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Abstract

In this paper using the expected utility theory and the approxi-
mation analysis we derive a formula for the most natural extension of
the Sharpe ratio which takes into account the skewness of distribu-
tion. The ranking statistic based on the adjusted for skewness Sharpe
ratio preserves the standard Sharpe ratio for normal distribution, de-
creases ranking of distributions with left-tail risk, and improves rank-
ing of distributions with right-tail potential. We illustrate the use of
the adjusted for skewness Sharpe ratio by comparing the performances
of portfolios with manipulated Sharpe ratios and the performances of
hedge funds.
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1 Introduction

The Sharpe ratio is a commonly used measure of portfolio performance.
However, because it based on the mean-variance theory, it is valid only for
either normally distributed returns or quadratic preferences. In other words,
the Sharpe ratio is a meaningful measure of portfolio performance when the
risk can be adequately measured by standard deviation. The Sharpe ratio
can lead to misleading conclusions when return distributions are skewed,
see Bernardo and Ledoit (2000). For example, it is well known that the
distribution of hedge fund returns deviates significantly from normality (see,
for example, Brooks and Kat (2002), Agarwal and Naik (2004) and Malkiel
and Saha (2005)). Evaluation of the performances of hedge funds using the
Sharpe ratio seems to be dubious. Moreover, recently a number of papers
have shown that the Sharpe ratio is prone to manipulation (see, for example,
Spurgin (2001) and Goetzmann, Ingersoll, Spiegel, and Welch (2002)). The
manipulation of the Sharpe ratio consists largely in selling the upside return
potential, thus creating a distribution with high left-tail risk.

The literature on performance evaluation that tries to take into account
higher moments of distribution is vast one. Most distribution-based alterna-
tive performance measures focus only on downside risk caused by negative
skewness. Motivated by a common interpretation of the Sharpe ratio as
a reward-to-risk ratio, many researches replace the standard deviation in
the Sharpe ratio by an alternative risk measure. For example, Sortino and
Price (1994) and Ziemba (2005) replace standard deviation by downside de-
viation. Dowd (2000) and Gregoriou and Gueyie (2003) use Value-at-Risk
(VaR) measure instead of standard deviation. Another possibility is to use
conditional VaR instead of VaR. Many researches have introduced different
ad-hoc performance measures. Some examples are: Stutzer (2000) intro-
duced the Stutzer index which is based on the behavioral hypothesis that
investors aim to minimize the probability that the excess returns over a given
threshold will be negative. The Omega ratio was introduced by Keating and
Shadwick (2002). This measure is expressed as the ratio of the gains with
respect to some threshold to the loss with respect to the same threshold.
Kaplan and Knowles (2004) introduced the Kappa measure which general-
izes the Sortino and Omega ratios. The drawbacks of these measures are
the following: (a) the ranking of portfolios based on most of these measures
depends heavily on the choice of a threshold; (b) almost all of these measures
take into account only downside risk, the upside return potential (that is,
positive skewness) is not appreciated; (c) whereas the Sharpe ratio is based
on the expected utility theory which is the cornerstone of the modern fi-
nance, all these alternative performance measures lack any solid theoretical
underpinning.

In this paper using the expected utility theory and the approximation
analysis we derive a formula for the most natural extension of the Sharpe
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ratio which takes into account the skewness of distribution. We denote this
ratio as the adjusted for skewness Sharpe ratio (ASR). The ASR is very easy
to compute: besides the excess returns and standard deviation one needs
to know the value of skewness. The ASR preserves the standard Sharpe
ratio for zero skewness. Depending on the value and the sign of skewness
the value of the ASR increases when skewness is positive and increases. On
the contrary, the value of the ASR decreases when skewness is negative and
increases (in absolute value). We indicate that the ASR justifies the notion
of the Generalized Sharpe Ratio (GSR) introduced by Hodges (1998). The
GSR seems to be the most general generalization of the Sharpe ratio that
accounts for all the moments of distribution.

It is natural to use the ASR as a ranking statistic in the comparison
of performances of different risky assets and portfolios. However, it turns
out that the value of the ASR is not unique for all investors, but depends
on the relationship between the investor’s risk aversion to variance (widely
known as the Arrow-Pratt measure of risk aversion) and the risk aversion
to skewness. For example, the investors with quadratic utility exhibit risk
aversion to variance but risk-neutrality to skewness. For the investors who
exhibit a constant absolute risk aversion (to variance) the value of the abso-
lute risk aversion to skewness equals the squared value of the absolute risk
aversion to variance. For the investors with logarithmic utility the value of
the absolute risk aversion to skewness is two times the value of the abso-
lute risk aversion to skewness for the investors with constant absolute risk
aversion. In short, two investors with different utility functions might have
the same absolute risk aversion to variance but different risk aversions to
skewness. To avoid the ambiguity, for practical purposes we suggest using
the ASR computed for investors who exhibit either a constant absolute risk
aversion (to variance) or a constant relative risk aversion (to variance) when
the value of the coefficient of the relative risk aversion is sufficiently greater
than 1. We show that in these two cases the value of the ASR is virtually
the same.

Since we derive the formula for the ASR exploiting the approximation
analysis, it is valid only for either small time intervals or small values of
skewness. Since the Sharpe ratio is usually computed for annualized returns,
to produce a correct ranking statistic which is of practical relevance we
calibrate the formula for the ASR using the class of normal inverse Gaussian
processes (see, for example, Barndorff-Nielsen (1998)) and a wide set of
realistic parameters. Then using the formula for the calibrated ASR we
illustrate how it can be applied in the comparison of the performances of
portfolios with manipulated Sharpe ratios and the performances of hedge
funds.

Even though not everyone might agree with our application of the ASR
(anyway, if one believes that the investors exhibit quadratic preferences, the
value of skewness plays no role), still our study of performances is inter-
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esting in that it helps to find out how important is the impact of kurtosis
in performance measurement. In particular, it is well known that the dis-
tributions of hedge fund returns exhibit often both high negative skewness
and high positive kurtosis. Therefore, it seems plausible in the solution for
the optimal portfolio choice problem to account for both skewness and kur-
tosis. Recent examples are Davies, Kat, and Lu (2005) and Jondeau and
Rockinger (2006). To account for higher moments of distribution in our
study of performances we also compute the GSR using empirical distribu-
tions. Our analysis suggests that the value of kurtosis has a negligible effect
on the adjustment of the Sharpe ratio as compared to that of the value of
skewness. The plausible explanation for this phenomenon is the fact that a
high absolute value of skewness automatically induces high positive kurtosis.
For example, in all distributions where one can define both skewness and
kurtosis, the minimum possible kurtosis is computed in accordance to the
formula Kmin = 3 + cS2, where S is the value of skewness and c is some
constant. What is not accounted for in the formula for the ASR is, actually,
only the excess kurtosis which can be logically defined as the kurtosis minus
the minimum possible kurtosis given the value of skewness.

The rest of the paper is organized as follows. In Section 2 using the
approximation analysis we derive the formula for the adjusted for skewness
Sharpe ratio. In the same section we show the obvious connection between
the adjusted for skewness Sharpe ratio and the generalized Sharpe ratio.
In Section 3 we test our approximated formula and find out that it is not
quite good for all practical purposes. In the same section we calibrate the
formula for a range of realistic parameters of distributions. In Section 4
using the adjusted for skewness Sharpe ratio and the generalized Sharpe
ratio we compare the performances of the portfolios for which the shape of
return distribution is far from normal. Section 5 concludes the paper.

2 Adjusted for Skewness Sharpe Ratio and Gen-
eralized Sharpe Ratio

In this section we apply the approximation analysis to derive the expression
for the adjusted for skewness Sharpe ratio. At the end we indicate that
our ASR justifies the notion of the generalized Sharpe Ratio introduced by
Hodges (1998) which presumable accounts for all the moments of distribu-
tion of risky asset returns.

2.1 Optimal Portfolio Choice with Skewness

We consider an investor who wants to choose an optimal portfolio consisting
of the risk-free and the risky asset. The returns of the risky asset over small
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time interval ∆t are given by

x = µ∆t + σ
√

∆tε,

where µ and σ are, respectively, the mean and volatility of the risky asset
returns per unit of time, and ε is some (normalized) stochastic variable such
that E[ε] = 0 and Var[ε] = 1. The returns on the risk-free asset over the
same time interval equal

rf = r∆t,

where r is the risk-free interest rate per unit of time.
We further suppose that the investor has a wealth of w and invests a

into the risky asset and w − a into the risk-free asset. Consequently, the
investor’s wealth after ∆t is given by

w̃ = a(x− rf ) + w(1 + rf ).

The investor’s expected utility

E[U(w̃)] = E[U(a(x− rf ) + w(1 + rf ))],

where U(·) is some function. To shorten the subsequent notation, we denote
wr = w(1 + rf ).

Now we apply the Taylor series expansion of U(w̃) around wr. Our
intension is to keep all the terms up to ∆t

3
2 in order to be able to account

for skewness and disregard all the terms with higher powers of ∆t (that is,
we disregard all the higher moments of the distribution). This gives us

U(w̃) ≈ U(wr) + U (1)(wr)a(x− rf )

+
1
2
U (2)(wr)a2(x− rf )2 +

1
6
U (3)(wr)a3(x− rf )3,

where U (i) denotes the ith derivative. The expected utility is given now by

E[U(w̃)] ≈ U(wr) + U (1)(wr)aE[(x− rf )]

+
1
2
U (2)(wr)a2E[(x− rf )2] +

1
6
U (3)(wr)a3E[(x− rf )3].

(1)

Now observe that up to leading terms with ∆t
3
2

E[(x− rf )] = (µ− r)∆t,

E[(x−rf )2] = E[(x−µ∆t+µ∆t−r∆t)2] ≈ E[(x−E(x))2] =
(
σ
√

∆t
)2

E[ε2],

E[(x−rf )3] = E[(x−µ∆t+µ∆t−r∆t)3] ≈ E[(x−E(x))3] =
(
σ
√

∆t
)3

E[ε3].
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Now to shorten the subsequent notation we denote

e = E[(x− rf )],

v = E[(x− E(x))2],

s = E[(x− E(x))3].

Observe that e is related to the risk premium of the risky asset, v is related
to the variance of the returns of the risky asset, and s is related to the third
moment of distribution (that is, skewness) of the returns of the risky asset.

The investor’s objective is to choose a to maximize the expected utility

max
a

E[U(w̃)].

The first-order condition of optimality of a

dE[U(w̃)]
da

= 0.

This gives us

U (1)(wr)e + U (2)(wr)av +
1
2
U (3)(wr)a2s = 0,

or
1
2

U (3)(wr)
U (1)(wr)

a2s +
U (2)(wr)
U (1)(wr)

av + e = 0. (2)

Note that

−U (2)(wr)
U (1)(wr)

= ARA,

where ARA is the Arrow-Pratt measure of absolute risk aversion, or aversion
to variance. Similarly,

U (3)(wr)
U (1)(wr)

can be interpreted as the investor’s preference to the third moment of dis-
tribution, or (absolute) risk aversion to skewness, see, for example, Kane
(1982).

Now we are going to consider two popular types of utility functions
and the relationship between aversion to skewness and aversion to variance.
First we consider the utility function which implies a constant absolute risk
aversion to variance. This function (also known as the negative exponential
utility) is defined by

U(w) = − exp(−γw),

where γ is the absolute risk aversion coefficient. That is,

−U (2)(wr)
U (1)(wr)

= ARA = γ.
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Note that for this utility function

U (3)(wr)
U (1)(wr)

= γ2 = ARA2.

Second we consider two utility functions which imply a constant relative
risk aversion to variance. In case of the power utility the function is defined
by

U(w) =
w1−ρ

1− ρ
,

where ρ is the relative risk aversion coefficient. With this utility

−U (2)(wr)
U (1)(wr)

= ARA =
ρ

wr
,

and
U (3)(wr)
U (1)(wr)

=
ρ(ρ− 1)

w2
r

=
ρ− 1

ρ
ARA2.

Now observe that when ρ À 1 then similarly as for the negative exponential
utility we have

U (3)(wr)
U (1)(wr)

≈ ARA2.

In case of the logarithmic utility the function is defined by

U(w) = log(w).

It is easy to check that for the logarithmic utility

−U (2)(wr)
U (1)(wr)

= ARA =
1
wr

,

and
U (3)(wr)
U (1)(wr)

=
2

w2
r

= 2 ARA2.

Note that the investor with the logarithmic utility exhibits a higher aver-
sion to skewness than the investor with the power utility. However, the
considered utility functions do not exhaust all possible types and forms of
the investor’s utility function. In order to generalize our result we deduce
that for every utility function we can write

U (3)(wr)
U (1)(wr)

= b ARA2,

where b is some constant. For example, for the negative exponential utility
and the power utility with ρ À 1 we have b = 1. For the logarithmic utility
we have b = 2.
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Now for every utility function we can rewrite the first-order condition of
optimality (2) as

1
2
a2bγ2s− aγv + e = 0,

where γ denotes the investor’s absolute risk aversion (ARA) at point with
wealth wr. The solutions for the quadratic equation above are given by

a1,2 =
γv ±

√
γ2v2 − 2γ2bse

γ2bs
=

v ±√v2 − 2bse

γbs
.

Now consider √
v2 − 2bse. (3)

Observe that v2 is of order ∆t2, but 2bse is of order ∆t
5
2 . That is

2bse ¿ v2,

and, hence, we can apply the Taylor series expansion (we will use three
terms around v2) to the function (3). This gives us

√
v2 − 2bse ≈

√
v2 − 1

2
2bse√

v2
− 1

2
1
4

(2bse)2

(v2)
3
2

= ±
(

v − bse

v
− (bse)2

2v3

)
.

Then the solutions for optimal a

a1,2 =
v ±

(
v − bse

v − (bse)2

2v3

)

γbs
.

The correct solution (from the two ones) is that one which is closest to

a =
e

γv
=

µ− r

γσ2
,

which is the solution for the optimal a when we ignore the terms with U (3)

and higher derivatives of U . Consequently, we arrive to the solution

a =
e

γv
+

sbe2

2γv3
=

e

γv

(
1 +

bse

2v2

)
. (4)

This solution is the solution for optimal a when skewness is zero plus a
correction term which accounts for the skewness.

Recall that the skewness is defined by

S =
E[(x−E[x])3]

E[(x−E[x])2]
3
2

=
s

v
3
2

.

Using all these we can rewrite (4) as

a =
µ− r

γσ2

(
1 +

bS

2
µ− r

σ

√
∆t

)
.
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Note that the Sharpe ratio is given by

SR =
µ− r

σ

√
∆t. (5)

Therefore, we can rewrite the optimal solution as

a =
SR

γσ
√

∆t

(
1 +

bS

2
SR

)
. (6)

2.2 Adjusted Sharpe Ratio

Recall that the investor’s expected utility is given by (1), the optimal amount
invested in the risky asset is given by (6), and in addition recall (5) and
that U(2)(wr)

U(1)(wr)
= −γ, and U(3)(wr)

U(1)(wr)
= bγ2. Using all this we can rewrite the

expression for the maximum expected utility as

E[U∗(w̃)] ≈ U(wr) +
U (1)(wr)

γ
SR2

(
1 +

bS

2
SR

)

− U (1)(wr)
γ

1
2
SR2

(
1 +

bS

2
SR

)2

+
U (1)(wr)

γ

bS

6
SR2

(
1 +

bS

2
SR

)3

.

Again in the equation above we want to keep only the leading terms with
up to ∆t

3
2 . Since S does not depend on ∆t and SR is of order ∆t

1
2 , in the

resulting expression we can only have the terms with up to SR3. If we do
this, we get

E[U∗(w̃)] ≈ U(wr) +
U (1)(wr)

γ

1
2
SR2

(
1 +

bS

3
SR

)
. (7)

Consequently, for any investor the higher the value of

SR2

(
1 +

bS

3
SR

)
,

the higher the expected utility. By analogy with the Sharpe ratio, we intro-
duce the adjusted for skewness Sharpe ratio

ASR = SR

√
1 +

bS

3
SR. (8)

Observe in addition that the expected utility (7) can be rewritten now
as (using a sort of Taylor series “contraction”)

E[U∗(w̃)] ≈ U

(
1
2γ

ASR2 + w(1 + rf )
)

.
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For the negative exponential utility this implies

E[U∗(w̃)] ≈ − exp
(
−1

2
ASR2 − γw(1 + rf )

)
. (9)

For the power utility where, recall γ = ρ
w(1+rf ) , the maximum expected

utility is given by

E[U∗(w̃)] ≈

(
w(1 + rf )

(
1 + 1

2ρASR2
))1−ρ

1− ρ
.

2.3 Generalized Sharpe Ratio

The purpose of this subsection is to show that our ASR justifies the notion
of the Generalized Sharpe Ratio introduced by Hodges (1998) and further
developed and used by, for example, Madan and McPhail (2000) and Cherny
(2003).

In particular, Hodges points out (previously it was also observed by
Bucklew (1990)) that for normally distributed risky asset returns and the
investor with zero wealth and the negative exponential utility function the
(standard) Sharpe ratio can be computed (for a motivation see equation (9))
using

1
2
SR2 = − log (−E[U∗(w̃)]) ,

where E[U∗(w̃)] is the maximum attainable expected utility. Using this iden-
tity Hodges conjectures that for any distribution of the risky asset returns
the GSR can be computed using

1
2
GSR2 = − log (−E[U∗(w̃)]) . (10)

Note that the GSR preservers the standard Sharpe ratio for normal distri-
bution of returns.

Observe that our ASR can be interpreted as a particular form of the
GSR for the case where the investor is risk-neural for all the moments of
distribution greater than the third one. The GSR, in its turn, can be inter-
preted as the generalization of the ASR which accounts for all the moments
of distribution of the risky asset returns. It is important to remind that
the GSR was introduced originally for investors with constant absolute risk
aversion. Our ASR suggests that the same value of GSR can be obtained
also for an investor with the power utility in case ρ À 1. An investor with
the logarithmic utility, however, puts more weight on the higher moments
of distribution. Using the ASR as an example, we can deduce that such
an investor punishes more severely negative skewness and appreciates more
positive skewness as compared with, for example, an investor with constant
absolute risk aversion.
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3 Test and Calibration of the Formula for Ad-
justed for Skewness Sharpe Ratio

Our ultimate goal is to use the ASR as a measure of comparison of perfor-
mances of different risky assets and portfolios. However, the value of the
ASR is not unique and depends on the relationship between the investor’s
risk aversions to variance and to skewness. To avoid the ambiguity we sug-
gest computing the ASR for the investors who exhibit either a constant
absolute risk aversion or a constant relative risk aversion when the value
of the risk aversion coefficient is sufficiently greater than 1, that is, when
ρ À 1. In these cases the value of coefficient b in the formula for the ASR
equals to 1.

Now recall that the ASR formula (8) was derived using the approxima-
tion technique. In this section we want to find out how good is this formula
for practical purposes. To test the formula we need first to choose a suit-
able probability distribution. Our tests show that the ASR formula (8) is
not good when either skewness or the Sharpe ratio is large. Therefore we
calibrate the formula for a range of realistic parameters of the risky asset
probability distribution.

3.1 Choosing a Suitable Probability Distribution

To test the formula for the ASR we need to have a probability distribution
where we can define the value of skewness. Since the ASR does not depend
on a particular type of probability distribution, we can choose any suitable
probability distribution. There are many possible probability distributions
that can suit our purpose. Some example are: a class of stable distributions
which generalize the normal distribution (see, for example, Samorodnitsky
and Taqqu (1994) or Uchaikin and Zolotarev (1999)), the variance gamma
distribution introduced by Madan and Seneta (1990), and the normal inverse
Gaussian distribution (see, for example, Barndorff-Nielsen (1998)). Our
choice here is the normal inverse Gaussian (NIG) distribution. The reasons
for this choice are the following: (1) the NIG distribution has an explicit
expression for the probability density function (for example, there are no
explicit formulas for general stable densities); (2) for the NIG distribution
we have explicit formulas for finding the parameters of the distribution via
the values of the first four moments of the distribution, see explanation
below.

In particular, a random variable X follows the NIG distribution with
parameter vector (α, β, η, δ) if its probability density function is

f(x; α, β, η, δ) =
δα exp(δγ + β(x− η))

π
√

δ2 + (x− η)2
K1

(
α
√

δ2 + (x− η)2
)

,
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where
γ =

√
α2 − β2

and K1 is the modified Bessel function of the third kind with index 1. η and
δ are ordinary parameters of location and scale whereas α and β determines
the shape of the density. In particular, β determines the degree of skewness.
For symmetrical densities β = 0. The conditions for a viable NIG density
are: δ > 0, α > 0, and |β|

α < 1. The mean, variance, skewness and kurtosis
of X are

µ = E[X] = η + δ
β

δ
,

σ2 = Var[X] = δ
α2

γ3
,

S = Skew[X] = 3
β

α
√

δγ
,

K = Kurt[X] = 3 +
3
δγ

(
1 + 4

(
β

α

)2
)

.

(11)

The equations (11) can be solved explicitly for the parameters of the NIG
distribution. After tedious but straightforward calculations we can obtain

α =
√

3K − 4S2 − 9
σ2(K − 5/3S2 − 3)2

,

β =
S

σ(K − 5/3S2 − 3)
,

η = µ− 3Sσ

3K − 4S2 − 9
,

δ = 3σ

√
3K − 5S2 − 9

3K − 4S2 − 9
.

(12)

Note that to get meaningful parameters of the NIG distribution the following
condition must be satisfied

K > Kmin = 3 +
5
3
S2. (13)

3.2 Testing the Formula for ASR

The ASR formula was derived using the approximation technique under
assumption that ∆t is rather small. In practice, the Sharpe ratio is usually
computed for annualized returns, that is, when ∆t = 1. In this case, how
good is the formula for ASR for practical purposes? We can answer this
question by comparing the (approximate) solution given by (8) with the
exact numerical solution. The exact numerical solution can by computed
by maximizing the investor’s expected utility and, then, if we employ the
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negative exponential utility (with zero initial wealth of the investor, that is,
when w = 0)

ASR =
√
−2 log(−E[U∗(w̃)]. (14)

We assume that the risky assets returns follow the NIG distribution. To find
the maximum expected utility, we solve numerically the following problem

E[U∗(w̃)] = max
a

∫ xmax

xmin

− exp(−γa(x− rf ))f(x;α, β, η, δ)dx.

Observe that the NIG distribution is defined on the whole real line, but
for numerical computations we need to limit the range for x to some x ∈
[xmin, xmax].

We use the following model parameters: ∆t = 1 year, rf = 0.05, σ =
0.20, µ1 = 0.15 which gives SR1 = 0.5 and µ2 = 0.25 which gives SR2 = 1.0.
We vary the skewness S ∈ [−3, 3] and keep the kurtosis at minimum which
is given by (13). Note that the value of the coefficient of absolute risk
aversion, γ, does not influence the ASR, hence it might be chosen arbitrary.
Figure 1 illustrates the results of comparison of the approximated solution
for the ASR and the exact numerical solution. From the figure we see that
even for not small ∆t the approximated ASR is close to the exact ASR
when either skewness is small or the Sharpe ratio is not high. For example,
when SR = 0.5 and S = ±1 the discrepancy between the approximated
ASR and the exact ASR amounts to 1.25%. When S = ±2 the discrepancy
between the approximated ASR and the exact ASR increases to 6.1%. When
SR = 1.0 and S = ±1 the discrepancy between the approximated ASR
and the exact ASR amounts to 5.25%. When we increase the skewness to
S = ±2 the discrepancy between the approximated ASR and the exact ASR
increases to 27.8%. Note that for SR = 1 and S = −2 the error produced by
the approximated ASR is roughly the same as the error between the exact
ASR and the SR. For larger values of negative skewness the standard SR
becomes closer to the exact ASR than the approximated ASR.

3.3 Calibrating the Formula for ASR

The tests of the formula for the ASR have shown that when skewness of
distribution or the standard Sharpe ratio is large, then the ASR formula
provides not quite accurate results. In particular, the greater the skewness
the more the approximated ASR underestimates the real ASR. The degree
of underestimation increases as the standard Sharpe ratio increases. To
increase the precision of the ASR formula we suggest calibrating the formula
of the ASR to the exact numerical solution.

The general description of the calibration technique (which is also a sort
of an approximation) we propose to employ can be found in Judd (1998)
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Figure 1: The exact and the approximated value of the ASR versus the
skewness of distribution for two values of the standard Sharpe ratio.

Chapter 6. This technique was successfully applied by, for example, Za-
kamouline (2006) for finding an approximated closed-form solution for the
utility-based option hedging strategy in the presence of transaction costs.

We assume the following functional form of the ASR when skewness is
positive

ASR = SR
√

1 + λSφSRψ. (15)

Similarly, when skewness is negative

ASR = SR
√

1− λ|S|φSRψ. (16)

So the idea is to find the values of the parameters λ, φ, and ψ which produces
the best fit to the exact numerical solution which is computed using

ASR2 = −2 log (−E[U∗(w̃)]) .

Then, if the skewness is positive, our functional assumption implies

ASR2 = SR2
(
1 + λSφSRψ

)
.

From here (
ASR

SR

)2

− 1 = λSφSRψ.

After the linearizing log-log transformation of the equation above it takes
the form

log

((
ASR

SR

)2

− 1

)
= log(λ) + φ log(S) + ψ log(SR).
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We measure the goodness of fit using the L2 norm. This largely amounts to
using the techniques of ordinary linear regression after the log-log transfor-
mation. That is, we find the parameters λ, φ, and ψ by solving the problem

min
λ,φ,ψ

∑(
log

((
ASR

SR

)2

− 1

)
− log(λ)− φ log(S)− ψ log(SR)

)2

.

There is no good reason to believe that our simple functional specification
for the ASR can produce a decent fit for all possible sets of distribution
parameters. However, such a functional form yields quite a nice fit to the
exact numerical solution over some narrow intervals of parameters. We
restrict our attention to the following intervals of the parameters (keeping
∆t = 1): µ − r ∈ [0, 0.30], σ ∈ [0.05, 0.30] and S ∈ [−3.5, 3.5]. Since some
combinations of µ− r and σ can produce unrealistically high Sharpe ratios,
we limit our calibration to the cases when SR ≤ 2.5. Also note that we
limit our calibration to the cases with only positive risk premiums, that is
when µ− r > 0.

λ 0.5008± 0.0115
φ 1.4739± 0.0274
ψ 1.3110± 0.0336

λ 0.2359± 0.0029
φ 0.6703± 0.0146
ψ 0.6918± 0.0179

(a) Positive skewness (b) Negative skewness

Table 1: 95% confidence interval for the best-fit parameters of the calibrated
ASR.

The results of our estimation of the best-fit parameters are presented in
Table 1. The goodness of fit of the calibrated ASR formula measured by
R2 statistics is 98%. After an insignificant rounding off the values of the
best-fit parameters, the calibrated formulas for the ASR could be written
as: when skewness is positive

ASR = SR
√

1 + 0.50S1.47SR1.31, (17)

and when skewness is negative

ASR = SR
√

1− 0.24 |S|0.67SR0.69. (18)

Figure 2 illustrates the results of comparison of the calibrated formula
for the ASR and the exact numerical solution for the ASR. Now, for exam-
ple, when SR = 0.5 and S = ±2, the maximum discrepancy between the
calibrated ASR and the exact ASR amounts to 2.7% (without calibration it
was 6.1%). When SR = 1.0 and S = ±2 the maximum discrepancy between
the calibrated ASR and the exact ASR amounts to 1.6% (without calibra-
tion it was 27.8%). The biggest deviation of the value of the calibrated ASR
from the exact value is observed for the cases with high positive value of
skewness and rather high value of the standard Sharpe ratio.
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Figure 2: The exact and the calibrated value of the ASR versus the skewness
of distribution for two values of the standard Sharpe ratio.

4 Portfolio Performance Evaluation Using ASR and
GSR

In this section we use the ASR and the GSR to compare the performances
of the portfolios for which the shape of return distribution is far from that
of the normal probability distribution. In this case the use of the standard
Sharpe ratio is misleading, see Bernardo and Ledoit (2000). We analyze the
empirical probability distributions and report the return statistics where by
kurtosis we always mean the excess kurtosis computed as K − 5/3S2 − 3.
That is, this is the part of the standard kurtosis, K, which is not accounted
for in the formula for the ASR. We compute the ASR using the formulas (17)
and (18) for the calibrated ASR. We compute the GSR using the empirical
probability distribution in order to account for all the moments of a real
probability distribution.

4.1 Performances of Portfolios with Manipulated Sharpe Ra-
tios

Recently a number of papers have shown that the standard Sharpe ratio
is prone to manipulation, see, for example, Spurgin (2001) and Goetzmann
et al. (2002). In particular, Spurgin (2001) shows that managers can increase
the Sharpe ratio by selling off the upper end of the return distribution.
Goetzmann et al. (2002) identify a class of strategies that maximize the
Sharpe ratio without requiring any manager skill. They show how to achieve
the maximum Sharpe ratio by either selling out-of-the-money call options
or selling both out-of-the-money call and put options.
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Figure 3: Empirical probability distribution of the portfolio consisting of the
stock and short calls on the stock with fitted NIG and Normal distributions.

In this subsection we study the performances of the portfolios, described
in Goetzmann et al. (2002), with manipulated Sharpe ratios using the (cal-
ibrated) ASR and the GSR. The benchmark portfolio is a stock which price
process follows the Geometric Brownian Motion

P (t + ∆t) = P (t) exp
(
(µ− 0.5σ2)∆t + σ

√
∆tε

)
,

where ε is a standard Normal variable. The model parameters are the follow-
ing: µ = 0.15, r = 0.05, σ = 0.15, and ∆t = 1. The simplest manipulation
strategy consists in selling 0.843 call options on one share of the stock with
strike 1.0098P (t). A higher Sharpe ratio can be achieved by selling 2.58
put options with strike 0.88P (t) and selling 0.77 call options with strike
1.12P (t).

We simulate the benchmark portfolio and the portfolios with short op-
tions by generating 1,000,000 paths of the stock price and compute the
return statistics as well as the different Sharpe ratios, see Table 2. Figure 3
illustrates the empirical probability distribution of the portfolio consisting
of the stock and short calls. Easy to see that this strategy produces a re-
turn distribution which is far from the normal probability distribution. In
particular, the return distribution has low standard deviation but signifi-
cant negative skewness. The Sharpe ratio of this strategy is higher than the
Sharpe ratio of the underlying stock. The strategy with both puts and calls
produces an even higher Sharpe ratio.

However, if we look at the values of the ASR and GSR, it is easy to note
that the strategies with manipulated Sharpe ratios show worse performances
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than the benchmark strategy. First observe that the values of ASR and
GSR are close because the excess kurtosis of all these strategies is rather
insignificant. Note that the ASR and the GSR of the benchmark strategy
is greater than the SR since a lognormal probability distribution exhibits
positive skewness. Then observe that the portfolio with the stock and short
calls has lower ASR and GSR than the benchmark portfolio which indicates
that short calls are, in fact, decrease the performance. The portfolio with
short calls and puts has the highest Sharpe ratio but the lowest ASR and
GSR.

Strategy Mean Std Skew Kurt SR ASR GSR
Only stock 0.162 0.177 0.456 0.027 0.631 0.667 0.672
Stock and calls 0.095 0.061 -1.997 -1.276 0.731 0.624 0.627
Stock, puts and calls 0.139 0.120 -2.364 0.158 0.743 0.606 0.601

Table 2: Returns statistics and performances of different strategies.

4.2 Hedge Fund Performance Evaluation

It is well known that the distribution of hedge fund returns deviates sig-
nificantly from normality. These deviations have been widely described in
the literature, see, for example, Brooks and Kat (2002), Agarwal and Naik
(2004) and Malkiel and Saha (2005). In particular, the hedge funds returns
exhibit high negative skewness and positive excess kurtosis. This can be
explained by various reasons, for example, an extensive use of options and
option-like dynamic trading strategies. Consequently, the ranking of hedge
funds using the standard Sharpe ratio is dubious since it only takes into ac-
count the first two moments of distribution. That is, the significant left-tail
risk in the distribution is ignored.

In this subsection we evaluate the performances of the CS/Tremont
Hedge Fund Indexes. The CS/Tremont indexes are based on the TASS
database which tracks around 2,600 hedge funds. Using a subset of around
650 funds CS/Tremont calculates 13 indexes (in addition to the main in-
dex) which track every major style of hedge fund management. Our sample
consists of monthly returns of the CS/Tremont indexes from January 1994
to November 2006. Table 3 reports the summary statistics and different
Sharpe ratios. As we can see from the table, if we change the performance
measure from the SR to either ASR or GSR, many funds exhibit shift in
their ranking, but a few funds are stable in their ranking. For example,
the Equity Market Neutral index is ranked first according to the SR, ASR
and GSR due to the fact that the skewness of its distribution is positive.
The worst funds that are ranked 11th, 12th, 13th, and 14th also retain their
ranking even though some of their performances were adjusted downwards.
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We believe that the ASR and GSR give not only a more correct ranking
of hedge funds, but also (and this is more crucial) a more correct measure
of performance. For example, the Event Driven Distressed index is ranked
second by the SR and third by either ASR or GSR. The loss of one place
seems to be insignificant. However, the performance of this index was down-
graded from 1.4258 (SR) to 0.9355 (GSR), which means a loss of 35% of its
original value due to high negative skewness and positive excess kurtosis. In
addition, judging by the SR, the difference between the performance of the
fund ranked 4th and that of the fund ranked 7th amounts to 0.3712 which
is relatively large, while judging by the GSR the similar difference amounts
to only 0.0463 which is insignificant. This means that these funds exhibit
more or less similar performance.

It is also crucial to realize how important is the influence of skewness on
a performance measure relative to the influence of excess kurtosis. As we
can see from Table 3, as a rule the GSR of a fund is either on approximately
the same level as the corresponding ASR or adjusted downwards relative
to the ASR due to positive excess kurtosis. There are two exceptions from
this rule: the GSR of Event Driven and Event Driven Distressed indexes
are greater than their ASR. We believe that the main explanation of this
phenomenon is the fact that our (calibrated) ASR tends to underestimate
the real ASR when both the Sharpe ratio and skewness is large (see Figure
2 and subsection 3.3), which is true for these two indexes. This can be
corrected by using several versions of the ASR which are calibrated for
different intervals for the Sharpe ratio and skewness. Now observe that the
maximum difference between an ASR and the corresponding GSR amounts
to 9.5%, while the maximum difference between an SR and the corresponding
GSR amounts to 53.6% (all relative to the value of a GSR). This implies
that the correction for skewness in a performance measure is much more
important than the correction for excess kurtosis and other higher moments
of distribution.

5 Summary and Conclusion
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