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Abstract 

In this paper, we show that scaled conditional volatilities obtained by the square root formula 

applied to i.i.d residuals from a sample of Canadian stock market data for various time horizons 

and error distributions, typically underestimate the true conditional volatility; consistently have a 

higher standard deviation and exhibit nonstationary kurtosis. Furthermore, the bias produced by 

volatility scaling is nonstationary in mean and standard deviation and its magnitude is likely 

influenced by monetary policy regime shifts. Moreover, while VaR is risk-coherence for 

elliptical distributions, this bias remains even for this class of distributions. 
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1. Introduction 

 It is routine practice in the financial services industry to impute a longer-term volatility from 

one-day volatility via the square root formula. Operationally, an n-day volatility is derived from 

a one-day volatility by multiplying the later by n .  Indeed,  the Basle 1996 “Amendment to the 

Capital Accord to Incorporate Market Risks” requires a 10-day holding period whereby a one-

day Value-at-Risk (henceforth VaR) is converted to a 10-day equivalent that is “scaled up … by 

the square root of time” (p.44, section B.4, paragraph c). In addition, while financial services 

firms typically use a one-day VaR for internal risk control (Danielsson, Hartman and De Vries, 

1998) and for the purpose of determining regulatory capital allocation against market risk, banks 

are obliged to assume that they cannot liquidate their trading portfolios before the end of ten 

business days. To facilitate this transition, there is reliance on the square root formula 

where nVarnVar *)1()( = .  

 Several studies reported in the econophysics literature have focused on the econometric 

implications of volatility scaling. Batten and Ellis (2001) apply fractal geometry on an example 

of spot of currency returns and provide evidence implying that linear scaling to estimate risk of 

long-term returns using observable short-term returns is not appropriate when returns series are 

not independent. Gencay, Selcuk and Whitcher (2001) using a wavelet methodology show that 

foreign exchange rate volatility exhibits different scaling properties at different time horizons, 

suggesting that utilizing a unique global scaling factor such as square root of n may lead to 

misleading results.  A possible explanation for the observed scaling behaviour for the distribution 

of price changes may be attributed to the long range volatility correlations found by Liu et al 

(1999) who show that the probability density function of the volatility of the S&P 500 index is a 
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mixture of a log-normal at the centre with the tail distribution described by a power law having 

an index outside the stable Levy range.  

 Diebold et al (1997) parametrize a GARCH (1,1)  process and produce simulated data 

showing that scaling magnifies volatility relative to estimates obtained from he Drost-Nijman 

(1993) temporal aggregation formula. But we find important limitations with this approach.  

First, as recognized by Diebold et al, if the one-day model is correctly specified as a 

GARCH(1,1) process, then n-day volatilities can be computed by the Drost-Nijman formula. But 

there is a preponderance of studies showing the GARCH (1,1) is inadequate to fully capture 

volatility clustering in typical financial time series. One possible reason for this is that 

GARCH(1,1) models only first order heteroskedasticity. Therefore, GARCH(1,1) fails to capture 

all the volatility clustering in presence of higher order heteroskedasticity. As results, models such 

as GARCH (2,2) should be examined. In addition, a major limitation to GARCH process is that 

it does not allow for leverage effect, which is known also as volatility asymmetry. Leverage 

effect means that volatility tends to rise in response to lower than expected returns and to fall in 

response to higher than expected returns. Failing to capture this fact, GARCH model may not 

produce accurate forecasts. To overcome this limitation models such as EGARCH, and 

PGARCH were suggested. Furthermore, GARCH does not account for long memory behavior 

observed in the volatility of financial assets returns; to deal with this shortcoming there is an 

increasing volume of studies that use FIEGARCH model. Hence reliance on the Drost-Nijman 

temporal aggregation model may be misleading. 

 Second, if the one-day return series does not follow a weak GARCH process, then Drost-

Nijman will not apply, leaving no obvious benchmark comparison for the n-day volatility series 

obtained from the square root of time formula. 



 4 

 In this paper, we address these issues and contribute to the literature in several ways. First, 

we apply a clean econometric test of the adequacy of the square root formula on real rather than 

simulated data based on a pre-selected GARCH model. In particular, we consider daily data for 

the Toronto Stock Exchange Composite Index (S&P/TSX) for the period 1977-2004 and by 

means of a powerful test originally proposed by Brock, Dechert and Scheinkman (1987) (henceforth 

BDS) and designed by Brock et al (1996), we create i.i.d residuals.2 Volatility clustering is specified 

by an EGARCH(1,1) with Hsieh’s test for nonlinearity. Second, we consider three different 

distributions – normal, Student and generalized error distribution (GED) Nelson (1991) – as 

possible candidates for the error term. Third, we investigate the potential bias in scaling by 

square root of time over the full sample from 1997 through 2004 and a sample partition based on 

subperiods identified with three U.S. monetary regimes over the period 1977 through 1986 as 

well as shifts in Canadian monetary policy in January 1991 and January 1999 as found by 

Shambora, Choi and Jung (2006). The rationale for this sample partitioning is explained in 

greater detail in Section 5. In brief, we provide evidence implying a linkage between monetary 

policy and conditional volatility. Consequently, it is reasonable to hypothesize that monetary 

policy regime shifts, should affect the standard deviation of conditional volatility. Also, we refer 

to research which shows that U.S. monetary policy leads Canadian monetary policy. 

Accordingly, we partition the full sample on the basis of U.S. monetary policy regime shifts and 

evidence of endogenous monetary policy shifts in Canada. This gives us six sub-periods that 

permits a test of potential temporal variability in the mean and variance of possible bias created from 

volatility scaling 

                                                 
2 The BDS test is a non-parametric test with the null hypothesis that the series in question is i.i.d against an 
unspecified alternative. 
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      The value of the above approach is that we compare the actual (or true) n-day volatilities of 

i.i.d residuals obtained from real data against different economic contexts. We use this series as 

our benchmark for comparison with the n-day (scaled) volatility series created via the square root 

of time formula. The bias in the n-day scaled volatility series compared to the benchmark series 

is then computed. We find very interesting results when using i.i.d residuals as opposed to 

Diebold et al methodology of comparing (simulated) scaled volatilities to those obtained from 

Drost-Nijman temporal aggregation. First, unlike Diebold et al (1997) who found in favor of the 

square root formula for short time horizons no greater than 10 days, we find that this formula 

underestimates the true conditional volatility for both short and longer time horizons and for all 

three assumed error distributions.  

Second, the bias introduced by the square root formula is apparently a concave function of 

time in that it increases at a decreasing rate. However, for a given time horizon, the average bias 

is relatively stable for both the normal and fat-tailed distributions. For example, we find that for 

10-day horizons, the average bias is about 23%, implying that scaled formula results in estimates 

that are lower than the true value by about 23%. This is true whether we assume that the error 

distribution is normal, Student-t or GED. Similar results are found for 30-day and 90-day 

horizons but where the average bias is 28%. This is evidence of concavity where the bias 

increases for short horizons and quickly stabilizes – after 30 days in our empirical findings. 

     Third, we find a meaningful degree of temporal variation in the bias with its smallest value in 

the most recent period outside the three monetary regimes. This suggests that while the average 

bias in scaled volatilities is relatively stable over the full sample period of 1977-2004 and for 

each error distribution, there is significant temporal variability in the estimated bias that may be 

linked to monetary policy regime shifts. 
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 Fourth, the scaled conditional volatility estimates consistently have a larger standard 

deviation than that of the true conditional values. The size of the difference is greatest for the fat-

tailed distributions considered. Hence, not only does the square root formula produce under 

estimates of the true conditional volatilities, but they are also relatively more volatile especially 

for fat-tailed distributions. Given that there is overwhelming evidence that financial time series 

are fat-tailed, then there is meaningful estimation risk in using the scaled formula. 

 Fifth, the empirical distribution of scaled volatilities exhibits significantly greater kurtosis 

than the corresponding distribution of true conditional volatilities, indicating simultaneous 

peakedness and fat tail behavior. But, like the average bias, there is a great degree of temporal 

variation in the kurtosis estimates. The evidence of leptokurtosis is largely attributed to the most 

recent period outside the three monetary regimes with the distribution of true conditional 

volatilities showing evidence of platykurtosis – less peaked and thinner tails. 

      The rest of this paper is organized as follows. Section 2 describes the data used in this study 

with appropriate initial tests including normality and root tests. Section 3, presents a rationale for 

a partition of the full sample based on monetary regime shifts. Section 4 is full description of our 

methodology for producing i.i.d residuals using the BDS and Hsieh tests, respectively. Section 5 

presents the results- both graphical and tabular-for the scaled volatility obtained from the square 

root formula and compares them with the true n-day conditional volatility for n =10, 30 and 90 

days respectively. Section 6 discusses the results. Section 7 presents the implications for Value 

At Risk estimation while section 8 concludes the paper. 

2. Data and initial diagnostics 

 We note that in the subsequent sections of this paper, we apply an econometric procedure 

that is differentiated from that in the literature as evidenced by Diebold et al. In particular, we 
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model real daily return series by an AR(k)-EGARCH(p,q) model while ensuring that the 

residuals are i.i.d by the BDS and Hsieh tests. We then use the formula, 

n-day conditional volatility =  (1-day conditional volatility) * n  

 We do this for n =10, 30 and 90 days under normal, Student-t and GED respectively.  In 

addition, to obtain a benchmark true n-day conditional volatility, we compute the return over n 

days, for n =10, 30 and 90 days respectively and for the same error distributions. 

 So first, we describe the real data series we use for this study.  

 The data considered in this paper is the set of daily S&P/TSX composite price index 

beginning on January 03, 1977 and ending on December 31, 2004 forming a sample of 7056 

observations. The data is obtained from Toronto Stock Exchange - Canadian Financial Markets 

Research Center (CFMRC) database. Market index prices are transformed to daily returns as the 

natural logarithmic first difference of the daily closing price. 

Table1 below provides various descriptive statistics for index returns. The distribution of 

daily returns is negatively skewed. The null hypothesis of skewness coefficient conforming to 

the normal distribution value of zero is rejected at 1% level. In addition, the null hypothesis of 

kurtosis coefficient conforming to the normal distribution value of three is rejected at 1% level. 

The daily returns are thus not normally distributed, a conclusion which is confirmed by Jarque-

Bera test statistic.  

To see whether the series is stationary, we employ the Augmented Dickey Fuller (ADF) test. 

Perron (1989) has demonstrated that ADF is subject to misspecification bias and size distortion 

when the series involved has undergone structural shifts leading to spurious acceptance of the 

unit root hypothesis. We overcome this limitation by also using Philips-Perron (PP) test which 

allows for a one-time structural break. The outcomes from conventional ADF and PP unit root 
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tests (not reported here) suggest that the series is non-stationary in levels and stationary in first 

differences at one percent level of significance. To examine the linear dependence of the returns 

series, we use the modified Q-statistic of Ljung and Box (1978). Table 2 below provides the 

autocorrelations coefficients up to lag 50. The results suggest the existence of significant serial 

autocorrelation at all lags.  

(Insert Table 1 about here) 

(Insert Table 2 about here) 

3. Monetary policy regime shifts and sample partitioning 

 In assessing whether potential bias arising from the scaled formula is temporally stable, we 

partition the full sample into sub-periods based on U.S. monetary policy regime shifts. The 

rationale underlying this choice is based on evidence that monetary regimes shifts may have 

significant impact on conditional volatility of several financial time series. For example, 

Lastrapes (1989) noted that monetary policy regimes significantly affect the mean and variance 

of nominal exchange rates. Choi and Kim (1991), using a GARCH model in a study covering the 

period 1975 through 1989, find that the foreign exchange risk premium depends on changes in 

the monetary regime. In the same vein, Hsieh (1991) finds that changes in operating procedures 

of the U.S. Federal Reserve Board (FRB) can shift the volatility of financial markets. 

  In identifying the monetary regimes within the period 1977-2004 we use U.S. data as 

proxies for the ensuing shifts in Canadian monetary policy as potential structure changes. Several 

authors have pointed out the high correlation between Canadian and U.S. interest rates (see 

among others Howitt, 1986; Pesando and Plourde, 1988; Mittoo, 1992). For instance, Mittoo 

(1992) finds the correlation between the 3-month T-Bill rate for the U.S. and Canada for the 

period January 1977 to December 1986 to be over 0.5. Thornton (1990) reports evidence 
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suggesting that the U.S. monetary policy leads Canadian monetary policy. 3 Finally, Yamada 

(2002) shows there is a one-to-one long-run linkage between the U.S. and Canadian real interest 

rates. 

Since the mid-seventies, the U.S. Federal Reserve Board (FRB) has made substantial 

alterations to the way monetary policy is conducted. The literature has identified three non-

overlapping monetary regimes over the period 1976-1986, each characterized by different 

operating procedures4: (1) January 7, 1976, to October 3, 1979; (2) October 10, 1979, to October 

1, 1982; and (3) October 6, 1982, to November 19, 1986.5   

Apart from these three time periods, there is evidence that Canadian monetary policy also 

experienced significant shifts in the post 1986 period. Shambora, Choi and Jung (2006) find that 

January 1991 and January 1999 represent structural shifts in monetary policy. For example, in 

January 1991, the Bank of Canada adopted a policy of inflation targeting and shifted away from 

this policy in January 1999 to a less restrictive monetary policy in order to boost corporate 

earnings growth. Consequently, we partition the full sample period into five sub-periods 

representing the three U.S. monetary regime shifts ending in 1986 coupled with two shifts in 

Canadian monetary policy in January 1991 and January 1999. 

4. Methodology 

To test whether the share price changes are i.i.d we use a powerful test designed by Brock et 

al (1996). The BDS test is a non-parametric test with the null hypothesis that the series in 

                                                 
3 See Calvet and Rahman (1995) for a more detailed review on the linkage between U.S. monetary regimes, 
Canadian monetary policy, and Canadian stock returns.  
4 See Bergstrand (1983), Roley (1986) and Lastrapes (1989). 
5Andolfatto and Gomme (2003) find evidence that October 1979 represented a significant shift in monetary policy in 
Canada. This was also confirmed by Duffy and Engle-Warnick (2006). 
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question is i.i.d against an unspecified alternative. The test is based on the concept of correlation 

integral, a measure of spatial correlation in n-dimensional space: 
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where m is the embedding dimension, T is the sample size, ( ) TTm ,εσ is the standard deviation 

of the difference between the two correlation measures ( )TCm ,ε  and ( )[ ]mC ε1 . For large samples, 

the BDS statistic has a standard normal limiting distribution under the null of i.i.d. If asset price 

changes are not identically and independent random variables, then ( ) ( )mm CC εε 1> .  

It is important to note that the BDS test statistic is sensitive to the choice of the embedding 

dimension m and the bound ε . As mentioned by Scheinkman and LeBaron, (1989), if we 

attribute a value that is too small for ε , the null hypothesis of a random i.i.d process will be 

accepted too often irrespective of it being true or false. As well, it is not safe to choose too large 

a value for ε . To deal with this problem Brock et al. (1991) suggest that, for a large sample size 

(T > 500), ε  should equal 0.5, 1.0, 1.5 and 2 times standard deviations of the data. As for the 

choice of the relevant embedding dimension m, Hsieh (1989) suggests consideration of a broad 

range of values from 2 to 10 for this parameter. Following recent studies of Barnett et al. (1995), 

we implement the BDS test for the range of m-values from 2 to an upper bond of 8.  

In general, a rejection of the null hypothesis is consistent with some type of dependence in 

the returns that could result from non-stationarity, a linear stochastic process, a non-linear 

stochastic process, or a non-linear deterministic system.6 Based on ADF and PP test the non-

stationarity argument is rejected. According to Hsieh (1991), linear dependence can be ruled out 

by prior fitting of Akaike Information Criterion (AIC)-minimizing autoregressive moving 

                                                 
6 The Simulation studies of Brock et al. (1991) show that the BDS test has power against a variety of linear and non-
linear processes, including for example GARCH and EGARCH processes. 
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average (ARMA) model. Therefore, a rejection of the i.i.d assumption using filtered data can be 

the result of a non-linear stochastic process or a non-linear deterministic system. However, BDS 

test is neither able to distinguish between stochastic and deterministic non-linearity, nor can it 

discriminate between additive and multiplicative stochastic dependence. Because we are 

concerned with a stochastic explanation of returns behavior, the latter issue matters in this case.  

As stated earlier, in order to choose an appropriate non-linear model describing the returns 

series, it is crucial to know the source of non-linearity in the data. Non-linearity can enter 

through the mean of a return generating process (additive dependence) as in the case of threshold 

autoregressive model, or through the variance (multiplicative dependence), as in the case ARCH 

model proposed by Engle (1982). Non-linearity can be both additive and multiplicative as in the 

case of GARCH-M model. To determine the source of non-linearity in the returns series we use 

Hsieh's test (Hsieh, 1989). 

 Although the Hsieh’s test provides us with the type of non-linearity underlying the data 

series, it does not tell what model to choose for the returns generating process. Still, the results of 

Hsieh’s test provide the first step towards finding the best non-linear model to fit the data. For 

instance, if the source of non-linearity turns out to be the variance (a multiplicative dependence) 

then we should look into ARCH models. Engle (1982) was first to introduce these models, which 

are now very widely used in financial time series modeling. For example the generalized ARCH 

(GARCH) models, designed by Bollerslev (1986), are very successful in describing certain 

properties of high frequency financial time series such as excess kurtosis and volatility 

clustering. However there are some aspects of financial time series, such as leverage effect, that 

are not considered in the basic model. GARCH model is a symmetric variance process, in that 

the sign of the disturbance is ignored meaning that bad news have the same impact on volatility 
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as good news which is not consistent with the leverage effect. Neslon (1991), among others, 

propose a model that allows for leverage effect known as exponential GARCH (EGARCH) 

model: 
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where λ, θ, ρ, are the ARCH, GARCH, and leverage parameters respectively. 2
t  log th σ=  and 2

tσ  

is the variance of an i.i.d random variable. 

5. Results 

To test for the i.i.d assumption we employ the BDS test. It is a powerful test frequently used 

to detect several non-linear structures and to test for the adequacy of a variety of models. Table 3 

below reports the BDS statistic for embedding dimension 2 to 8 and for epsilon values starting 

from 0.5 to 2 times the standard deviation of the returns series. The results strongly reject the 

null hypothesis of independently and identically distributed index price changes at 5% and 1% 

significance level. 

(Insert Table 3 about here) 

Since the BDS test has a good power against linear as well as non-linear system, we use a 

filter to remove the serial dependence in the return series and the resulting residuals series are re–

tested for possible non-linear hidden structures. We use an autoregressive AR(k) model to take 

out all the linearity in the series. Empirical studies show that non-synchronous trading causes a 

deviation of the observed index returns from the true index returns. An advantage of using the 

residuals of AR(k) model is that it reduces the effect of infrequent trading, which is more 
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pronounced in price indices of thinly traded stock markets.7  The identification of the order of 

autoregression, k, is based on the lowest AIC. The Modified Q-statistics (not tabulated herein) 

show that the residuals of an AR(12) are white noise, suggesting that the model accounts for all 

the linearity dependence in the series.  

To test whether linear dependence is the reason of rejecting the i.i.d assumption, we employ 

the BDS test on the residuals of the AR(12) model. The results (not tabulated here) still reject the 

i.i.d assumption. Hence, given that we can rule out the non-stationarity and linearity as causes of 

the rejection of the i.i.d assumption, we can say that S&P/TSX returns index exhibits some 

inherent non-linearity which is either stochastic or deterministic.  

Although the results from the BDS test strongly support the existence of inherent non-

linearity, it does not tell us whether it enters through the mean or variance of the returns series. 

To uncover the source of non-linear behaviour, we calculate the third-order moment test statistics 

of Hsieh (1989). None of the values of the approximately normally distributed Hsieh test statistic 

(not tabulated herein) are significant, implying a failure to reject the null hypothesis of 

multiplicative dependence. This supports the view expressed above that volatility clustering is 

responsible for the rejection of i.i.d in index returns series. Therefore, a GARCH model is most 

likely to succeed in describing the return generating process than a GARCH-M model.  

 Given the results of Hsieh’s test, we have examined several GARCH (p,q) type models. 

Using the AIC and BIC as tools for model selection, it turns out that an EGARCH (1,1) is the 

best model to fit the series. Table 4 reports the estimation results of a EGARCH(1,1) process 

under the assumption that the innovations follow four distributions: Normal, Student-t, 

                                                 
7 To proxy for the true but unobserved index returns Stoll and Whaley (1990) have used the residuals from an 
ARMA regression.   
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generalized error distribution (GED) proposed by Nelson (1991). All the model selection criteria 

show that EGARCH(1,1) under Student-t is the best in describing our data. 

The results of the diagnostic tests show that the models (under the three distributions) are 

correctly specified. The modified Q-statistics (not reported here) for the standardized residuals 

and standardized squared residuals are both insignificant, suggesting the chosen EGARCH 

process is successful at modeling the serial correlation structure in the conditional mean and 

conditional variance. JB test for normality fail to reject the null hypothesis that the standardized 

residuals are normally distributed. To see whether the model has captured all the volatility 

clustering in the series we calculate the Lagrange-multiplier (LM) test proposed by Engle (1982). 

The null hypothesis that the residuals lack ARCH effect is not rejected, which shows that the 

EGARCH (1,1) has indeed counted for all the volatility clustering in the data.   

(Insert Table 4 about here) 

 To examine whether the EGARCH model has succeeded in capturing all the nonlinear 

structure in the data, we employ the BDS test to its standardized residuals. A rejection of the i.i.d 

hypotheses will imply that the conditional heteroskedasticity is not responsible for all the 

nonlinearity in index returns, and there is some other hidden structure in the data possibly 

deterministic. Table 5 displays the BDS statistics on the standardized residuals from the 

EGARCH process. The BDS test fails to reject the null hypothesis that the standardized residuals 

are i.i.d random variables at 5% and 1% degree of significance. This confirms that he EGARCH 

process indeed captures all the non-linearity in the series, and that the conditional 

heteroscedasticity is the cause of the non-linearity structure uncovered in the returns series. 

 Figure 1 below plots the conditional volatility obtained from the EGARCH model under 

Student-t distribution. It is obvious from the graph that the conditional variance varies over time. 
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The series is characterized by significant heteroscedasticity, which manifests by changes in 

volatility of S&P/TSX index over the period of investigation. 

(Insert Table 5 about here) 

(Insert Figure 1 about here) 

5.1. Testing the accuracy of scaling by the square root of time formula 

To test the relative accuracy of scaling by the square root formula, we first present the details 

of the calculation of the true and scaled volatilities.  That is, we model linear dependence and 

volatility clustering via an AR(k)-EGARCH model and account for potential non-linear 

dependence by the Hsieh test. 

 The comparison will be based on graphics and also descriptive statistics for the whole sample 

as well as four sub-samples based on monetary regime shifts. Figures 2 displays the scaled and 

true condition volatilities for n = 10 under normal error distributions: normal. Table 6 reports the 

descriptive statistics.8 

(Insert Figure 2 about here) 

6. Discussion of results 

 First, we discuss the results for the full sample period 1977:1 through 2004:12. The main 

results are presented in Table 6 for n=10 days. To facilitate the interpretation of the results in 

Table 6 we define additional statistics as follows:   

VolatilityTrue

VolatilityScaled
BIAS −= 1  

                                                 
8 For sake of brevity, the figures and tables reporting the results for n =30 and n = 90 under three error distributions 
(normal, Student and GED) are not reported here, but are available upon request from the authors. 
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 Clearly, if the scaled volatility is lower (higher) than the true volatility, the bias will be 

positive (negative). We also define ∆SD as follows: 

∆SD= Standard Deviation of True Conditional Volatility – Standard Deviation of Scaled 

Conditional Volatility 

Clearly, if ∆SD is positive (negative), then the standard deviation of the true conditional 

volatility is greater (less) than the standard deviation of the scaled conditional volatility. 

(Insert Table 6 about here) 

     From Table 7, we see that for the total sample (1977-2004) and n =10 days, the bias is 

positive with a mean value of 23% irrespective of the error distribution – normal, Student and 

GED. A similar result holds for the longer time horizon (n = 30 and 90 days) where the average 

bias is 28%. Hence, the mean bias increases over time but quickly stabilizes revealing a degree 

of concavity. 

 When we consider the standard deviation of the conditional scaled volatility estimates, a 

different picture emerges. While the mean of the scaled volatilities systematically underestimate 

the true mean volatilities for all time horizons (n = 10, 30 and 90 days) and all error distributions 

(normal, Student and GED), the standard deviation of the scaled volatilities are persistent 

overestimates. This is observed in Table 7 where ∆SD is negative indicating that the conditional 

volatility of scaled estimates has a higher standard deviation when compared to the conditional 

volatility of true estimates. In particular, Table 7 shows that for n = 10 days, the standard 

deviation of the scaled volatilities are highest for the fat-tailed distributions (-11% for normal 

and -53% for Student-t error distributions.)  This pattern of persistent overestimates worsens for 

longer time intervals with bias exceeding 100% for n=30 and all error distributions. 
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We now examine the results for each of the six sub-periods identified by U.S. and Canadian 

monetary policy regime shifts. Like the full sample, BIAS is positive and ∆SD is negative for 

each sub-period, for all three time horizons and error distributions. However, there is evidence of 

significant temporal variability in these statistics. For n=10 and each error distribution, the 

highest mean bias is in the first monetary regime and the lowest mean bias is found in the last 

sub-period. But the difference between the standard deviation of the true conditional volatilities 

and the scaled conditional volatilities varies randomly across each sub-period. If we consider 

longer time periods, (n=30, 90 days), the same random variation exist but also for the mean bias. 

The location of the highest and lowest mean bias is not predictable as is apparent in the case 

where n=10 days.  While the mean bias is non-stationary but has the lowest value in the 1999-

2004 sub-period, the bias in the standard deviation of the scaled volatilities is also 

nonstationarity and highest in the last three sub-periods While the general pattern of results 

(positive mean bias and negative ∆SD remains across sub-periods, we observe that temporal 

variability in both biases is likely influenced by monetary policy regime shifts.   

 The empirical distribution of the scaled conditional volatilities relative to that of the true 

conditional volatilities exhibits some interesting relationships.  In Table 6 we see that the 

distribution of scaled volatilities typically show significantly higher levels of kurtosis. For 

example, for n = 10 and a normal error distribution, the kurtosis of the distribution of scaled 

volatilities is 18.62 for the entire period relative to 10.98 for the distribution of true volatilities. 

However, there is also significant nonstationarity in the kurtosis statistics with the highest value 

(almost an outlier value) for all error distributions in the 1986-1990 subperiod. 

For the longer time periods, the nonstationarity in kurtosis is even more acute. For n = 30 the 

kurtosis for the distribution of scaled volatilities averages 18.00 for all error distributions as 
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compared to an average of zero for the distribution of true values. A similar picture emerges for 

n = 90 with evidence of temporal variability. As for the case of n=10 days, the highest value of 

the kurtosis is found in the period 1986-1990. 

We may conclude that scaled conditional volatilities obtained by the square root formula and 

applied to i.i.d residuals from a sample Canadian stock market data for various time horizons, 

typically underestimate the true conditional volatility; have a higher standard deviation and 

exhibit nonstationary kurtosis. Furthermore, the mean bias arising from the scaled formula is 

concave over time but also exhibits nonstationarity. Finally, the degree of temporal variability of 

the estimated bias is likely influenced by monetary policy regime shifts. 

We now examine the implications of the square root formula for estimation typical risk 

measures such as Value at Risk. 

(Insert Table 7 about here) 

7. Implications for value-at-risk estimation 

It is known that Value at Risk is not a coherent risk measure in the sense that subadditivity is 

violated.  In particular, for two portfolios A and B, subadditivity is stated as VaR (A+B) ≤ 

Var(A) + Var (B). The lack of subaddivity can give rise to regulatory arbitrage in the sense if 

capital requirements are based on VaR, a firm could create artificial subsidiaries in order to save 

on regulatory capital.  However, to guarantee subadditivity and hence to restore the risk 

coherence of VaR, Breuer, Krenn and Pistovcak (2002) of  parametric VaR, the portfolio value 

must be a linear function of risk factors whose changes are elliptically distributed. Classical 

examples of elliptical distributions are multivariate normal and Student t distributions. Indeed, 

So and Yu (2006), emphasize that “although most return series show fat-tailed distributions and 
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satisfy long memory properties, it is more important to consider a model with fat-tailed error in 

estimating VaR. 

The results of this paper add another dimension to the problems of VaR as a risk measure. 

While the coherence of VaR is restored for normal and Student –distributions with the latter 

being fat-tailed,  the evidence in this paper shows that the nonstationary bias found for the scaled 

conditional volatilities still remains.  Hence it is likely that VaR estimates based on the square 

root of time formula will underestimate the true trading risk that a financial institution faces. To 

compound this problem, VaR estimates are likely to be unreliable given the evidence of 

overestimation of the standard deviation of the true conditional volatilities. Since VaR is 

typically used as basis for allocating regulatory capital and economic capital to cover possible 

losses from trading activities, the implication for optimal capital allocation is evident. That is, 

capital allocation may cover trading risk only randomly.  

8. Conclusion 

In this paper, we conduct a clean econometric test of the accuracy of the square of time 

formula that is commonly used to create longer-term conditional volatilities from those derived 

for shorter time horizons. Unlike previous studies in the literature that assume particular GARCH 

models and simulate data against the Drost-Nijman temporal aggregation model, we consider 

daily data for the Toronto Stock Exchange Composite Index (S&P/TSX) for the period 1977-

2004 and by means of a powerful test designed by Brock et al (1996), we create i.i.d residuals. 

The BDS test is a non-parametric test with the null hypothesis that the series in question is i.i.d 

against an unspecified alternative. Volatility clustering is specified by an AR(k)-EGARCH  with 

Hsieh’s test for nonlinearity. In addition, we consider three different distributions – normal, 

Student and generalized error distribution (GED) – as possible candidates for the error term. 
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Our main finding may be summarized thus: scaled conditional volatilities obtained by the 

square root formula applied to i.i.d residuals from real stock market data for various time 

horizons, typically underestimate the true conditional volatility; have a higher standard deviation 

and exhibit nonstationary kurtosis.9 Furthermore, Furthermore, the bias arising from the scaled 

formula is concave over time and its magnitude is likely  influenced by monetary policy regime 

shifts. Furthermore, while VaR is risk-coherent for elliptical distributions, we show that the bias 

indicated above still remains.  

  There are likely important economic effects arising from linear rescaling of risk. Batten and 

Ellis (2001) employ a simple Black-Scholes model for pricing currency options and find that this 

when scaling by √n, there is significant underpricing of call and put options. Since, ceteris 

paribus, a lower conditional volatility leads to option values, the Batten and Ellis result is 

supported by our findings. However, since we find that the mean bias is also nonstationarity, 

then the option underpricing is likely random and influenced by monetary policy changes and 

extreme economic events. Finally, our study reports evidence of nonstationarity bias for 

volatility scaling for the Canadian stock market. While some research in the econophytics 

literature has been conducted for selected samples of currency exchange rate volatility, there is 

need for more research on the econometric and economic impacts of volatility scaling for various 

financial time series in different markets. The implications for pricing of contingent claims 

beyond the generic Black-Scholes model or the allocation of economic capital based on VaR-

type procedures may be profound.   

 

 
                                                 
9 These results are similar to those found by Danielsson and Zigrand (2004) who examine the time scaling of risk 
when returns follow a lognormal stochastic process with a Poisson jump. Their objective is centered around rare 
events. They found that the square root formula underestimates risk and the bias increases with time horizon, jump 
intensity and confidence interval. 
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Tables and Figures 
 
Table 1: Descriptive statistics for daily S&P/TSX returns index  

 
Statistic rt 

Mean 0.0003 

Standard Error 0.0001 

Median 0.0006 

St-Dev  0.0086 

Kurtosis (K) 14.41** 

Skewness (S) -0.99 ** 

Minimum -0.1201 

Maximum 0.0865 

Sample size 7055 

Jarque-Bera (JB) 62138** 
Note: ** Significant at the 1% level. Sample is formed from daily returns index beginning on January  
03, 1977 and ending on December 31, 2004 

 

Table 2: Test for serial correlation of the daily returns: modified Q-statistic  

 
MQ(5) MQ(10) MQ(20) MQ(30) MQ(40) MQ(50) 

201.72** 205.02** 234.82** 249.37** 263.97** 284.02** 
Note: **Significance at the 1% level. MQ(k) is the modified Q-statistic at lag k defined as the modified  
Q-statistic of Ljung and Box (1978) is defined as:  
         
                
Table 3: BDS test statistic for raw data 

 
m є/σ  є/σ  є/σ  є/σ  

2 0.5 19.210** 1 19.736** 1.5 20.946** 2 23.565** 
3 0.5 23.001** 1 22.000** 1.5 22.458** 2 24.452** 

4 0.5 29.022** 1 24.127** 1.5 23.541** 2 25.654** 
5 0.5 35.824** 1 29.395** 1.5 24.076** 2 26.357** 
6 0.5 47.125** 1 32.456** 1.5 25.536** 2 24.951** 

7 0.5 58.454** 1 38.881** 1.5 26.081** 2 24.852** 
8 0.5 75.042** 1 41.125** 1.5 29.123** 2 24.545** 

Note. m is embedding dimension, ε  is the bound, * Significant at the 5% level.,** Significant at the  
1% level. The critical   values for BDS test are 1.96 for 5% and 2.58 for 1%. 
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Table 4. Modeling conditional heteroscedasticity in S&P/TSX daily returns. 
 

AR(12)-
EGARCH(1,1)            Normal          Student-t             GED 

Coefficient Value  p-value Value  p-value Value  p-value 

β0 0.0002 0.0011 0.0004 0.0000 0.0004 0.0000 

β1 0.2316 0.0000 0.2304 0.0000 0.2221 0.0000 

β2 -0.0164 0.0862 -0.0326 0.0041 -0.0420 0.0000 

β3 0.0238 0.0274 0.0200 0.0533 0.0167 0.0479 

β4 -0.0172 0.0799 0.0014 0.4550 0.0107 0.1404 

β5 0.0244 0.0228 0.0277 0.0103 0.0295 0.0014 

β6 -0.0072 0.2796 -0.0121 0.1549 -0.0075 0.2215 

β7 -0.0230 0.0225 -0.0177 0.0656 -0.0098 0.1567 

β8 0.0045 0.3486 0.0015 0.4470 -0.0034 0.3617 

β9 -0.0081 0.2503 0.0036 0.3781 -0.0062 0.2588 

β10 0.0292 0.0044 0.0247 0.0136 0.0205 0.0155 

β11 -0.0263 0.0112 -0.0199 0.0374 -0.0141 0.0670 

β12 0.0438 0.0000 0.0327 0.0012 0.0252 0.0029 

η -0.4929 0.0000 -0.5031 0.0000 -0.4084 0.0000 

λ1 0.2134 0.0000 0.2184 0.0000 0.2065 0.0000 

θ1 0.9666 0.0000 0.9662 0.0000 0.9735 0.0000 

ρ1 -0.2155 0.0000 -0.1684 0.0001 -0.1728 0.0023 

LM Test 9.906 0.6242 9.501 0.6599 13.198 0.3548 

JB 6705 0.0000 7226 0.0000 8085 0.0000 
Note: λ, θ, ρ, are the ARCH, GARCH, and leverage parameters respectively.  

 

 

Table 5. BDS Test Statistics for Standardized Residuals from FIEGARCH Model 

 
m є/σ  є/σ  є/σ  є/σ  

2 0.5 0.509   1 0.664 1.5 0.105 2 -0.128 
3 0.5 0.135     1 0.160 1.5 -0.323 2 -0.513 

4 0.5 0.152  1 0.131 1.5 -0.122 2 -0.231 
5 0.5 0.314   1 0.425 1.5 0.077 2 0.126 
6 0.5 0.492   1 0.609 1.5 0.211 2 0.222 

7 0.5 0.711 1 0.846 1.5 0.434 2 0.278 
8 0.5 1.014    1 1.195 1.5 0.565 2 0.524 

Note. Critical values for BDS test are 1.96 for 5% and 2.58 for 1% 
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Figure 1: Conditional volatility obtained from the EGARCH model under Student-t distribution. 
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Figure 2: Scaled and true conditional volatility under normal distribution for n = 10  

 
 

Scaled Conditional Volatility, n=10, Normal Distribution 
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True Conditional Volatility, n=10, Normal Distribution 
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 Table 7:   Estimates of bias in scaling by square root of time as percentage error: Sample partition based on 

monetary regime shifts over the period 1977-2004.  

An estimate of the bias as percentage error is defined as follows:
VolatilityTrue

VolatilityScaled
BIAS −=1 .  This Table shows the 

mean bias (Mean), the median bias (Median). A positive value indicates that the conditional scaled volatility 

underestimates the true conditional volatility. ∆SD is the difference between the standard deviation of the true 

conditional volatility and the standard deviation of the scaled conditional volatility. A negative value of ∆SD 

indicates that the standard deviation of the scaled volatility overestimates the standard deviation of the true 

volatility. 

    
Total 
Sample 

1977:1-
1979:10 

1979:10-
1982:10 

1982:10-
1986:11 

1986:12-
1990:12 

1991:1-
1998:12 

1999:12-
2004:12 

  10-Day               

Normal  Mean 0.2303 0.3924 0.2315 0.2603 0.2728 0.2690 0.0636 

 Median 0.2633 0.4075 0.2329 0.2698 0.3236 0.2809 0.1084 

 ∆SD -0.1087 -0.336 -0.2303 -0.0716 -0.2593 -0.0360 -0.0965 

Student-t Mean 0.2259 0.4008 0.2064 0.2691 0.2711 0.2712 0.0605 

 Median 0.2797 0.4155 0.2393 0.2765 0.3301 0.3036 0.1164 

 ∆SD -0.5303 -0.1945 -0.0589 -0.1086 -0.7556 -0.3682 -0.6204 

GED Mean 0.2243 0.3973 0.2077 0.271 0.2739 0.2757 0.0501 

 Median 0.2772 0.4209 0.2512 0.2852 0.3266 0.3021 0.1135 

 ∆SD -0.3846 -0.0785 -0.2779 -0.1396 -0.5374 -0.2577 -0.4329 

  30-Day               

Normal  Mean 0.2807 0.4641 0.5473 0.1318 0.3359 0.2841 0.1681 

 Median 0.3571 0.4871 0.5592 0.1546 0.4155 0.3549 0.2346 

 ∆SD -1.25 -0.7043 -0.0201 -0.7807 -3.0056 -2.4595 -2.2062 

Student-t Mean 0.2962 0.4667 0.2653 0.3734 0.3412 0.2883 0.1719 

 Median 0.3643 0.4873 0.2925 0.3791 0.4201 0.3579 0.2378 

 ∆SD -1.1084 -0.6812 -1.256 -0.0632 -2.9461 -2.4415 -2.1817 

GED Mean 0.2491 0.4372 0.2114 0.3334 0.2975 0.2443 0.1102 

 Median 0.3232 0.4548 0.233 0.3409 0.3810 0.3180 0.1805 

 ∆SD -1.241 -0.7383 -1.3738 -0.1135 -3.1389 -2.6935 -2.4028 

  90-Day               

Normal  Mean 0.2848 0.4898 0.2582 0.4335 0.3169 0.2186 0.1521 

 Median 0.3788 0.5173 0.308 0.4515 0.3907 0.3019 0.2088 

 ∆SD -0.8155 -0.495 -1.3072 -0.4423 -3.1774 -2.5935 -1.7203 

Student-t Mean 0.2889 0.4922 0.2622 0.4357 0.3169 0.2186 0.1521 

 Median 0.3818 0.5175 0.3073 0.4537 0.3907 0.3019 0.2088 

 ∆SD -0.7976 -0.4747 -1.2706 -0.4543 -3.1774 -2.5935 -1.7203 

GED Mean 0.2889 0.4642 0.2081 0.3997 0.3169 0.2186 0.1521 

 Median 0.3818 0.487 0.249 0.4201 0.3907 0.3019 0.2088 

  ∆SD -0.7976 -0.5247 -1.3892 -0.5231 -3.1774 -2.5935 -1.7203 
 

 

 




