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Abstract

This paper focuses on the historical default probability in a struc-
tural model with jumps, more precisely, when the firm assets dynam-
ics are modeled by a double exponential jump diffusion process. It
relies on the Leland and Toft approach (see Leland [1994a, 1994b]
and Leland and Toft [1996]) as formalized by Hilberink and Rogers
[2002], explains how to compute the default probability and examines
its sensitivity with respect to fundamentals such as leverage and debt
maturity. Because of a jump risk that can not be hedged, a risk neu-
tral measure has to be chosen. The Esscher measure is chosen and
with this choice it is proved that when changing universe (from the
historical world to the risk-neutral one) the same kind of dynamics for
the assets value prevails.

Introduction

The existence of an optimal capital structure is probably one of the main
issue in finance. The riskiness of debt, its default probability and the market
value of its credit spreads are some of the most important questions which
both academics and practitioners have to face. From Modigliani and Miller
[1958] to Morellec and Smith [2005], there has been a considerable amount of
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articles on this subject. Agency costs, signaling theory and bankruptcy costs
have been advocated to explain the presence of an optimal debt. The intro-
duction of bankruptcy costs in the analysis dates back to Baxter [1967]. The
idea is to consider that tax advantages are traded off against the likelihood of
incurring bankruptcy costs. The analysis of default and the dramatic develop-
ment of credit derivatives have also given birth to a huge literature. The two
traditional theoretical approaches to default rely on the so-called intensity
and structural models. In the former class, default occurs as a pure random
event, see Jarrow, Lando and Turnbull [1997] or Duffie and Singleton [1999],
for representative works. In the latter class, the structural approach, default
is associated with the first time the firm assets cross a threshold - Black and
Scholes [1973] and Merton [1974] pioneered this framework. Longstaff and
Schwartz [1995], Nielsen, Saà-Requejo and Santa-Clara [1993], and Collin-
Dufresne and Goldstein [2001], amongst others, introduced stochastic interest
rates in the framework. Madan and Unal [1998] introduced links between the
two main approaches, and Jarrow and Protter [2004] showed that they can be
embedded into a same model containing different informational assumptions.
These formalizations have extensively been used to study credit spreads and
to price many credit derivatives. In this paper we consider bankruptcy costs
and the structural approach to default.

In this approach, two assumptions are fundamental: the dynamics of the
firm assets value and the endogeneity or exogeneity of the default triggering
threshold. The most convenient hypothesis is to suppose the assets value fol-
lows a geometric Brownian motion, see Merton [1974], Leland [1994a, 1994b],
Leland and Toft [1996]. It gives closed form solution but generally fails to
explain some empirical facts. For example Eom, Helwege and Huang [2003]
show that the Leland and Toft model which relies on this hypothesis over-
predicts credit-spreads for long-maturity bonds and underpredicts them for
short maturity bonds. Besides, this assumption can not explain why credit
spreads go to zero as maturity decreases to zero, an empirically observed
fact. To take into account this feature, jumps can be introduced and the
firm assets value can be modeled by the exponential of a Lévy process. This
Lévy process can be a spectrally negative process and then would jump only
downwards (see Hilberink and Rogers [2002]), or it can jump in both direc-
tions, up or down, with stable processes (see Le Courtois and Quittard-Pinon
[2003]) or double exponential jump processes (see Dao [2005] and Chen and
Kou [2005]). The latter situation is quite manageable and permits closed
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form or easy to compute solutions for debt, firm value equity and optimal
barrier level. The barrier or threshold triggering default can be exogenous,
for example it can be, as in Merton [1974], the debt face value, or a fraction
of it, as in Longstaff and Schwartz [1995] or endogenous and a criterion must
be chosen, as for example the maximization of equity value, as it is assumed
in Black and Cox [1976] or in Leland and Toft [1996]. In this case the man-
ager acts as a decision maker, as far as bankruptcy is concerned. The barrier
depends on fundamentals such as: assets volatility, payout rate, interest rate,
amount of debt, bankruptcy costs, recovery rates and corporate tax rates.

In this paper we focus on default probability. This point has been ex-
tensively analyzed with statistical methods. It begins with Altman [1968],
but references to structural models are more recent. The well known KMV
methodology with its concepts of distance to default, expected default fre-
quencies (which we call in this paper default probability) is strongly inspired
by Merton [1974] and Longstaff and Schwartz [1995]. Leland [2004] compares
different default probabilities generated by three models: Leland and Toft,
Longstaff and Schwartz and KMV. Obtaining these default probabilities is
particularly important for ranking bonds according to their risk and it can
be seen as an alternative to ratings; indeed, rating agencies do not reveal
publicly their methodologies.

In this paper we keep the structure of these models, we use the Hilberink
and Rogers [2002] formalization, and choose the Kou [2002] double exponen-
tial jump diffusion process. To a large extent these models essentially center
their analysis on market value. To obtain arbitrage free values these models
only use risk neutral dynamics. But when the question arises to compute
real-world default probabilities, reference to a risk neutral measure is of little
help. In the case of assets modeled by a geometric Brownian motion, this
is not a difficult problem, but when the dynamics incorporate jumps, it be-
comes more difficult for at least two reasons: first, there are many candidates
to be risk neutral measures, second, in the Leland and Toft framework the
endogenous barrier level is given with parameters in a risk neutral universe.
Two questions must therefore be answered: what risk neutral should be cho-
sen, and how can the historical parameters be determined. One of the main
contributions of this paper is to suggest a correspondence between the actual
parameters and the risk neutral ones. We choose the risk-neutral Esscher
measure. This measure has nice properties and has successfully been applied
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in insurance and finance, see Bühlmann [1980], Gerber and Shiu [1994] or Le
Courtois and Quittard-Pinon [2004]. We show that if the dynamics of the
assets value is a double exponential jump diffusion process in the real world,
it remains a process of the same type in the Esscher risk neutral universe,
and we find simple relations between the coefficients. Then it is possible to
study default probabilities.

The paper is organized as follows. Section 2 describes the basic set-
ting, recalls the Leland and Toft framework as formalized by Hilberink and
Rogers, and gives general formulae for debt, equity firm values and the opti-
mal default barrier. Section 3 adapts this approach to the cases of geometric
Brownian motion and double exponential jump diffusion processes, and gives
the expression for default probability, in terms of a Laplace transform. This
section contains the main technical result of the paper.

1 Basic Setting

In this section, we briefly present the Leland and Toft [1996] environment
in which the firm evolves, as formalized by Hilberink and Rogers [2002]. So
we introduce the firm asset value V , the debt value D, the firm value V and
the equity value E . All these quantities refer to market values. We consider
bankruptcy costs, taxes and we assume the existence of a riskless asset with
a constant rate of return r, the interest rate in this economy.

We assume that the process V is given by the exponential of a Lévy
process X: Vt = V0e

Xt . Thus X can be interpreted as the assets return
process. In particular we assume that V follows the stochastic differential
equation

dV = V−((µ(V, t)− δ)dt + dh)

in the real world, or
dV = V−((r − δ)dt + dĥ)

in a risk neutral universe. The parameters µ(V, t) and δ are respectively
the total expected rate of return on asset value and the constant fraction of
value paid out to stockholders and bondholders. The processes h and ĥ are
martingales. We assume that V0 is known.
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The debt has two features: its time structure and its riskiness. Firstly,
it is constantly retired and reissued, such that it has a constant facial value
P and a total coupon rate C. Its time profile is of an exponential type. By
definition the maturity profile is:

ϕ (t) = me−mt

If bankruptcy never occurs, the proxy average maturity T of debt is:

T =

∞∫
0

tϕ (t) dt =

∞∫
0

t
(
me−mt

)
dt =

1

m

The higher the debt retirement rate (or “roll-over rate”) m, the shorter
the average maturity T = 1/m of the debt. If m = 0, principal is never
retired, and debt has infinite maturity as in Leland (1994). As m →∞, the
average maturity of debt T approaches zero. For more details see Leland
and Toft [1996] or Hilberink and Rogers [2002]. This time structure gives
a great flexibility to the model. Secondly, because debt is risky, a default
mechanism and a recovery scheme must be specified. As far as the first
point is concerned the modeling pertains to the class of structural models.
Bankruptcy or default occurs at the first time τ the value of the firm assets
V fall below a default barrier L. The value of this default barrier L will
be determined endogenously and optimally later, by maximizing the equity
value. By definition, the stopping time

τ = inf {t ≥ 0 : Vt ≤ L}

can also be expressed as:

τ = τl = inf {t ≥ 0 : Xt ≤ l}

Indeed the crossing of the barrier VB by the assets value process V is
equivalent to the crossing of the return barrier l = ln(VB/V0) by the assets
return X. As for the second point: recovery. We consider that all debts
are of equal seniority and we assume a constant fraction of asset value α
(0 ≤ α ≤ 1) lost in default. We suppose that, when the absolute priority
rule (APR) is not respected, shareholders receive γ (0 ≤ γ ≤ 1), a constant
fraction of the residual asset value at default. Let us denote α̂ such that
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(1− α) (1− γ) = 1− α̂, so α̂ becomes the fraction of asset value lost at de-
fault, in this case.

The total market value of the firm, according to Modigliani-Miller, is ex-
pressed as the sum of the asset value plus tax benefits and minus bankruptcy
costs. We denote by θ the corporate tax rate. The firm receives an in-
come stream of θCdt, i.e., an expected present value of tax benefits TB =
θC
r

(1− e−rτ1τ<∞). This assumption is rather an idealized treatment of tax.
Leland and Toft (1996) introduced a tax cutoff level VT , which reduces the
tax rebate to 0 when V < VT and keep it at θCdt when V ≥ VT . This
assumption intends to reflect the idea that when the coupons exceed the
profits, it is not possible for the firm to claim the tax benefit on the coupon
payments. Later, we take into account this assumption.

Finally, E , the equity value, is by definition equal to the firm value minus
the debt value:

E = V − D

Using the theory of arbitrage in continuous time, and denoting by Q a
risk neutral measure, Hilberink and Rogers (2002) prove that the debt value
can be expressed as

D =
C + mP

r + m
EQ

[
1− e−(r+m)τ

]
+ (1− α̂) V0EQ

[
eXτ−(r+m)τ1τ<∞

]
(1)

assuming no cutoff for tax benefits, the value of firm can be expressed as

V = V0 +
θC

r
EQ

[
1− e−rτ

]
− αV0EQ

[
eXτ−rτ1τ<∞

]
(2)

and the equity as

E = V0 +
θC

r
EQ

[
1− e−rτ

]
− αV0EQ

[
eXτ−rτ1τ<∞

]
− C + mP

r + m
EQ

[
1− e−(r+m)τ

]
+ (1− α̂) V0EQ

[
eXτ−(r+m)τ1τ<∞

]
(3)

Looking at these general expressions, it is clear that we can obtain solu-
tions if we know how to compute the Laplace transform of the first passage
time and of the one of the pair: first passage time and X. Note that these
expressions are independent of the Lévy process chosen for the assets return.
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Closed forms solution are given in the case of geometric Brownian motion
(see Leland and Toft [1996]), in the case of a double exponential jump dif-
fusion (see Kou and Chen [2005]), and numerical solutions with spectrally
negative processes (see Hilberink and Rogers [2002]) and in the case of sta-
ble processes (see Le Courtois and François Quittard-Pinon [2003]) can be
obtained.

To end this section let us emphasize what we believe is in the heart of
this approach when thinking in terms of market value. What has firstly to be
done is to determine endogenously P, C and VB. So, we need three equations.
The first one is obtained when we demand that the initial market value of
debt is equal to par. The first equation is therefore:

P = D (P ,C ,VB ,V0 ) , (4)

the second equation is given by the definition of the leverage L:

L =
D (P ,C ,VB ,V0 )

V (P ,C ,VB ,V0 )
, (5)

and the third equation is given by the optimality criterion which is to maxi-
mize equity value. This first order condition writes:

∂E
∂V0

|V0=VB
= 0. (6)

As noted earlier V0 is assumed to be known. To compute the triplet (P, C, VB)
we have to solve the system of equations (4), (5) and (6). The analyses on
the capital structure, credit spreads or default probability come from this
resolution. In this paper we focus on the latter, important, question.

2 The Default Probability

As far as one is interested in valuing the main determinants of firm value,
the right referential is the risk neutral universe. But now, as we want to
investigate the bankruptcy probability, we have to turn back to the histori-
cal or actual universe. We shall consider two cases. Firstly, we assume that
the assets price is modeled by a geometric Brownian motion, secondly by
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a double exponential jump diffusion process, which we will sometimes call
for brevity a Kou process. In order to compute the default probability, we
need to calculate the first passage time probability density function for the
firm assets value to reach a default barrier VB at time t from a starting value
V0 > VB. This first passage time law is explicit in the first case (GBM), whilst
numerical computations have to be done in the second one (Kou processes).

Recall the notations l = ln
(

VB

V0

)
, and τl = {inf t/V (t) ≤ VB}. Here

we are facing a new problem: the optimal endogenous barrier is given with
parameters in a risk neutral universe. In the case when the firm assets value
follows a geometric Brownian motion, this is innocuous: we are working in
a Black and Scholes economy where there is a unique martingale measure
equivalent to the real universe probability, and the parameters are well iden-
tified. Incorporating jumps into the model is more realistic but introduces
two difficulties. Firstly, the market is no more complete, so an e.m.m. has
to be chosen. Secondly, if a choice is made, what is the process followed by
the assets value in this risk neutral universe? We consider this question in
this section and suggest a complete solution.

Technically, a key tool for our analysis is the Laplace exponent of our
return process X. By definition, it is defined by the function G such that
E[eβX(t)] = etG(β). The Lévy-Khintchine representation theorem gives a canon-
ical characterization of a Lévy process, identifying a drift term, a Brownian
component, and a jump component. This formula writes, for a finite-variation
process, as:

G(β) = aβ +
1

2
σ2β2 +

∫
R

(eβy − 1)ν(dy)

where a is the drift, σ refers to the Brownian component, and ν is the Lévy
measure identifying the jumps. For more details see for instance Satō [1987].
Given ρ, the roots in β of the equation G(β) = ρ will be of a central impor-
tance in our analysis.

2.1 Geometric Brownian Motion

In this setting, the assets value in the historical world are given by:

dV = V ((µ− δ)dt + σdz)
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and in the risk neutral world by:

dV = V ((r − δ)dt + σdẑ)

where z and ẑ are standard Brownian motions, and V0 is known.

In this Black and Scholes economy, equations (1), (2), and (3) give the
following market values for the debt:

D =
C + mP

r + m

(
1−

(
VB

V0

)β1,r+m
)

+ (1− α̂) VB

(
VB

V0

)β1,r+m

,

the firm:

V = V0 +
θC

r

(
1−

(
VB

V0

)β1,r
)
− αVB

(
VB

V0

)β1,r

,

and the equity:

E = V0 +
θC

r

(
1−

(
VB

V0

)β1,r
)
− αVB

(
VB

V0

)β1,r

− C + mP

r + m

(
1−

(
VB

V0

)β1,r+m
)

+ (1− α̂) VB

(
VB

V0

)β1,r+m

where −β1,ρ is the negative root of the equation:

1

2
σ2β2 +

(
r − δ − 1

2
σ2

)
β = ρ (7)

Here the Lévy-Khintchine formula writes

G(β) =
1

2
σ2β2 +

(
r − δ − 1

2
σ2

)
β (8)

The formulae for debt, firm and equity come from well known results on geo-
metric Brownian motion (see for example Elliott and Kopp [1999], page 196),
and were first obtained by Leland and Toft [1996] via a partial differential
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equation.

Bankruptcy occurs the first time when Vt = VB. Using standard results
on Brownian motion, the first passage time law is given by:

P (τl < t) = N (h1(t)) + exp

{
−2νl

σ2

}
N(h2(t)) (9)

where h1(t) = l−νt
σ
√

t
and h2(t) = l+νt

σ
√

t
with ν = µ− δ − 1

2
σ2.

From Hilberink and Rogers (2002) the barrier level is:

VB =
C+mP
r+m

β1,r+m − θC
r

β1,r

1 + αβ1,r + (1− α̂) β1,r+m

(10)

When the payoff ratio δ = 0, α̂ = 0, β(r) = 1 we obtain the closed form
expression for L in the presence of tax cutoff level:

VB =
(C + mP ) β1,r+m

(r + m) [rVT (1 + αβ1,r + (1− α̂) β1,r+m) + θCβ1,r]

This formula, giving the optimal default barrier in presence of a tax cutoff,
is equation (20) in Leland [1994b] as well as equation C11 in Hilberink and
Rogers [2002]. However, when the payoff ratio δ 6= 0, only the expression in
equation C11 in Hilberink and Rogers [2002] applies.

2.2 Double Exponential Jump Diffusion Process

This case is a little bit more complicated. The barrier level is expressed with
parameters in the risk neutral world. So we have to look for a correspondence
between the actual and risk neutral universes. In order to do that, we as-
sume that in the actual world, the firm assets value V follows the stochastic
differential equation

dV

V−
= (µ− δ)dt + σdz + d

(
Nt∑

k=1

Uk

)

where
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• z is a standard Brownian motion

• N is a Poisson process with constant intensity rate λ

• (1 + Uk) are strictly positive i.i.d. random variables

• Yk := ln(1 + Uk) are i.i.d. random variables of double exponential
distribution with density:

fY (y) = p η1 e−η1y 1{y≥0} + q η2 eη2y 1{y<0}

where η1 and η2 are positive numbers, and p and q positive numbers
such that: p + q = 1

• All sources of randomness: N , z and the Yk’s are assumed to be inde-
pendent.

Using Itō’s lemma for semimartingales, we obtain:

Vt = V0 exp{Xt} = V0 exp

{
at + σzt +

Nt∑
k=1

Yk

}

with a = µ− δ − 1
2
σ2, or:

Vt = V0 exp {at + σzt}
Nt∏

k=1

Zk

where Zk = eYk .

Recall also that the Lévy-Khintchine formula writes

G(β) = aβ +
1

2
σ2β2 +

∫
R

(eβy − 1)ν(dy), ν(dy) = λfY (y)dy (11)

with E[eβX(t)] = etG(β).
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2.2.1 Changing Universe

In the current setting, the market is incomplete. The risk due to jumps
cannot be hedged and there is no more a unique risk neutral measure. Among
the measures equivalent to the historical probability measure, we choose the
Essccher measure for which the discounted gain process at the interest rate
r are martingales. The Esscher risk-neutral measure Qh associated with the
parameter h is defined by the Radon Nikodym density:

dQh

dP
:= η(t) =

ehX(t)

E[ehX(t)]

The Laplace exponent Ĝ(β) is thus given in the risk-neutral world by:

Eh[e
βX(t)] = E[η(t)eβX(t)] = etĜ(β)

After some computations (see the Appendix), one obtains:

Ĝ(β) = Aβ +
1

2
Γ2β2 +

∫
R

(eβy − 1)ehyfY (y)dy

and the characteristic triplet of the Kou process under the h Esscher measure
is (A, Γ, ν̂), where:

A = a + σ2h Γ = σ ν̂(dy) = ehyν(dy).

Consequently the price process which is a Kou process in the actual world
remains a Kou process in the risk neutral universe, but with different param-
eters (whose expression will be given below in (14)).

As shown in the Appendix, the following martingale condition gives the
risk neutral parameter h∗ for the Esscher measure:

r = h∗σ2 + µ− λ

[
pη1

η1 − h∗
+

qη2

η2 + h∗
− pη1

η1 − (1 + h∗)
− qη2

η2 + 1 + h∗

]
(12)

By identification of the characteristic exponent and after denoting by

ζ =
pη1

η1 − h∗
+

qη2

η2 + h∗
, (13)
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we obtain (see again the Appendix) the correspondence between the his-
torical and risk-neutral (hatted) parameters:

p̂ = pη1

ζ(η1−h∗)

q̂ = 1− p̂
η̂1 = η − h∗

η̂2 = η2 + h∗

λ̂ = λζ

(14)

These relations are important and, as far as we know, new. The main
result is the fact that if the firm assets value follows a Kou Process in the real
world it follows again a Kou process in the risk neutral universe associated
with the choice of the right Esscher measure, and the change of parameter
can be done as exposed above. Indeed, the equations (14) give the way the
coefficients of the historical universe and the coefficients in the risk neutral
universe are precisely linked. It is not obvious that changing universe, a Kou
process in a universe would remain of the same type in the other universe.
Kou and Kou and Wang have noticed that a risk-neutral measure can be
obtained using a rational expectation argument with a HARA utility function
for the representative agent in a Lucas economy. Here our approach is quite
different and conducted with the Esscher measure. To sum up we can say
that, in the chosen risk neutral universe, we have:

Xt =

(
r − δ − 1

2
σ2 − λ̂ξ̂

)
t + σẑt +

N̂t∑
k=1

Ŷk

• where ẑ is a standard Brownian motion,

• N̂ is a Poisson process with constant intensity rate λ̂,

• Ŷk are strictly positive i.i.d random variables of double exponential
distribution with density:

f̂Y (y) = p̂ η̂1 e−η̂1y 1{y≥0} + q̂ η̂2 eη̂2y 1{y<0}

η̂1 > 1, η̂2 > 0, p̂, q̂ > 0, p̂ + q̂ = 1,

• ξ̂ = Eh[e
Ŷ1 ]− 1 = p̂ η̂1

η̂1−1
+ q̂ η̂2

η̂2+1
− 1,
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• and all the sources of randomness N̂ , ẑ and Ŷk’s are assumed to be
independent.

Thus in the risk neutral universe, the firm assets value follows

dV

V−
= (r − δ)dt + σdẑ + dM̂

where M̂ is the compensated martingale associated with the compound Pois-
son process, that is where M̂ is given by:

M̂t =
N̂t∑

k=1

(Ẑk − 1)− λ̂ξ̂t

Hence, we can write:

Vt = V0 exp {ât + σẑt}
Nt∏

k=1

Ẑk

with Ẑk = eŶk , â = r − δ − σ2

2
− λ̂Φ̂(1), and where the function Φ̂ is defined

by:

Φ̂(x) := p̂
η̂1

η̂1 − x
+ q̂

η̂2

η̂2 + x
− 1

The Laplace exponent of the firm assets process thus writes in the risk-neutral
world as:

Ĝ(β̂) =
1

2
σ2β̂2 + âβ̂ + λ̂Φ̂(β̂) (15)

Now, for any ρ ∈ (0,∞), let −β̂3,ρ and −β̂4,ρ be the only two negative roots
of the Laplace exponent equation

Ĝ
(
β̂
)

= ρ (16)

where 0 < β̂3,ρ < η2 < β̂4,ρ < ∞. This equation is a quartic equation, i.e. a

four degree polynomial equation. β̂3,ρ and β̂4,ρ will prove useful in the coming
developments.
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2.2.2 Explicit debt, firm market values and barrier with a Kou
process

Using the approach in Hilberink and Rogers [2002] and results from Kou
and Wang [2004], explicit formulae can be obtained for the market values of
debt, firm, equity and optimal barrier level (see Chen and Kou [2005] or Dao
[2005]). Here are the expressions for the debt:

D =
C + mP

r + m
−

(
C + mP

r + m

β̂4,r+m

η̂2

− (1− α̂) VB
β̂4,r+m + 1

η̂2 + 1

)
η̂2 − β̂3,r+m

β̂4,r+m − β̂3,r+m

(
VB

V0

)β̂3,r+m

−

(
C + mP

r + m

β̂3,r+m

η̂2

− (1− α̂) VB
β̂3,r+m + 1

η̂2 + 1

)
β̂4,r+m − η̂2

β̂4,r+m − β̂3,r+m

(
VB

V0

)β̂4,r+m

,

(17)

the one for the firm value:

V = V0 +
θC

r
−

(
θC

r

β̂4,r

η̂2

+ αVB
β̂4,r + 1

η̂2 + 1

)
η̂2 − β̂3,r

β̂4,r − β̂3,r

(
VB

V0

)β̂3,r

−

(
θC

r

β̂3,r

η̂2

+ αVB
β̂3,r + 1

η̂2 + 1

)
β̂4,r − η̂2

β̂4,r − β̂3,r

(
VB

V0

)β̂4,r

, (18)

and the one for the equity:

E = V0 +
θC

r
−

(
θC

r

β̂4,r

η̂2

+ αVB
β̂4,r + 1

η̂2 + 1

)
η̂2 − β̂3,r

β̂4,r − β̂3,r

(
VB

V0

)β̂3,r

−

(
θC

r

β̂3,r

η̂2

+ αVB
β̂3,r + 1

η̂2 + 1

)
β̂4,r − η̂2

β̂4,r − β̂3,r

(
VB

V0

)β̂4,r

− C + mP

r + m
+

(
C + mP

r + m

β̂4,r+m

η̂2

− (1− α̂) VB
β̂4,r+m + 1

η̂2 + 1

)
η̂2 − β̂3,r+m

β̂4,r+m − β̂3,r+m

(
VB

V0

)β̂3,r+m

+

(
C + mP

r + m

β̂3,r+m

η̂2

− (1− α̂) VB
β̂3,r+m + 1

η̂2 + 1

)
β̂4,r+m − η̂2

β̂4,r+m − β̂3,r+m

(
VB

V0

)β̂4,r+m

(19)
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The optimal barrier level is:

V 1
B =

C+mP
r+m

β̂3,r+mβ̂4,r+m − θC
r

β̂3,rβ̂4,r

1 + α
[
−1 +

(
β̂3,r + 1

)(
β̂4,r + 1

)]
+ (1− α̂)

[
−1 +

(
β̂3,r+m + 1

)(
β̂4,r+m + 1

)] η̂2 + 1

η̂2

(20)
Now, if the absolute priority rule (APR) is respected, i.e. γ = 0, the

optimal default barrier becomes:

V 2
B =

C+mP
r+m

β̂3,r+mβ̂4,r+m − θC
r

β̂3,rβ̂4,r

α
(
β̂3,r + 1

)(
β̂4,r + 1

)
+ (1− α)

(
β̂3,r+m + 1

)(
β̂4,r+m + 1

) η̂2 + 1

η̂2

If the debt is perpetual with coupon C and if the APR is respected, i.e.
m = 0, P = 0 and γ = 0, then the expression for VB becomes:

V 3
B =

C (1− θ)

r

η̂2 + 1

η̂2

β̂3,r

β̂3,r + 1

β̂4,r

β̂4,r + 1
(21)

2.2.3 Determination of the first passage time law

We now are equipped to determine the default probability. The Laplace
transform of the cumulative distribution of the first passage time through
the barrier is given by:

∞∫
0

e−ρtP (τl ≤ t) dt =
1

ρ

∞∫
0

e−ρtdP (τl ≤ t) =
1

ρ
EP

[
e−ρτl(X)

]
(22)

and the Laplace transform is known from Kou and Wang as follows:

EP

[
e−ρτl(X)

]
=

η2 − β3,ρ

η2

β4,ρ

β4,ρ − β3,ρ

elβ3,ρ +
β4,ρ − η2

η2

β3,ρ

β4,ρ − β3,ρ

elβ4,ρ ,

where −β3,ρ and −β4,ρ are the two negative roots of the following Laplace
exponent function G(·):

GP (β) =
1

2
σ2β2 + aβ + λP

(
pP ηP

1

ηP
1
− β

+
qP ηP

2

ηP
2

+ β
− 1

)
(23)

with the convention:

a = µ− δ − σ2

2
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Kou, Petrella and Wang [2005] give an explicit solution, which can im-
prove the computation in inverting the Laplace transform. We use the up-
perscript P to remind that the parameters here are in the historical world.
The quantities pP and qP ≥ 0, with pP + qP = 1 represent the probabilities
of upward and downward jumps, and 1/ηP

1
and 1/ηP

2
are the average upward

and downward jumps under the objective probability measure P . The cdf
of the first passage time cannot be obtained in closed form, so a numerical
inversion is needed (for this purpose, one may use for example the Gaver
Stehfest, as suggested by Kou and Wang).

3 Empirical Relevance

3.1 The Gross Impact of Introducing Jumps

Let us first start with a study of the overall impact of the introduction of
jumps on cumulative default probabilities. For comparison purposes, we take
the same firm and market parameters as in Leland [2004], except T = 10Y
which is replaced by m = 0.11. The reason for this replacement can be found
in the fact that in his empirical analysis, Leland implements the Leland and
Toft model [1996]. By contrast, we will compare the CDPs obtained with our
new method to the ones obtained with a Leland [1994b] diffusive Gaussian
model.

µ δ r V0 α τ m
0.12 0.06 0.08 100 0.3 0.15 0.11

Table 1: Common Parameters

P p η1 η2 σG

43.3 0.5 5 5 0.23

Table 2: Specific Parameters

< ln

(
V1

V0

)
> = σ2 + 2λ

(
p

η2
1

+
q

η2
2

)
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Figure 1: Cumulative Default Probabilities

3.2 Fitting Real-World Curves

Conclusion
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Appendix

In this setting the market is incomplete. The risk due to jumps cannot be
hedged and there is no more a unique risk-neutral measure. This is always
the case when the price process is of a geometric Lévy process type, ex-
cepted of course the Brownian motion case. Many candidates for suitable
martingale measure equivalent to the real world probability measure have
been suggested and from a theoretical point of view, different criteria can
be chosen based on hedging arguments or distance minimization. Hellinger
distance, L2 distance, entropy or Kullback Leibler distance have frequently
been put forward. In this paper we choose the Esscher measure associated
with the coupound return of the asset price process. It has been introduced
by Gerber and Shiu [bbbb]. We motivate our choice for theoretical, economic
and convenient reasons. From a mathematical point of view, this measure is
the nearest equivalent martingale measure to the historical probability mea-
sure in the sense of power metric. From an economic point of view, the
risk-neutral universe being not unique, prices will rely on the attitude of eco-
nomic agents toward risk. Using the expected utility or the neo-Bernoulli
theory, a fair price can be obtained with the marginal utility principle and
it can be shown that the fair price or indifference price given by a power
utility or logarithmic utility function can be expressed via the coumpound
return Esscher measure. See Gerber and Shiu [ii] and Davis [EEE]. But the
main motivation is from an operational perspective: most of the usual Lévy
processes used in financial modelling, generalized hyperbolic processes, coum-
pound Poisson processes, Normal Inverse Gaussian proceses, variance gamma
and CGMY processes remain of the same kind in this particular risk-neutral
universe. Furthermore the passage of one set of parameters of these processes
in the historical universe to the set of parameters in the coumpound return
Esscher risk-neutral universe is very simple. There is a general formula for
the generic triplet of the risk-neutral Lévy process, we explicit it in the case
of the Kou process. The asset price can be expressed either as an exponential
of a Lévy process X or as the Doléans Dade exponential of another process
X̃. Of course thes two proessess are linkes together and relations between
their charactezristic triplet are easily obtained. This leads to another choice
for the Esscher measure the so-called simple return Esscher measure, defined
with X̃. This measure has an extremal entropy property: it is the closest
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measure to the historical probability in the sense of the Kullback-Leibler
distance. Regarding the economic side, this measure is associated with ex-
ponential utility functions. With this measure Lévy processes in the actual
universe remain Lévy processes in this new risk-neutral universe. A General
formula is available for the generic triplet of the process X, under the simple
return Esscher measure, however the particular type of the process is not
necessarily kept. For example a Kou process does not remain such, so we
can’t use the endogenous default barrier obtained with the Kou process in
our previous analysis. Furtheremore, the default probability which is our
main concern does not seem easily available contrary to the case with the
coumpound return Escher measure. Another advantage of our choice is its
flexbility to adjust to actual data. The important question of the model abil-
ity to reproduced observed market expected default frequencies is adressed
in the paragraph devoted to empirical relevance. Let us now return to the
precise definition of the Esscher measure.

Let X be a Lévy process, the Qh h-Esscher measure associated with X,
is defined by

dQh

dP
=

ehX(t)

E (ehX(t))

The Laplace exponent is G(β) such that

E
(
eβX(t)

)
= eG(β)t

First consider the martingale condition: the discounted gain process must
be a martingale under the risk neutral measure, therefore for t > 0, we have

V0 = EQh

(
V0e

X(t)eδte−rt
)

or

V0 = V0e
(δ−r)t

∫
Ω

e(h+1)X(t)

EP (ehX(t))
dP

this conditiontion writes

V0 = V0e
(δ−r)t GP (h + 1)

GP (h)

where we write GP to refer to the real world probability measure. The
martingale condition corresponds to the identification of the parameter h

20



such that it is a solution of the following equation

δ − r + GP (h + 1)−GP (h) = 0 (24)

We denote by h∗ this solution. To find relations between the real world and
the risk-neutral one we begin with the definition of the Laplace exponent
under Q. For sake of simplicity we don’t use the subscript h and write Q
instead of Qh.

EQ

(
eβX(t)

)
=

∫
Ω

eβX(t) ehX(t)

EP (ehX(t)
)dP

or:

eGQ(β) = EP

(
e(β+h)X(t)

EP (ehX(t)

)
=

eGP (β+h)

eGP (h)

so:
GQ(β) = GP (β + h)−GP (h) (25)

This equation gives the link between the actual measure P and the risk neu-
tral measure Q. This risk neutral measure is the Esscher measure associated
with the parameter h∗ verifying the martingale condition (24).

Let us now come back to our jump diffusion process and apply these
general results to our particular case

X(t) = (µ− δ − 1

2
σ2)t + σz(t) +

N(t)∑
k=1

Yk

We know from Kou (55555) that with this process the Laplace exponent is

G(β) =
1

2
β2σ2 + β(µ− δ − 1

2
σ2) + λ

[
pη1

η1 − β
+

qη2

η2 + β
− 1

]
(26)

The martingale condition (24) writes

r = hσ2 + µ + λ

[
pη1

(η1 − h)(η1 − (1 + h))
− qη2

(η2 + h)(η2 + 1 + h)

]
(27)

which can be rewritten

r = hσ2 + µ− λ

[
pη1

η1 − h
+

qη2

η2 + h
− pη1

η1 − (1 + h)
− qη2

η2 + (1 + h)

]
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Now, using (25), (26), and after computations

GQ(β) =
1

2
β2σ2 + β(µ− δ − 1

2
σ2 + σ2h)− λζ

[
p̂

η1

η̂1 − β
+ q̂

η2 + h

η̂2 + β
− 1

]
ζ :=

pη1

η1 − h
+

qη2

η2 + h
,

p̂ = pη1

ζ(η1−h)

q̂ = 1− p̂
η̂1 = η1 − h
η̂2 = η2 + h

λ̂ = λζ

(28)

which, according to (26) shows that X is under the Esscher risk neutral
measure a Kou process with parameters defined by (28) and with the choice
h = h∗, the solution in h of equation (27).
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