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Estimating Value at Risk with a Dynamical  

Conditional Range Model 
 
 
 

Abstract: 
 

Value at risk (VaR) is a single, summary, statistical measure of possible asset 
losses. This paper explores the various VaR models that were proposed with different 
characteristics of financial data. Above all, we introduce the idea of dynamical range 
process to the VaR estimation. Accordingly, the Conditional Autoregressive Range 
(CARR) model proposed by Chou (2005) is used for the estimation of volatility 
process for single asset and extended to the modification of Engle’s (2002) DCC 
model for a portfolio. Then the range-based VaR model is constructed. Our method 
can be applied to measure the VaR for single assets and for portfolios. Using 
empirical data of the stock indices of S&P 500 composite and the ten-year Treasury 
bond, we find that the range-based model with theory of extreme value have salient 
evaluation performance than other alternatives, such as the conventional return-based 
models in the estimation of VaR.   
 
 
Keywords: Value at risk, CARR, Extreme value theory, DCC, Range.  
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1. Introduction 
    

    Value at risk (VaR, hereafter) has become the conventional measure of market 

risk employed by financial institutions for both control and risk management purposes. 

Specifically, VaR is a measure of losses due to normal market movement. Losses 

greater than the VaR are suffered only with a specified small probability. Subject to 

the simplifying assumptions used in its calculation, VaR aggregates all of the risks in 

an asset or a portfolio into a single number suitable for use in the boardroom, 

reporting to regulators, or disclosure in an annual report. Once one crosses the hurdle 

of using a statistical measure, the concept of VaR is really a straightforward to 

understand. It is simply a way to describe the magnitude of the likely losses on the 

asset. 

  

    Some financial institutions had been working on their own internal model and 

VaR software systems were also being developed by specialist companies that 

concentrated on software but were not in a position to provide data. The resulting 

systems differed quite considerably from each other. Even where they were based on 

broadly similar theoretical ideas, there were still considerable differences in terms of 

subsidiary assumptions, use of data, procedures to estimate volatility and correlation, 

and many other details. Besides, some systems were built using historical simulation 

approaches that estimate VaR from histograms of past profit and loss data, and other 

systems were developed using Monte Carlo simulation techniques. 

 

     VaR information can be used in many ways. First, senior management can use it 

to set their overall risk target, as well as from that determine risk targets and position 

limit down the line. If they want the firm to increase its risks, they would increase the 
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overall VaR target, and vice versa. Second, VaR can be very useful for reporting and 

disclosing purposes, and firms increasingly make a point of reporting VaR 

information in their annual reports.1Third, VaR information can be used to implement 

portfolio-wide hedging strategies that are otherwise rarely possible. Fourth, since VaR 

tells us the maximum amount we are likely to lose, we can use it to determine asset 

allocation. Finally, VaR information can be used to provide new remuneration rules 

for traders, managers and other employees that take account of the risks they take, and 

so discourage the excessive risk taking that occurs when employees are rewarded on 

the basis of profits alone, without any reference to the risks they took to get those 

profits. In short, VaR can help provide for a more consistent and integrated approach 

to the management of different risks, leading also to greater risk transparency and 

disclosure, and better strategic management.  

 

    Despite its conceptual simplicity, the evaluation of VaR is a very challenging 

statistical problem and none of the approaches developed so far gives satisfactory 

solutions. Due to VaR is simply a specific quantile of future portfolio values, 

conditional on current information, and due to the distribution of portfolio return 

typically changes over time, the mission is to get an appropriate model for time 

varying conditional quantiles. In this paper we introduced a range-based model that 

proposed by Chou(2005) for volatility modeling and arrange the elegant results from 

CARR model into the estimation of VaR. Namely, we provide a scheme for estimating 

VaRt as a function of variables known at time t-1.  

 

The paper is organized as follows. In section 2, we briefly review the related 

                                                 
1 For more on the use of VaR for reporting and disclosure purposes, see Dowd(2000), Jorion(2000) and 
Moosa and Knight(2001). 
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literature and current approaches to VaR estimation. Section 3 discusses the range 

based VaR model and data analysis. Section 4 presents an empirical application to real 

data for an asset and model identification. Selection 5 is model back testing. Namely, 

we diagnose the number of exceptions during the stage of back testing for each 

feasible model. Section 6 extends to the evaluation of portfolio’s VaR for robust 

checking. Finally, section 7 concludes the paper.  

 

 
2. Conventional VaR Models 
  

The Basel Committee on Banking Supervision (1996) at the Bank for 

International Settlements uses VaR to require financial institutions such as investment 

corporations and banks to meet capital requirements to cover the markets that incur as 

a result of their normal operations. Regardless the VaR is overestimate or 

underestimate, the result is an inefficient allocation of resources. The existing models 

for estimating VaR differ in many aspects. The main differences among VaR models 

are related to the distribution of the portfolio returns. Several different methodologies 

have been employed. Some first estimate the volatility of the portfolio, perhaps by 

GARCH or exponential smoothing, and then calculate VaR from this, often assuming 

normality. Others use the logic of the extreme value theory. It is not difficult to 

comment each of these approaches. The volatility approach assumes that the negative 

extremes follow the same process as the rest of the returns and that the distribution of 

the returns divided by standard deviations will be independent and identically 

distributed, if not normal. Applications of extreme value estimation methods to VaR 

have been recently proposed, also see Danielsson and de Vries(2000). The intuition is 

to manipulate results from statistical extreme value theory and to pay attention to the 

asymptotic form of the tail, rather than modeling the whole distribution. Analogical 
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criticism also can find by Engle (2002). Engle (2002) infers two possible conflicts 

behind this approach. First it uses merely for very low probability quantiles. Second, 

these approaches are constructed in a framework of i.i.d variables, which is not 

consistent with the properties of most financial datasets and consequently the risk of a 

portfolio may not vary with the conditional information set.2 As to what approach is 

appropriate in data fitting and the performance is better for the evaluation of VaR 

should be an empirical issue. 

 

 
2.1 Static (unconditional) VaR Model 
 

We explore three popular approaches for unconditional VaR models: the first is 

historical simulation method. The second is unconditional variance and covariance 

approach. Finally, we illustrate the approach of the unconditional VaR-X method.     

      

    Historical simulation approach is an extremely popular method for many types of 

institutions for the estimate of VaR. One simply uses real historical data to build an 

empirical density for the asset. No assumption about the analytic form of this 

distribution is made at all. Here we use the hypothesis that the distribution is 

stationary. The VaR is then obtained by determining the asset return that corresponds 

to the confidence level chosen. 

 

     JP Morgan made publicly available in 1994 a method to estimate VaR that is 

closely related to the method used internally. The approach is called RiskMetricsTM or 

                                                 
2 McNeil and Frey (2000) proposed fitting a GARCH model to the time series of returns and then 
applying the extreme value theory to the standardized residuals, which are assumed to be i.i.d. 
Although it is one of modification over existing applications, this idea still suffers from the same 
comment applied to the volatility models.  
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unconditional variance covariance method. To estimate VaR, one has to forecast the 

fifth percentile of the distribution of the portfolio’s return under the confidence levels 

of 95%. This approach usually assumes that the continuously compounded return of 

the asset over the next day is normally distributed. When an asset has a normally 

distributed return, the five percent VaR can be obtained by multiplying the forecast of 

the volatility of the return of the asset by 1.645. Consequently, to obtain an estimate of 

the VaR, the unconditional variance-covariance method has to come up with an 

estimate of the volatility of the asset. Since the distribution for the return of asset is 

not time varying, so we call such a method is Delta-Normal approach for the time 

being. In other words, under 100( c )% confidence level, assume the lowest value of 

asset is *
1+tV , we can find the expected value *

1+tX  which  corresponds to the *
1+tV . 

Meanwhile, µσ ˆˆ*
1 +−= ∗
+ NX t , where N* denotes the critical value based on standard 

normal distribution, µ̂  is the estimate of asset historical average return and σ̂  is a 

constant volatility which is estimated from historical trading data. 

 

    If we assume the return of asset follows normal distribution when it is actually 

fat-tailed, then we are likely to underestimate the value of VaR, and these 

underestimates are likely to be particularly large when dealing with VaR at high 

confidence levels. One way to accommodate excess kurtosis is to use a t distribution 

instead of a normal one. For example, a t distribution with υ  degrees of freedom has 

a kurtosis of 3( 2)
( 4)
υ
υ
−
−

 which is greater than the situation of normal distribution, 

given 5υ ≥ . Besides, an alternative VaR approach is proposed by Huisman, Koedijk 

and Pownall(1998), they called VaR-X method. Instead of fitting the t distribution by 

matching the number of degrees of freedom,υ , to the empirical kurtosis, they make 

the number of degrees of freedom equal to the inverse of a Hill estimator of the tail 
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index, modified to correct for small sample bias. The problem with this approach is 

that it produces an implied kurtosis. Namely, equal to 3( 2)
( 4)
υ
υ
−
−

 that may not equal 

the empirical kurtosis, and where it does match the empirical kurtosis, it is much 

easier to dispense with the tail index estimation and simply use the kurtosis matching 

method.      

 

    However, as stated by Jorion(2000), there are some estimation errors will incur 

when extreme value theory is used with ignoring the characteristic of 

heteroscedasticity. For the sake of such a problem, McNeil and Frey (2000) proposed 

that one can choice suitable volatility model for fitting the process of returns and 

collect standardized residual series for the estimation of the tail index. Here, we first 

introduced popular ARMA(m,n) model to character the return’s process. As to the 

structure for conditional volatility, there are two approaches are considered, too. One 

is conventional GARCH(p,q) model suggested by Bollerslev (1986) and the other is 

crisp CARR(p,q) model proposed by Chou(2005). Hence, combining the mean 

equation and the volatility equation, we are able to establish the 

ARMA(m,n)-GARCH(p,q) and the CARR(p,q) models as the intermediate stage for 

the estimation of VaR. Below structures are their functional forms in general.  
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where Xt denotes log-return at time t, )( 1−−= tttt IXEXε , µ , iφ , jθ , Gω , G
iα  

and G
iβ  are parameters. Some constraints for these parameters are 0>Gω , 0≥G

iα , 
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0≥G
jβ and 1

11

<+∑∑
==

q

j

G
j

p

i

G
i βα , here pi ,,1L=  and qj ,,1L= . Equation (1) is 

called ARMA(m,n)-GARCH(p,q) and one can obtain the series of expected returns 

ˆ{ }tµ and the series of standard deviation ˆ{ }tσ from this equation. Besides, one can 

obtain standardized residual series { }G
tz  readily. Their outcomes are shown on 

equation (2). 

1 1 1
1

1

( ) ( )
{ , , } { , , }

ˆ ˆ
t n t n t n t t tG G

t n t
t n t

X E X I X E X I
z z

σ σ
− + − + − −

− +
− +

− −
=L L                  (2)                

 

As to the structure of CARR(p,q) model can show as equation (3). 

),1(~1 t

iid

ttttt fIuu ξλ −=ℜ                                    

jt
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j

C
jit

C
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C
t −

= =
−∑ ∑+ℜ+= λβαωλ

1 1

                                       (3) 

        

where )ln()ln( low
t

high
tt PP −=ℜ  denotes range variable. tλ  is conditional mean of 

range given all available information set up to time t. The disturbance term is denoted 

by tu . The coefficients ( ,Cω C
iα , C

jβ ) in the conditional range variable equation are 

all positive to ensure positively of tλ . Due to the range tℜ  and its expected value 

tλ  are positively values, thus tu  belongs to positive field, too. A natural choice for 
the distribution is the exponential as it has non-negative possibility. Assuming that the 
distribution follows an exponential distribution with unit mean then the log likelihood 
function can be written as  

∑
=

⎥
⎦

⎤
⎢
⎣

⎡ ℜ
+−=ℜℜ

T

t t

t
tT

C
j

C
i

CL
1

1 )ln(),,;,,(
λ

λβαω K                             (4) 

Similar to the approach in equation (2), one can get a similar standardized residual 
series based on CARR model. The expression can be stated as equation (5). 

1 1
1

1

ˆ ˆ
{ , , } { , , }

ˆ ˆ
C C t n t n t t
t n t

t n t

z z λ λ
µ µ

− + − +
− +

− +

ℜ − ℜ −
=L L                                (5) 

For the details in advance, one can consult Chou(2005) for more explanation. 
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    Using the 1{ , , }G G
t n tz z− + L and 1{ , , }C C

t n tz z− + L with VaR-X method,3 the tail index 

can be computed, respectively. In this paper, the former approach is called VaR-X 

after GARCH-filtered and the later one is called VaR-X after CARR-filtered.  

 
 
2.2 Dynamical (conditional) VaR Model 
           

The main difference between dynamical VaR model and static one is the 

procedure for estimating volatility process. Under static model, by and large, the 

probability distribution of asset’s return is fixed. Hence, historical standard deviation 

of asset return amounts to the estimate of volatility in the future. As to the dynamical 

model, the probability distribution of asset’s return is time varying with 

heteroscedasticity. Based on such a situation, it is necessary to using past trading data 

for inferring the possible volatility process and calculating a more accurate estimate of 

the VaR. Hence, we incorporate two types of dynamical VaR models, including 

conditional variance-covariance method and conditional VaR-X method. Recall the 

critical expression for the estimation of VaR under unconditional variance-covariance 

method is µσ ˆˆ*
1 +−= ∗
+ NX t .4 Corresponding to the conditional variance-covariance 

method, this equation has to be modified as 11
**

1 ˆˆ +++ +−= ttt NX µσ . There are many 

approaches for the estimation of volatility 1ˆtσ +  in the related literature. According to 

the different methods for the estimation of volatility, one can induce various VaR 

models. For instance, the GARCH model and CARR model are appropriated for the 

estimation of volatility 1ˆtσ +  in our later discussion. For briefly, we call these two 

                                                 
3 VaR-X method is proposed by Huisman, Koedijk and Pownall (1998).  
4 Where N* denotes the critical value based on standard normal distribution, µ̂  is the estimate of 

asset historical average return and σ̂  is a constant volatility which is estimated from historical 
trading data. 
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methods for the evaluations of VaR are GARCH-Normal approach and 

CARR-Normal approach, respectively.        

 

Another type of conditional dynamic VaR model is conditional VaR-X method. 

There are at least two methods belong to this type. One is called GARCH-VaR-X 

model, and the other is called CARR-VaR-X method. Adjusting from the VaR-X after 

GARCH-filtered approach in the estimation of theσ̂ , which is fitted from historical 

standard deviation of asset’s return. However, GARCH-VaR-X model replaces the 

estimate of σ̂ for t+1 with 1ˆtσ +  which from the result of GARCH forecasting model. 

By the same token, CARR-VaR-X model modifies the VaR-X after CARR-filter 

approach in the estimation of σ̂  with 1ˆtσ +  which is derived from the CARR 

model.  

 

 

3. Data Analysis 

 

       We collect the daily index data of the S&P 500 composite and the U.S. 

10-year treasure bond for the sample period from November 1, 1993 to March 17, 

2006. Data are mainly collected from Yahoo Finance. It is worth taking a look at some 

descriptive statistics for the returns of the S&P 500 and the U.S. 10-year treasure bond. 

We illustrate them in Table 1.  

 

 

 

 

 



 11

Table 1 
Descriptive statistics for the returns of the S&P 500 stock index and the U.S. 10-yearT-bond. 

（1993/11/1~2006/3/17） 
Descriptive statistics S&P500 10-year T-bond 

Mean（%） 0.033  0.005  

Median（%） 0.051  0  

Maximum（%） 5.574  5.090  

Minimum（%） -7.113  -5.972  

St.d（%） 1.070  1.180  

Skewness -0.115  -0.381  

Kurtosis 6.644  5.164  

Jarque-Bera 1722.171*** 680.110*** 

 （0） （0） 

< -1.65 sample ratio（%）# 5.923% 5.962% 

< -1.96sample ratio（%）# 3.692% 4% 

< -2.33sample ratio（%）# 2.039% 2.269% 

Ljung-Box statistics for autocorrelation     

)6(Q  10.321*(0.1) 16.032**(0.014) 

)12(Q  24.105**（0.02） 26.274***（0.01） 

)6(2Q  598.84***（0） 232***（0） 

)12(2Q  948.47***（0） 408.93***（0） 

Note:  

1. Jarque-Bera=N/6(S2+1/4(K-3)2)~ 2 (2)χ  is useful in normality testing. The null hypothesis is that 
data follow normal distribution, N is sample size, S denotes skewness as well as K states the kurtosis 
for data selected. Based on the significant level is α=5%, then 99.5)2(2

1 =−αχ . Namely, under the 
confidence level at 5% , if  the value of JB is greater  than the critical value of  5.99, then the 
assumption of normality is rejected.  

2. The symbol # shows the percentage ratio of the standardized data less than the critical value. 
3.Q  is proposed by Ljung-Box (1978) for the testing of autocorrelation.  

i.e. Q=T(T+2)(Σ kτ̂
2/T-k)~ 2

mχ  , here kτ̂  is the ACF for the k lag, T denotes the sample size and m 
is the largest lag period.  

4. Numbers in parentheses are p-values as well as *, ** and *** represent the level of 10%, 5% and 1% 
are significant, respectively. 

 

 

 

 

 

   From Table 1, we find that the average return for the S&P 500 stock index is 
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greater than the U.S. 10-year T-bond, nearly six times. As to the normality test, both 

of them are skew to the left in terms of skewness and the coefficients of kurtosis are 

more than three. Additionally, the values for JB are 1722.171 and 680.11 for the S&P 

500 stock index and the 10-year T-bond respectively. Both of them reject the null 

hypothesis for normality testing. For comparison, we compute the descriptive 

statistics for range variable data for the S&P 500 stock index and the 10-year T-bond 

in Table 2. 

    

 

 

Table 2 
Descriptive statistics for the ranges variable of the S&P 500 stock index and the U.S. 10-year T-bond. 

（1993/11/1~2006/3/17） 

Descriptive statistics S&P500 10-year T-bond 

Mean（%） 1.318  1.399  

Median（%） 1.111  1.193  

Maximum（%） 8.479  7.259  

Minimum（%） 0.239  0.001  

St.d（%） 0.821  0.873  

Jarque-Bera 13593.940***（0） 5008.238***（0） 

)6(Q  4395.3***（0） 1279.8***（0） 

)12(Q  7870.4***（0） 2343.3***（0） 

Note: 

1. Range )]ln()[ln(100 low
t

high
t PP −×= , where high

tP  is the highest price and low
tP  is the lowest 

price at time t period. 
2. )6(Q  is Q statistics for the daily range until to lag sixth period.  
3. Numbers in parentheses are p-values as well as *, ** and *** represent the level of 10%, 5% and 1% 
are significant, respectively. 
 

 

 

 

Similar to the results in the JB values of return-based data for normality testing. In 
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other words, regardless range-based or return-based variable, all of them are not 

belong to the normal distribution in statistics conventionally. However, when compare 

the statistics of daily standard deviation for range-based data and return-based data. 

No matter the S&P 500 stock index or the U.S. 10-year T-bond, it is salient that the 

dispersion for daily range-based data smaller than the daily return-based data. 

Intuitively, the range-based data seems more appropriate in capturing the volatility 

process than the return-based data.     

 

   From the Q-statistics in Table 1 and Table 2, we find that both of the return-based 

or range-based series, the S&P 500 stock index and the U.S. 10-year T-bond data have 

the phenomenon of autocorrelation. For solving such problem in econometric, first, 

we adopted the approach of Berkowitz and O’Brien (2002) in return-based series 

similarly. They fit the structure of conventional ARMA(1,1) model into mean 

equation for the expected value of asset returns. Besides, one can try various GARCH 

structures for the modeling of volatility process. There are GARCH(1,1), 

GARCH(1,2), GARCH(2,1) and GARCH(2,2) frameworks are examined later. 

Meanwhile, selecting the better one judging from the criticism of SBC(Schwartz 

Baysian information criterion). We demonstrate the output in the upper panel of Table 

3. 

 

 

 

 

 

 

Table 3: 
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ARMA(1, 1)－GARCH(p, q) and CARR(p, q) models for the S&P 500 stock index and the 
U.S. 10-year T-bond data with SBC statistics 

（1993/11/1~2006/3/17） 

ARMA(1, 1)－GARCH(p, q) model: 

),0(~ 2
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Model types SBC 

ARMA(1, 1)－GARCH(p, q) S&P500 10-year T-bond 

ARMA(1, 1)－GARCH(1, 1) 2.7076 3.0544 

ARMA(1, 1)－GARCH(1, 2) 2.7081 3.0569 

ARMA(1, 1)－GARCH(2, 1) 2.7104 3.0569 

ARMA(1, 1)－GARCH(2, 2) 2.7089 3.0593 

 SBC 

CARR(p, q) S&P500 10-year T-bond 

CARR(1, 1) 2.7062 3.1455 

CARR(1, 2) 2.7084 3.1479 

CARR(2, 1) 2.7079 3.1480 

CARR(2, 2) 2.7094 3.1504 

Note: SBC（Schwartz Baysian information criterion） 2ˆln( ) / ln( )s L T T= + , 2ŝ  is variance of 
residuals, L is the number of parameter to be estimated. T denotes sample size.  

 

 

 

 

 

 

 

 

 

4.  Model Fitting and Selection  
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No matter what the return series of the S&P 500 stock index or the U.S. 10-year 

T-bond data, judging by the conventional SBC criticism for model fitting, 

ARMA(1,1)-GARCH(1,1) corresponds to the smallest one. Hence, it is reasonable to 

choose ARMA(1,1)-GARCH(1,1) model as representation of GARCH family for the 

basis of the comparison of VaR later. As to the appropriate model structure for the 

range-based data, we find that the CARR(1,1) is relatively suitable one under the SBC 

criterion, too. Data fitting results are shown in the lower panel of Table 4. Likewise, 

the CARR(1,1) model can be used as the representation of the CARR family in the 

comparison of the evaluation of VaR.   

 

     For the ARMA(1,1)-GARCH(1,1) and CARR(1,1) models with the S&P 500 

stock index and the U.S. 10-year T-bond data, their parameters estimates are 

demonstrated in Table 4. Empirical results from Table 4, one can get an apparent 

demonstration by coefficients’ significance that these two models can indeed act as a 

pivotal role to depict stock and bond markets volatility patterns. 

 

 

 

 

 

 

 

 

 

Table 4: 
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Estimating parameters for ARMA(1, 1)－GARCH(1, 1) and CARR(1, 1)models
（1993/11/1~2006/3/17） 
ARMA(1, 1)－GARCH(1,1) model: 

),0(~ 2
11111 t

iid

tttttt NIXX σεεεθφµ −−− +++=  
2 2 2

1 1 1 1
G G G

t t tσ ω α ε β σ− −= + +  

CARR(1,1) model: 

),1(~1 t

iid

ttttt fIuu ξλ −=ℜ  

1 1 1 1
C C C

t t tλ ω α β λ− −= + ℜ +  
 

 

  ARMA(1, 1)－GARCH(1, 1) 

  S&P500 10-year T-bond 

µ̂  0.0561*** 0.0154 

 （3.9315） （0.8147） 

1̂φ  -0.8810*** -0.3867* 

 （-3.8841） （-1.6963） 

1̂θ  0.8730*** 0.4282* 

 （3.7317） （1.9306） 
ˆ Gω  0.0069*** 0.0139*** 

 （2.7161） （2.4017） 

1ˆ
Gα  0.0714*** 0.0449*** 

 （6.1137） （4.8773）  

1̂
Gβ  0.9245*** 0.9451*** 

  （86.0830） （81.0940） 

  CARR(1, 1) 

  S&P500 10-year T-bond 
ˆ Cω  0.0150*** 0.0164*** 

 （3.7937） （3.2064） 

1ˆ
Cα  0.1372*** 0.0683*** 

 （11.3993） （8.0726） 

1̂
Cβ  0.8514*** 0.9198*** 

  （66.3967） （87.1971） 

 
Note: 1. µ̂ , 1̂φ  , 1̂θ  , ˆ Gω , 1ˆ

Gα  and 1̂
Gβ are parameter estimates in ARMA(1, 1)-GARCH(1, 1) 

model. Meanwhile, ˆ Cω , 1ˆ
Cα  and 1̂

Cβ  are parameter estimates in CARR(1, 1) model. 
2. Numbers in parentheses are t-values. 
3. *, ** and *** represent the level of 10%, 5% and 1% are significant, respectively. 

 

 

After the parameters estimation for the ARMA(1, 1)－GARCH(1, 1) and 
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CARR(1,1) models are achieved. Using the series of 1{ , , }G G
t n tz z− + L and 

1{ , , }C C
t n tz z− + L with VaR-X method which derived by equation (2) and (5), the tail 

index can be computed, respectively. Again, the former approach is called VaR-X 

after GARCH-filtered and the later one is called VaR-X after CARR-filtered in this 

paper. Both of these two models have incorporated the characteristic of thick tail of 

data. Reviewing the descriptive statistics for the residuals with these two series after 

GARCH and CARR models filtered on Table 5. Clearly, we improve most of the 

problems about the phenomenon of autocorrelation from original returns and ranges 

series as well as capture the patterns of heteroscedasticity and volatility clustering. 

Even the value of JB is smaller than the original series apparently, but the null 

hypothesis of normal distribution still be rejected. Data still appear fat-tail than the 

normal distribution for the S&P 500 stock index and the 10-year T-bond yield rate. 

One of reasonable explanation is downside risk or some special extreme events lead 

to these results. Hence, it is worth introducing the concept of extreme value theory to 

dispose such a situation.      

 

 

 

 

 

 

 

 

 

Table 5 
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Descriptive statistics for the residuals of the S&P 500 stock index and the U.S. 10-year 
T-bond after GARCH and CARR models filtered.  

（1993/11/1~2006/3/17） 

 
Residuals after 

GARCH(1, 1) filtered 
Residuals after 

CARR(1, 1) filtered 
 Descriptive statistics S&P500 10-year T-bond S&P 500 10-year T-bond 

Mean（%） -0.003 0.012 -0.002 0.009 

St.d（%） 0.9995 0.9988 0.9225 0.9753 

Skewness -0.419 -0.161 -0.333 -0.185 

Kurtosis 4.579 4.506 3.965 4.653 

Jarque-Bera 412.94***（0） 306.49***（0） 177.45***（0） 370.81***（0）

)6(Q  6.226（0.398） 5.465（0.486） 3.935（0.685） 6.22（0.399） 

)12(Q  17.144（0.144） 13.299（0.348） 15.857（0.198） 13.877（0.309）

)6(2Q  4.358（0.628） 6.548（0.365） 4.082（0.666） 10.409（0.108）

)12(2Q  5.507（0.939） 9.471（0.662） 6.791（0.871） 13.484（0.335）

Note: 

1. In the second column are descriptive statistics for the residuals after GARCH(1, 1) filtered.  

i.e. 1 1 1
1

1

( ) ( )
{ , , } { , , }

ˆ ˆ
t n t n t n t t tG G

t n t
t n t

X E X I X E X I
z z

σ σ
− + − + − −

− +
− +

− −
=L L , where tµ̂  and tσ̂  

is estimates by the fitting of GARCH(1, 1) model.  

2. In the third column are descriptive statistics for residuals after CARR(1, 1) filtered. 

 i.e. 1 1
1

1

ˆ ˆ
{ , , } { , , }

ˆ ˆ
C C t n t n t t
t n t

t n t

z z λ λ
µ µ

− + − +
− +

− +

ℜ − ℜ −
=L L , where tµ̂  and t̂λ  is estimates by the 

fitting of CARR(1, 1) model. 

3. Numbers in parentheses are p-values. 

4. *, ** and *** represent the level of 10%, 5% and 1% are significant, respectively. 

     

 

The degree of thick or thin about the tail distribution can be quantity by tail 

index indirectly. Here we using modified Hill estimator to get the tail index for the 

S&P 500 stock index and the 10-year bond yield rate. 

        

We describe the well-known Hill approach to modeling the tails of heavy tailed 

distributions. For this method we assume that the underlying loss distribution is in the 

maximum domain of the Frechet distribution so that it has a tail structure, 
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( ) ( )F x L x x α−=                                                       (6) 

for a slowly varying function L with a positive parameter α . Traditionally, in the Hill 

approach, interest centers on the tail indexα , rather than its reciprocalξ . The goal is 

to find an estimator of α  based on identically distributed data x1,…,xn. The Hill 

estimator can be derived in various ways. Perhaps the most elegant is to consider the 

mean excess function of the generic logarithmic loss ln(x), where x is a random 

variable with definition in equation (6). Writing e* for the mean excess function of 

ln(x) and using integration by parts we find that 

*(ln ) (ln ln ln ln )e E X Xµ µ µ= − >
1 (ln ln ) ( )
( )

x dF x
F µ

µ
µ

∞

= −∫  

       1 ( )
( )

F x dx
F xµµ

∞

= ∫ ( 1)1 ( )
( )

L x x dx
F

α

µµ

∞
− += ∫                          (7) 

For µ  sufficiently large, the slowly varying function L(x) for x µ≥  can essentially 

be treated as a constant and taken outside the integral. We expect that 

* 1
,(ln )n k ne X α −≈  for n large and k sufficiently small, where , 1,...n n nX X≤ ≤  are the 

order statistics as usual. Evaluating *
,(ln )n k ne X  gives us the estimator is obtained by 

a minor modification: 

( ) 1
, , ,

1

1ˆ ( ln ln ) , 2
k

H
k n j n k n

j
X X k n

k
α −

=

= − ≤ ≤∑                                 (8) 

 

The Hill estimator is one of the best studied estimators in the extreme value 

theory literature. The asymptotic properties (consistency, asymptotic normality) of 

this estimator5 have been extensively investigated under various assumed models for 

the data. We concentrate on the use of the estimator in practice and, in particular, on 

                                                 
5 As sample size n →∞ , number of extreme k →∞ and the so called tail fraction 0k n → . 
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its performance relative to the generalized Pareto distribution (GPD). 

 

    In calculating one day risk, using 500 days trading data as a moving window is 

approved in general literature. In Table 6, we demonstrate the results of the tail index 

in the left tail for the S&P 500 stock index and the 10-year T-bond yield rate after 

GARCH and CARR models are filtered. No matter what year data for both markets, 

all of the estimates of tail index (γ ) are between 0.1653 and 0.2216. Seeming we can 

infer that these data can be viewed as Frechet distribution with the property of fat tail. 

Namely, these two asset returns have thick tail than normal type.6 By Koedijk, 

Schafgans and de Vries (1990), when the reciprocal of tail index7 is between zero and 

two, the distribution belongs to Pareto stable. If the reciprocal of tail index is greater 

than two, then the distribution belongs to t distribution. We show the estimates of tail 

index in Table 6.            

 

    Except for the result of the tail index in 10-year bond of 1997, all of them are 

smaller than 0.33. In other words, their reciprocal are greater than three that seems the 

proposed of fat tail distribution are supported, again. It is reasonable to inject the 

concept of extreme value theory for the discussion of VaR later.     

 

 

 

 

  

Table 6: 

                                                 
6 The tail index for normal distribution is zero. 
7 Conventionally, literature call the reciprocal of tail index is shape parameter.  
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The estimates of tail index for the residuals of the S&P 500 stock index and the U.S. 10-year 
T-bond after GARCH and CARR models filtered. 

 
 S&P 500 10-year T-bond  
 γ（GARCH） γ （CARR） γ（GARCH） γ （CARR） Sample size 
1995 0.207 0.202 0.238 0.242 43 
1996 0.250 0.257 0.306 0.293 251 
1997 0.281 0.285 0.336 0.314 250 
1998 0.287 0.287 0.262 0.270 250 
1999 0.226 0.223 0.233 0.227 250 
2000 0.149 0.141 0.192 0.196 252 
2001 0.122 0.099 0.185 0.210 248 
2002 0.127 0.091 0.156 0.171 250 
2003 0.146 0.137 0.158 0.137 252 
2004 0.107 0.095 0.228 0.212 252 
2005 0.062 0.053 0.169 0.172 250 
2006 0.068 0.055 0.161 0.173 52 
Total 0.174 0.165 0.222 0.220 2600 
Note: 
1. γ（GARCH）denotes the tail index after GARCH model filtered and γ（CARR）denotes the tail 
index after CARR model filtered. 
2. Conventionally, literature call the reciprocal of tail index is shape parameter. 
3. Due to the sake of data extraction, the sample size in 1995 and 2006 are only 43 and 52 respectively.  

 

 

5. Back Testing 

 

Whatever any method used for calculating VaR, an important reality check is 

back testing. The main purpose of this test is to make sure that the probability 

distribution is consistent with actual losses. It involves testing how well the VaR 

estimates would have performed in the past. Back testing compares the loss on any 

given day with the VaR predicted for that day. We will compare dynamical and static 

risk models as well as under the ranged based CARR model and return based GARCH 

model for VaR estimation. Suppose that we are computing a 1-day 95% VaR. Back 

testing would involve looking at how often the loss in a day exceeded the 1-day 95% 

VaR that would have been computed for that day. If this happened on about 5% of the 
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days, we can feel reasonably comfortable with the methodology for computing VaR. 

If it happened on, say, 10% of the days, the methodology is suspect. 

 

    When estimating the tail index, we choice 500 days as a moving window. For 

consistency, we still extract the same time span for model fitting, get parameters and 

obtain the corresponding one-day VaR. Then rolling over the moving window for 

another one-day VaR. Repeat again and again, collecting the value of VaRs to the 

number of 2,600. Later, using these results and compare to the real market returns 

data. Hence, which model’s performance is better can be compared by the procedure 

of back testing. Thus, we illustrate the empirical results for the historical simulation 

approach, static (unconditional) variance-covariance method (i.e. Delta-Normal) and 

extreme value method under the idea of VaR-X. According to the different disposition 

of standardized, there are two types for VaR-X. One is after GARCH model filtered 

and another is after CARR model filtered. All of the results for various static VaR 

models are listed on Table 7.       

 

 

 

 

 

 

 

 

Table 7: 

A back testing comparison of different static (unconditional) VaR models and actual losses for the 
S&P 500 stock index and the U.S. 10-year T-bond under the significant level of 95%, 
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97.5%, 99% and 99.5%   
（1993/11/1~2006/3/17） 

    HS Delta-Normal VaR-X 

        After GARCH filtered After CARR filtered

95% significant level  

S&P 500  139 138 159 166 

10-year T-bonds 141 131 174 176 

Exceptions 130 

97.5% significant level  

S&P 500  78 81 80 88 

10-year T-bonds 74 89 86 90 

Exceptions 65 

99% significant level  

S&P 500  39 53 34 37 

10-year T-bonds 38 58 44 43 

Exceptions 26 

99.5% significant level  

S&P 500  19 33 15 18 

10-year T-bonds 20 45 25 25 

Exceptions 13 

Note: 
1. We define an ‘exception’ to mean any day in which the actual data fell below the calculated 
confidence interval for the daily VaR under the full sample size of 2600.    
2. HS denotes the method of historical simulation. Delta-Normal method is based on static normal 
assumption. VaR-X after GARCH filtered represents VaR after GARCH model fitting and VaR-X after 
CARR filtered represents VaR after CARR model fitting. Each number denotes the number of 
exception under specific model.    
 

 

    Under 95% confidence levels, no matter stock market or bond market, the better 

one for VaR valuation is the Delta-Normal approach. The accumulated times of 

exception is most near to 130. The second best is the method of historical simulation. 

From these results imply that based on relative lower confidence level (ex: 95%), the 

extreme value methods are not better than the conventional approaches. One 

reasonable explanation maybe the extreme value approach magnified dramatically too 

much in the tail area. So that the accumulated times of exception are higher than the 



 24

real accumulated times. However, when the confidence level is increasing to 99%, the 

distinguished model is VaR-X with CARR model filtered for S&P 500 stock index. Its 

exception times are most near to the critical ones. By and large, the VaR-X approach 

is relative better than others for higher confidence levels for the S&P 500. Thus, 

introducing the theory of extreme value in the model of VaR can more firmly depict 

the dispersion of fat tail for the S&P 500 index. Also the performance in estimating 

the value of VaR is better than the conventional types. As to the 10-year T-bond 

market, the VaR estimation for the method of historical simulation is better than the 

others under the confidence levels of 99% and 99.5%. It is worth noting that the 

method of historical simulation assumes the volatility is the same now and in the 

future. Meanwhile, a longer data collected is necessary for historical simulation. 

Above all, the more confidence levels, the longer data collected is required. Thus, 

whether the historical extreme value is good enough for VaR estimation and the 

returns distribution is still unchanged now and in the future makes the two key factors 

for the accurateness of the historical simulation approach. However, in comparing 

static VaR evaluation model, we believe that the method of historical simulation can 

be incorporated into consideration. But, under data collection and reasonability, this 

proposition still need more evidence to support.                  

      

Considering the time varying property of volatility of trading data, we 

incorporate several well-known dynamical VaR models for comparison. The first 

model is EWMA (exponential weighted moving average) approach proposed by the 

RiskMetrics of J.P. Morgan. The second model is under normal distribution 

assumption for asset return, combined Delta-Normal method with GARCH model, we 

get a VaR model called GARCH-Normal approach. The third model is similar to the 

second model, but GARCH structure is replaced by CARR model, we name it as 
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CARR-Normal approach. Additionally, introducing the concepts of theory of extreme 

value, combined VaR-X and GARCH or CARR model, we obtain the 

GARCH-VaR-X model and the CARR-VaR-X model for the evaluation of VaR. All of 

the empirical results for the measurement of VaR under these five different methods 

are illustrated in Table 8 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8: 

The number of exceptions for dynamic(conditional) VaR model for the S&P 500 stock index and 
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10-year T-bond under the confidence levels of 95%, 97.5%, 99% and 99.5%. 

（1995/10/30~2006/3/17） 

  Normal assumption Under the theory of extreme value

  EWMA GARCH-Normal CARR-Normal GARCH-VaR-X CARR-VaR-X

95% confidence levels 

(the number of exception) 
130 130 

S&P 500 144 144 137 163 167 

10-year T-bond 130 128 131 150 157 

97.5% confidence levels 

(the number of exception) 
65 65 

S&P 500 96 87 73 84 77 

10-year T-bond 78 83 77 81 78 

99% confidence levels 

(the number of exception) 
26 26 

S&P 500 51 46 39 30 31 

10-year T-bond 52 52 45 37 28 

99.5% confidence levels 

(the number of exception) 
13 13 

S&P 500 34 29 27 12 13 

10-year T-bond 36 36 31 20 15 

Note: 
1. EWMA represents a dynamic conditional VaR model by EWMA under the variance-covariance of 
RiskMetrics method. GARCH-Normal denotes a dynamic conditional VaR model by GARCH model 
get a variance-covariance estimates. CARR-Normal denotes a dynamic conditional VaR model by 
CARR model get a variance-covariance estimates. GARCH-VaR-X refer to a VaR-X model based on 
GARCH volatility model with the theory of extreme value. CARR-VaR-X refers to a VaR-X model 
based on CARR volatility model with the theory of extreme value. 
2.  All the numbers in Table 8 represent the number of exceptions based on various VaR methods. 
 

 

    Under the confidence levels of 95%, regard to the S&P 500 stock index, the best 

dynamic VaR model is CARR-Normal model during the time horizon from 

1995/10/30 to 2006/3/17, which the accumulated number of exceptions is 137, most 

close to the theoretical number of 130. Other priorities are GARCH-Normal method, 

EWMA method, GARCH-VaR-X method and CARR-VaR-X in order. For the 10-year 

T-bond market, we can observe that the best one is EWMA method. Meanwhile, the 
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evaluation performance for VaR about CARR-Normal method and GARCH-Normal 

method are similar to the EWMA. The number of exceptions for these models is quite 

close to the theoretical value. In relatively, the more complex GARCH-VaR-X model 

and CARR-VaR-X model are not good enough under such a loose confidence levels 

(ex: 95%). Increasing the confidence levels to 99%, we can find that the evaluation 

performance for VaR is reverted apparently. Regardless the S&P 500 stock index or 

the 10-year T-bond market, the GARCH-VaR-X method and the CARR-VaR-X 

method have better performance than others in the evaluation of VaR. These 

inferences are convinced and proved again when we boost the confidence levels to 

99.5%. Under the frame of extreme value theory, the group of VaR-X performs more 

accurate than others. Above all, for the S&P 500 stock index, the number of 

exceptions for the CARR-VaR-X method is just matched with the number of theory. 

Based on various significant levels, one can dissect the performance priority in 

evaluating VaR for different models. Under more strict confidence levels, their 

accurateness can rank as follows roughly. They are CARR-VaR-X method, 

GARCH-VaR-X method, CARR-Normal method, GARCH-Normal method and 

EWMA method.  

 

The 1996 Amendment to the Basel accord describes the form of back testing that 

must be undertaken by firms wishing to use a VaR model for the calculation of market 

risk capital requirements. Regulators recommend to back-test the 1% 1-day VaR that 

is predicted by an internal model. The model should be back-test against both 

theoretical and actual profit and loss. Whether or not actual profit and loss gives rise 

to more exceptions during back-tests than theoretical profit and loss will depend on 

the nature of trading. From the viewpoint of Basel, they suggest the standard 

confidence level is 99% in the evaluation of VaR. Combined with the discussion 
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above, we propose that VaR-X methods with the concept of extreme value theory can 

express more efficiency than only VaR-X structures and EWMA model.         

 

    

6. Robust testing for the VaR of a portfolio 

 

Suppose your portfolio is composed of two assets. For example, place half your 

funds in the S&P 500 stock index and half in the 10-year T-bond. In theory, the 

correlation of the two-asset portfolio is time varying and is a function of covariance 

for these two assets. Engle (2002) provide another solution to dynamical correlation 

process by using a model entitled the Dynamic Conditional Correlation Multivariate 

GARCH (henceforth DCC). Intuitively, the conditional covariance estimation for two 

variables is simplified by estimating univariate GARCH models for each asset’s 

variance process. Then, carrying on by using the transformed standardized residuals 

from this stage, and estimating a time-varying conditional correlation estimator in the 

next stage, the DCC model is not linear, but can be estimated simply with the 

two-stage methods based on the maximum likelihood method.  

 

Chou, Wu, and Liu (2005) consider a refinement of the return-based DCC model 

by using the high/low range data of asset prices. Meanwhile, they introduce the idea 

of CARR model into DCC structure and call it range-based DCC model. Range-based 

DCC model can replace the original return-based DCC model in the estimation of 

correlation process. In other words, the DCC model is a new type of multivariate and 

can fit the GARCH or CARR model in the first stage, which is particularly convenient 

for complex dynamic systems. The DCC method first estimates volatilities for each 

asset and computes the standardized residuals. For bivariate cases, one can use the 
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GARCH and CARR structures to perform the first step, respectively. The covariance 

processes are then obtained readily using maximum likelihood estimation. For more 

information, one can consult Engle (2002), Chou (2005) and Chou, Wu, and Liu 

(2005). 

 

In order to discuss the performance of different VaR models for portfolio, here 

illustrates five methods for the valuation of VaR for the purpose of comparison. They 

are EWMA model of J.P. Morgan, GARCH-Normal with return-based DCC model, 

CARR-Normal with range-based DCC, GARCH-VaR-X with return based DCC 

model and CARR-VaR-X with range based DCC in order.     

         

Table 9 

The number of exceptions about the portfolio of the S&P 500 stock index and the 10-year T-bond for 

conditional VaR model under the confidence levels of 95% and 99%. 

（1995/10/30~2006/3/17） 

   Normal assumption Under the theory of extreme value 

Confidence levels  EWMA GARCH-Normal-DCC CARR-Normal-DCC GARCH-VaR-X-DCC CARR-VaR-X-DCC

95%    

Theoretical valve 130 130 

portfolio 145 126 126 151 151 

99%    

Theoretical valve 26 26 

portfolio 58 51 46 31 27 

Note: 
1. EWMA represents a dynamic conditional VaR model by EWMA proposed by J.P. Morgan. 
GARCH-Normal-DCC denotes a dynamic conditional VaR model by GARCH structure with 
return-based DCC model. CARR-Normal-DCC denotes a dynamic conditional VaR model by CARR 
structure with range-based DCC model. GARCH-VaR-X-DCC refers to a VaR-X model based on 
return-based GARCH-DCC model with the theory of extreme value. CARR-VaR-X-DCC refers to a 
VaR-X model based on range-based CARR-DCC model with the theory of extreme value. 
2.  All the numbers in Table 9 represent the number of exceptions based on various VaR methods. 

   From Table 9, the GARCH-Normal-DCC model and the CARR-Normal-DCC 



 30

model perform relative well in estimating the number of exceptions for the VaR of 

portfolio under 95% confidence levels. Other models underestimate the real situation 

of risk mostly. When the confidence levels, however, lift into the level of 99%, it is 

observed clearly that the exception number of back testing for CARR-VaR-X-DCC 

model is the nearest to the theoretical threshold. The second priority is the 

GARCH-VaR-X-DCC model. Other models are inclined to overestimate the number 

of exceptions.       

 

 

7. Conclusions 

 

One approach to calculating VaR is historical simulation, but its performance 

in estimating VaR is less precise than considering the dynamic of volatility process. 

When calculating VaR, we are most interested in the current levels of volatilities 

because we are assessing possible changes in the value of an asset over a very short 

period of time. Beside, the theory of extreme value has some advantages over the 

standard approach to risk management. Empirical study has shown that the results for 

the measurement of VaR with extreme value methods and appropriate volatility model 

which provides a more precise approach for risk management and value at risk 

calculations.  

 

We have considered as possible as many approaches for the evaluation of VaR 

for single asset and a portfolio in this paper. The most remarkable results are in 

evaluation of the higher confidence levels performance of the extreme value method 

with range-based CARR model. The empirical results demonstrate that the VaR 

calculated using tails of extreme distributions with range-based CARR model is 
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significantly more suitable than the conventional return-based GARCH standard 

approach. Meanwhile, considering the information implied by tail distribution with 

range-based DCC model are more robust and inducing more accurate estimates of the 

number of exceptions for the S&P 500 stock index and the 10-year T-bond market 

mixed portfolio.     
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