslev (1997)

and Martens et al (2002) and use the flexible Fourier form (FFF). Define

Tqpy = In sin +1In Zin (4)

where s4,, is the return on day d and period n, and Zg,, is an i.i.d process
with mean zero and variance one. The seasonal pattern is estimated by

OLS,

p . .
R 2 2
Tam =c+ E ('yi cos W—]\;n + §; sin 7;\;71) (5)

i=1

where ¢ is a constant, p is set equal to 4,7 and N is the total number of

SSummary statistics of the realized volatilities are available from the authors.

"Different specifications have been used but all of them lead to similar results.
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intraday periods. The intraday seasonal index is then defined as,

Tan
Sdn = €Xp (;’) . (6)

To filter out seasonality, we divide the 30-minute log returns rg, by the
seasonality index to obtained the de-seasoned returns 7,

. Td,
rd,n =2 . (7)
Sd,n

Figure 1 presents the seasonality index for USD/GBP and USD/EUR. There
is a clear pattern of highs and lows on a weekday and the pattern is strikingly
similar over the week except Friday. Friday is more volatile than the other
four weekdays, as more macroeconomics news are announced on this day

[see Ederington and Lee (1993, 1995)].

Following Anderson and Bollerslev (1997) and Martens et al (2002), we fit
a GARCH (1,1)-MA(1) model with t-distribution to the de-seasoned re-
turns. The MA component is intended to control for the weak first-order
autocorrelation in currency returns. We use t-distribution for the asset re-
turns as currency returns are known to have significant non-normality in the
high-frequency domain. The dynamics of the conditional mean g and the
conditional variance h; of the 30-minute de-seasoned returns r; are specified
as follows,

he = w + ag;_ + Bhi (8)

pe =&+ 0ey1.

For GARCH model having conditional scaled t-distribution with v degrees

of freedom, the density of D(0,1) is

1 1 v 22 T2
f(Z)ZW‘2(v—2)‘2<W><1+ ) —

11



With the estimated GARCH parameters®, we then simulate the 30-minute
return process without the impact of seasonality. For each exchange rate and
for each fixing, we carry out Monte Carlo simulations, and then define fixings
in the same way as the market data. For example, for the BLN fixing, we
start at the 36th return period (corresponding to 18hr00), add up 48 returns
to obtain a one-day return. We do this for a period of 30 days. We then
estimate annualized monthly volatility based on these daily returns. We
repeat this for 100,000 times and then make pairwise comparisons between

different exchange rates and fixings. The results are reported in Table 5.

Table 5 can be viewed as the de-seasoned counterpart of Table 2. In this
table, we simulate volatility fixings with parameters from the de-seasoned
returns to see if there are still significant differences between them. Results
indicate that except for three pairs of fixings for SEK/USD and two pairs for
USD/EUR, all the differences are no longer significant. Therefore, all the
realized volatilities are statistically the same. This confirms our conjecture
that the volatility fixings from market data are different mainly because of

the intraday seasonality pattern of the volatility.

Conclusion

In this study, we are interested in the questions of how volatility fixings are

different from each other and more importantly why.

We first use 7 years of daily market data to establish the fact that volatility
fixings are not necessarily the same as each other, although they all come
from the same return process. In particular, the BLN and the BNY are

always higher than the others and the WMR fixing is always the lowest. Less

8The parameter estimates are available from the authors.
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frequently traded exchange rates, including NOK/USD and SEK/USD, have
more pairs of statistically different fixings. These have significant bearing

on the payoffs of volatility derivatives.

We then examine the economic significance of the results by contrasting the
payoffs to a variance swap with a series of possible strike prices. We see that
subtle distinction between fixings can lead to huge differences in the final

payoffs.

We explore the reasons behind the phenomenon. We conjecture that the in-
traday volatility seasonality is the main reason. To test this proposition, we
use 30-minute high frequency data, first estimate the seasonal pattern with
fast fourier form (FFF) and then de-seasoned the returns by the seasonal-
ity index. We fit a GARCH (1,1)-MA(1) model to the de-seasoned data to
obtain GARCH parameters, and use the parameters to simulate the return
processes that are free from the intraday volatility seasonality. Results show
that, when the volatility process is a pure GARCH process, volatility fixings

are no longer different from each other, thus confirming our conjecture.

13
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Table 3. Test statistic for simultaneous comparison

This table reports the test statistic for the simultaneous comparison be-
tween all fixings for a particular currency. The null hypothesis is that the average
volatility is equal for all fixings. Blue font indicates significance at 95% level and

red font indicates significance at 90% level.

currency F test stat
CAD/USD 1.33
USD/GBP 1.58
JPY/USD 1.56
CHF /USD 1.85
USD/AUD 1.48
NOK/USD 5.44
SEK/USD 4.47
USD/EUR 1.63
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Figure 1. Daily seasonality for USD/GBP and USD/EUR, estimated using
30-minute high frequency data from 3 January 2005 to 3 March 2006
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