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Abstract

Recent work in the banking theory literature stresses the role of unin-

sured demand deposits to discipline incumbent bank manager-owners not to

extract rents from their specific abilities. In this article, we show if and how

this finding can be incorporated in a continuous-time contingent claims val-

uation framework. Although demand deposits represent a hard claim in the

sense that they introduce an exogenous default threshold through a collective

withdrawal of funds (bank run), they can at the same time add firm value

by acting as a commitment device. Equity holders are willing to voluntar-

ily weaken their bargaining power by financing with deposits to increase the

banks debt capacity and to exploit the additional tax shield.

Although being a stylized model, it generates testable implications. We find

that the proportion of deposits in the optimal debt mix is higher if bank

manager-owners have less specific abilities and if bank asset are less risky.
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1 Introduction

The question, whether there exists an optimal capital structure and if so, which

factors determine it, has a long tradition in corporate finance research, at least

with respect to non-financial firms. The question, whether there exists an optimal

bank capital structure has only been addressed more recently. The reason may be

that banks are different from non-financial firms in at least two important ways. As

intermediaries, the crucial function banks perform are transformation activities, in

particular risk and liquidity transformation. And secondly, as opposed to industrial

firms, the liabilities of banks not only fund the business and transfer ownership but

are itself a part of the business of the firm. Furthermore, financial firms are more

heavily regulated.

However, with these differences in mind, it is legitimate to try to apply research

methods from classical corporate finance to address the issue of optimal capital

structure of commercial banks. In particular, the present article wants to put up a

framework within which one can analyze the optimal decision with respect to the

mix of equity, bonds and deposits for a commercial bank. Thereby, the focus is on

the optimal debt mix, i.e. the question why banks want to issue demand deposits

and if so how much of the overall debt capacity should consist of deposits.

We address these issues within a continuous-time model, whereby the relevant state

variable is given by a flow variable, which may be interpreted as the earnings before

interest and taxes (EBIT). This is in contrast to the more frequently used discrete-

time (two periods, three dates) models, but has the advantage to provide a more

realistic picture and enables us to derive quantitatively more meaningful results.

Thus, from the methodical point of view, our model is closely related to the strand

of literature that dates back to the work of Black and Cox (1976), Fischer et al.

(1989) and Leland (1994). While these models have the asset value as relevant

state variable, more recent contributions including Goldstein et al. (2001), Dangl

and Zechner (2004) or Christensen et al. (2005) consider the EBIT as state vari-

able.1

While there is a huge amount of contributions dealing with capital structure is-

sues of non-financial firms, only a limited number of papers deal with bank capital

structure in a continuous-time setting. Notable exceptions are Merton (1977, 1978),

Gorton and Santomero (1990), Bhattacharya et al. (2002) or Decamps et al. (2004).

These articles however, are mainly concerned with the fair pricing of deposit insur-

ance, valuation of subordinated debt or bank regulation.

With respect to content, our contribution is most closely related to Diamond and

Rajan (2000, 2001), Gorton and Winton (2000) and Kashyap et al. (2002).

Diamond and Rajan (2000) stress the special role of banks as liquidity providers.

They assume that a bank as relationship lender has specific abilities to generate more

cash flows out of existing assets, which are assumed to be loans to entrepreneurs,

than anyone else. Its specific abilities enables the bank to extract rents because she

1 One of the reasons to consider a flow variable as state variable is to avoid a model-inherent

inconsistency in that one does not need to assume the unlevered and the optimally levered firm

value as a traded asset at the same time.
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can threaten to withhold their abilities, or at least, the bank cannot credibly com-

mit to not withhold them. This implies smaller pledgeable assets and in this sense,

they call the loan illiquid. However, if the bank can finance its assets with demand

deposits, the pledgeable income and therefore the liquidity can be increased. In a

nutshell, the reason is that depositors suffer a collective action problem and will

run on the bank when they believe the bank cannot redeem their claim in whole.

Therefore, the bank cannot enter into negotiations and is not able to extract rents

from her specific abilities. Thus, demand deposits act as a commitment device.

The optimal bank capital structure in Diamond and Rajan (2000) is therefore the

result of the trade-off between liquidity creation and costs of bank distress. A high

proportion of deposits will provide more liquidity but will also increase the fragility

of the bank in that the probability of bank runs increases. The model in Diamond

and Rajan (2000) is formulated in a discrete-time framework, i.e. a two periods,

three dates model, which provides more qualitative than quantitative results and is

difficult to compare to structural models as those cited above.

The fact that demand deposits provide a way for the bank managers to commit

themselves not to use their specific abilities to extract rents depends on the as-

sumption that deposits are not insured. As soon as deposit insurance enters the

model, bank runs will not occur and thus the crucial disciplining mechanism disap-

pears.

With respect to models that include deposit insurance, the focus is on the fair

pricing of the premium banks should pay for the deposit insurance,2 and on the

mandatory issuance of subordinated debt as a regulatory mechanism that intends

to curtail banks risk-taking through market discipline. This so-called subordinated

debt proposal has been put forward by f.ex. Gorton and Santomero (1990), Evanoff

and Wall (2000) or Levonian (2001).

Another strand of literature focuses primarily on the valuation of deposits. In

particular, Jarrow and van Deventer (1998) propose an arbitrage-free pricing frame-

work for demand deposits. Thereby, they assume that the interest paid on a demand

deposit is lower than the risk-free rate, i.e. that banks can earn a rent. To ensure

arbitrage-free pricing they must invoke a market segmentation hypothesis. Focus-

ing on interest-rate risk, they derive closed-form valuation formulas. However, their

model neither incorporates default risk or taxes, nor addresses the problem of opti-

mal debt mix and capital structure. Similar approaches, that assume a premium on

deposit interest rates, are due to Hutchison and Pennacchi (1996), O’Brien (2000),

or Kalkbrener and Wiling (2004). Besides deriving valuation formulas for the rents

generated by deposits, they provide corresponding empirical tests. However, as

mentioned above, the problem of why deposits may be issued in the first place is

not addressed. On the one hand, the premium on demand deposits always favors

financing with deposits over issuing bonds. So, the question why a bank may want

to issue demand deposits is irrelevant in these models, since it is already answered

by definition. On the other hand, as long as demand deposits provide a rent and

2 As referenced above, early contributions in this respect are Merton (1977, 1978).
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absent default risks, the bank should be financed exclusively by deposits. There-

fore, the determination of an optimal debt mix is not possible. This, however, are

questions we want to address in this article.

The implication of the bank capital theory of Diamond and Rajan (2000) is that

banks with a high capital ratio will create less liquidity than those with low capital

ratios. This view is not uncontested, and an alternative line of reasoning comes

to the opposite conclusion. According to f.ex. Bhattacharya and Thakor (1993),

Repullo (2004), and von Thadden (2004),3 bank capital serves as a cushion against

risks that are associated with liquidity creation. Thus, banks with high capital ra-

tios can absorb more risks and can therefore create more liquidity than those banks

with low capital ratios. A recent empirical study by Berger and Bouwman (2005)

attempts to test which of the two competing hypotheses can be confirmed by avail-

able data on liquidity creation.4 They find that for large banks,5 the data confirms

the risk absorption hypothesis, since large banks with higher capital ratios created

more liquidity. However, for small banks they find support for the hypothesis in

line with Diamond and Rajan (2000), in that small banks with high capital ratios

created less liquidity than those with low capital ratios.

So, at least for the sub-sample of small banks, there is evidence that demand de-

posits may indeed act as commitment device that enables bank to increase liquidity

creation.

This article can be viewed as showing why a bank may want to issue demand

deposits in the first place, and how deposits can act as commitment device in a

continuous-time structural model of bank capital structure. The proposed frame-

work has the advantage to provide quantitative and potentially testable implications

for the capital structure, in particular for the mix of bonds and deposits.

As mentioned above, in Diamond and Rajan (2000) the threat of a bank run drives

the banker’s rents to zero, since depositors face a collective action problem which

rules out the possibility to negotiate over the surplus that could be generated by

the specific abilities of the banker. However, while on the one hand Diamond and

Rajan (2000) stress the important role of the collective action problem, their result

that the banker can credibly commit not to extract rents and pass on the full value

of the loan depends on the other hand crucially on the assumption that after a run

has occurred the depositors, who now hold the assets, can enter into negotiations

directly with the entrepreneur. To quote Diamond and Rajan (2000), p. 2439: “If

depositors have seized the loan, the banker is disintermediated, and the entrepreneur

can directly initiate negotiations with depositors by making an offer.” The threat

of being disintermediated is what keeps the banker from extracting rents. However,

3 See the discussion in Berger and Bouwman (2005).
4 Berger and Bouwman (2005) construct a liquidity measure by classifying asset, liabilities and

off-balance sheet items into three categories: liquid, semi-liquid and illiquid. An example for

an illiquid asset is a business loan, while cash and securities are classified as liquid assets. On

the liability side, transaction deposits are classified as liquid, while, long-term debt and equity

are illiquid items.
5 Large banks are defined as banks with gross total assets over $1 billion.
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it seems not convincing, that depositors suffer a collective action problem vis-à-vis

the bank but not vis-à-vis the entrepreneur.6 The assumption that the bank can

be disintermediated by direct negotiations between (potentially large numbers of)

depositors and creditors seems to be unrealistic and undermines the very reason for

the existence of banks, namely their intermediary services.

To avoid these kinds of complications, we assume that there always exists a col-

lective action problem among depositors and thus that no negotiations whatsoever

are possible with this group. But on the other hand, the bank can issue bonds, and

we assume that bondholders do not suffer from collective action problems. With

respect to this group of investors, the bank can initiate negotiations to bargain

about the surplus that can only be generated when bank managers contribute their

specific abilities. The bargaining game takes place when bank owners decide to

stop servicing the outstanding debt obligations. In this case, the debt holders have

the choice between accepting or rejecting the bargaining offer. If they reject, liq-

uidation will occur, and the former bank owners will hand over the assets. Thus,

liquidation is assumed to occur on the basis of a debt-equity swap as e.g. in Fan

and Sundaresan (2000). But the remaining assets without the specific know-how

of the former bank manager will be worth less than as on a going-concern basis.

Therefore, depending on the bargaining power, the surplus will be split between

bank owners and debt holders. Although depositors are not part of this bargaining

game, we assume that a high proportion of demand deposits will strengthen the

position of debt holders vis-à-vis bank owners in the sense that it will increase the

bargaining power of bondholders.

It will turn out, that bank owners are willing to voluntarily weaken their bargaining

position by holding deposits in order to maximize ex ante firm value.

The remainder of the article is organized as follows. The next section sets

up the model by starting with the general valuation framework, determining the

optimal liquidation and bargaining values, and determination of the exogenous and

endogenous thresholds. Section 3 solves the model and discusses the optimal debt

mix and its implication. Section 4 concludes. Technical details are contained in the

appendix.

2 Model framework

2.1 General valuation

This section will start by giving the outline of the general valuation framework. We

assume that the central state variable upon which the corporate claims are defined

is given by a flow variable, that we interpret as earnings before interest and taxes

(EBIT). Denote the EBIT level at time t as xt. We assume that the future stochastic

evolution of the EBIT variable may be well described by a diffusion process of the

6 It may be argued, that it is essentially the sequential service constraint that creates the collective

action problem, which is absent in the case of negotiations with the entrepreneur.
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type

dxt = µdt + σ dWt, (1)

i.e. an Artihmetic Brownian Motion with drift and diffusion parameter µ and σ

respectively, and where Wt is a standard Wiener process.7

Any claim we will introduce in the following can be interpreted as being contingent

on the state variable, therefore being a function of xt. The dynamics of a function

F (xt) is easily found by an application of Itô’s formula as

dF =
(

Ft + µFx +
1

2
σ2Fxx

)

dt + σFx dWt

The absence of arbitrage opportunities implies that the total risk-neutral expected

return on the claim has to equal the risk-free rate. The claims we will consider not

only change their value due to a change in the underlying state variable, but also

because of a continuous in-/outflow, which may be constant (c) or a fraction (m)

of the state-variable. We get the following relationship

rF dt = E
Q[dF + (mx + c) dt]

= (Ft + µFx +
1

2
σ2Fxx + mx + c) dt, (2)

which gives the partial differential equation that has to be fulfilled by any claim.

In the following, we will only consider claims with no stated maturity. This implies

time-independence, so that things simplify to the following ordinary differential

equation (ODE)

1

2
σ2Fxx + µFx − rF + mx + c = 0, (3)

which has the general solution

F (x) = Λ1 eβ1x + Λ2 eβ2x +
mx + c

r
+

µm

r2
, (4)

with Λ1 and Λ2 being constants that have to be determined by appropriate boundary

conditions, and β1 and β2 are roots of the quadratic equation Q(β) = 1
2σ2β2 +µβ−

r = 0 which are given by

β1 =
−µ +

√

µ2 + 2σ2r

σ2
, β2 =

−µ −
√

µ2 + 2σ2r

σ2
.

Note that β1 > 0 and β2 < 0.

As an application for the general solution and for further use, we consider in

this section an all equity claim, i.e. the equity value of an unlevered firm. An

all equity claim is not simply the asset value for two reasons. First, we consider

7 The choice of an Arithmetic Brownian Motion (ABM) has the advantage that negative values

can realize, which is per definition impossible in the more common formulation of Geometric

Brownian Motion (GBM). The drawback of ABM is the loss of a convenient homogeneity

property which facilitates the analytical handling in the case of GBM. Since we will have to

resort to numerical simulations anyway, this drawback is not relevant in our model.
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a world with taxes,8 thus the equity holders claim is reduced by the tax burden.

Second, contrary to the case where the state variable follows a GBM, it may be

optimal to abandon even an unlevered firm. Denoting this abandonment level by

xa, the corporate tax rate by τ , and the all equity claim by A(x), we get

A(x) = (1 − τ)
(

(x

r
+

µ

r2

)

−
(xa

r
+

µ

r2

)

eβ2(x−xa)
)

. (5)

This is found by setting c = 0, m = (1 − τ) and the boundary condition, that the

claim is worthless at the abandonment level, i.e. A(xa) = 0.

The solution is to be interpreted as the net present value of an income stream from

now until some future abandonment time, which we define as the stopping time

Txa = inf{t;xt ≤ xa}.

Therefore, the all equity claim can equivalently be written as the present value

A(x0) = E0

(

∫ Txa

0

e−rs (1 − τ)xs ds
)

. (6)

Note, that in (5) the term
(

x
r
+ µ

r2

)

is the value of an infinite income stream without

the abandonment option, i.e. E0

( ∫ ∞

0
e−rs xs ds

)

, while the term eβ2(x−xa) is to be

interpreted as a probability-weighted discount factor,9 i.e. E0

( ∫ Txa

0
e−rs ds

)

. For

ease of notation, we introduce the following abbreviation

Vx =
(x

r
+

µ

r2

)

, Dxa

0 = eβ2(x0−xa).

With this notation, (5) simplifies to

A(x0) = (1 − τ)
(

Vx0 − Vxa D
xa

0

)

. (7)

Next, we introduce the depositor claim, which is defined by the following

two characteristics. First, depositors receive a constant payment, denoted by d,

as long as the bank is solvent. The payment is simply to be interpreted as the

interest payment on the deposit account. Second, we consider demand deposits

from which funds can be withdrawn at any time. We assume that depositors will

withdraw their funds only when they fear that the bank cannot redeem their claims

in whole. Since the group of depositors is assumed to be homogenous, everybody

will want to withdraw at the same time, essentially triggering a bank run. We

denote the level where this occurs by xe and the corresponding stopping time by

Txe = inf{t;xt ≤ xe}.

The bank run threshold xe can be considered as an exogenous reason for bank

default. Usually, in the capital structure literature, one assumes that manager-

owners will determine an endogenous default threshold, where they decide to stop

servicing their debt obligations10 and enter into bankruptcy procedures. Call this

8 Only taxes at the corporate level are considered, while ignoring taxes at the investor level.

It would be straightforward to also introduce a personal tax, but this would add no further

insights for our purposes.
9 See e.g. Mella-Barral (1999), p. 541.

10 In case that the current cash flow is not sufficient to finance the debt payment, the only

possibility to raise money, is through issuance of equity or injection of existing equity holders.
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endogenous threshold xb and its corresponding stopping time Txb = inf{t;xt ≤ xb}.

Thus, two default scenarios are possible. Either a bank run occurs, or bank owners

no longer honor their obligations, e.g. either xe or xb is binding. We denote the

binding threshold by x̄ = max(xe, xb) and the corresponding stopping time by

Tx̄ = Txe ∨ Txb

= inf{t; xt ≤ x̄ = max(xe, xb)}.

Further, denote the value of the depositor claim at the binding threshold by LD.11

Using the general solution, the depositor claim - denoted by D - is found to be of

the form

D(x0) =
d

r
+

(

LD −
d

r

)

Dx̄
0 . (8)

Besides funding the business with deposits, the bank has the possibility to issue

bonds. The valuation for the bondholders claim is analogous. As long as the bank

is solvent, bondholders receive the fixed contracted coupon payment, denoted by b.

Again, if the bank is no longer able or willing to service its debt, the bondholders

get a - yet undetermined - liquidation value, denoted by LB . However, contrary

to depositors, bondholders do not have the possibility to influence the timing of

default.

In analogy to (8), the bondholders claim, denoted by B is given by

B(x0) =
b

r
+

(

LB −
b

r

)

Dx̄
0 . (9)

Finally, the equity holders claim is determined by its characteristics as resid-

ual claim. Before Tx̄, equity holders receive the after tax residual value of the

current EBIT, i.e. (1 − τ)(xt − (d + b)). As usual, interest payments are tax de-

ductible and represent a tax shield for the firm.

At Tx̄, equity holders can enter into negotiations with bondholders but only if a

bank run has not occurred, i.e. only if xb is binding. In this case, the value of the

equity claim is given by the outcome of the bargaining game. Denote this renegotia-

tion gain for equity holders by LE . Similar reasoning as above, yields the valuation

for the equity claim, denoted by E

E(x0) = (1 − τ)
((

Vx0 −
(d + b)

r

)

−
(

Vx̄ −
(d + b)

r

)

Dx̄
0

)

+ LE Dx̄
0 . (10)

The firm value is then the sum of (8), (9) and (10) and will be denoted by

V (x) = D(x) + B(x) + E(x).

Before we can make the formulae operational, we need to specify the different thresh-

olds xa, xe, xb and x̄ = max(xe, xb), as well as the liquidation/negotiation values

LD, LB and LE .

11 We will give a precise characterization of xe, xb and LD later on.
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2.2 Optimal liquidation and bargaining values

For the determination of the liquidation/negotiation values, it is crucial to define

the asset value that is available at the time a certain threshold is attained. Since our

state variable is a flow variable, there is not a unique way to do this, and different

possibilities exist. One may choose to define the liquidation value as the unlevered

asset value, i.e. as the value of an all equity claim, or one may want to include its

leverage potential. In this case, the new owner of the assets can optimally lever

the firm to realize a higher value. However, by levering up the firm a new default

threshold has to be determined, which brings up again the problem of determining

a liquidation value. Thus, one runs into a recursive problem.12 Alternatively, to

circumvent the recursion problem, one may take the unlevered asset value, i.e. the

all equity value and scale this value up by a factor ̺ > 1.

As in other contributions (see e.g. Mello and Parsons (1992), Morellec (2004) or Fan

and Sundaresan (2000)), we choose to use the unlevered all equity value, since the

proper determination of the liquidation value is not the core of our model. Thus,

in general, the value available to claimants at the threshold x̄ is A(x̄).

However, due to the assumption that it matters who holds the assets, things get

a little more complicated. As in Diamond and Rajan (2000), we assume that the

incumbent bank manager-owners have specific abilities that enables them to produce

an EBIT flow of xt. Without this specific know-how, anyone else will only be able

to produce a smaller EBIT flow with the same assets, and we assume that this is a

scaled down version of x and denote it by

ξt = ρ xt,

where ρ < 1 is the scale factor, which measures the extent of the specific abilities.

The smaller ρ, the more specific abilities do incumbent manager-owners have. Note,

that ρ may also be interpreted as the liquidity of the bank assets.

As a consequence, in the case of liquidation, the available value for investors other

than the former bank owners is smaller than for the incumbent bank manager-

owners. In fact, appendix A shows that that the following relation holds

ρAx(x̄) = Aξ(x̄),

where Ax is the all equity claim defined on the process x and Aξ is defined on ξ.

In addition, as is usual, the liquidation value is reduced by proportional direct

bankruptcy costs, that we denote by α.

The liquidation value for depositors, LD is then given by

LD = min{(1 − α)ρA(x̄), d/r}.

In case the depositors initiate a bank run, they receive (1−α)ρA(x̄) but never more

than their riskless nominal value d/r. In fact, as we will see in the next section, the

exogenous bank run threshold xe will always be such, that (1−α)ρA(x̄) = d/r and

12 Christensen et al. (2005) address a related problem and solve it numerically. In a different

setup, Koziol (2006) finds an analytical solution.
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therefore LD = d/r. This implies, that (8) reduces to D(x0) = d/r, i.e. deposits

are independent of the EBIT level and riskless.

We now turn to the determination of LB and LE , i.e. the threshold values for

the bondholders and equity holders, which cannot be called ’liquidation’ values in

a strict sense. As mentioned above, as long as no bank run has occurred, equity

holders can propose negotiations to the bondholders over the surplus that can be

generated, when the incumbent manager-owners contribute their specific skills. LB

and LE thus constitute the outcome of this bargaining game, which we will turn to

now.

If the former manager-owners contribute their skills, the asset value at x̄ is assumed

to be the all equity claim A(x̄). This value must be greater than d/r, otherwise a

bank run would have occurred. Thus, the value, equity and bondholders can bargain

about is A(x̄)−d/r > 0. The outcome of the bargaining game is an optimal sharing

rule, denoted by θ, how to split this value. Thus, LB and LE are determined by

LB = (1 − θ)(A(x̄) − d/r) 1{xb>xe}

LE = θ(A(x̄) − d/r) 1{xb>xe}.

The Nash solution for the bargaining game, i.e. the optimal sharing rule θ∗ depends

crucially on the assumed bargaining power, which is formalized by the parameter η,

and is found by the following reasoning.13 For equity holders the incremental value

of accepting the offer is
(

θ(A(x̄) − d/r) − 0
)

,

while for bondholders it is

(

(1 − θ)(A(x̄) − d/r) − ((1 − α)ρA(x̄) − d/r)
)

.

The optimal sharing rule is therefore characterized as14

θ∗ = arg max
θ

{

(

θ(A(x̄) − d/r) − 0
)η(

(1 − θ)(A(x̄) − d/r)

−((1 − α)ρA(x̄) − d/r)
)(1−η)

}

=
A(x̄) r η (1 − ρ(1 − α))

A(x̄) r − d
. (11)

As an example, η = 0 would give full bargaining power to bondholders who could

make a take-it-or-leave-it offer to equity holders. In this case, equity holders would

get nothing from the negotiation value. In general, the choice of the bargaining

power is exogenous, and in general, we will assume that the bondholders have a

stronger position if the bank has also a substantial amount of deposits outstanding.

Thus, we let η be a function of d, i.e.

η(d) = 1 −
d

d + b
. (12)

13 See e.g. Fan and Sundaresan (2000), p. 1063.
14 See appendix B for the derivation.
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Thus, financing only with bonds (d = 0) will give full bargaining power to equity

holders (η = 1), while increasing amounts of deposits weaken the position of equity

holders. The motivation for this assumption is the following reasoning. If depositors

initiate a run, no bargaining is possible. Thus, bond holders bargaining position is

strengthened by a large amount of deposits that potentially threaten the negotiation

to take place. Bond holders might then threaten with the possibility to spread

rumours about the true asset value of the bank, that makes a bank run more

likely.15

We now turn to the optimal determination of the threshold values.

2.3 Optimal determination of the thresholds

We already characterized the threshold xe as being exogenous16 or as being the

bank run threshold. We consider a world with no information asymmetries, thus,

depositors have full knowledge about the true level of EBIT. They will act as to

maximize the value of their claim, which implies that they will want to withdraw

their funds whenever they realize that the asset value of the bank, or more pre-

cisely, the value they can get when initiating a bank run, is just enough to satisfy

their claim. It follows, that the optimal threshold x∗
e is implicitly defined by the

relationship (1 − α)ρA(x∗
e) = d

r
, which solves for

x∗
e = A−1

( d

r (1 − α)ρ

)

, (13)

where A−1 denotes the inverse function of A.17 Note, that due to the convexity of

A(·), x∗
e(d) is not linear in d.

The all equity claim, that we use as liquidation value involves the threshold xa,

which we interpret as the abandonment level, i.e. the level where even an unlevered

firm will be shut down. This abandonment level is determined by maximizing the all

equity claim. The corresponding optimality conditions are given by value-matching

and smooth-pasting requirements.18 In the present case, the all equity claim at xa

is zero as well as its derivative at that point, i.e. A(xa) = 0 and ∂A
∂x

|x=xa
= 0, from

which one deduces the optimal threshold x∗
a,

x∗
a =

1

β2
−

µ

r
. (14)

Note, that since β2 < 0 and µ ≥ 0, this is always negative.

15 It has to be acknowledged that this reasoning is at the present stage not fully model-consistent,

since we assume full knowledge about the true EBIT level. However, a further extension of this

basic framework is inteded to incorporate asymmetric information on the part of depositors,

which makes this assumption valid.
16 We call it exogenous in the sense that its determination is not within the power of decision of

firm owners, and not in the sense that it is not model-inherent.
17 Although A(x) involves terms of the form x ex, the inverse function A−1 can be given a quasi-

closed form solution by using the so-called Lambert W-function.
18 See e.g. Dixit (1993), Dixit and Pindyck (1994).
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A similar reasoning leads to the determination of xb. With respect to the value-

matching and smooth-pasting conditions, we have to take into account the bargain-

ing outcome. Bargaining can only take place if a bank run has not yet occurred,

therefore xb must be binding and we can write (10) as

E(x) = (1 − τ)
((

Vx −
(d + b)

r

)

−
(

Vxb −
(d + b)

r

)

Dxb

)

+ LE Dxb . (15)

At xb, D
xb = 1, thus the first term vanishes and equity is worth LE . Therefore, the

value-matching as well as the smooth-pasting conditions are

E(xb) = LE = θ∗(A(xb) − d/r) (16)

∂E

∂x

∣

∣

∣

x=xb

=
∂

∂xb

LE . (17)

From (16) and (17), x∗
b turns out to be

x∗
b =

1

β2
−

µ

r
+

d + b

1 − η (1 − (1 − α)ρ)
. (18)

The result shows, that the optimal threshold depends upon the bargaining power

as was shown in Fan and Sundaresan (2000). However, due to our assumption,

that η is endogenous and depends on d and b (see (12)), this can also be written as

x∗
b = 1

β2

− µ
r

+ (d+b)2

(1−α)ρ b+d
.

Note, that if there were nothing to negotiate about (i.e. α = 0, ρ = 1), x∗
b would

be just x∗
a + d + b and linear in d and b. As long as there is something to negotiate

about and equity holders have some bargaining power (i.e. η > 0), x∗
b is ceteris

paribus higher as without negotiation. An earlier default time is c.p. detrimental

to firm value, since it implies that the tax shield is exploited to a lesser extent.

The last step to close the model would be to determine the optimal amount of

deposits and bonds, represented by d and b, the bank owners want to issue. In

principle, the optimal choice of d and b is found by maximizing the firm value with

respect to these two dimensions, i.e.

(d∗, b∗) = arg max
(d,b≥0)

{

E(d, b, x0, x̄) + D(d) + B(b, x0, x̄)
}

, (19)

where we have indicated only those arguments, that have direct dependencies.

Unfortunately, the optimization problem of (19) cannot be given a closed-form

solution, and we have to resort to numerical simulation in the following section.

3 Discussion and implications

For numerical solutions, we assume the following base case parameter constellation,

unless otherwise mentioned. The current EBIT level, x0 is assumed to be x0 = 1000.

The EBIT process parameters are chosen as µ = 5 and σ = 50. The riskless interest

rate is assumed to be 5%, i.e. r = 0.05. The corporate tax rate is assumed to be

35%, i.e. τ = 0.35. The direct bankruptcy costs are assumed to be 5%, i.e. α = 0.05.

11



3.1 Financing with bonds

As a first step, we analyze the situation when the bank can only issue bonds. This

serves as a reference point and as a contrast to the results that will be obtained

when the bank can additionally issue demand deposits. In particular, we show how

the firm value and the leverage will vary with different choices of the bargaining

power parameter, as well as the special-abilities parameter ρ.

0.2 0.4 0.6 0.8 1

5000

10000

15000

20000

0.2 0.4 0.6 0.8 1

5000

10000

15000

20000

η ρ

equity

bonds

firm

Figure 1: Equity, bond and firm value as functions of η (left panel) and ρ (right

panel).

Figure 1 graphs the firm value (solid line), the bond value (dashed line) and the

equity value (dotted line) as functions of η and ρ.

The left panel shows the impact of the bargaining power, while the scale parameter

is fixed at ρ = 0.7. A parameter value of η = 0 means that equity holders have no

bargaining power, and the bondholders can make a take-it-or-leave-it offer. At the

other extreme, η = 1 gives full bargaining power to equity holders. Full bargaining

power does, however, not mean that the full negotiation value goes to equity holders.

The optimal share for equity holders that results out of the Nash solution is θ∗ =

η(1 − (1 − α)ρ), i.e. θ∗ = 0.24 with the assumed parameter values.

As one might expect, the left panel of figure 1 shows that the equity value increases

with η, while the bond value decreases, which is due to the stronger bargaining

position of equity holders. However, the increase in equity value is smaller than

the decrease of the bond value as can be seen from the declining graph of the firm

value.

The right panel shows the influence of the special-abilities parameter ρ for a fixed

bargaining power of η = 0.5, i.e. an equally balanced bargaining game. The higher

ρ, the smaller is the surplus that bank manager-owner can generate through their

special abilities. It can be seen that a smaller ρ is associated with higher equity but

lower bond values. In sum, the firm value is increasing with ρ.

Figure 2 shows the leverage as function of η and ρ. The current leverage L is

defined as L(x0) = B(x0)
B(x0)+E(x0)

. Note, that it is a market-value based definition.

The left panel shows L as a function of η for three different choices for ρ. A sig-

nificant decline can be observed, whereby the slope is more pronounced for low

values of ρ. The explanation follows directly from figure 1, but the magnitude of

the leverage change is remarkable.

Analogously, we observe a significant increase in the leverage in the right panel,

12
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Figure 2: Leverage (L) as function of η (left panel) and ρ (right panel).

where the impact of ρ is shown for three levels of the bargaining power parameter.

Again, the explanation follows directly from figure 1, but in this case the magnitude

of the leverage change is even more pronounced.

Table 1 summarizes the main numerical results for the base case scenario.

b∗ x∗
b E(x0) B(x0) V (x0) L(x0)

η = 1 728.01 742.07 4959.4 13886.9 18846.3 0.736

η = 0.5 842.95 742.07 3484.6 16079.6 19564.2 0.822

η = 0 957.9 742.07 2009.7 18272.3 20282.0 0.901

Table 1: Base case numerical results (ρ = 0.8).

Both figures convey more or less the same message. The more severe is the

agency problem, either because of a stronger bargaining power of equity holders

(high values of η), or due to a higher negotiation stake (low value of ρ), the smaller

is the debt capacity in terms of the amount of bonds a bank can issue. A smaller

debt capacity implies that only a smaller tax shield can be realized, which in turn

diminishes overall firm value.

In other words, for a given negotiation stake, the firm value could be increased if

the bank manager-owners were able to credibly weaken their bargaining power. We

will show in the next section, that financing with demand deposits will actually

provide such a commitment device and is able to increase firm value.

3.2 Optimal debt mix

We start by showing that financing the bank only with deposits is clearly an inferior

solution, since deposits represent a hard claim in the sense that manager-owners give

up their option to time the default. Therefore, the debt capacity is substantially

smaller, as can be seen from figure 3. At the base case parameter value ρ = 0.8,

the firm value when only deposits are outstanding is 11.5% smaller than when only

bonds are used. Note, that in the latter case, we assume that equity holders have

full bargaining power, which is a lower bound for the firm value in that case.

Now that we have shown that a corner solution (only deposits) is clearly not opti-

mal, we go on to characterize the optimal mix of bonds and deposits.
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Figure 3: Dept capacity (left panel) and firm value (right panel) in the case that the

bank is only financed by deposits (solid line) or bonds (dashed line) as a function

of ρ.

In order to do this, consider the firm value for an increasing amount of deposits,

i.e. for increasing d, while for every given d, the amount of bonds is optimized,

i.e. b∗. This is shown in the upper and lower left panel of figure 4. Vice versa, the

upper and lower right panel graph the firm value for increasing b and the corre-

sponding optimal d∗. The solid lines represent the base case, with ρ = 0.8, but the
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Figure 4: Firm value and optimal debt level.

graphs for ρ = 0.7 (dashed line) and ρ = 0.9 (dotted line) are similar. Whether

we let d or b increase, we observe in both cases a maximum firm value in the two

upper panels. The lower panels graph the corresponding optimal amount of bonds

for a given amount of deposits (lower left), and the optimal amount of deposits

for a given amount of bonds (lower right). The jumps that can be observed are

due to the discontinuities that occur when the binding threshold switches from the

endogenous to the exogenous (bank run) threshold.

An even more convincing illustration of the optimum can be given in a three-

dimensional graphic, where the firm value is plotted as function of d and b. This

is shown in figure 5. In the foreground, the amount of deposits d is increased from
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Figure 5: Firm value as function of d and b.

left to right, while the amount of bonds increases on the axis leading backwards.

The figure clearly shows that the function has a maximum. The numerical val-

ues are found to be d∗ = 416.78 and b∗ = 426.27, which lead to an optimal firm

value of V ∗ = 19556.1. We summarize the results and compare them to the case of

only bond-financing (d = 0) in table 2. The possibility to include demand deposits

b∗ x̄∗ E(x0) B(x0) + D(x0) V (x0) L(x0)

d = 0 728.01 742.07 4959.4 13886.9 18846.3 0.736

d∗ = 416.8 426.3 743.65 3485.0 16071.0 19556.1 0.822

Table 2: Base case numerical results (ρ = 0.8).

has the potential to increase the firm value by 3.8% in our base case scenario. The

value of outstanding debt rises from 13886.9 to 16071, which is an increase of 15.7%,

while the equity value decreases by 29.7%. Obviously, this increases the leverage

from 73.6% to 82.2%.

We will not present further numerical results, but it is straightforward to see that

the lower the specific-abilities parameter ρ, the more severe is the agency prob-

lem, and the higher is the potential to increase the firm value by using deposits

as commitment device. Thus, the firm value increase (i.e. V (d∗) − V (d = 0)) is a

monotonically decreasing function of ρ, while the leverage is monotonically increas-

ing with ρ.

Given the same assets, financing with deposits enables the bank to use more debt,

and the firm value improvement is then due to a better exploitation of the tax shield.

On the other hand, the higher debt proportion means that the bank can pledge a

larger share of its assets to outside investors, than in the case when only bonds can

be used. In other words, with deposits, the bank can increase its pledgable assets,

and it is in this sense that Diamond and Rajan (2000) speak about the liquidity

creation function of banks. As the results in table 2 show, we can confirm their

results within our model.
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As figure 5 shows, the maximum occurs at the intersection of two surfaces. This

is further demonstrated by a corresponding contour plot shown in figure 6. Both
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200 250 300 350 400 450 500
200

300

400

500

600

dd
bb

1955019550

18250 14300

Figure 6: Contour plots of the firm value.

panels show the firm value depending on d and b on a different scale. The left panel

plots 350 ≤ d, b ≤ 450, while the right panel plots 200 ≤ b ≤ 550 and 200 ≤ d ≤ 500.

The contour lines show the discontinuity that occurs when the binding threshold

switches from xb (upper left part) to xe (lower right part). According to this change,

the firm value function is characterized by two intersecting surfaces. Thereby, the

firm value maximum lies on the surface, where xb is binding.19 The reason is that

in the case of a bank run, the surplus by the specific abilities of bank manager-

owners is lost. However, the maximum occurs right at the edge of the xb-surface,

thus confirming in some sense the result of Diamond and Rajan (2000) that fragility

of banks are a reason of optimization. The reason in our model is, that the bank

wants to avoid a bank run, but uses a maximum of deposits to credibly weaken

their bargaining position.

To conclude the discussion, we will focus on the optimal debt mix between de-

posits and bonds. At our numerical base case scenario (see table 2), we find a

deposit ratio (defined as R = D/(D + B)) of 51.8%, thus roughly half of the debt

consists of deposits. Given their role as commitment device, it is interesting to see

how this ratio is influenced by the extent of the specific abilities, which we also

interpreted as the liquidity of the underlying asset, i.e. how R varies with ρ. Fig-

ure 7 plots this relation, together with the influence of the riskiness of the assets,

measured by σ. In the upper left panel, the deposit ratio is plotted as a function

of ρ for different risk levels. We observe that R is increasing for high values of ρ.

However, R is not monotonically increasing, and we observe a decrease for very

low levels of ρ. The explanation for the graph of the deposit ratio follows from

the lower left panel, where the corresponding graphs for the deposit and the bond

claim (at σ = 50) are plotted. The deposit claim is nearly linearly increasing in

ρ, which may be counterintuitive at first sight, since one might expect that the

19 Therefore, we call it the xb-surface.
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Figure 7: Optimal debt mix. The deposit ratio R depending on ρ and σ.

higher the agency conflict in terms of a lower ρ, the more valuable are deposits

as commitment device to mitigate this agency problem. While this is true, the

result follows from the more fundamental constraint given by the exogenous bank

run threshold xe, which - according to (13) - is a (decreasing) function of ρ. The

lower ρ, the higher c.p. xe, and thus the less deposits can be issued in the optimum.

On the other hand, the bond claim graph is concave in ρ. The reason that the

optimal bond value even decreases for high ρ is essentially due to a similar concave

relation for the bond liquidation value LB with respect to ρ, which is due to two

offsetting effects. For low values of ρ, LB increases, because a higher proportion

of deposits strengthens the bargaining power of bond holders, which gives them a

higher share in the bargaining outcome. However, as ρ increases, the total surplus of

the bargaining game ((1−(1−α)ρ)A(x̄))) gets smaller, which then diminishes LB .20

Analogously, the upper and lower right panels in figure 7 show the deposit ratio,

deposit and bond values depending on the riskiness of assets. A clear negative re-

lationship for the deposit ratio can be observed. I.e. the model predicts that banks

with more risky assets will use a smaller proportion of deposits in their optimal

debt mix. However, with respect to deposit and bond values (at ρ = 0.8), the

dependencies are not that clear-cut. While the value of deposits are monotonically

decreasing in σ (again, this follows from (13)21), the bond claim is convex in σ.

For low risks, the optimal bond value is decreasing, while for high levels of σ it

20 The higher ρ value and the higher amount of deposits d also work towards lowering the binding

threshold x̄, but the change is small, since d increases the numerator in (13), while at the same

time also the denominator is increased by ρ.
21 To see this, note that c.p. A(x; σ1) < A(x; σ2) for σ1 < σ2. Thus the inverse function decreases,

i.e. shifts downwards.
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increases. Again, the reason for this non-monotonic relation is due to two offsetting

effects. On the one hand, a higher σ decreases the binding threshold (due to a lower

amount of deposits) which decreases the value of the probability-weighted discount

factor Dx̄. This in turn increases the bond value. On the other hand, a higher risk

decreases the liquidation value LB , because due to the higher σ less deposits are

outstanding which weakens the bargaining power of bond holders. Thus, they ob-

tain a smaller share in the bargaining game. A smaller liquidation value obviously

diminishes c.p. the bond value.

The relationships just discussed may serve as testable implications of our model.

Although the usual caveat applies, that the proposed framework is a stylized model,

that leaves out a number of issues one may consider to be important in practice,

our results predict that banks where manager-owners have a high degree of specific

abilities and/or risky assets will tend to use less deposits in their optimal debt mix.

4 Conclusion

Recent work in the banking theory literature stresses the role of uninsured deposits

as commitment device to discipline bank manager-owners not to extract rents from

their specific abilities in running the business. By using this credible commitment,

the bank can issue more debt, and in turn increase the firm value. The aim of this

article was to show if and how this finding can be incorporated in a continuous-time

contingent claims valuation framework. It is important to stress, that in Diamond

and Rajan (2000) depositors can negotiate with the entrepreneur after a run has oc-

curred. Since we consider this to be implausible, we assume that depositors always

suffer a collective action problem, which means that no negotiations whatsoever are

possible with this group of claimants. However, negotiations are possible with bond

holders, whereby the outcome of the bargaining game depends on the bargaining

power, which we let depend on the proportion of deposits a bank has outstanding.

The motivation for this is, that the bargaining position of bond holders vis-à-vis

equity holders is stronger when there is another group of debt holders.

Within this setup, we can show that a bank can improve its firm value by using de-

mand deposits as part of its debt mix, compared to financing only with bonds. The

reason for this firm value increase is the fact, that deposits strengthen the bargain-

ing position of bond holders in the case of renegotiation. Thus equity holders are

willing to voluntarily weaken their bargaining position, because this enables them

to issue more debt and to exploit the associated additional tax shield. In the sense,

that the bank can increase its pledgable assets by using deposits, the bank creates

liquidity as this has been stressed by Diamond and Rajan (2000).

The continuous-time setup enables us to derive quantitative results that yield testable

implications. Our model predicts that banks where manager-owners have more spe-

cific abilities will use less deposits, than banks with less specific abilities. Analo-

gously, banks with riskier asset will use more bonds in their debt mix.
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A Appendix 1

It is assumed, that the incumbent manager-owner have specific abilities in running the

bank business and given that they contribute their know-how, the assets in place produce

a cash-flow of xt. Anybody else holding these assets can only extract a fraction ξt = ρ xt

of these cash-flows. We will show in this appendix, that the following relation holds

Aξ(ξ) = ρ Ax(x),

where Ax, Aξ denotes an all equity claim defined upon the process xt and ξt respectively.

It is shown in the text, that the all equity claim on the process dxt = µ dt + σ dWt has

the solution

Ax(x) = (1 − τ)
“

`x

r
+

µ

r2

´

−

`xa

r
+

µ

r2

´

eβ2(x−xa)
”

.

To find the solution for an all equity claim defined upon the process ξ, first note, that the

dynamics of ξ are given by

dξt = µ̂ dt + σ̂ dWt,

where µ̂ = ρµ and σ̂ = ρσ. Therefore, we can apply the general solution by making

appropriate replacements. This yields

Aξ(ξ) = (1 − τ)
“

`ξ

r
+

µ̂

r2

´

−

`ξa

r
+

µ̂

r2

´

eβ̂2(ξ−ξa)
”

.

where

β̂2 =
−µ̂ −

p

µ̂2 + 2σ̂2r

σ̂2
, ξa =

1

β̂2

−

µ̂

r
.

However, β̂2 and ξa are simply

β̂2 =
1

ρ
β2, ξa = ρ xa.

Therefore, eβ̂2(ξ−ξa) = eβ2(x−xa) and thus

Aξ(ξ) = ρ Ax(x)

as asserted.

B Appendix 2

To solve the maximization problem in (11), rewrite it as

θ∗ = arg max
θ

n

U(θ)η V (θ)(1−η)
o

,

where

U(θ) =
`

θ(A(x̄) − d/r) − 0
´

V (θ) =
`

(1 − θ)(A(x̄) − d/r) − ((1 − α)ρA(x̄) − d/r)
´

.

Taking derivatives of U and V with respect to θ yields

Uθ =

„

A(x̄) −
d

r

«

η

„„

A(x̄) −
d

r

«

θ

«−1+η

Vθ =

`

−A(x̄) + d
r

´

(1 − η)
`

(1 − θ)
`

A(x̄) − d
r

´

− (1 − α) ρ A(x̄) + d
r

´η

Therefore, the first order condition is

Uθ V + U Vθ = 0.

Solve for θ to obtain

θ∗ =
A(x̄) r η (1 − ρ(1 − α))

A(x̄) r − d
.
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