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Forecasting Time-varying Covariance with a Range-Based 

Dynamic Conditional Correlation Model  

 
Abstract 

 
This paper proposes a range-based Dynamic Conditional Correlation (DCC) 

model, which is an extension of Engle’s (2002) return-based DCC model. The 
efficiency of the range data in volatility estimation is documented in Parkinson (1980), 
Alizadeh, Brandt, and Diebold (2002), Brandt and Jones (2005), and Chou (2005, 
2006), among others. It is hence natural to consider the implications of this result in 
estimation of multivariate GARCH models. In the DCC model, the conditional 
correlation coefficients are estimated using a dynamic model for producing pair-wise 
return series, each normalized by their conditional standard deviations. The 
conditional standard deviation is calculated using a univariate GARCH for the return 
series.  
 

We use the Conditional Autoregressive Range (CARR) model of Chou (2005) as 
an alternative to the univariate GARCH in the DCC first-step estimation. We, 
therefore, construct a range-based DCC model. The substantial gain in efficiency of 
volatility estimation can induce an efficiency gain in estimation of the series of 
time-varying covariances. For the purpose of enforcing our conclusion in the 
empirical study, besides dissecting of return-based and range-based DCC models, 
models of MA100, EWMA, CCC and BEKK are also incorporated. This paper uses 
three data sets for empirical analyses: the S&P500 and Nasdaq stock indices, and the 
10-year Treasury bond yield. Both in-sample and out-of-sample results indicate some 
consistent inferences. Of all the models considered, the range-based DCC model is 
largely supported in terms of precision in estimating and forecasting the covariance 
matrices. 
 
 
Keywords: DCC model, CARR model, range, dynamic correlation, covariance, 
volatility 
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I. Introduction 
 

It is of primary importance in the practice of portfolio management, asset 
allocation and risk management to have an accurate estimate of the covariance 
matrices for asset prices. When valuing derivatives, forecasts of volatilities and 
correlations over the whole life of the derivatives are usually required. Judging from 
the past literature, the univariate ARCH/GARCH family of models provides effective 
tools to estimate volatilities of individual assets’ prices. Tailored to the needs of 
different asset classes, these various models have achieved remarkable success; please 
see Bollerslev, Chou, and Kroner (1992), and Engle (2004), for a review. However, 
estimating the covariance or correlation matrices of multiple variables, especially 
large sets of asset prices, is still an active research issue. Early attempts include the 
VECH model1 of Bollerslev, Engle, and Wooldridge (1988), the BEKK model2 of 
Engle and Kroner (1995), and the constant correlation model of Bollerslev (1990), 
among others. The constant correlation model is too restrictive in that it imposes 
stringent constraints whereby the dynamic structure of the covariance is completely 
determined by individual volatilities. The VECH and the BEKK models are, however, 
more flexible in that they allow time-varying correlations. While the BEKK 
parameterization for a bivariate model involves 11 parameters, for higher-dimensional 
systems, the additional parameters make in the BEKK model estimation very difficult. 
 

In a series of papers, Engle and Sheppard (2001), Engle (2002), and Engle, 
Cappiello, and Sheppard (2003) provide another solution to this problem by using a 
model referred to as the Dynamic Conditional Correlation Multivariate GARCH 
(henceforth DCC).  Intuitively, the conditional covariance estimation for two 
variables is simplified by estimating univariate GARCH models for each asset’s 
variance process. Then, the estimation of the time-varying conditional correlation is 
made using the transformed standardized residuals. A meaningful and strong 
performance of this model is reported in these studies. Other econometric methods for 
estimating the time-varying correlation are proposed by Tsay (2002) and by Tse and 
Tsui (2002), too.  
 

The objective of this article is to propose an alternative to return-based DCC 

                                                 
1 The n-dimensional VECH model is written as vech(Ht)=A+B vech( '

1 1t tξ ξ− − )+C vech(Ht-1), where Ht 
is the conditional covariance matrix at time t and vech(Ht) is the vector that stacks all the elements of 
the covariance matrix.  
2 A general parameterization that involves the minimum number of parameters while imposing no 
cross equation restrictions and ensuring positive definiteness for any parameter value is the BEKK 
model, named after Baba, Engle, Kraft, and Kroner who wrote the preliminary version of Engle and 
Kroner (1995).  
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analysis. In this paper, we consider a refinement of the return-based DCC model by 
utilizing the high/low range data of asset prices. In estimating the volatility of asset 
prices, there is a growing awareness of the fact that the range data of asset prices can 
provide sharper estimates and forecasts than the return data based on close-to-close 
prices. Studies that provide supporting evidence include Parkinson (1980), Garman 
and Klass (1980), Wiggins (1991), Rogers and Satchell (1991), Kunitomo (1992) and, 
more recently, Gallant, Hsu, and Tauchen (1999), Yang and Zhang (2000), Alizadeh, 
Brandt, and Diebold (2002), Brandt and Jones (2005), Chou (2005, 2006) and Chou, 
Wu, and Liu (2004). Chou (2005) proposed the Conditional Autoregressive Range 
(henceforth CARR) model which can capture the dynamic volatility process and has 
obtained some insightful evidence in terms of real transactional data. In other words, a 
range-based volatility model serves as an useful alternative to the return-based 
volatility model in describing the process of volatility. In light of the success of the 
range-based univariate volatility models, it is natural to inquire whether this 
estimation efficiency can be extended and incorporated into a multivariate framework, 
in this case the DCC model. 
 

The remainder of the study is laid out as follows. Section 2 introduces the 
framework of the bivariate models for estimating the covariance process, especially 
for the return-based and range-based DCC models. Section 3 describes the empirical 
data used and discusses the empirical results. The conclusion and directions for future 
studies are given in section 4. 
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II. Various Covariance Estimations and the DCC Model  
 
    This section provides a brief overview of methods used to describe the current 
level of covariance. Conventionally, the conditional covariance estimation between 
two random variables 1r  and 2r  with zero means have been defined as:   
 

)( ,2,11,12 tttt rrECOV −= ,                                                (1) 

 
Time-varying covariance parameters between asset returns (ex: 1r  and 2r ) are useful 
in financial analysis. For example, they can be used to estimate the time-varying beta 
of the market model of a return series. By this definition, the information of the 
conditional covariance is derived from previous trading data. However, such an 
expression may create some doubts. The latent questions can be divided into two 
segments, namely, too early or old data get injected; and equal weights are assigned 
for every previous leg of observation. To deal with the former, this paper works with a 
moving average with a 100-week window, MA100, which is rich enough to be 
relevant and yet simple enough to permit a streamlined exposition:  
 

∑
−

−=

=
1

100
,2,1,12 100

1 t

ts
sst rrCOV ,                                              (2) 

 
Intuitively, it makes sense to attach more weight to recent data. Going by this, we 

introduce an exponentially weighted moving average (EWMA) model where the 
weights decrease exponentially as we move back through time. Exponential 
smoothing is used to model the unobservable variables for volatility in JP Morgan’s 
RiskMetrics, too. The EWMA model has an attractive feature in that relatively little 
data need to be stored. Exponential averages assign the most weight to the most recent 
observations, with weights declining exponentially as observations go back in time. It 
turns out that the EWMA model for covariance estimation can be illustrated as 
follows.  
 

∑
−

=

−−−=
1

1
,2,1

1
,12 )1(

t

s
ss

st
t rrCOV λλ ,                                         (3) 

 
Usually, the smoothing parameter λ  lies between zero and unity. The value of 

λ  governs how sensitive the estimate of the current variable is to percent changes in 
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the most recent period. The RiskMetrics approach uses exponential moving averages3 
to estimate future volatility because it believes the method responds rapidly to market 
shocks.  
 

Later, Bollerslev (1990) proposed the Constant Correlation Coefficient 
(henceforth CCC) multivariate GARCH specification, where univariate GARCH 
models are estimated for each asset and then the corresponding correlation matrix is 
estimated, using the standard MLE correlation estimator, by transforming the 
residuals using their estimated conditional standard deviations. An illustration of the 
CCC model is shown below, in brief. Assume that 1k ×  vector of asset returns tr  is 
conditionally normal with mean zero and covariance matrix tH ; hence, tH  can be 
decomposed as follows: 
 

ttt RDDH = ,                                                        (4) 
 

Where R is the sample correlation matrix and Dt is the k×k diagonal matrix of 

time-varying standard deviations from univariate GARCH models with tih ,  on the 

ith diagonal and tih ,  is the square root of the estimated variance. The assumption of 

constant correlation makes estimating a large model feasible and ensures that the 

estimator is positive definite, simply requiring each univariate conditional variance to 

be non-zero and the correlation matrix to be of full rank. Under such a situation, we 

can obtain the estimate of the conditional covariance, based on information regarding 

the fixed correlation and the product of the two conditional standard deviations. The 

type of model is quite easy to estimate, by the quasi-maximum likelihood function. 

 

The conditional variance-covariance matrix may also be used to build a 

multivariate ARCH model. This approach has been adopted by Engle and 

Kroner(1995), who proposed the so-called BEKK (Baba-Engle-Kraft-Kroner) model. 

The parameters, however, easily diverge when a model of the type of the full-rank 

BEKK (FBEKK for short) model is adopted. In the related literature, the Diagonal 

BEKK (hereafter DBEKK) model is more popular due to its property of convergence 

                                                 
3 The RiskMetrics database uses the exponentially-weighted moving average model with λ =0.94 for 

updating daily volatility estimates. J.P. Morgan found that, across variant market variables, this value 
of λ  results in forecasts of the volatility that come closest to the realized volatility. Following J.P. 
Morgan’s suggestion, the variable λ  equals 0.94 for the time being in the later empirical 
discussion. 
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of parameters used in empirical research. Particularly, the DBEKK is more 

well-organized in estimating than the FBEKK model, when the number of samples is 

a constraint4. Let us consider the bivariate for the diagonal BEKK model, shown as 

below: 

 
2

11 11 12 11 111, 1 1, 1 2, 1
2

12 22 22 22 221, 1 2, 1 1

11 1111, 1 12, 1

22 2221, 1 22, 1

0 0 0
0 0 0

0 0
0 0

t t t
t

t t t

t t

t t

c c c a a
H

c c c a a

b bh h
b bh h

ε ε ε
ε ε ε

− − −

− − −

− −

− −

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤
+ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

         (5) 

 

Although the CCC model is meaningful, the setting of constant conditional 

correlations can sometimes be too restrictive and the estimators in the constant 

correlation setting, as proposed, do not offer a rule to construct consistent standard 

errors, using the multi-stage estimation process. Another drawback of the 

constant-correlation model is that the correlation coefficient tends to change over time 

in real applications. Engle (2002) extended the simple CCC model to the more 

complete DCC model. The DCC model is a new class of estimator that both preserves 

the ease of estimation of the CCC model and yet allows for non-constant correlations. 

The DCC model preserves the parsimony of the univariate GARCH model of 

individual assets’ volatilities with a simple GARCH-like time varying correlation. 

The DCC model differs from the CCC model mainly in that it allows the correlation 

matrix R to be changed over time. Accordingly, we can write the DCC model as  
  

tttt DRDH = ,                                                       (6) 

2/12/1 }{}{ −−= tttt QdiagQQdiagR .                                       (7) 

 
Where, Dt is defined as in equation (4) and tR  is the possibly time-varying 
correlation matrix. 
 

111 ')'( −−− ++−−= tttt QBZZABASQ ooo ιι .                               (8) 
 

In equation (8), A and B are parameters and o denotes the Hadamard matrix 

product operator, i.e. element-wise multiplication. The DCC model was constructed to 
                                                 
4 In empirical result for this paper is inclined to support similar inference, too.  



 7

permit for two-stage estimation of the conditional covariance matrix tH . Briefly 

speaking, during the first step, univariate volatility models are assigned for each of the 

assets and estimates of ,i th  are obtained. In the second step, asset returns transformed 

by their estimated standard deviations estimating the parameters of the conditional 

correlation. The symbol ι  is a vector of ones and S is the unconditional covariance 

of the standardized residuals. Finally, ttt rDZ ×= −1  denotes the standardized but 

correlated residual. The variable rt is the symbol for the returns of the assets. The 

returns can be either mean zero or residuals from a filtered time series, i.e. 
 

1 ~ (0, )t t tr I N H− .                                                    (9) 

 
Conditional variances of the components of Zt are, in other words, equal to 1, but 

the conditional correlation matrix is given by variable Rt. If A and B are zero, then the 
DCC model can revert to the results of the CCC model. It is interesting and important 
to recognize that although the dynamics of the Dt matrix has usually been structured 
as a standard univariate GARCH model, it can be easily extended to many other types 
of models. For instance, one could adopt the EGARCH or GJR-GARCH models to 
capture the asymmetric phenomenon in the real volatility process or use the 
FIGARCH model to allow for the long memory volatility processes. In order to verify 
if the specification selected adequately fit the DCC model, the next paragraph will 
propose to adopt the Conditional Autoregressive Range (CARR) model of Chou 
(2005) as an alternative. Details will be given later in the section. 
 

    As A and B are diagonal parameter matrices, the condition of positive definite for 

covariance matrix will be satisfied. Literature shows that if A, B, and ( ' )A Bιι − −  

are positive semi-definite, then Qt will also be positive semi-definite. If any one of 

the matrices is positive definite, then Qt will also be so. For the ijth element of Rt, the 

conditional correlation matrix is given by ,ij tq / , ,ii t jj tq q . The conditional covariance 

can then be expressed using the product of conditional correlation between these two 

variables and their individual conditional standard deviations. For a good overview 

of properties of the DCC, please also see Engle (2002). The log-likelihood of this 

estimator is straightforward. One simply maximizes the log-likelihood: 
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                       (10) 

 
Where Zt ~ N(0,Rt) denote the univariate GARCH standardized residuals. 

Following Engle (2002)’s argument, one can perform the estimation by means of a 
two-step process. Maximizing the likelihood function can yield consistent parameter 
estimates. This approach is called the quasi-maximum likelihood estimation (QMLE). 
The benefits of QMLE are its simplicity and consistency. Its shortcomings are that the 
estimates are inefficient, even asymptotically, and more importantly, its small-sample 
properties are suspect. (See Hafner and Franses (2003), for a review.) Let the 
parameters in Dt be denoted by θ  and the additional parameters in Rt be denoted by 
the Greek letter φ . After doing so, one can separate the log-likelihood function into 
two parts: 
 
( ) ( ) ),(, φθθφθ CV LLL += .                                            (11) 

 
The former term represents the volatility part: 
 

( ) ( )∑ −++−=
t

ttttV rDrDnL 22 'log)2log(
2
1 πθ .                           (12) 

 
The latter term can be viewed as the correlation component: 
 

( ) ( )∑ −+−= −

t
ttttttC ZZZRZRL ''log

2
1, 1φθ .                             (13) 

 
   Following the recipe for the first stage, we can pick up a suitable θ  easily, which 
satisfies equation (12) and is maximized after the estimate of θ̂  is computed. 
Subsequently, in the second stage, the correlation part in equation (13) can be 
maximized with respect to optimized θ  and φ  simultaneously. Consequently, the 

formidable task of maximizing equation (11) is attainable. Estimates for θ̂  and φ̂  

are useful in subsequent dissections. 
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   When the specific GARCH model is fitted, the term of volatility in the likelihood 
function can demonstrated as below:  

( ) ∑∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−=

t

k

i ti

ti
tiV h

r
hL

1 ,

2
,

, )log()2log(
2
1 πθ .                             (14) 

 
By the same token, if Dt is determined by a CARR specification, then the likelihood 
function of the volatility term will be  
 

( ) ∑∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−=

t

k

i ti

ti
tiV

r
L

1
2*
,

2
,*

, )log(2)2log(
2
1

λ
λπθ ,                           (15) 

Where *
,tiλ  denotes the conditional standard deviation as computed from a scaled 

expected range, using the CARR model of Chou (2005). 
 
The second part of the likelihood function will be used to estimate the 

parameters for correlations. As the squared residuals are not dependent on these 
parameters, they will not appear in the first-order conditions and can be neglected. A 
simple transformation of the two-stage framework to maximize the likelihood 
function is achieved. Apparently, 

( ){ }θθ VLmaxargˆ = ,                                                 (16) 

and then extract this value θ̂  as given, into the second step, 

( ){ }φθ
φ

,ˆmax CL .                                                      (17) 

It is shown in Engle and Sheppard (2001) that under some regularity conditions, 
the condition for consistency will be satisfied. Maximization of equation (13) will be 
a function of the parameter estimates from equation (12). These conditions are similar 
to those given in White (1994), where the asymptotic normality and the consistency of 
the two-step QMLE estimator are established. 

 

Another theoretical justification for the above result appeared in Engle (2002).  

Engle (2002) referred to the work of Newey and McFadden (1994), whereby in 

Theorem 6.1, a formulated two-step GMM problem can be applied to this model. 

Consider the moment condition corresponding to the first step as being ( ){ }θθ vL∇ =0. 

The moment condition corresponding to the second step is ( ){ }φθφ ,ˆCL∇ . Under 

standard regularity conditions, which are given as conditions i) to v) in Theorem 3.4 
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of Newey and McFadden (1994), the parameter estimates will be consistent and 

asymptotically normal, with a covariance matrix of a familiar form. This matrix is the 

product of two inverted Hessians around an outer product of scores. Details of this 

proof can be found in Engle and Sheppard (2001). 
 

The DCC model is a new type of multivariate and can fit the GARCH or CARR 
model in the first stage, which is particularly convenient for complex dynamic 
systems. The DCC method first estimates volatilities for each asset and computes the 
standardized residuals. For bivariate cases, one can use the following GARCH and 
CARR structures to perform the first step. The covariance series is then estimated 
between these, using a maximum likelihood criterion and one of several models for 
the correlations.   

 

For the GARCH volatility structure (return-based conditional volatility model), 
the function form can be illustrated as below: 
 

tktkr ,, ε=   ),0(~| ,1, tkttk hNI −ε , k=1,2               

1,
2
,, −− ++= tkkitkkktk hh βεαω ,                                          (18) 

tktk
a

tk hrz ,,, /= . 
 
If the volatility model is replaced by the CARR framework (range-based conditional 
volatility model), the structure can be expressed as: 
 

tktk u ,, =ℜ   );1exp(~| 1, ⋅−ttk Iu , k=1,2 

1,1,, −− +ℜ+= tkktkkktk λβαωλ ,                                         (19) 

*
,,, / tktk

c
tk rz λ= ，where tkktk adj ,

*
, λλ ×= ，

k

kadj
λ

σ
ˆ

= , 

Where tk ,ℜ  is the high/low range in logarithm of the kth asset during the time 

interval t, σ  and kλ̂  are the unconditional variance of the return series and the 

sample mean of the estimated conditional range of the series k respectively. This is a 

special case of the multiplicative error model of Engle (2002). The specification of the 

exponential distribution of the disturbance term provides a consistent, if inefficient, 

estimator of the parameters. For specific discussions, see Chou (2005); also for a 
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review. 
 
    In the next analysis, we explore the structure of the DCC model under the 
bivariate condition. For the bivariate case, the DCC model can be expressed by the 
following equation. According to statements from Engle (2002), the model setting 
below is called as the standard DCC with mean reversion. This is most easily seen by 
adjusting the general expression in equation (6).  
 

Under the framework of the bivariate case, the DCC can be constructed by the 
following equation. 
 

111 ')'( −−− ++−−= tttt QBZZABASQ ooo ιι , or   

2
11, 12, 11, 1 12, 112 1, 1 1, 1 2, 1

2
21, 22, 21, 1 22, 112 2, 1 1, 1 2, 1

1
(1 )

1
t t t tt t t

t t t tt t t

q q q qq z z z
a b a b

q q q qq z z z
− −− − −

− −− − −

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= − − + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
      (20) 

 

where ∑
=

=
T

t
tt zz

T
q

1
,2,112

1 . 

                                                           
As another type of DCC is called the Integrated DCC, we arrange its dynamic 

structure at footnote5 for reference. 
 

Since financial risk is commonly assessed in terms of covariance, the ability of 
providing accurate forecasts of future risks acquires great importance. Like the 
specific property of volatilities, the covariance matrices are also unobservable. Here 
we use daily data to construct the proxies for the weekly-realized covariance 
observations. The concept of the realized volatility has been used productively by 
French, Schwert, and Stambaugh (1987) and Andersen et al. (2001). The realized 
volatility is nothing more than the sum of squared high-frequency returns over a given 
sampling period. For instance, one calculates a daily realized variance series by 
summing up, each day, a sequence of squared intraday returns. The purpose behind 
doing this is to extract the values of the so-called “measured covariances”, denoted by 
MCOV, as one kind of benchmark for determining the relative performance of the 
return-based DCC model and the range-based DCC model, for the time being. For 

                                                 
5 For the bivariate I_DCC can shown briefly as 111 )1( −−− −+′= tttt QAZZAQ oo ，or 

2
11, 12, 11, 1 12, 11, 1 1, 1 2, 1

2
12, 22, 12, 1 22, 11, 1 2, 1 2, 1

(1 )t t t tt t t

t t t tt t t

q q q qz z z
a a

q q q qz z z
− −− − −

− −− − −

⎡ ⎤⎡ ⎤ ⎡ ⎤
= + −⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
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distinguishing the forecasting abilities of the return-based DCC model and the 
range-based DCC model, as in Taylor (2004), we still use root mean square error 
(RMSE) and mean absolute error (MAE) as two criterions for comparison.   

 

In performing a comparison of the in-sample data during subsequent empirical 
analysis of the covariance matrices, several related and conventional models are 
included - MA100, EWMA6 with 94.0=λ , CCC, and BEKK models.  

 
For completeness, we also perform out-of-sample forecast comparisons. It is 

very straightforward to derive the formulation for computing the out-of-sample 
conditional correlation for a DCC specification. Out of sample forecasts of the 
DCC-type models for correlation can be obtained using the standard backward 
iterative approach; given T as the sample size, T+1st observation will be obtained.  

 
At time T, the out of sample forecast for conditional correlation in the period 

(T+1) is presented by 

2
1, 1 12, 1 1, 12,12 1, 1, 2,

2
12, 1 2, 1 12, 2,12 1, 2, 2,

1
(1 )

1
T T T TT T T

T T T TT T T

q q q qq z z z
a b a b

q q q qq z z z
+ +

+ +

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= − − + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
     (21)                

where 1,21,11,121 / ++++ = TTTT qqqρ .  

 
The out of sample prediction for correlation for the period (T+h), where 2≥h , can 
be expressed as below: 

1, 12, 1, 1 12, 112

12, 2, 12, 1 2, 112

1
(1 ) ( )

1
T h T h T h T h

T h T h T h T h

q q q qq
a b a b

q q q qq
+ + + − + −

+ + + − + −

⎡ ⎤ ⎡ ⎤⎡ ⎤
= − − + +⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
            (22) 

In addition to the range-based and return-based DCC models, MA100 , EWMA, 
CCC and BEKK models are introduced for an out-of-sample predictive comparison7. 
Empirically speaking, the indices of RMSE and MAE are still used as indications for 
comparison of preciseness, too.  
 

                                                 
6The estimate of λ  is 0.94 approximately for three different time series data that we adopted in this 
study.  
7 It is also intuitively clear that the out-of-sample forecasts for the covariance are all constant in the 
EWMA model. 
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III. Comparison of Various Conditional Covariance Forecasts 
 

The main data employed in this study comprise 626 weekly observations on the 
S&P500 Composite (henceforth S&P500), the Nasdaq stock market index, and the 
yield for 10-year treasury bond (Tbond) spanning the period from January 3, 1994 to 
December 30, 2005.8 Furthermore, daily market observations are used to construct 
the series of the measured, or the so-called realized, covariances in the past literature. 
We have retrieved range and return data for the entire period from Yahoo’s database 
(www.yahoo.com/finance ).  
 

It is worth taking a look at some descriptive statistics. Panels A, B, and C in 
Figure 1 demonstrate the weekly data patterns for the time-series of the S&P500 stock 
market index, the Nasdaq index and the yield to maturity for the 10-year Tbond over 
the sample period. We compute Tbond returns to be the negative changes in the 
10-year benchmark yield to maturity as in Engle (2002). Additionally, Table 1 
provides summary statistics for weekly continuously compounded returns and the 
weekly ranges for these indices.  
 

Initially, the sample period for daily data from 1/3/1994 to 12/30/2005 is 
extracted. Totally, have 3023 daily data for model fitting with the return-based DCC, 
the range-based DCC and the Diagonal BEKK (DBEKK), respectively. In the 
meanwhile, each daily implied covariance is collected in this stage. Sequentially, it is 
easy to get the individual weekly implied estimates for covariance series, followed 
by the computation below.  

1
covi

t t
i

MCOV
τ

=

=∑                                                    (23) 

 

Where covi
t  denotes daily implied covariance at time t with model i. Here, we 

introduce different models - return-based DCC model, range-based DCC model and 

DBEKK model.  

 
The realized covariance can be expressed as: 

∑
=

×=
τ

1
21 )(

i

i
t

i
tt rrMCOV                                                (24) 

 

Where i
ktr  denotes return for kth asset on  ith day during the corresponding week tth. 

                                                 
8 Due to the initial bond data for daily high and low prices offered by yahoo finance database is 
collected from October 29, 1993. So we choose January 1, 1994 as the beginning for our analysis. 
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This expression is a direct extension of the concept of the realized volatility of 

Andersen et al. (2000), too. 
 

Checking the Figure 2 to 4, we depict the different covariance patterns between 
S&P 500, Tbond and Nasdaq series for DBEKK model, return-based DCC model and 
range-based DCC model, respectively. Some useful insights can be obtained from 
these figures. We can find that both the realized volatility and implied volatility are 
able to play a proxy for realized covariance. Observing from these figures, there seem 
to exist strong interactions around these variables. Intuitively speaking, the oscillation 
of the realized volatility pattern will be an informative and useful explanatory variable 
for these models. 
 
 
A. In-sample forecast comparison for covariance 
  
    In this section, we present the empirical results of using the in-sample data, that 
is, the forecast performances are constructed and measured using the same database. 
Mainly, we exhibit the in-sample forecasting ability of the return-based DCC model, 
the ranged-based DCC model and some related models for the purpose of 
performance comparison. As for the parameters fitted for DCC model, we have 
estimated and arranged them in Table 2. Due to the procedure for parameters 
estimating under the DCC setting, we have to cope with two inherent stages. In the 
first stage, one can utilize the GARCH model fitted by return, or the CARR model 
fitted by range, with individual assets, for standardized residuals. Afterwards, bring 
these standardized residuals series into the second stage for dynamic conditional 
covariance estimating.  
 
    Table 3 illustrates some brief results of covariances estimated for in-sample 
prediction, based on different econometrical models that we have mentioned 
previously. We drew clear inference from the three panels in Table 3 to the effect that 
they all appeared to be more accurate in the range-based DCC model than in the other 
five models, regardless of what criterion9 was adopted. This appears to be consistent 
not only in RMSE but in MAE too. The worst performance in predicting of 
covariance under in-sample analysis, one can judge from the results of RMSE and 
MAE in Table 3, is the MA100. 
 

                                                 
9 Here we follow the conventional evaluated indicators with RMSE and MAE as benchmark for the 
time being.  
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We refer to some insightful versions associated with various forecasting models 
for covariance in-sample situations hereinbelow. 
 

Apparently, excepting the MAE indicator of forecasting realized covariance for 
Nasdaq and Tbond in Panel C, the range based DCC model is more appropriate than 
the others, no matter what RMSE or MAE indicators are adopted. Generally speaking, 
there are no significant differences in covariance forecasting performance between 
return-based DCC model and DBEKK model under the in-sample context. In addition 
to the range-based DCC approach, predicting results of the CCC model proposed by 
Bollerslev (1990) are relatively precise in Panel A. One reasonable conjecture is the 
correlation relationship between S&P and Nasdaq - both of them are stock composites 
and hence the pattern of their correlation over time is more stable than other 
combinations. One can observe an analogous phenomenon from Figure 2 to Figure 5. 
In the composition of S&P and Tbond or Nasdaq and Tbond, we can easily find their 
individual patterns, which appear to be reverting to the phenomenon. Under such a 
situation, the method of EWMA is better than that of the CCC model in covariance 
forecasting. Accordingly, it seems inappropriate to assume that the correlation 
parameter between different assets is constant over time. Besides, regardless of any 
composition, the empirical results of MA100 are the worst in depicting the pattern of 
covariance. We also plotted corresponding covariance patterns with various 
compositions from Figure 5 to Figure 7 for completeness.       

 
B. Out-of-sample forecast comparison 
 
   In the same way, we can assess the out-of-sample forecasting performance for 
different models by using RMSE and MAE, discussed in the previous in-sample 
comparison. Given that the data set contains a total of 626 usable observations, it is 
possible to use a holdback period of observations. This way, there are 400 
observations in each estimated model and 223 out-of-sample forecasting values for 
comparison. Here, the rolling sample approach for out-of-sample measurement is 
adopted. We show one period ahead of out-of-sample forecasting results for 
covariance in Table 4. We also consider two periods and four periods ahead 
out-of-sample forecast performance and illustrates the results in Table 5 and Table 6. 

 
We obtain a consistent conclusion for covariance prediction’s performance based 

on different competitive models. Various forecasting results for covariance with 
different selected trading markets are presented in Panel A, B and C from Table 4 to 
Table 6. Almost all of the inferences demonstrate an overwhelming phenomenon, 
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namely, the range-based DCC approach dominates other methods in accuracy in 
out-of-sample forecasting. Except for the realized volatility with the model of MA100 
as forecasted benchmark, the results in Table 4 to Table 6 appear a trend, namely, that 
the forecasting errors are proportion to the forecasted periods. Most results are similar 
to the inference drawn from in-sample forecasting. Roughly speaking, from observing 
Figure 8 to Figure 10, it seems that the range-based DCC model has the most 
appropriate realized covariance fitting, at the first glance. 
 

Exploring other latent characteristics of out-of-sample forecasting, the MA100, 
among these competitive models, is the worst one again. For the CCC model used in 
out-of-sample forecasting, the prediction performance looks the same as in-sample’s 
situation, though the range-based DCC model outperforms the return-based DCC 
model in prediction abilities. However, the return-based DCC model, in covariance 
prediction, seems better than the DBEKK model. It is surprising that the EWMA 
model, holding constant out-of-sample forecast, still performs well in different period 
ahead forecasts. Besides, in the combination of S&P and Nasdaq or S&P and Tbond, 
the EWMA model performs better than other forecasting models, in addition to the 
range-based DCC approach. 
 
    In view of in-sample and out-of-sample empirical results, we can not clearly put 
all forecasting models in a proper order. However, it is undoubted that the range-based 
DCC model possesses the optimum forecasting power in covariance. 
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IV. Conclusions 
 

In this paper, a brand-new estimator of the time-varying covariance matrices is 
proposed, utilizing the range data that combines the CARR model proposed by Chou 
(2005) with the framework provided by Engle (2002)’s DCC model. The advantage of 
this range-based DCC model, in terms of its ability to outperform the standard 
return-based DCC model, hinges on the relative efficiency of the range data over the 
return data in estimating volatilities. Using weekly data of S&P500, Nasdaq and 
10-year treasury bond, we find consistent results - the range-based DCC model 
outperforms the return-based models in estimating and forecasting covariance 
matrices, both in-sample and out-of-sample analysis. 
 

In addition to using conventional realized covariance for the purpose of 
comparison, we introduce the concepts of implied covariance, which is derived from 
DCC and DBEKK models for benchmarking robustness. Nonetheless, no matter what 
realized covariance or implied covariance is embedded in DCC or DBEKK models, 
we obtain a consistent conclusion that the range-based DCC approach is the best one 
for covariance prediction. 
  

Although we just apply this estimator to the bivariate systems, it can be applied 
to larger systems in a manner similar to the application of the return-based DCC 
model structures; this has already been demonstrated in Engle and Sheppard (2001). 
Future research that adopts more diagnostic statistics or tests based on value-at-risk 
calculations as proposed by Engle and Manganelli (2004) will surely be useful. Other 
applications such as estimating the optimal portfolio weighting matrices and 
calculating the dynamic hedge ratio in the futures market will also bear fruit.   
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Table 1: Summary Statistics for the Returns and Ranges of Weekly S&P500, Nasdaq Indices, and 
Tbond Yield, 1994-2005 

 S&P500 Nasdaq Tbond 
 Return Range Return Range Return Range 

Mean 0.156 3.263 0.166 4.844 0.041 3.893 
Median 0.281 2.707 0.316 3.881 0.000 3.533 

Maximum 7.492 14.534 17.377 31.499 7.756 16.593 
Minimum -12.330 0.707 -29.175 0.927 -12.625 0.657 
Std. Dev. 2.241 1.818 3.623 3.384 2.647 1.933 
Skewness -0.506 1.697 -1.049 2.286 -0.597 1.798 
Kurtosis 5.978 7.507 11.405 11.893 4.673 8.507 

Jarque-Bera 257.547 828.895 1954.311 2604.271 110.025 1126.350 
Notes: The ranges and returns for stock indices are computed by )/log(100 lowhigh pp×  
and 1100 log( / )close close

t tp p −× , respectively. The ranges and returns for the 10-year Treasury bond are 
inferred by )/log(100 lowhigh pp×  and -

1100 log( / )close close
t tp p −× , respectively. Jarque-Bera is the statistic for 

normality. There are 626 weekly sample observations. All data are extracted from Yahoo/Finance. The 
computation of the returns of the bond yield follows Engle (2002). 
 
 
 
 

Table 2: Estimation of Bivariate Return-based and Range-based DCC Model Using 
Weekly S&P500 and Nasdaq , and Tbond , 1994-2005 

Step1:    1,
2
,, −− ++= tkkitkkktk hh βεαω   ),0(~| ,1, tkttk hNI −ε  

1,1,, −− +ℜ+= tkktkkktk λβαωλ ,  );1exp(~| 1, ⋅−ttk IR  

Step2:   
2

11, 12, 11, 1 12, 112 1, 1 1, 1 2, 1
2

21, 22, 21, 1 22, 112 2, 1 1, 1 2, 1

1
(1 )

1
t t t tt t t

t t t tt t t

q q q qq z z z
a b a b

q q q qq z z z
− −− − −

− −− − −

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= − − + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
 

Step1 S&P500 Nasdaq Tbond 
 GARCH CARR GARCH CARR GARCH CARR 
ω  0.032 0.157 0.111 0.124 0.285 0.231 
 (1.316) (3.239) (1.315) (2.615) (1.605) (2.565) 
α  0.051 0.280 0.089 0.257 0.082 0.190 

 (3.346) (8.816) (2.363) (7.271) (2.258) (4.973) 
β  0.944 0.673 0.905 0.717 0.878 0.750 
 (62.305) (18.375) (29.240) (19.289) (16.636) (14.372) 

Step2 S&P500 and Nasdaq S&P500 and Tbond Nasdaq and Tbond 
DCC Return-based Range-based Return-based Range-based Return-based Range-based

a 0.044  0.038  0.054  0.087  0.030  0.052  
 (4.923)  (3.317)  (5.314)  (5.125)  (4.116)  (3.654)  

b 0.948  0.960  0.937  0.902  0.961  0.938  
 (70.120)  (69.435)  (70.876)  (42.761)  (92.107)  (44.599)  

Notes: Numbers in parentheses are t-values.  
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Table 3: In-sample Forecasting Errors for Covariances between the S&P500 and Nasdaq , 
S&P500 and Tbond, and Nasdaq and Tbond, 1994-2005 
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Panel A: S&P500 and Nasdaq 

 RMSE of Forecasting 
Implied/Realized MCOVs 

MAE of Forecasting 
Implied/Realized MCOVs 

Forecasting Model Return 
DCC 

Range
DCC DBEKK Realized Return

DCC 
Range 
DCC DBEKK Realized

MA100 11.2883 13.6724 11.2641 14.4930 8.4991 10.2663 8.5649  8.4784 
EWMA 5.4352 7.2354 5.1455 10.2515 2.9868 3.9244  2.8216  4.9966 

Return-based DCC 5.0536 6.8808 4.7915 10.0517 2.7238 3.6953  2.6069  4.8364 
Range-based DCC 3.1291 4.2128 3.0214 9.1064 1.6843 2.3039  1.6540  4.6055 

CCC 5.0685 6.9146 4.8139 10.0114 2.7058 3.7134  2.6055  4.8024 
DBEKK 5.1082 6.8649 4.8004 10.2039 2.9246 3.8445  2.7472  5.0799 

Panel B: S&P500 and Tbond 

 RMSE of Forecasting 
Implied/Realized MCOVs 

MAE of Forecasting 
Implied/Realized MCOVs 

Forecasting Model Return 
DCC 

Range
DCC DBEKK Realized Return

DCC 
Range 
DCC DBEKK Realized

MA100 3.1374  3.5097 3.2024 5.2280 2.1223 2.3864  2.1150  3.0857 
EWMA 1.8984  2.0796 2.0917 4.3755 1.3250 1.3967  1.4506  2.6789 

Return-based DCC 1.7624  1.9892 1.9653 4.3278 1.1934 1.3203  1.3238  2.5987 
Range-based DCC 1.3117  1.4156 1.5103 4.1151 0.9794 1.0151  1.1120  2.5776 

CCC 2.9202  3.2685 2.9959 4.8678 2.0177 2.2723  2.0326  2.8478 
DBEKK 1.7810  2.0093 1.9146 4.3389 1.1652 1.2840  1.2423  2.6355 

Panel C: Nasdaq and Tbond 

 RMSE of Forecasting 
Implied/Realized MCOVs 

MAE of Forecasting 
Implied/Realized MCOVs 

Forecasting Model Return 
DCC 

Range
DCC DBEKK Realized Return

DCC 
Range 
DCC DBEKK Realized

MA100 3.8283  4.6628 4.0731 7.6538 2.5139 3.0914  2.5954  4.3087 
EWMA 2.4148  2.7837 2.8305 6.5481 1.6108 1.7612  1.8565  3.7181 

Return-based DCC 2.1554  2.7297 2.6537 6.5250 1.3969 1.7428  1.7118  3.5710 
Range-based DCC 1.7500  2.0133 2.2398 6.3314 1.1595 1.3145  1.4364  3.5772 

CCC 3.0885  3.8217 3.4246 6.8767 2.1228 2.6312  2.3553  3.8568 
DBEKK 2.3138  2.8551 2.5999 6.5359 1.4522 1.7669  1.6169  3.6285 

Notes: The number with an underline stands for the smallest estimating error in each MCOV column. 
While weekly implied/realized measured covariances are built from the daily data, the forecasting 
models, MA100, EWMA, return-/range-based DCC, CCC and DBEKK, are estimated from the weekly 
data. 
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Table 4: One Period Ahead Out-of-sample Forecasting Errors for Covariances between the 
S&P500 and Nasdaq , S&P500 and Tbond, and Nasdaq and Tbond, 1994-2005 
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Panel A: S&P500 and Nasdaq 

 RMSE of Forecasting 
Implied/Realized MCOVs 

MAE of Forecasting 
Implied/Realized MCOVs 

Forecasting Model Return 
DCC 

Range
DCC DBEKK Realized Return

DCC 
Range 
DCC DBEKK Realized

MA100 10.0320 12.6749 10.0122 11.6286 7.5302 9.3476 7.6002 7.3431
EWMA 4.9520 6.9700 4.8070 8.0246 2.6979 3.6557 2.6238 4.3508

Return-based DCC 5.1180 7.2078 4.9745 8.0893 2.9547 3.8139 2.9023 4.6323
Range-based DCC 2.6403 4.2542 2.6543 6.6307 1.5516 2.4632 1.5767 3.7831

CCC 5.0825 7.2751 4.9428 8.0392 2.9045 3.8605 2.8517 4.5429
DBEKK 5.3983 7.0671 5.3358 8.4548 3.4496 4.0051 3.4297 5.1474

Panel B: S&P500 and Tbond 

 RMSE of Forecasting 
Implied/Realized MCOVs 

MAE of Forecasting 
Implied/Realized MCOVs 

Forecasting Model Return 
DCC 

Range
DCC DBEKK Realized Return

DCC 
Range 
DCC DBEKK Realized

MA100 4.0522  4.5289 4.1338 6.2178 2.5936 2.9375  2.5591  3.7136 
EWMA 2.2711  2.4909 2.5990 5.2098 1.6612 1.7209  1.9509  3.4361 

Return-based DCC 2.3588  2.6305 2.6427 5.2923 1.6899 1.8234  1.9373  3.4332 
Range-based DCC 1.5495  1.6577 1.8521 4.8244 1.1870 1.2324  1.4576  3.3154 

CCC 3.9834  4.4367 4.0850 6.1864 2.6654 2.9933  2.6903  3.7290 
DBEKK 2.3636  2.6734 2.5426 5.3584 1.6667 1.8773  1.8050  3.4377 

Panel C: Nasdaq and Tbond 

 RMSE of Forecasting 
Implied/Realized MCOVs 

MAE of Forecasting 
Implied/Realized MCOVs 

Forecasting Model Return 
DCC 

Range
DCC DBEKK Realized Return

DCC 
Range 
DCC DBEKK Realized

MA100 4.7287  5.6697 4.9060 8.0418 3.1770 3.8875  3.2096  5.0928 
EWMA 2.6121  2.8532 3.1809 6.8019 1.9748 2.0196  2.4486  4.6951 

Return-based DCC 2.2770  2.8180 2.8508 6.8034 1.6959 1.9846  2.1365  4.5082 
Range-based DCC 1.8996  1.9771 2.3652 6.4507 1.4528 1.5397  1.8030  4.5176 

CCC 3.9340  4.8145 4.2201 7.5815 2.5930 3.2158  2.8797  4.7704 
DBEKK 2.9788  3.6218 3.2204 6.9603 2.1415 2.6559  2.2870  4.7122 

Notes: There are 400 observations, about 8 years, in each of the estimated models. Additionally, the 
rolling sample method provides 223 one period ahead out-of-sample forecasting values for comparison. 
The first forecasted value occurs the week of September 3, 2001. The number with a underline stands 
for the smallest estimating error in each MCOV column. While weekly implied/realized measured 
covariances are built from the daily data, the forecasting models, MA100, EWMA, return-/range-based 
DCC, CCC and DBEKK, are estimated from the weekly data.  
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Table 5: Two Periods Ahead Out-of-sample Forecasting Errors for Covariances between the 
S&P500 and Nasdaq , S&P500 and Tbond, and Nasdaq and Tbond, 1994-2005 
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Panel A: S&P500 and Nasdaq 

 RMSE of Forecasting 
Implied/Realized MCOVs 

MAE of Forecasting 
Implied/Realized MCOVs 

Forecasting Model Return 
DCC 

Range
DCC DBEKK Realized Return

DCC 
Range 
DCC DBEKK Realized

MA100 10.0209 12.6501 10.0013 11.6138 7.5054 9.3048  7.5764  7.3041 
EWMA 5.1588  7.1954 4.9853 8.1626 2.8573 3.7846  2.7751  4.4787 

Return-based DCC 5.2614  7.3452 5.0987 8.1326 3.1668 3.9516  3.0825  4.7778 
Range-based DCC 3.0250  4.9838 2.8728 7.0416 1.8082 2.7501  1.7350  4.1742 

CCC 5.2080  7.3920 5.0496 8.0785 3.0874 3.9658  3.0198  4.6696 
DBEKK 5.7708  7.4828 5.6593 8.7537 3.8107 4.3520  3.7652  5.4251 

Panel B: S&P500 and Tbond 

 RMSE of Forecasting 
Implied/Realized MCOVs 

MAE of Forecasting 
Implied/Realized MCOVs 

Forecasting Model Return 
DCC 

Range
DCC DBEKK Realized Return

DCC 
Range 
DCC DBEKK Realized

MA100 4.0502  4.5268 4.1322 6.1994 2.5848 2.9280  2.5523  3.6855 
EWMA 2.4112  2.6242 2.7411 5.2543 1.7664 1.8274  2.0619  3.4620 

Return-based DCC 2.5104  2.7709 2.8035 5.3294 1.8024 1.9202  2.0612  3.4563 
Range-based DCC 1.8043  1.9891 2.1152 4.9762 1.3317 1.4210  1.6349  3.3842 

CCC 4.0033  4.4561 4.1082 6.1881 2.6878 3.0127  2.7175  3.7295 
DBEKK 2.5918  2.8906 2.7875 5.4728 1.7719 1.9926  1.9170  3.5269 

Panel C: Nasdaq and Tbond 

 RMSE of Forecasting 
Implied/Realized MCOVs 

MAE of Forecasting 
Implied/Realized MCOVs 

Forecasting Model Return 
DCC 

Range
DCC DBEKK Realized Return

DCC 
Range 
DCC DBEKK Realized

MA100 4.7260  5.6664 4.9042 8.0410 3.1664 3.8745  3.2003  5.0854 
EWMA 2.7232  2.9295 3.3058 6.8461 2.0928 2.1070  2.5780  4.7314 

Return-based DCC 2.4507  2.9404 3.0273 6.8715 1.8349 2.0725  2.3038  4.5910 
Range-based DCC 2.0274  2.2012 2.5453 6.5780 1.5854 1.7034  2.0085  4.6282 

CCC 3.9638  4.8367 4.2528 7.5942 2.6184 3.2298  2.9035  4.7792 
DBEKK 2.9349  3.5540 3.2597 7.1486 2.1484 2.6495  2.3864  4.7398 

Notes: There are 400 observations, about 8 years, in each of the estimated models. Additionally, the 
rolling sample method provides 223 two periods ahead out-of-sample forecasting values for 
comparison. The first forecasted value occurs the week of September 10, 2001. The number with a 
underline stands for the smallest estimating error in each MCOV column. While weekly 
implied/realized measured covariances are built from the daily data, the forecasting models, MA100, 
EWMA, return-/range-based DCC, CCC and DBEKK, are estimated from the weekly data. 
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Table 6: Four Periods Ahead Out-of-sample Forecasting Errors for Covariances between the 
S&P500 and Nasdaq , S&P500 and Tbond, and Nasdaq and Tbond, 1994-2005 
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Panel A: S&P500 and Nasdaq 

 RMSE of Forecasting 
Implied/Realized MCOVs 

MAE of Forecasting 
Implied/Realized MCOVs 

Forecasting Model Return 
DCC 

Range
DCC DBEKK Realized Return

DCC 
Range 
DCC DBEKK Realized

MA100 9.9384  12.5278 9.9326 10.9551 7.4248 9.1916  7.5044  7.0575 
EWMA 5.4703  7.4334 5.2721 7.7152 3.0789 3.9020  2.9804  4.2977 

Return-based DCC 5.4723  7.3991 5.2934 7.6426 3.4886 4.0222  3.3987  4.6995 
Range-based DCC 3.9475  5.9944 3.6582 6.9068 2.4983 3.2709  2.3640  4.2905 

CCC 5.4032  7.4394 5.2278 7.5812 3.3911 4.0207  3.3097  4.5842 
DBEKK 6.4161  8.0126 6.2415 8.6573 4.3837 4.8316  4.3110  5.6351 

Panel B: S&P500 and Tbond 

 RMSE of Forecasting 
Implied/Realized MCOVs 

MAE of Forecasting 
Implied/Realized MCOVs 

Forecasting Model Return 
DCC 

Range
DCC DBEKK Realized Return

DCC 
Range 
DCC DBEKK Realized

MA100 4.0166  4.5060 4.0961 6.0158 2.5478 2.8966  2.5156  3.5887 
EWMA 2.5924  2.8247 2.9166 5.1686 1.9274 1.9980  2.2325  3.4691 

Return-based DCC 2.6846  2.9708 2.9777 5.2213 1.9618 2.0769  2.2338  3.4559 
Range-based DCC 2.1849  2.4616 2.4854 4.9455 1.6185 1.7431  1.8979  3.3612 

CCC 4.0058  4.4730 4.1117 6.0103 2.7001 3.0312  2.7344  3.6538 
DBEKK 2.9526  3.3002 3.1526 5.5049 2.0352 2.2675  2.1982  3.5668 

Panel C: Nasdaq and Tbond 

 RMSE of Forecasting 
Implied/Realized MCOVs 

MAE of Forecasting 
Implied/Realized MCOVs 

Forecasting Model Return 
DCC 

Range
DCC DBEKK Realized Return

DCC 
Range 
DCC DBEKK Realized

MA100 4.6884  5.6449 4.8613 7.7705 3.1251 3.8393  3.1545  4.9519 
EWMA 2.8514  3.0233 3.4438 6.6537 2.2778 2.2529  2.7671  4.6719 

Return-based DCC 2.6398  3.0991 3.2059 6.6433 2.0679 2.2368  2.5450  4.5126 
Range-based DCC 2.2393  2.4987 2.7943 6.3692 1.8008 1.9312  2.2642  4.4420 

CCC 3.9711  4.8553 4.2560 7.3273 2.6325 3.2528  2.9223  4.6733 
DBEKK 3.2078  3.8322 3.5380 6.9793 2.4081 2.8222  2.6711  4.6900 

Notes: There are 400 observations, about 8 years, in each of the estimated models. Additionally, the 
rolling sample method provides 223 four periods ahead out-of-sample forecasting values for 
comparison. The first forecasted value occurs the week of September 17, 2001. The number with a 
underline stands for the smallest estimating error in each MCOV column. While weekly 
implied/realized measured covariances are built from the daily data, the forecasting models, MA100, 
EWMA, return-/range-based DCC, CCC and DBEKK, are estimated from the weekly data. 
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Figure 1: S&P500, Nasdaq Indices, and Tbond Yield Weekly Closing Prices, 1994-2005. 
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Figure 2: Four Measured Covariances for S&P500 and Nasdaq Indices, 1994-2005. 
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Figure 3: Four Measured Covariances for S&P500 Index and Tbond Yield, 1994-2005. 
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Figure 4: Four Measured Covariances for Nasdaq Index and Tbond Yield, 1994-2005. 
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Figure 5: In-sample Forecasting Covariances using 6 models for S&P500 and Nasdaq 
Indices, 1994-2005. 
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Figure 6: In-sample Forecasting Covariances using 6 models for S&P500 Index and 
Tbond Yield, 1994-2005. 
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Figure 7: In-sample Forecasting Covariances using 6 models for Nasdaq Index and 
Tbond Yield, 1994-2005. 
 

0

10

20

30

40

50

60

2002M01 2002M07 2003M01 2003M07

MA100
EWMA
return_DCC

range_DCC
CCC
DBEKK

Realized

 
Figure 8: One Period Ahead Out-of-sample Forecasting Realized Covariances using 6 
models for S&P500 and Nasdaq Indices, 1994-2005. For convenience in distinguishing, 
we may reserve the first 100 observations (in all we have 223) with one step ahead of 
out-of-sample forecasting for covariances. 
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Figure 9: One Period Ahead Out-of-sample Forecasting Realized Covariances using 6 
models for S&P500 Index and Tbond Yield, 1994-2005. For convenience in distinguishing, 
we may reserve the first 100 observations (in all we have 223) with one step ahead of 
out-of-sample forecasting for covariances. 
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Figure 10: One Period Ahead Out-of-sample Forecasting Realized Covariances using 
6 models for Nasdaq Index and Tbond Yield, 1994-2005. For convenience in 
distinguishing, we may reserve the first 100 observations (in all we have 223) with 
one step ahead of out-of-sample forecasting for covariances. 
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