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Abstract 
 
In this paper, we estimate two different structural models for a liquidity provider’s spread when trading a 

basket of stocks simultaneously and immediately using a market mechanism called blind principal bid. The 

spread is a liquidity demander’s cost for immediacy. Two previous studies by Kavajecz and Keim (2005) 

and Giannikos and Suen (2006) investigate a similar question. Neither study, however, is based on any 

structural models. Considerable market microstructure research has attempted explicitly to model a dealer’s 

spread for trading a single stock in a quote-driven market. This paper applies two structural spread models, 

developed by Stoll (1978a, 1978b) and Bollen, Smith and Whaley (2004), in the context of trading a basket 

of stocks simultaneously. We found that both models perform quite well, explaining a liquidity provider’s 

spread for trading a basket of stocks. Using Bollen, Smith and Whaley’s (2004) methodology, we are able 

to decompose the spread into various fundamental and structural cost components and rank their relative 

magnitude. The inventory-holding costs are found to be the largest cost component. We empirically deduce 

an implied trading rate used by a liquidity provider to unload shares in a basket after accepting a basket. 

For trades within a basket, we also analyze an empirical relation between informed trades and their (dollar) 

trade size (expressed in percentage of average daily dollar volume). A potential application of this study is 

to help asset managers develop a benchmark trading cost when trading a basket of stocks using blind 

principal bids.  
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I. Introduction 

The market microstructure models for a stock dealer’s1 spread in a quote-driven market 

are based on trading a single stock. In this paper, we estimated two structural models for 

a dealer’s spread when a basket of stocks is being traded. These two models were 

originally developed by Stoll (1978a, 1978b) and Bollen, Smith and Whaley (2004), 

respectively. Whereas they use trade data on an individual stock, our model estimation is 

done using data on trading a basket of stocks simultaneously. This is one of the most 

important features of this study. Our data come from two active equity asset managers 

who trade stock baskets using a special market mechanism called blind principal bid 

(BPB).2 The liquidity providers, typically major sell-side firms, are customarily called 

blind principal brokers. BPB brokers commit their own capital to provide liquidity by 

being the counter party for each of the trades within a basket of stocks. (Section III 

provides the institutional details of BPB, in brief.)  

 

The motivation for this study is based on our observation that the role and function of a 

BPB broker is very similar to that of a dealer in a quote-driven market, especially with 

respect to the risk exposure faced by a dealer.3 Both dealers and BPB brokers facilitate 

trading by providing immediate liquidity using their own capital. Their capital is exposed 
                                                 
1 We use the term dealer and market maker interchangeably throughout this paper. 

2 For the remainder of the paper, we use BPB as the abbreviation for blind principal bid.  

3 The term “blind principal bid dealers” (rather than “blind principal bid brokers”) may be a better term for 

this type of liquidity providers, since their roles and functions are similar to a dealer (who bears risk) in a 

quote-driven market, Strictly speaking, a broker does not face the same risk as a dealer. Nevertheless, we 

shall continue to use the industry norm, blind principal broker, for the remainder of the paper.  
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to certain risks while providing a liquidity service (e.g. adverse price movement or the 

other party is informed). Therefore, they will certainly request compensation for their risk 

exposure: for dealers, in the form of a spread; for BPB brokers, a fee (or trading cost4) 

paid by an asset manager. Our hypothesis involves using the two dealer’s spread models 

mentioned above, subject to some minor extensions, to model the trading cost paid by 

users of BPB. Our insight is that a BPB broker’s fee and a dealer’s spread are 

conceptually equivalent. One potential application of our result is that BPB users can now 

set a benchmark cost on how much trading cost they should pay for a BPB broker’s 

liquidity service. 

 

The remainder of this paper is organized as follows. Section II reviews the literature on 

modeling spread and the various components of a spread. Section III describes the basket 

trading data used in this study. Section IV and V describe how we estimate Stoll’s 

(1978a, 1978b) model and Bollen, Smith and Whaley’s (2004) model, respectively. 

Section VI concludes the paper. 

II. Literature Review 

Since Garman (1976) coined the term “market microstructure,” there has been an 

explosive growth of research in this field. This section provides a very brief overview of 

various research topics relevant to this paper.5  

                                                 
4 Giannikos and Suen (2006) refer to this type of trading cost as a “liquidity risk premium.” 

5 Several excellent survey papers and books offer a more detailed and comprehensive treatment; see, for 

example, Coughenour and Shastri (1999), Madhavan (2000), Stoll (2003), Biais et al. (2005), O’Hara 

(1997), and Hasbrouck (2006). 
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One early approach to modeling a dealer’s spread was to tackle the problem as an 

inventory management problem from the dealer perspective. This approach is commonly 

referred as the inventory model in the market microstructure literature (e.g. O’Hara 

(1997)). Several studies take this approach. Garman (1976) models the spread as an 

optimization problem in which the dealer chooses an optimal bid and ask price. The 

broker sets bid and ask prices only once at the beginning of time. The objective function 

is to maximize the dealer’s expected profit while taking into consideration the problem of 

running out of cash or inventory and when the arrival of trade orders is stochastic. Stoll 

(1978a) also solved the inventory management problem as an optimization problem, but 

models the compensation for a dealer who holds a sub-optimal portfolio while providing 

liquidity. Holding sub-optimal portfolio means extra risk exposure that generates a 

dealer’s compensation. Stoll (1978a, 1978b) also analyzes various fundamental cost 

components in a dealer’s spread. Amihud and Mendelson (1980) began with framework 

similar to that of Garman (1976), but allow bid and ask prices to change when inventory 

changes. Ho and Stoll (1980), Ho and Stoll (1981), and Ho and Stoll (1983) are 

extensions and enhancement to Stoll (1978a). O’Hara and Oldfield (1986) tried to 

address some of the restrictions in Ho and Stoll’s (1981) model, for example, by 

employing an infinite time horizon rather than the finite time horizon in Ho and Stoll 

(1981). 

 

There are several empirical studies as well. Stoll (1978b) is the empirical test for Stoll 

(1978a). Ho and Macris (1984) use transaction prices and dealer inventory of some 
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American Stock Exchange options and find some empirical evidence supporting Ho and 

Stoll (1981). They show that dealers’ spread is positively correlated to asset risk and 

dealers adjust their quotes in response to their inventory position. Hasbrouck and 

Sofianos (1993) find that dealers have a preferred level inventory, adjusting the bid and 

ask prices to bring inventory to a preferred level. Hansch et al. (1998) conduct direct tests 

of Ho and Stoll’s (1983) inventory model using London Stock Exchange data. One of 

their findings is that relative inventory position is significantly related to the ability to 

execute large trades, which supports the inventory model of dealer’s spread. Naik and 

Yadav (2003) test Ho and Stoll’s inventory model and also investigate a particular 

question where dealer firms manage inventory on a stock-by-stock or portfolio basis. 

They find that individual dealers manages their own inventory but do not focus on the 

overall inventory of their firms.  

 

Another approach to model a dealer’s spread is from an information asymmetry 

perspective, based on adverse selection theory. This class of models takes into 

consideration that a dealer may be disadvantaged when trading with an informed trader. 

Some of the literature, e.g. O’Hara (1997), refers to this as the information asymmetry 

model. Bagehot (1971) is thought to be the first study of this information asymmetry. 

Copeland and Galai (1983) model a dealer’s spread as maximum expected profit, 

balancing losses from trading with informed traders and gains from trading with 

uninformed (liquidity) traders. Glosten and Milgrom’s (1985) model incorporates an 

additional element not included in Copeland and Galai’s model, namely, that informed 

traders’ trades have information content. Even a dealer cannot distinguish an informed 
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from an uninformed trader; a dealer alters his expectation of a stock’s true price 

conditional on the trades he receives. Easley and O’Hara’s (1987) model differs from 

Glosten and Milgrom’s (1985) model in one major aspect: they explicitly consider the 

effect of trade size executed by traders on stock prices, motivated by empirical 

observation that large trades are executed at worse prices. 

 

Since the spread can be modeled as a function of inventory holding and information 

asymmetry, researchers have investigated whether one can decompose the spread into 

these two components. A broader issue is the estimation of various components (e.g. 

order processing costs, inventory costs, and information asymmetry costs) that contribute 

to the bid-ask spread. Empirical studies along these lines include Roll (1984), Choi et al. 

(1988), Glosten and Harris (1988), Stoll (1989), George et al. (1991), Madhavan et al. 

(1997), and Huang and Stoll (1997). Huang and Stoll manage to generalize all these 

works. Coughenour and Shastri (1999) provide a concise survey of this topic, wherein 

most papers are based on time series analysis. There are, however, some studies that use a 

cross-sectional approach, for example, Stoll (1978b) and Bollen et al. (2004). Since time 

series data do not exist for a BPB basket, Stoll and Bollen et al.’s cross-sectional 

approach makes estimation of various trading cost components feasible for the BPB 

basket. We discuss these two studies in more detail in Section IV and V. 

 

Some literature also investigates the empirical evidence of the various determinants of a 

dealer’s spread. Demsetz (1986), Tinic (1972), Tinic and West (1972, 1974), Benston and 

Hagerman (1974) and Branch and Freed (1977). Bollen, Smith and Whaley et al. (2004) 
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provide a concise summary and comparison of these studies. Two studies, Kavajecz and 

Keim (2005) and Giannikos and Suen (2006), are particularly relevant to this paper. Both 

investigate the empirical determinants of BPB trading cost.  

III. Data 

Before describing in detail the BPB data used in this study, it is beneficial to give a brief 

overview of BPB as a trading mechanism, since some readers may be unfamiliar with this 

alternative trading venue.6 

III.a. BPB overview 

BPB is a trading mechanism that allows a liquidity demander (e.g. quantitative asset 

managers7 or transition managers8) to trade a basket of stocks at a predetermined 

contractual execution price for each stock in a basket. The cost of trading the basket is 

determined by a bidding (auction) process in which competing liquidity providers (i.e. 

sell-side BPB brokers) submit their best bid (price), usually quoted as cents per share, for 

                                                 
6 For a more in-depth description of BPB’s institutional details, see Giannikos and Suen (2006), Kavajecz 

and Keim (2005), Almgren and Chriss (2003), and Kissell and Glantz (2003). 

7 Many quantitative asset managers use an optimizer to re-balance their portfolio. A trade list is being 

generated by an optimizer and it converts an existing portfolio to an optimal portfolio solved by an 

optimizer. In other words, these asset managers would like to execute trades within a trade list quickly and 

simultaneously. 

8 A transition manager takes control of a portfolio from an asset manager who has just been terminated, 

receiving instructions from a newly hired asset manager. The instructions include a list of securities the 

new manager would like to have in his portfolio. The transition manager needs to execute the necessary 

trades (in a short period) to convert the existing portfolio into that requested by the new manager. 
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trading an entire basket for a manager. A broker whose bid is the minimum usually 

executes a basket for the manager. The winning BPB bid will be used to calculate the 

trading cost paid by the liquidity demander to the BPB broker for providing liquidity (and 

satisfying the manager’s desire for immediacy). Our key insight in this paper is that such 

a trading cost is conceptually very similar a dealer’s spread, that is, dealer’s spread is the 

cost of immediacy for a single stock while the trading cost for BPB is the cost of 

immediacy for a basket of stocks. 

 

Two bidding procedures are typically used for a BPB basket: 

 

1. pre-open bidding 

2. post-close bidding 

 

For pre-open bidding, summary characteristics9 of a basket are sent to competing brokers 

early in the morning before the market is open (e.g. some time between 7 a.m. and 8 

a.m.). Bidding is blind in the sense that individual names in a basket are not provided to 

competing brokers. The execution price for each stock in a basket is agreed upon by the 

manager and brokers. In this case, the execution price is a stock’s closing price on the 

                                                 
9 Typical summary characteristics include the dollar value of a basket (buy and sell), the number of shares 

in a basket (buy and sell), the number of stocks in a basket (buy and sell), sector exposures (buy and sell), 

and so on. An example list can be found in Giannikos and Suen (2006). Standard reports that describe a 

basket’s characteristics can be sent by a manager to competing brokers. 
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previous business day. Broker’s bid is usually quoted as cents per share.10 For example, if 

a broker submits a bid, say, 6 cents per share for a basket with 1,000,000 shares, it means 

the manager pays $60,000 for trading the entire basket at the agreed-upon execution 

prices (i.e. the previous day’s closing prices). The broker whose bid is the lowest usually 

wins the basket and executes all the transactions within a basket. At this point, a manager 

can regard all trades within a basket as completed. Basically, the buy and sell lists within 

a basket are transferred from a manager to a BPB broker’s inventory. Since the execution 

price is contractual, there is no market impact cost from the manager’s perspective. 

However, the winning (lowest) bid is usually higher than the commission for institutional 

agency trades (typically about 2 cents per share) because broker needs to commit its own 

capital in order to provide liquidity to a manager. If prices of stocks in a basket move 

adversely against a winning broker, he may suffer severe capital loss. Therefore, the 

broker charges a higher price to compensate for his risk exposure while providing 

liquidity to the manager. From the managers’ perspective, the tradeoff is between a 

higher explicit winning bid cost with no market impact risk and no unfinished trades and 

a lower explicit commission cost with unknown market impact and the possibility of 

unfinished trades. 

 

The post-close bidding procedure is very similar to that of pre-open bidding. Basket 

summary characteristics are sent out to competing brokers right after the maker closes. 

The execution price for each stock in a basket is its corresponding same-day closing 

                                                 
10 We may also express the cost of a blind principal bid as basis points. It is computed as the ratio between 

the dollar value paid to the winner broker and the total dollar value of a basket. 
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price. The winning broker is not able to unload most names in a basket until the market 

reopens on the next business day.  

III.b. Historical BPB Data 

The following is a description of the BPB basket data used in this study. We have 

gathered 196 BPB baskets executed regularly by two active asset managers.11 These 

baskets were traded during the period from January 2002 to September 2005. The trading 

activities are quite evenly distributed throughout the sample period.12 Manager A uses 

only pre-open bidding, while Manager B uses both pre-open and post-close bidding. For 

each basket executed, we gathered the following data items. (Data items specific to 

Stoll’s (1978) model and Bollen, Smith, and Whaley’s (2004) model are discussed in the 

next two sections.) 

 

1. Stock identifier (CUSIP or ticker) for each name in a basket 

2. Transaction type for each name (buy or sell) in a basket 

3. Number of shares traded for each name in a basket 

4. Execution price13 for each name in a basket 
                                                 
11 We would like to thank a consulting firm specializing in securities transactions for providing transaction 

records for one of its managers. Due to issues of confidentiality, the names of the money managers and the 

winning brokers were excluded from the records before we received the data. We obtained a second set of 

transaction records from another asset manager. We refer to these two managers, both of whom specialize 

in quantitative investment strategies, as Managers A and B. 

12 The trading frequency is about once a week. 

13 For pre-open bidding, the execution price is the previous day’s closing price. For post-close bidding, the 

execution price is the same- day closing price. Please refer to Section III for more detail. 
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5. Lowest (winning) bid (cents per share) 

 

The BPB trading cost (in dollars) paid by the manager for trading a BPB basket can be 

computed as the total number of shares in a basket times the lowest bid (i.e. winning bid). 

In some cases, it is convenient to express the cost in basis points. It can be computed by 

dividing the cost (in dollars) by the total dollar value of a basket. When a BPB trading 

cost is expressed in basis points, it is conceptually similar to the relative spread or 

percentage spread (i.e. Spread / Price) in the market microstructure literature. Table I 

provides descriptive statistics of some basket characteristics. 

IV. Estimating Stoll’s (1978a, 1978b) model 

In this section, we describe how to estimate Stoll’s (1978a, 1978b) model using the BPB 

basket trading data. Stoll (1978a) focuses on developing a theoretical model for the 

holding cost component in a dealer’s spread based on inventory modeling and, to a lesser 

extent, other cost components. Stoll (1978b) is the empirical counterpart of the structural 

model developed by Stoll (1978a). Moreover, Stoll (1978b) tried to estimate a structural 

model in which the spread consists of three cost components (holding cost, order cost, 

and information cost). As mentioned in the original paper, Stoll sought to “develop a 

more explicit and rigorous model of the individual dealer’s spread.” This point is again 

emphasized by Bollen, Smith and Whaley (2004), who are concerned with the structural 

form of a spread model because many models are based on economic reasoning rather 

than formal mathematical modeling. This leads to the criticism of ad hoc model 

specification and variable selection. 
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The original model is a spread model for a single stock name, but our description 

emphasizes the issues that are more relevant in the context of trading a basket of stocks 

simultaneously. Our model estimation basically follows the Stoll’s (1978b) approach. 

However, we have a slightly different model specification. In the original model, Stoll 

included a factor for competition (number of dealers). We cannot include this 

competition factor in our model because we do not have data on the number of BPB 

brokers that were bidding on each basket. 

IV.a. Model overview 

In the following we describe the dependent and independent variables in our cross-

sectional regression. As in Stoll’s original paper, the natural logarithms of the variables 

are used when conducting the regression. We also borrow the variable symbols from the 

original paper to facilitate the cross-reference between two papers. 

 

Basket trading cost (expressed in basis points14), si, is the dependent variable. In the 

original paper, si is the percentage spread. i is the BPB basket identifier (i.e. i = 1, 2, 

3,…., 196). All other variables given below are independent variables. 

 

Basket variance, σ2
i. It is a direct measurement of the risk for a basket.15 The sign of the 

estimated coefficient for σ2
i is expected to be positive. A BPB broker will charge more 

for a more risky basket.  

                                                 
14 The BPB trading cost = (cost per share × total number shares traded) / (total BPB basket dollar value 

traded ) 

15 The basket variance is estimated using the MSCI Barra U.S. risk model. 
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Basket weighted-average volume, Vi, is the weighted average of dollar volume for a 

basket. For each stock in a basket, we compute its average daily dollar trading volume 

during the last 10 trading days (before the date of basket bidding). The weight used in 

calculating Vi is the dollar value of a trade for a stock (within a BPB basket) divided by 

the total dollar value of a basket. Basket volume is used as a proxy for the holding period 

in Stoll’s model. The greater the volume, the shorter time (i.e. less risk) taken by a BPB 

broker to unload (or reverse) positions in a basket. The sign of the estimated coefficient 

for Vi is expected to be negative.  

 

Basket weighted-average turnover, (V /T)i. The turnover for each stock within a BPB 

basket is defined as the 10-day average dollar volume divided by its market 

capitalization.16 The weight used in calculating (V /T)i is the dollar value of a trade for a 

stock (within a basket) divided by the total dollar value of a basket. Basket turnover is 

used as a proxy for adverse selection in Stoll’s model. Based on Stoll’s original 

argument, if a trade is driven by liquidity need (i.e. it originated from an uninformed 

trader), the traded volume tends to be proportional to market capitalization. However, if a 

trade for a stock originates from an informed trader, volume tends to be out of proportion 

to the stock’s market capitalization. The sign of the estimated coefficient for turnover is 

expected to be positive. 

 

                                                 
16 Market capitalization is calculated based on the latest available closing price for a stock when basket 

bidding (auction) occurs. 
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Basket weighted-average stock price, Pi, is a proxy for minimum cost in the original 

model. For each stock in a BPB basket, we gather the stock’s latest closing price (see the 

footnote for computing stock’s market capitalization). As with other variables, the weight 

used in calculating the basket weighted-average stock price is the dollar value of a trade 

for a stock (within a basket) divided by the total dollar value of a basket. Stoll argues that 

there is no prior expectation for the sign of the estimated coefficient.  

 

In the original paper, Stoll also models the effect of dealer competition on the size of a 

spread. Due to the lack of data on the number of BPB brokers bidding for each historical 

basket, we do not include this particular independent variable in this study. Table II 

provides some descriptive statistics for the variables used in the estimation. 

IV.b. Model estimation result and analysis 

Table III summarized the result of estimating Stoll’s (1978b) model. Overall, Stoll’s 

model performs quite well to explain BPB basket trading cost. The R-square of the OLS 

regression is approximately 74%, which is similar to that of Kavajecz and Keim (2005) 

and Giannikos and Suen (2006). All estimated coefficients are highly significant with the 

exception of “basket weighted-average stock price.” In the original paper by Stoll 

(1978b), the stock price is used as a proxy for minimum cost. Since the estimated 

coefficient for basket weighted-average stock price is not significant, it may indicate that 

we need another proxy for minimum cost in the context of BPB basket trading. All the 

signs for the estimated coefficients are consistent with our expectation, as shown in 

Table II. 
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A larger data sample that includes data from two different assets managers (rather than 

one manager, as in Kavajecz and Keim’s (2005) study), as well as a more parsimonious 

model specification than Giannikos and Suen (2006), are not the only improvements in 

this paper. A key feature that distinguishes this study from the two earlier studies is our 

use of a theoretical framework for the trading cost of a BPB basket and estimation of the 

structural trading cost model. The structure of our model is not based on ad hoc economic 

reasoning, but is well defined.  

 

There is, however, one limitation when applying Stoll’s model directly in the context of a 

BPB basket trading. In Stoll’s original model, the inventory holding cost component 

reflects a single period model and the variance of a stock is assumed to be stationary 

during the period. This assumption may not be true when a BPB broker tries to unload a 

BPB basket. Our discussions with BPB brokers reveal that they usually unload stocks 

within a basket at different speeds. Therefore, the basket variance is unlikely to remain 

stationary during the period when a BPB broker is unloading stocks from a basket. Our 

second structural model can address this limitation.  

V. Estimating Bollen, Smith, and Whaley’s (2004) model 

In this section, we describe and estimate a spread model based on the methodology 

developed by Bollen, Smith and Whaley (2004). As we have emphasized earlier, this 

spread model provides a theoretically grounded functional form of the relationship 

between the spread and its determinants. Their original model is for trading a single 

stock; a straightforward extension allows us to apply their model in the context of trading 

BPB baskets. An additional benefit is that this model can compute various components of 
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a spread. Thus, we can compare the distribution of various cost components within a BPB 

basket spread with some other studies (which tend to analyze the cost categorization of a 

stock spread). A unique feature is that this model is one of the few that does not use time 

series data; as mentioned in the literature review, many previous studies do utilize time 

series data to estimate various cost components in a spread. Since there are no time series 

data available for BPB baskets, Bollen, Smith and Whaley’s (2004) methodology 

becomes attractive in studying trading cost components for BPB baskets. To facilitate 

discussion of our study, we provide a very brief overview of Bollen, Smith, and Whaley 

(2004). Followings the model overview, we present our results on the model estimation 

and analysis. 

V.a. Model overview 

To minimize potential confusion and facilitate cross-reference between their paper and 

ours, we follow the terminology and original notation of Bollen, Smith and Whaley 

(2004). Moreover, the assumptions of their paper are directly applicable: (1) risk-free rate 

and dividend yield are ignored, and (2) the BPB broker has no existing inventory. Bollen, 

Smith and Whaley (2004) use the following functional form for a (stock) spread: 

 

SPRDi = f(OPCi, IHCi, ASCi, COMPi),      (1) 

 

where17  

                                                 
17 The following are the descriptions for each cost component as given by Bollen, Smith and Whaley 

(2004). Order-processing costs are those directly associated with providing the market making service and 

include items such as the exchange seat, floor space rent, computer costs, informational service costs, labor 
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i = identifier for a stock 

OPCi = order-processing costs 

IHCi = inventory-holding costs 

ASCi = adverse selection costs 

COMPi = degree of competition 

 

As discussed in Section IV, Stoll (1978b) uses a similar functional form given by (1). For 

this paper, we are unable to model the effect of competition on the trading cost of BPB 

baskets due to a lack of competition data. We have argued that the cost faced by a dealer 

is very similar to that of a BPB broker; therefore, we adopt the following functional form 

for the cost of trading a BPB basket: 

 

(BPB basket trading Cost)i = f(OPCi, IHCi, ASCi)     (2) 

where 

i = identifier for each BPB basket in our data sample 

 

Value inventory-holding premium using at-the-money option 

                                                                                                                                                 
costs, and the opportunity cost of the market maker’s time. Inventory-holding costs are those a market 

maker incurs while carrying positions acquired in supplying investors with liquidity. Adverse selection 

costs arise from the fact that market makers, in supplying immediacy, may trade with individuals who are 

better informed about the expected price movement of the underlying security. Degree of competition is 

likely to affect the level of the market maker’s bid/ask spread, particularly in an environment where barriers 

to entry are being slowly eliminated. 
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Bollen, Smith and Whaley (2004) argue that a dealer’s spread “needs to include a 

premium to cover expected inventory-holding costs, independent of whether the trade is 

initiated by an informed or uninformed customer.” In the context of a BPB basket, an 

analogous interpretation is that some trades within a BPB basket are liquidity-driven18 

and some others are information-driven.19 If a basket’s trades are purely liquidity-driven, 

(e.g. subscription or redemption of a S&P 500 index fund), the trade can be hedged easily 

using S&P 500 future contracts. A blind principal bid is unlikely to be used for this type 

of trading. Bollen, Smith and Whaley (2004) call this the inventory-holding premium 

(IHP). By using a European style at-the-money option to hedge stock price movement, 

they show that a dealer’s expected IHP is equal to the following: 

 

( )( )[ ]15.02)( −= tENSIHPE σ ,       (3) 

 

where 

S = true stock price 

σ = standard deviation of security return 

t = time until next offsetting order 

N(·) = cumulative unit normal density function 

 
                                                 
18 One examples of a liquidity-driven trade is trades that trim back aggressive over-weight or under-weight 

positions (relative to a manager’s benchmark) that are hitting the allowable upper or lower bound mandated 

by a portfolio owner. 

19 Since our data are from active asset managers, some of their trades are by definition supposed to be 

informed so that they can add value for their clients. 
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Equation (3) is, in fact, the value of an at-the-money option based on the Black-Scholes 

formula (with the risk-free rate equal to zero). The strike price is equal to the true stock 

price. The intuition of Bollen, Smith and Whaley’s (2004) argument is that the value of 

the at-the-money option can be thought as the BPB broker’s hedging cost so that he is 

protected from adverse stock price movements while he is holding a basket in his 

inventory.20 

  

The following is an analogous interpretation of equation (3) in the context of trading BPB 

basket. S is the latest closing price21 for each stock in a BPB basket. From a BPB broker’s 

perspective, his profit or loss is calculated based on the closing prices. Therefore, closing 

price is the appropriate reference price for hedging purpose. σ is the standard deviation of 

rate of return for each stock in a basket. t is the time taken by a BPB broker to unload 

(a.k.a. unwind) a stock from a BPB basket. We introduce an extra variable that helps us 

model t. The new variable, unloading rate, g, is defined as the percentage of average daily 

(dollar) volume (ADV22) a BPB broker would like to trade (to unload a stock in a basket) 

during one trading day. For example, if average daily volume for a stock j (within a BPB 

basket) is $1,000,000 and if g = 25% per day, then a BPB plans to trade $250,000 worth 

of a stock each day to unload stock j. Further assume that the dollar trade size for stock j 

                                                 
20 Please refer to the original paper for a more formal and mathematical argument for valuing the 

inventory-holding premium. 
21 For pre-open bidding, the latest closing price is the previous business day closing price. For post-close 

bidding the latest closing price is the same-day closing price. 

22 For the rest of the paper, we use the abbreviation ADV to stand for average daily (dollar) volume.  
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is $500,000. Hence, it will take the BPB broker about two days to unloaded stock j from a 

BPB basket. Therefore, we have the following relation between t and g:  

 

t = (dollar trade size for a stock within a basket / average daily volume) / g  (4) 

 

So, it takes two days for the BPB broker to unload this particular stock from a BPB 

basket. For half of all the shares for stock j, he needs options that expire in one day. For 

the other half, he needs options that expire in two days. For simplicity, we use the 

following definition of t in computing IHP: 

 

t = 0.5 [(dollar trade size for a stock in a basket / average daily volume) / g] (5) 

 

By computing IHP stock by stock (rather than IHP for a BPB basket as a whole), we do 

not require the unloading process to be done in a proportionally manner, so that the dollar 

weight for each stock within a basket remains stationary. As mentioned in the previous 

section, Stoll (1978b) does have this implicit limitation in the case of trading BPB basket. 

Therefore, Bollen, Smith and Whaley’s (2004) methodology has an advantage in 

modeling the BPB basket trading cost. In summary, the expected basket IHP is the 

summation of each stock’s IHP and for each stock its t is given by equation (5): 

 

( )( )[ ]15.02)( −= ∑ jjj tENSbasketIHPE σ ,      (6) 

 

where j = 1, 2, ... , number of stocks in a BPB basket. 
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Bollen, Smith and Whaley (2004) have the following regression model specification for a 

dealer’s spread: 

 

SPRDi = α0 + α1InvTVi + α2MHIi + α3IHPi + εi,     (7) 

 

where 

InvTVi = inverse of trading volume = 1/number of shares traded 

MHIi = modified Herfindahl index 

IHPi = inventory-holding premium 

 

As we mentioned in the preceding section, we do not have the necessary data to model 

competition among BPB brokers. It is unfortunate that we are forced to omit MHI in our 

BPB basket trading cost model specification. InvTVi is used to model order-processing 

cost. Bollen, Smith and Whaley (2004) argue that order-processing costs are largely 

fixed; hence, wthe order processing cost per shares goes down when share volume rises. 

However, the number of shares transacted in BPB baskets is much larger than that 

transacted by a dealer for a single stock.23 Therefore, we define InvTVi slightly 

differently and re-define InvTVi = 1 / sqrt(Total shares in a BPB basket). The following 

is a regression model specification for the BPB basket trading cost: 

                                                 
23 In Table 3 of Bollen, Smith and Whaley (2004), the mean number of shares traded in a day for a stock is 

between 250,000 and 600,000 during three different sampling periods. However, the mean number shares 

traded for a BPB basket is about 11 million shares. 
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(BPB basket trading cost)i = α0 + α1InvTVi + α2(Basket IHP)i + εi,   (8) 

 

where 

i = identifier for each BPB basket in our data sample 

(BPB basket trading cost)i = fee (in dollars) paid by manager to BPB broker, 

InvTVi = 1 / sqrt(Total shares in a BPB basket), 

(Basket IHP)i = Basket IHP given by equation (6). 

 

However, in the case of a BPB basket, there are two dimensions for order-processing 

cost. The first dimension is the total number of shares traded in a basket. The second 

dimension is the number of names in a basket. Another possible alternative regression 

model specification for BPB basket trading cost is: 

 

(BPB basket trading cost)i = α0 + α1InvNumofNamesi + α2(Basket IHP)i + εi, (9) 

 

where 

InvNumofNamesi = 1 / Number of names being traded in a BPB basket 

 

In the next section, we compare the estimation results for these two specifications 

(equation (8) and equation (9)). Since the number of shares and the number of names are 

positively correlated,24 we prefer not to include both proxies in a single model 

                                                 
24 In our data sample, the correlation between the two is 0.77. 
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specification. Including both proxies may introduce multicollinearity. Moreover, we 

prefer a more parsimonious model.  

 

Bollen, Smith and Whaley (2004) argue that α2 in equation 8 (or α2 in equation 9 or α3 in 

equation 7) should be equal to one.25 They also prove that the expected IHP defined in 

equation (3) is approximately linear in the square root of t. Therefore, by adjusting the 

value of g, the unloading rate variable, we are able to have the following regression 

model specification for the BPB basket trading cost: 

 

(BPB basket trading cost)i = α0 + α1InvTVi + (Basket IHP(g))i + εi,   (10) 

 

In summary, equation (10) is a regression model specification which uses an at-the-

money option to value inventory-holding premium. The coefficient of (Basket IHP(g))i is 

calibrated to be equal to one. The estimation results for this model specification are given 

in next section. There is also some special interpretation of α0. Bollen, Smith and Whaley 

(2004) argue that the intercept term represents the minimum tick size. In the case of 

trading a BPB basket, there is no minimum tick size. A BPB broker is free to submit any 

bid during a basket auction. Therefore, our prior is that α0 will not be significantly 

different from zero. 

 

Informed and uninformed trades in a BPB basket 

                                                 
25 If we regard the IHP as hedging cost, there is no obvious reason for a BPB broker to over-hedge or 

under-hedge. 
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Bollen, Smith and Whaley (2004) also proposed the following interesting way of 

interpreting the inventory-holding premium. The major benefit and contribution of this 

interpretation is that it allows the decomposition of the inventory-holding premium into 

two components: (1) premium for uninformed trades and (2) premium for informed 

trades. 

 

IHP = IHPU + pI(IHPI – IHPU)       (11) 

 

where 

IHPU = inventory-holding premium for uninformed trades, 

IHPI = inventory-holding premium for informed trades, 

pI = probability of an informed trade. 

 

Similar to Bollen, Smith and Whaley’s (2004) methodology, we use the following Black-

Scholes formula to compute the value of IHPU and IHPI when a name in a basket is a 

buy.26 Basically the value of IHPU and IHPI is equal to the value of two slightly different 

call options. 
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26Equation (12) is the IHP calculation for one share. To calculate the IHP for a stock’s trade within a 

basket, one needs to multiply equation (12) by the number of shares traded for that stock in a basket. 
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where 

j = 1, 2, 3, …. , number of stocks that are purchased in a BPB basket 

k = U or I. U stands for uninformed trade and I stands for informed trade 

σj = standard deviation of security return 

tj = time for unloading a stock from a BPB basket 

Xj = latest closing price for stock j + per share cost of BPB basket trading cost27  

SU,j = latest closing price28 for stock j 

SI,j = (1 + q) × Xj
29

 and q > 0  

N(·) = cumulative unit normal density function 

 

The following is a brief description of the intuition of IHPU,j and IHPI,j. First, consider a 

uninformed buy of stock j ordered by an asset manager (i.e. a BPB broker is shorting 

stock j and needs to hedge the upward price movement of stock j), which corresponds to 

IHPU,j. A manager buys stock j at price Xj. Since the trade is uninformed, we argue that 

the stock price will not significantly deviate from SU,j. IHPU,j is the value of a slightly 

out-of-money call option that provides to the BPB broker protection when the price of 

                                                 
27 During a BPB basket auction, competing BPB brokers usually submit their best bid in term of cents per 

share. Please refer to Section III for a numeric example. Conceptually, Xi can be viewed as the ask price 

quoted by a stock dealer in the case of a manager buying a single stock name. 

28 In the original argument in formulating IHPU, SU,I is the stock’s true price. However, in the context of 

BPB basket trading, a stock’s latest closing price is used to calculate a BPB’s profit and lost. Therefore, we 

assume the latest closing price as the stock’s true price. 

29 We do not know the real stock price in the case of an informed trade. Like Bollen et al. (2004), we 

assume that the true price is q percentage above Xi. 
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stock j goes above Xj. One can think of IHPU,j as a hedging cost. In the case of an 

uninformed trade, the BPB broker is likely to obtain a profit under the assumption that 

the price of stock j is very unlikely to rise above Xj. The premium for an informed buy is 

IHPI,j. Similarly, a manager buys stock j at price Xj. However, since the buy is informed, 

one can imagine the price of stock j jumping to SI,j, which is above Xj, right after a BPB 

broker wins a basket. Therefore, the BPB broker is going to incur a loss on this informed 

trade. One can imagine the hedging cost (IHPI,j) to be an in-the-money call option with 

strike price = Xj and stock price = SI,j. 

 

To calculate the IHPk,j for a stock in a BPB basket whose trade is a sell, IHPk,j is equal to 

the value of a put option where: 

Xj = latest closing price - per share cost of BPB basket trading cost 

SI,j = (1 - q) × Xj and q > 0 

 

To calculate the IHPU or IHPI for a BPB basket, we sum up stock level IHPU and IHPI. 

Using Bollen, Smith and Whaley’s (2004) methodology, we have the following 

regression model specification to estimate the probability that a trade is informed: 

 

(BPB basket trading cost)i = 

 α0 + α1InvTVi + α2(Basket IHPU,i(g))i  

+ α3(Basket IHPI,i(g,q) - Basket IHPU,i(g) )i + εi,   (13) 

 

where  
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g = unloading rate that we used in estimating the model given by equation (10), 

q = a factor that links SI,j and Xj
30, 

α3 = probability of an informed trade. 

 

We chose a value of g such that the estimated coefficient for the Basket IHP(g) in 

equation (8) (or equation (9)) is equal to one. We need to make some empirical 

assumption about the value of q. It is because we do not know the true price of a stock (it 

is assumed only the informed know the true price). For the model given by equation (13) 

to make sense, the estimated value of α2 must not be significantly different from one and 

the value of α3 must not be outside the range between zero and one (since α3 is the 

estimated probability of an informed trade).  

 

However, there is one consideration unique in the context of trading a BPB basket. It is 

very difficult to argue that every stock being traded in a basket is an informed trade. In 

terms of dollar trade size within a BPB basket, it is common that there are small trades 

that are uninformed (or at least that contribute relatively lower risk to the BPB brokers). 

This type of trade size distribution is often due to the fact that the trade list (i.e. a BPB 

basket) is generated by a portfolio optimizer.31 For example, if a manager’s portfolio is 

out of bounds for certain industry exposures then the optimizer tries to bring the 

exposures within a pre-specified lower or upper bound. We argue that IHPI is equal to 

                                                 
30 In Bollen, Smith and Whaley’s (2004) paper, they use symbol k and we use symbol q in this paper.  

31 A trade list generated by traditional fundamental active manager usually has a lower number of names 

and the distribution of the dollar trade size is more concentrated. 
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IHPU for this type of trade. Otherwise, IHPI for a BPB basket is overstated. Therefore, we 

introduce a new parameter, c, called uninformed trade cutoff. This parameter is expressed 

in units of percentage of ADV. If the dollar trade size of a trade expressed as percentage 

of ADV is less than c, the IHPI is set equal to IHPU (i.e. these type of trades are assumed 

to be uninformed). Otherwise, IHPI is computed based on equation (12).  

 

We will use the following regression model specification for our empirical analysis: 

 

(BPB basket trading cost)i = 

 α0 + α1InvTVi + α2(Basket IHPU,i(g))i  

+ α3(Basket IHPI,i(g,q,c) - Basket IHPU,i(g) )i + εi,   (14) 

 

where 

c = uninformed traded cutoff 

V.b. Model estimation result and analysis 

In this section, we discuss various estimation results of the Bollen, Smith and Whaley 

(2004) model using historical BPB basket trading data. 

 

Choosing the proxy for order-processing cost 

The first analysis is of the selection of proxy for order-processing cost. In the model 

overview, we suggested two possible proxies for order-processing cost: 

 

1. InvTVi = 1 / sqrt(Total shares in a BPB basket i) 
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2. InvNumofNamesi = 1 / Number of names being traded in a BPB basket i 

 

To begin with, we arbitrarily set the unloading rate variable, g, to 25% of average daily 

volume per day32 to calculate t (time taken to unload a stock from a basket) for each stock 

in a basket. We need t to compute the expected basket IHP. The estimation result for 

modeling the specification given by equation (8) and equation (9) is summarized in Panel 

A of Table IV. Panel B is a summary of descriptive statistics for the variables. Panel C is 

the correlation matrix. When taken separately, both proxy definitions perform quite well. 

Both have an expected positive sign and their estimated coefficients are significant. The 

estimation result when including both proxies in a single regression is shown at the 

bottom of Panel A. In this case, InvTVi becomes insignificant while InvNumofNamesi 

continues to be significant. Therefore, we use InvNumofNamesi as the proxy for the 

order-processing cost for the remainder of the analysis.33  

 

Calibrating the unloading rate (g) and IHP as at-the-money options 

The next step in our analysis is to calibrate the value of variable g, the unloading rate, for 

the regression model specification given by equation (15). This specification is based on 

equation (9) and the method of calibration is to choose a value of g such that the 

estimated coefficient α2 is one (or not significant different from one). 

 
                                                 
32 The value of g affects only the estimated coefficient of E(basket IHP). The two proxies for order-

processing cost are independent of g. 

33 Analysis results using InvTVi as order-processing cost proxy are also available from us. We do not report 

these results here because InvNumofNamesi continues to perform better in all other analysis.  
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(BPB basket trading cost)i = α0 + α1InvNumofNamesi + α2(Basket IHP(g))i + εi, (15) 

  

Bollen, Smith and Whaley (2004) show that IHP varies in an approximately linear 

fashion as the square root of t varies. As Panel A of Table IV shows, the estimated value 

of α2 is 0.9647, which is slightly lower than one. To make α2 equal to one requires a 

reduction the expected value of Basket IHP(g) by reducing t or increasing g. Equation (5) 

shows that t and g are inversely related. By adjusting the value of g from 25% of ADV to 

26.86% of ADV34, the estimated value of α2 is calibrated to one. Table V shows the 

estimation result of equation (15). There is an empirical interpretation of g. The sample 

data implies that the BPB broker is unloading shares (of a stock) at a rate about 27% of 

ADV per day. If a dollar trade size of a stock in a BPB basket is less than 27% of ADV, 

the BPB broker will finish unloading that particular stock in the first day of trading after 

winning a BPB basket. Similar, if the trade size is 100% of ADV, BPB broker is going to 

take more than four days to unload the stock. 

 

As Table V shows, the estimated value of α2 is 0.9999 and is highly significant. The 

estimated coefficient for InvNumofNames, α1, is positive and significant. These 

observations are consistent with our prior as described earlier. The R2 of this regression is 

74.91% and is comparable to that reported by Bollen, Smith and Whaley (2004).35 

However, we have a significant negative intercept in our model estimation. We 

mentioned earlier that we expect the intercept not to be significantly different from zero. 

                                                 
34 Since 26.86 = 25/(0.9647 × 0.9647) 

35 R2 reported by them ranges from about 50% to 80% during three different sample time periods. 



 31

There are two possible explanations for a negative intercept. The first is that the IHP is 

overstated when IHP is valued as at-the-money options in equation (15). It is because 

these at-the-money options protect against unfavorable price movement (e.g. an asset 

manager sold a stock to a BPB broker and the price of the stock subsequently goes down) 

and a BPB broker can profit from favorable price movement. Bollen, Smith and Whaley 

(2004) argue that such profit is capped at a certain level due to competition. This 

explanation is testable if we compute IHP as an option collar. Based on option collar 

approach, the value of IHP is the value of an at-the-money option minus the value of a 

slightly out-of-money option.36 We report the test result for this explanation in the next 

section. The second possible explanation is that some of the trades within a basket are 

crossed with existing inventory carried by a BPB broker. IHP for crossed trades should 

be zero. Testing the second explanation is a more difficult task because data on BPB 

broker’s inventory are usually not publicly available.  

 

Inventory Holding Premium (IHP) as option collars  

Following is the test result related to explaining the negative intercept described above. 

When computing the out-of-money option, we assume the strike price is 0.5% away from 

the stock price.37 The model specification is also based on equation (15), but here the 

                                                 
36 For a buy trade ordered by a manager, IHP = value of at-the-money call – value of slightly out-of-money 

put. In this case, IHP is modeled as buying a call and selling a put. Similarly, for a sell trade ordered by a 

manager, IHP = value of at-the-money put – value of slight out-of-money call. In this case, IHP is modeled 

as buying a put and selling a call. 

37 The 0.5% is an arbitrary number. Bollen, Smith and Whaley (2004) also use 0.5% for calculating the 

value of the out-of-money option.  
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inventory-holding premium is modeled as an option collar. Table VI shows the 

estimation result. The estimated coefficients for InvNumofNames and Basket IHP are 

both positive and significant. The result continues to be consistent with our prior belief. 

However, the intercept is still significantly negative. Therefore, the negative intercept 

may be due to the internal-crossing between stocks in a basket and a BPB broker’s 

existing inventory. There appears, however, to be a weak point in this argument, as the R2 

of the regression is reduced. In summary, there is some weak evidence that the negative 

intercept might be attributed to internal crossing. 

 

Probability of informed trades and distribution of various trading components 

As discussed in the earlier section on an overview of the model, it is possible to estimate 

the probability that a trade is an informed trade. In this case, the model we estimate is 

given by equation (16), which is modified from equation (14).  

 

(BPB basket trading cost)i = 

 α0 + α1InvNumofNamesi + α2(Basket IHPU,i(g))i  

+ α3(Basket IHPI,i(g,q,c) - Basket IHPU,i(g) )i + εi,   (16) 

 

When we estimate the model, we need to make some assumptions about the values of q 

and c. We assume q takes the following values: 0.5%, 1%, 2%, and 3%, while c takes the 

following values: 3% of ADV, 4% of ADV, and 5% of ADV. Table VII gives the 

estimation results for twelve different combinations of q and c. Panels A, B, and C 

correspond to three different values of c. The four rows of the sub-table represent four 
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different values of q. There are twelve sub-tables in total. The estimated result will only 

have economic (and mathematic) interpretations if both of the following conditions are 

satisfied: 

 

1. The estimated value of α2 is not significantly different from one. 

2. The estimated value of α3 is not significantly outside the range between zero and 

one. 

 

Many of our results are similar to those reported by Bollen, Smith and Whaley (2004). 

The estimated values of α1, α2, and α3 are positive and significant. As q increases, the 

probability of informed trades (i.e. the estimated value of α3) decreases. When q changes, 

the R2 of the regression remains quite stable. This implies that the adverse selection 

component of the BPB basket trading cost appears to be relatively constant. The T-stat 

for α2 is always the highest and most significant. This implies that inventory-holding cost 

is the most significant component of the trading cost. 

 

However, there are some results that differ from those of Bollen, Smith and Whaley 

(2004). Using their argument, the intercept terms should not be significantly different 

from zero, because the intercept can be interpreted as minimum tick size. However, there 

is no such concept of minimum tick size in a BPB basket trading. Our result shows that 

the intercepts are not significantly different from zero in the usual statistical sense. 

However, the values of intercept are always negative. A possible explanation may be the 

possibility of internal crossing between trades in a basket and the existing inventory held 
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by BPB broker. The lack of data on a broker’s inventory makes further investigation of 

this explanation impossible. Due to a lack of data on BPB competition, we are unable to 

model the effect of competition among BPB brokers on the trading cost of BPB baskets. 

 

Several results are unique in this study. When q is between 0.5% and 3%, BPB brokers 

begin to assume that a trade is informed when it reaches 3% or 4% of ADV. When q 

increases, c tends to increase as well. Therefore, when a BPB broker assumes a manager 

is informed, the broker would expect that informed trades are those with higher 

percentage of ADV. For a manager with higher skill, the BPB broker expects informed 

trades are likely to be those with a higher percentage of ADV. Based on Panel A and B, 

we can compute an average distribution of various cost components for the BPB basket 

trading cost. The average percentage of trading cost attributed to inventory-holding cost 

is about 61%, to adverse-selection about 34%, and to order-processing cost is about 23%. 

We are unable to find any other studies that analyze the distribution of various cost 

components when trading a basket of stocks. Therefore, it is difficult to compare other 

results to ours. Alternatively, we may compare our cost distribution with the cost 

distribution for trading a single stock name. However, the cost distribution for trading a 

single stock varies significantly among different studies. Stoll (1989) reports order-

processing cost as the largest component (47%), followed by adverse-selection cost 

(43%) and inventory-holding (10%). Stoll’s (1989) ranking of various cost components is 

exactly the opposite of our findings. Bollen, Smith and Whaley (2004) find that 

inventory-holding cost is the largest component, which corresponds to our results. But 

they find that adverse-selection cost is the smallest, which differs from our results. Huang 
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and Stoll (1997) report that the biggest cost component is order-processing (62%) 

followed by inventory-holding (29%). The smallest cost component is adverse-selection 

(9%). Their ranking is also different from ours.  

 

In an overall sense, inventory-holding cost and adverse-selection cost are more important 

in the case of trading a BPB basket. The rationale might be that a BPB broker commits 

relatively more capital than that in market-making for a single stock, and each BPB 

basket always has some informed trades. However, one might argue that the relative 

ranking of various cost components can change over time. For example, during a period 

of higher risk (i.e. in a market with higher cross-sectional dispersion), adverse selection 

cost may become the biggest cost component. We leave this question for further research.  

VI. Conclusion 

In this paper, we estimate two structural spread models for trading BPB baskets. We 

extend and improve upon the work done by both Kavajecz and Keim (2005) and 

Giannikos and Suen (2006) by providing a formal framework to model the trading cost of 

BPB baskets. This modeling involves using two spread models developed by Stoll (1978a 

and 1978b) and Bollen, Smith and Whaley (2004). The main contribution of this paper is 

the successful application of these models in estimating the cost of immediacy (i.e. 

spread) for trading a basket of stocks. We are also able to characterize some empirical 

behavior of BPB brokers. Based on our data sample, the unloading rate used by a BPB 

broker is about 27% of ADV. The more a broker thinks a manager’s trade is informed, 

the bigger the mis-pricing and the bigger the (dollar) size for that trade in terms of higher 

percentage of ADV. The largest cost component when trading a BPB basket is found to 
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be inventory-holding cost, followed by adverse-selection cost and order-processing cost. 

We also find some weak evidence that internal crossing used by the BPB broker who 

won a basket38 helps reduce the overall BPB basket trading cost. However, we cannot 

model this effect of internal crossing formally due to a lack of data. For the same reason, 

we cannot model the effect of competition on the trading cost of BPB baskets. These are 

potential future research. 

 

One possible application of this paper is to help asset managers establish a benchmark 

trading cost when trading BPB baskets. Managers can use this benchmark trading cost to 

judge the fairness of bids submitted by BPB brokers. 

                                                 
38 Based on our informal discussion with BPB brokers, the range of crossing can range from 0% and up to 

30% of a basket. 
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Table I 
Descriptive statistics for some blind principal bid (BPB) basket characteristics 

 
The following are the descriptive statistics for some of the BPB basket characteristics. 

There are 196 baskets used in this study. 

 
Basket Characteristics Mean Std. Dev. Min. 25th Median 75th Max. 

Number of names in a basket 199 113 41 93 193 294 609 
Total trade size ($ million) 333.99 239.56 20.09 146.20 268.09 487.05 1,188.14 
Total number of shares (million) 11.26 8.27 0.60 5.05 8.95 16.29 45.06 
Names that are buys (%) 45.59 9.34 13.14 40.06 46.24 50.73 100.00 
Lowest bid (basis points) 53.57 33.00 8.95 26.90 44.79 73.42 164.75 
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Table II 
Descriptive statistics for the variables in Stoll’s (1978a, 1978b) model 

 
The following table lists the variables we used in estimating Stoll’s (1978a, 1978b) 

model. The table also summarizes the expected sign of the estimated coefficient for the 

independent variables. The sample size is 196. Following Stoll’s original approach, the 

natural logarithm version of all variables is used in the model estimation. The descriptive 

statistics are based on the natural logarithm version of the variables. si = Basket trading 

cost which is the dependent variable. σ2
i = Basket variance. Vi = Basket weighted-average 

(dollar) volume. (V /T)i = Basket weighted-average turnover. Pi = Basket weighted-

average stock price. 

 
Variable Mean Std. Dev. Min. 25th Median 75th Max. Expected  

Coefficient sign 
si -5.42 0.63 -7.02 -5.91 -5.41 -4.92 -4.11 Dep. Var. 
σ2

i -4.34 0.86 -5.62 -5.02 -4.39 -3.85 -1.78 + 
Vi 18.40 0.90 16.04 18.20 18.48 19.04 20.02 - 

(V /T)i -6.45 0.88 -9.73 -7.02 -6.46 -5.80 -4.49 + 
Pi 3.37 0.21 2.94 3.58 3.68 3.82 4.17 Ambiguous 
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Table III 
Stoll’s (1978a, 1978b) model estimation result 

 
The following table summarizes Stoll’s (1978a, 1978b) model estimation result. The 

sample size (N) is 196. Following Stoll’s original approach, a natural logarithm version 

of all variables is used in the model estimation. si = Basket trading cost, which is the 

dependent variable. σ2
i = Basket variance. Vi = Basket weighted-average (dollar) volume. 

(V /T)i = Basket weighted-average turnover. Pi = Basket weighted-average stock price. 

 
 si σ2

i Vi (V /T)i Pi intercept  N R-sq 
Coefficient Dep. Var. 0.1347 -0.1660 0.4528 0.0565 0.9330  196 74.32 

T-stat  4.49 -4.35 14.21 0.37 1.90    
p value  0.0000 0.0000 0.0000 0.7140 0.0587    
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Table IV 
Proxy for order-processing cost in Bollen, Smith and Whaley’s (2004) framework. 

 
Table IV has three panels. Panel A summarizes the model estimation result for the three 

different model specifications given below. Panel B shows the descriptive statistics of the 

variables. Panel C shows the correlation among variables. The unloading rate, g, is set at 

25% of ADV when calculating basket IHP. 

 

(1) (BPB basket trading cost)i = α0 + α1InvTVi + α2(Basket IHP)i + εi,  

(2) (BPB basket trading cost)i = α0 + α1InvNumofNamesi + α2(Basket IHP)i + εi, 

(3) (BPB basket trading cost)i = α0 + α1InvTVi + α2InvNumofNamesi + α3(Basket IHP)i + εi, 

 

where 

i = 1, 2, 3, …, sample size of traded BPB baskets (identifier for each BPB basket), 

(BPB basket trading cost)i = fee (in dollars) paid by manager to BPB broker, 

InvTVi = 1 / sqrt(Total shares (expressed in million of share) in a BPB basket i), 

InvNumofNamesi = 1 / Number of names being traded in a BPB basket i, 

(Basket IHP)i = ∑j Sj[2N(0.5σjE(√tj)) – 1], 

j = 1, 2, 3, …, number of stock names in BPB basket i, 

Sj = latest closing price for stock j, 

σj = standard deviation of return for stock j. 

tj = time taken to unload stock j from basket i which is a function of g, 

N(·) = cumulative unit normal density function. 
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Panel A – Regression Results 

 
 (BPB basket trading cost)i InvTVi InvNumofNamesi (Basket IHP)i intercept  N R-sq 

Model estimation for specification (1) 
Coefficient Dep. Var. 840,475.75  0.9789 -429,215.56  196 74.26 

T-stat  1.97  20.51 -1.83    
p value  0.0499  0.0000 0.0683    

         
Model estimation for specification (2) 

Coefficient Dep. Var.  41,081,072.62 0.9647 -389,989.57  196 74.91 
T-stat   3.01 23.55 -2.45    

p value   0.0030 0.0000 0.0152    
         
Model estimation for specification (3) 

Coefficient Dep. Var. -300,690.52 48,528,485.53 0.9528 -308,924.29  196 74.94 
T-stat  -0.46 2.29 19.62 -1.30    

p value  0.6451 0.0229 0.0000 0.1947    
 

Panel B – Descriptive Statistics 
 

 Mean St. Dev. Min. 25% Median 75% Max. 
(BPB basket trading cost)i 1,672,476.90 1,857,896.00 45,777.13 608,587.02 1,217,757.30 2,060,928.90 15,557,582.00 

InvTVi 0.3835 0.1931 0.1490 0.2478 0.3835 0.4448 1.2890 
InvNumofNamesi 0.0075 0.0052 0.0016 0.0034 0.0052 0.0107 0.0244 

(Basket IHP)i 1,753,569.90 1,662,649.00 55,917.13 636,577.97 1,366,714.50 2,297,741.80 13,058,043.00 
 

Panel C – Correlation Matrix 
 

 (BPB basket trading cost)i InvTVi InvNumofNamesi 
InvTVi -0.43   

InvNumofNamesi -0.16 0.77  
(Basket IHP)i 0.85 -0.56 -0.34 
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Table V 
Calibrating the value of g 

 
By setting the value of g, the unloading rate, to 26.86% of ADV, the estimated value of 

α2 in the following model specification is calibrated to one.  

 

(BPB basket trading cost)i = α0 + α1InvNumofNamesi + α2(Basket IHP(g))i + εi, 

 

where 

i = 1, 2, 3, …, sample size of traded BPB baskets (i.e. identifier for each BPB basket), 

(BPB basket trading cost)i = fee (in dollars) paid by manager to BPB broker, 

InvNumofNamesi = 1 / Number of names being traded in a BPB basket i, 

(Basket IHP(g))i = ∑j Sj[2N(0.5σjE(√tj)) – 1], 

j = 1, 2, 3, …, number of stock names in BPB basket i, 

Sj = latest closing price for stock j, 

σj = standard deviation of return for stock j. 

tj = time taken to unload stock j from basket i which is a function of g, 

N(·) = cumulative unit normal density function. 

 
 (BPB basket 

trading cost)i 
InvNumofNamesi (Basket 

IHP)i 
intercept  N R-sq 

Coefficient Dep. Var. 41,078,664.54 0.9999 -389,918.73  196 74.91 
T-stat  3.01 23.55 -2.45    

p value  0.0030 0.0000 0.0152    
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Table VI 
Model inventory-holding premium as option collars 

 
In this model estimation, we model the inventory-holding premium, IHPC(g), as an 

option collar rather than an at-the-money option. When calculating the value of the out-

of-money option, we assume the strike price (X) is 0.5% away from the latest closing 

price (S). The unloading rate, g, continues to be 26.86% of ADV. 

 

(BPB basket trading cost)i = α0 + α1InvNumofNamesi + α2(Basket IHPC(g))i + εi, 

 

where 

i = 1, 2, 3, …, sample size of traded BPB baskets (i.e. identifier for each BPB basket), 

(BPB basket trading cost)i = fee (in dollars) paid by manager to BPB broker, 

InvNumofNamesi = 1 / Number of names being traded in a BPB basket i, 

(Basket IHPC)i = ∑j Sj[2N(0.5σjE(√tj)) – 1] - ∑j (out of money option with Xj is 0.5% 

away from Sj ), 

j = 1, 2, 3, …, number of stock names in BPB basket i, 

Sj = latest closing price for stock j, 

σj = standard deviation of return for stock j, 

tj = time taken to unload stock j from basket i which is a function of g, 

N(·) = cumulative unit normal density function, 

Xj = strike price for the out of money option for stock j. 

 (BPB basket 
trading cost)i 

InvNumofNamesi (Basket 
IHPC)i 

intercept  N R-sq 

Coefficient Dep. Var. 82,245,474.84 5.4516 -887152.88  196 45.43 
T-stat  3.68 12.27 -2.95    

p value  0.0003 0.0000 0.0036    
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Table VII 
Estimating the probability of informed trades and distribution of various trading cost components 

 
This table summaries the estimation result of the following regression model specification given by equation (16): 

 

(BPB basket trading cost)i = α0 + α1InvNumofNamesi + α2(Basket IHPU,i(g))i + α3(Basket IHPI,i(g,q,c) - Basket IHPU,i(g) )i + εi, 

 

where 

InvNumofNamesi = 1 / (Number of names being traded in a BPB basket i), 

IHPU,i(g))i = inventory-holding premium for uninformed trades,  

IHPI,i(g,q,c) = inventory-holding premium for informed trades, 

g = unloading rate defined in equation (10), 

c = uninformed trade cutoff for IHPI,i defined in equation (14), 

q is defined in equation (13). 

 

During model estimation, we assume that q takes the values: 0.5%, 1%, 2%, and 3%, and that c takes the values 3% of ADV, 4% of 

ADV, and 5% of ADV. The table contains three vertical panels (A, B, and C), which correspond to three different values of c. For 
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each panel, there are four estimation results (four sub-tables) that correspond to the four different values of q. Each sub-table has the 

following six columns: 

 

1. Name of dependent and independent variables. Trade Cost = (BPB basket trading cost)i which is the dependent variable. 

InvNames = 1 / (Number of names being traded in a BPB basket i). IHPU = Basket IHPU,i(g) and IHPI = Basket IHPI,i(g,q,c). 

2. Estimated values for the regression intercept and coefficient of the independent variables (i.e. α0, α1, α2, and α3). 

3. T-statistics for each estimated values. 

4. Mean value for the dependent and independent variables. 

5. Mean trading cost contributed by each of the independent variables. 

6. Trading cost contributed by each independent variable expressed as a percentage of the mean BPB basket trading cost. 
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 Panel A Panel B Panel C 

  c = uninformed trade cutoff = 3% of ADV  c = uninformed trade cutoff = 4% of ADV  c = uninformed trade cutoff = 5% of ADV 

 Var. Est. Coeff. T-stat Mean Val. Cost Contri.   Var. Est. Coeff. T-stat Mean Val. Cost Contri.   Var. Est. Coeff. T-stat Mean Val. Cost Contri.   
q = 
0.5% Trade Cost Dep. Var.   1,672,476.90    Trade Cost Dep. Var.   1,672,476.90    Trade Cost Dep. Var.   1,672,476.90    

  Intercept -333,136.75 -1.21 -333,136.75 -333,136.75 -20% Intercept -427,010.19 -1.62 -427,010.19 -427,010.19 -26% Intercept -559,354.83 -2.22 -559,354.83 -559,354.83 -33% 

  InvNames 52,368,942.94 2.48 0.0075209 393,860.17 24% InvNames 56,661,845.96 2.77 0.0075209 426,146.55 25% InvNames 61,969,221.73 3.15 0.0075209 466,062.65 28% 

  IHPU 0.8754 5.44 1,138,439.40 996,589.85 60% IHPU 0.7446 4.61 1,138,439.40 847,681.98 51% IHPU 0.5687 3.59 1,138,439.40 647,430.49 39% 

  (IHPI-IHPU) 0.7885 2.48 780,207.93 615,193.95 37% (IHPI-IHPU) 1.1456 3.42 720,777.37 825,722.56 49% (IHPI-IHPU) 1.6767 4.79 666,984.83 1,118,333.46 67% 

  R-sq = 51.00 R-sq = 52.34 R-sq = 54.83 

  estimated coefficient for IHPU is not significantly diff from 1 (t=0.77) estimated coefficient for IHPU is not significantly diff from 1 (t=1.58) estimated coefficient for IHPU is significantly diff from 1 (t=2.72) 
q = 
1.0% Trade Cost Dep. Var.   1,672,476.90    Trade Cost Dep. Var.   1,672,476.90    Trade Cost Dep. Var.   1,672,476.90    

  Intercept -244,106.34 -0.88 -244,106.34 -244,106.34 -15% Intercept -344,589.39 -1.29 -344,589.39 -344,589.39 -21% Intercept -487,923.43 -1.90 -487,923.43 -487,923.43 -29% 

  InvNames 47,866,879.42 2.25 0.0075209 360,000.72 22% InvNames 52,733,197.83 2.54 0.0075209 396,599.68 24% InvNames 58,964,487.98 2.94 0.0075209 443,464.43 27% 

  IHPU 0.9656 6.18 1,138,439.40 1,099,277.08 66% IHPU 0.8466 5.37 1,138,439.40 963,802.80 58% IHPU 0.6799 4.37 1,138,439.40 774,024.95 46% 

  (IHPI-IHPU) 0.2601 1.89 1,757,715.50 457,181.80 27% (IHPI-IHPU) 0.4055 2.78 1,619,197.90 656,584.75 39% (IHPI-IHPU) 0.6312 4.09 1,493,870.50 942,931.06 56% 

  R-sq = 50.36 R-sq = 51.39 R-sq = 53.48 

  estimated coefficient for IHPU is not significantly diff from 1 (t=0.22) estimated coefficient for IHPU is not significantly diff from 1 (t=0.97) estimated coefficient for IHPU is significantly diff from 1 (t=2.05) 
q = 
2.0% Trade Cost Dep. Var.   1,672,476.90    Trade Cost Dep. Var.   1,672,476.90    Trade Cost Dep. Var.   1,672,476.90    

  Intercept -209,995.89 -0.75 -209,995.89 -209,995.89 -13% Intercept -307,699.38 -1.14 -307,699.38 -307,699.38 -18% Intercept -452,102.41 -1.74 -452,102.41 -452,102.41 -27% 

  InvNames 46,090,009.22 2.16 0.0075209 346,637.11 21% InvNames 50,894,526.69 2.44 0.0075209 382,771.27 23% InvNames 57,333,864.96 2.84 0.0075209 431,200.72 26% 

  IHPU 0.9987 6.49 1,138,439.40 1,136,959.43 68% IHPU 0.8904 5.74 1,138,439.40 1,013,666.44 61% IHPU 0.7326 4.76 1,138,439.40 834,020.70 50% 

  (IHPI-IHPU) 0.0990 1.67 4,029,030.40 398,874.01 24% (IHPI-IHPU) 0.1570 2.50 3,717,798.70 583,694.40 35% (IHPI-IHPU) 0.2504 3.76 3,431,949.50 859,360.15 51% 

  R-sq = 50.16 R-sq = 51.03 R-sq = 52.89 

  estimated coefficient for IHPU is not significantly diff from 1 (t=0.01) estimated coefficient for IHPU is not significantly diff from 1 (t=0.71) estimated coefficient for IHPU is not significantly diff from 1 (t=1.74) 
q = 
3.0% Trade Cost Dep. Var.   1,672,476.90    Trade Cost Dep. Var.   1,672,476.90    Trade Cost Dep. Var.   1,672,476.90    

  Intercept -236,170.57 -0.85 -236,170.57 -236,170.57 -14% Intercept -329,615.91 -1.23 -329,615.91 -329,615.91 -20% Intercept -469,808.59 -1.82 -469,808.59 -469,808.59 -28% 

  InvNames 47,405,547.96 2.23 0.0075209 356,531.11 21% InvNames 51,920,671.25 2.50 0.0075209 390,488.77 23% InvNames 58,044,440.05 2.89 0.0075209 436,544.86 26% 

  IHPU 0.9759 6.31 1,138,439.40 1,111,003.01 66% IHPU 0.8686 5.58 1,138,439.40 988,848.46 59% IHPU 0.7121 4.62 1,138,439.40 810,682.70 48% 

  (IHPI-IHPU) 0.0679 1.84 6,490,985.30 440,737.90 26% (IHPI-IHPU) 0.1037 2.66 6,004,184.80 622,633.96 37% (IHPI-IHPU) 0.1612 3.91 5,553,416.00 895,210.66 54% 

  R-sq = 50.31 R-sq = 51.23 R-sq = 53.16 

  estimated coefficient for IHPU is not significantly diff from 1 (t=0.16) estimated coefficient for IHPU is not significantly diff from 1 (t=0.84) estimated coefficient for IHPU is not significantly diff from 1 (t=1.87) 

 


