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Abstract 
 
 
To investigate asymmetry and fat-tailedness in daily stock and portfolio returns we 
extend the Generalised Skew Student t distribution (GST) by separate 
parameterisation for observations above and below zero. A sequence of likelihood 
ratio tests examines progressive parameter restrictions on the extended GST. 
Empirical evidence comes from the UK, Japanese, South African and US markets. 
The main conclusions are: the Student t is the single most common model; the 
symmetric GST is a common model of UK and South African stocks; significantly 
asymmetrical returns are generally modelled by a 5 parameter GST; few Japanese or 
US stocks exhibit skewness. 
 
 
Key words: Fat-tails, Kurtosis, Persistence, Skewness, VaR/CVaR. 
 
Correspondence Address 
 
C J Adcock 
The University of Sheffield 
9, Mappin Street 
Sheffield, S1 4DT 
UK 
Tel: +44 (0)114 222 3402 
Fax: +44 (0)114 222 3348 
Email: c.j.adcock@shef.ac.uk 
© 2006 C J Adcock & N Meade 



 - 1 -   
 
 
C:\Documents and Settings\ec1cja\Desktop\Generalized-Skew-Student-070113.doc 

 
1.  INTRODUCTION 

 
It is well known that skewness and kurtosis are often present in asset returns. In 
general terms, there are two ways of dealing with these departures from normality. 
One is to modify utility by adding higher moments to the usual quadratic function. 
The other, the focus of this paper, is to consider other probability models for returns.  
 
Numerous different probability distributions have been applied to the task of 
modelling asset returns to capture departures from normality. Use of the Student t 
distribution in finance dates back to Praetz (1972) and Blattberg and Gonedes (1974). 
Aparicio Acosta and Estrada (2001) apply it to returns on European stocks. The 
Edgeworth-Sargan distribution has been compared with the Student t by Mauleon and 
Perote (2000) and Mauleon (2006). Corrado and Su (1996) make use of Gram-
Charlier series expansions. The use of stable distributions dates back to Mandelbrot 
(1963). Kon (1984) examines mixtures of normal distributions. Skewness specifically 
is investigated in Hansen (1994) and Harris, Kukukozmen and Yilmaz (2004), with 
both papers using an asymmetric generalisation of the Student t distribution. 
 
More recently, the skew-normal distribution associated with the work of Azzalini 
(1985, 1986) has been applied in finance by Adcock and Shutes (2001), Adcock 
(2004a,b) and Harvey, Leichty, Leichty and Muller (2004). Fernandez and Steel 
(1998) present a model that accommodates both skewness and fat tails. Their 
distribution is based on a density function,  (.)f  say, which is symmetric about zero 
and unimodal. A class of skewed distributions for a variable X is indexed by a scalar 
parameter, γ  in their notation, and has a density function which is proportional to 

.)x(f γ when 0x ≥ and to .)/x(f γ otherwise. They choose (.)f  to be Student t and  
apply it to stock returns.  There are many other examples of the use of non-normal 
distributions. 
 
Here we present an extended version of the generalised skewed Student t distribution 
and apply it to modelling asset returns. This extended version is used to explore the 
nature of both fat-tails and asymmetry often observed in asset returns. The generalised 
skewed Student t distribution was introduced by McDonald and Newey (1988) and 
further described in McDonald and Nelson (1989) and McDonald and Xu (1995). It 
was extended and applied to modelling asset returns in Theodossiou (1998), 
henceforth PT. As PT points out, this is a rich family of probability distributions. 
Placing constraints on the parameters generates a wide range of special cases, 
including the Gaussian, Laplace, Student t itself and generalised error distributions.  
 
We gain greater flexibility in modelling both fat-tails and asymmetry by extending the 
parameterisation of the distribution. Specifically, we consider a random variable, X 
say, which has a probability distribution with density function 
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The parameters , andi i iσ ν ω , i =1,2 are all positive and K is the normalising constant. 
We refer to this as the generalised skewed t or GST distribution. The two ν 
parameters are referred to as degrees of freedom. The deviations of the two ω 
parameters from 2 measure the departure of the distribution from Student t, that is 
“Studentness” or the lack of it. The σ s are scaling parameters. PT’s model is a 
special case of the GST; when the degrees of freedom and Studentness parameters are 
equal, i.e. ν1 = ν2 and ω1 = ω2. When, in addition to the above, ω1 = ω2 = 2 and 

1 2σ σ= , the distribution is proportional to Student t.  
 
In PT’s model, skewness is driven only by differences in 1 2( , )σ σ . The contribution of 
the GST distribution defined at equation (1.) is that both skewness and kurtosis can be 
generated by differences between the values of one or more of the pairs of parameters, 
(ν1,ν2), (ω1, ω2), 1 2( , )σ σ . To illustrate the potential of the more general 
parameterisation of the GST distribution, Figure 1 shows two density functions, GST 
(a) and GST (b) say. Both distributions have mean zero, unit variance, a skewness of 
–1.6 and a small difference in excess kurtosis. However, the asymmetry depicted is 
noticeably different. It can be seen in Figure 1 that GST (a) is more peaked and, from 
inspection of ln (F (x)), that it has a fatter left hand tail than GST (b).  
 
The contrast shown in Figure 1 explains why there are six parameters in the density 
function (1). For a parsimonious parameterisation, one could expect one parameter 
per moment, giving a maximum of four parameters to describe a random variable with 
non-zero skewness and excess kurtosis. The two further parameters of the GST 
distribution defined at (1.) provide different forms of asymmetry and tail behaviour 
that are visually different, even though the moments are similar. 
 
 

Figure 1 about here 
 
 
In addition to its relevance for general tasks in financial modelling, an accurate 
density forecast of the return on an asset is invaluable for the management of risk.  
Value at Risk (VaR) is a convenient description of a financial institution’s market 
exposure and a widely used form of risk management. Regulators demand that banks 
inform them regularly of their exposure to market risk using VaR as the measure. For 
a bank holding I money units invested an asset, whose return, at time t, over a period 
T, is Xt,T and for which ( ) αξα −=−< 1Pr ,TtX , then the bank’s VaR is MI αξ  
where M is a ‘safety factor’. The bank’s reserves would be required to exceed this 
amount. The Basle Accord (see, for example Jackson, Perraudin and Maude, 1997) 
suggests that 99.0=α , T is ten days and the safety factor, M, is three. The literature 
on the estimation of Value at Risk is voluminous (for background, see Jorion, 1996), 
but two clear themes have emerged: one is the use of dynamic volatility models such 
as GARCH to give conditional probability estimates; the other theme is the 
computation of unconditional probability estimates. A review of relative merits of 
dynamic volatility models is given by Brooks and Persand (2003). The work here falls 
into the context of the second theme. Longin (2000) discusses the applications of 
extreme value theory to VaR. In Longin (2005) this work is further developed and 
used to inform the choice of distribution for asset returns. Using US data, he 
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demonstrated that of the Gaussian, Student t and the stable Paretian density functions, 
only the Student t was acceptable as an unconditional model of returns. Knowledge of 
the appropriate GST model for returns for an asset permits the evaluation of the 
unconditional probability above.  
 
The second aim of this paper is to investigate the persistence of non-normality. It is 
generally accepted that fat-tails are a permanent empirical feature of the probability 
distribution of asset returns. However the persistence of an appropriate model for the 
distribution is a issue of importance. Misspecification of the model may lead to errors 
in the computation of measures of risk or in portfolio selection. Evidence of the lack 
of persistence of a model leads to the need periodically to investigate not only model 
parameter values but also the specification of the model itself.  
 
Skewness raises slightly different issues. A number of authors have considered the 
persistence of skewness over time. Singleton and Wingender (1986) consider the 
persistence of skewness using monthly returns data for the period 1961-80. They find 
that positively skewed assets are as likely to exhibit negative skewness in the next 
period as positive and vice versa. In a study of emerging markets, Bekaert, Harvey, 
Erb and Viskantam (1998) draw attention to the hypothesis that skewness and kurtosis 
may be time varying. An explanation for such temporal variation is that these forms 
of non-normality are artifacts of the process of emergence. An implication of this 
hypothesis, if correct, is that incidence of significant values of these moments will 
decrease as time progresses. For the mature markets studied in this paper, the 
implications are that the majority of stocks will not exhibit skewness but that for those 
that do it will be a transient phenomenon.  
 
We will use the GST family of distributions to investigate the nature of skewness and 
kurtosis in the probability distributions of asset returns and the persistence of these 
departures from normality. As well as reporting results for individual securities, we 
also describe investigations into portfolios of assets. The motivation for this is that a 
priori it might be expected that, as a consequence of the central limit theorem, returns 
on portfolios would tend to exhibit low levels of both skewness and kurtosis. An 
additional motivation is that VaR is usually applied to portfolios rather than individual 
assets. 
 
The paper is set out as follows. Section two gives a derivation of the skewed 
generalised Student t distribution and describes its properties. The aim of the 
derivation is to give insights into possible return generating processes by representing 
the GST as a mixture of distributions. Section three summarises the data and methods 
that are used in the empirical studies reported in the two following sections. Section 
four describes the application of the GST distribution to daily returns on UK stocks 
that are constituents of the UK FTSE 350 index. Section five describes the 
comparable results for portfolios of UK FTSE 350 stocks. Section six reports a 
comparative study based on stocks from the Japanese Nikkei 225, South African 
FTSE Johannesburg stock exchange all share index and the US S&P 500 index and 
for portfolios of stocks selected from the index constituents in each of these markets. 
Section seven concludes. In order to save space, only the main results are presented in 
the paper, more detailed results are available from the authors on request. The 
computations were performed in S-plus. Notation is that in common use. 
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2.  DERIVATION AND PROPERTIES OF THE GENERALISED SKEW 
STUDENT DISTRIBUTION 

 
In order to model the return generating process, we consider a non-negative random 
variable, X say, which represents the departure of the asset return from zero in 
absolute terms. This step allows for the possibility that the process creating positive 
returns may differ from that creating negative returns. We assume that the random 
variable X has a generalised Weibull distribution with probability density function 
given by  

 

                  ( ) ∞<≤>ωθθ−







ω

Γ

ωθ
= ω

ω

θ x0,0,;xexp
1

)x(f

1

|X .   (2.) 

 
The probability density function at (2.) is a special case of the generalized gamma 
distribution, which is due to Stacy and Mirham (1965). Further details of this 
distribution and its properties are in Johnson et al (1994, p689). The shape of the 
density function is controlled by ω , as demonstrated in Figure 2.  
 
 

Figure 2 about here 
 
 
The mean of a random variable with distribution given by (2.) is  
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indicating that θ  acts as a scaling factor for the magnitude of the return. We further 
assume that there is heterogeneity in the return generating process and that the scaling 
factor θ  is distributed as a gamma random variable with mean and variance given by  
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respectively. The probability density function of the distribution of θ  is  
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Integration over the mixing distribution  
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gives the unconditional distribution of X, which has the probability density function  
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Since the variable Xω/θ0 has a beta type two distribution, it follows that the nth 

moment of X about the origin is  
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To create the GST distribution, the density function for X defined at equation (4.) is 
generalised to allow positive and negative returns to behave differently. The 
probability density function of a GST variable is defined as  
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To make the effect of the scaling parameter more direct and to make the 
correspondence with Student t more apparent, θ0i is redefined as 2,1i;i

iii0 =σν=θ ω . 
The probability density function is then as defined at equation (1.). The normalising 
constant K is given by  
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As well as the general case of the distribution, there are 7 special cases in which one 
or more of the pairs of parameters are restricted to take equal values.  
 
On initial perusal, it appears that this distribution is over-parameterised. In the tails of 
the distribution, the probability density function is of the form  
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where K’ is a constant and the subscript i has been omitted. Since the tail values 
dominate the likelihood function, one could take the view that a more appropriate 
parameterisation would be in terms of the products ωiνi, i =1,2. Furthermore, in the 
symmetric case, the implication of (7.) is that Student t distribution may be a more 
suitable model with degrees of freedom equal to ων/2.  However, as well as the visual 
evidence presented in Figure 1, the empirical results that are described in sections four 
onwards support the role of the general parameterisation in equations (1.) and (6.) in 
many cases. As will be described, for the returns data studied in this paper it is rare 
for 5 or 6 parameters to be required although a small number of such cases do arise 
empirically. Furthermore, as demonstrated above, the use of ωi and νi, i =1,2, as 
separate parameters gives rise to a model that offers some insights into the processes 
that generate returns. 
 
In the following sections, the eight cases of the GST distribution are referred to using 
an abbreviation of the general form GSTαβγ. This shorthand is to be interpreted as 
follows. GSTωυσ means that the three pairs of parameters take equal values; that is 
the distribution is symmetric. GSTωυ-, for example, means that asymmetry is 
generated only through variation in the suppressed parameter, in this case σ. In 
general replacement of the Greek letter by a hyphen means that symmetry may be 
generated by variation of the suppressed parameter. The most general case is therefore 
GST---.  
 
Two closely related families of distributions may be obtained by imposing fixed 
values on the degrees of freedom or the Studentness parameters. First, as ν1 and ν2 
both increase without limit, a skewed version of the generalised error distribution is 
obtained. See Nelson (1991) for further details. Secondly, if ω1 and ω2 are both set 
equal to two the skewed Student distribution is obtained. In the following sections of 
the paper, we refer to these two distributions as GED and GT respectively. The same 
shorthand described above is used to refer to the various special cases. The 
expressions for the GED and GT probability density functions are omitted, as both 
may be obtained from equations (1.) and (6.) using standard manipulations. There are 
4 cases for both GED and GT distributions, respectively, giving an overall total of 16 
models.  
 
The effects of different values for the parameters, ωi, σi and νi, are shown in Figures 3, 
4 and 5. The base, symmetric, model is given by  (ω1, ν1, σ1, ω2, ν2, σ2) = (3,2,1,3,2,1). 
For 1 2ω ω≠  (Figure 3) the asymmetry is manifested by a change in shape of the peak 
of the density function, by a change in location of the peak and by a shortening of the 
right-hand tail. For 1 2σ σ≠ , (Figure 4) the asymmetry occurs due to a change in 
location of the peak of the density function, as the ( )1 2max ,σ σ  increases, the kurtosis 
increases and the right hand tail is shortened.  For 1 2ν ν≠ , (Figure 5), the kurtosis 
decreases as the ( )1 2max ,ν ν  increases and the location of the peak moves slightly 
compared to the movement caused by varying the other parameters. 
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Figures 3 – 5 about here 
 

 
Moments about the origin can be derived from equations (1.) and (6.) and the nth 
moment exists if  

 

min 2
i iν ω  
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> n. 

 
As PT shows, analytical evaluation of the moments of this distribution is complicated. 
However, numerical evaluation of central moments and, hence, computation of mean, 
variance, skewness and kurtosis is straightforward. Cumulative probabilities may be 
routinely computed using the incomplete beta function.  
 

3.  DATA AND METHODS FOR THE EMPIRICAL STUDY 
 
The empirical study reported in this paper is based on four sets of daily price data 
which were obtained from Datastream. The first data set, which is reported on in some 
detail in sections four and five, consists of 380 non-financial UK stocks which were 
members of the UK FTSE350 index during the period January 1990 to December 
2002. The data set used in this study covers the 1500 day period from 3rd February 
1998 until 3rd November 2003. The other three data sets, which are reported on more 
briefly in section 6, are based on the Japanese Nikkei 225, the FTSE Johannesburg 
stock exchange all share index and the US S&P500 index. Daily data was also 
obtained for the four respective market indices. All prices are in local currency. Daily 
returns are computed in the usual way by taking the difference of the natural 
logarithm of price. As well as price data, the corresponding daily market values were 
also obtained. This data set is used to compute the capitalisation weight of each stock 
in its respective index. The data set is summarised in Table 1. 
 
 

Table 1 about here 
 
 
As well as computations based on individual securities, this study reports results for 
simulated portfolios of stocks selected from these data sets. A portfolio contains 5, 10, 
25, 50, 100, 200, 300 or more stocks depending on the number of stocks in the index. 
For each case, the requisite stocks are chosen according to one of three different 
sampling schemes. These are as follows: equal probability of selection, probability of 
selection proportional to market capitalisation and probability of selection inversely 
proportional to market capitalisation. The second method of selection gives portfolios 
of large capitalisation stocks and the third method portfolios of small capitalisation 
stocks. For each selection, portfolio return is computed in two ways; namely by 
assuming equal weights or weights proportional to market capitalisation. For the 
purpose of this study, market capitalisation is recomputed each day using the previous 
500 days of data. For the UK, for example, the entire sampling scheme thus gives 
7*3*2 = 42 different portfolios. This is repeated five times to give a sample of 210 
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portfolios. The time series of returns for each portfolio commences on the first date 
for which there are valid returns for at least one of the selected stocks. Thus, a 
portfolio with, for example, five stocks may start as a holding in a single stock, with 
stocks 2 through 5 being added as they become available. The number of such 
portfolios for each of the four markets is summarised in Table 1.  
 
The parameters of the distributions specified in section 2 are estimated for a location 
parameter model for each stock and each portfolio. This is done using a sample of 500 
days, ending on 3rd November 2003. This is referred to as period C. Those stocks 
which do not have 500 days of data available as at the last date are excluded from the 
analysis. Returns on the index itself are included with the data for each market. The 
number of stocks for which data is available for estimation is as listed in Table 1. To 
investigate persistence of both the 3rd and 4th moments and of the return distribution 
itself, the above exercise is repeated for two earlier time periods. These consist of two 
non-overlapping blocks of 500 days ending on 3rd January 2000 and 3rd December 
2001 respectively. As above, stocks which do not have 500 days of data available as 
at the last date of the block in question are excluded from the analysis. These two 
periods are referred to as A and B respectively. 
 
The maximum likelihood estimators of the location parameter models corresponding 
to each distribution are computed using a variation of the BHHH algorithm, Berndt, 
Hall, Hall and Hausman (1974). Following convention σ2 is estimated rather than σ. 
To avoid the possibility of the algorithm computing negative estimates of ωi, νi and 
σi

2; i = 1,2, the usual logarithmic transformation is used. The derivatives of the log-
likelihood with respect to the parameters are computed numerically.  
 
In order to analyse the extent and nature of asymmetry present in the stock returns of 
each market a sequence of likelihood ratio tests is performed. Each test examines a 
simple constraint on the parameters. The analysis commences with the estimation of 
the (unconstrained) GST model. The sequence of likelihood ratio tests is shown in 
Figure 6. If asymmetry is not caused by a particular parameter, for example there is 
no reason to doubt ω1 = ω2, then a further check for ‘Studentness’ is carried out. 
Similarly, if there is no reason to doubt υ1 = υ2, then the magnitude of the degrees of 
freedom is examined (with 5000 as a proxy for infinity). In the figure, if the 
hypothesis cannot be rejected, the analysis follows the left hand branch, if it can be 
rejected the right hand branch is followed. The process can be regarded as a 
classification tree for the nature of asymmetry in stock returns. The bottom line of 18 
bins, identified alphabetically, in the figure contains several special cases. A is the 
normal distribution, B is Student t, D is the generalised error distribution and K is PT. 
The probability distribution associated with each of the 18 bins is defined in Table 2, 
in the next section. 
 
 

Figure 6 about here 
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4. STUDY OF THE UK FTSE350 INDEX 

 
As noted in the introduction, only the main results of the empirical study are 
described here. More detailed results are available on request, including the usual 
sample statistics. The main results described in this section are based on the data set 
for period C which ends on 3rd November 2003. 
 
The results of carrying out the series of likelihood ratio tests as described in section 3 
for UK FTSE350 stocks are shown in Table 2. The table shows the number of stocks 
classified in each bin at four levels of probability, ranging from 10% to 0.1%. As the 
table shows, over 95% of the stocks are classified in one of six bins, regardless of the 
level of probability. The other twelve bins account for the remaining 5% of securities. 
Of these twelve bins, seven have no stocks at any of the four given levels of 
probability. In the rest of this section, the numbers of stocks in each of the six bins are 
taken from the 1% column of Table 2. Some general conclusions are presented first. 
The main features of Student t distribution and the five other models are then 
described in turn. This is followed by the main results concerning the persistence of 
return distributions and, by implication, of both skewness and kurtosis. 
 
For daily returns, the normal distribution accounts for very few stocks in the UK 
FTSE350 index. Even at the 0.1% level of significance, only 11 securities have 
returns that are normal. Models with few or no parameter restrictions are selected for 
a small number of stocks. The generalised error distribution is never selected as a 
model. The skew Student model in which skewness is generated only by unequal 
values of the degrees of freedom parameters is selected, but other members of the GT 
class are not.  
 
 

Table 2 about here 
  
 
With a small number of exceptions, the most complicated non-symmetric models that 
are selected for this data set are the GSTω-σ, GST-υσ and GSTωυ- distributions, 
which each have five free parameters. In these cases, skewness is generated by 
variation in degrees of freedom, υ, Studentness, ω, or scale, σ, respectively. It is 
interesting to note that PT’s version of the GST distribution, GSTωυ-, in which 
asymmetry is generated only by variations in the scaling parameter σ, is not a widely 
selected model. For the 92 stocks for which skewness is a significant feature of 
returns, only 4 employ the PT model. For the remainder of this section, attention is 
generally restricted to the six most common models. 
 
 

Table 3 about here 
 
 
Table 3 shows an analysis of the six most common models based on the capitalisation 
weights of each stock in the index. Since the weights change each day, an average 
weight is computed based on the same 500 days used for parameter estimation. First, 
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the daily returns on the UK FTSE350 index follows a Student t distribution. For the 
remaining 183 stocks classified as having Student t distribution, the average of the 
average capitalisation weight is 0.45%, the smallest average weight is 0.007% and the 
maximum is 8.61% 
 
From Table 3, it is clear that, on average, returns on the larger capitalisation stocks are 
characterised by Student t, the symmetric version of the GST distribution and the 
skewed Student distribution in which asymmetry is generated only by variation in 
degrees of freedom. Skewness, as modelled by the GST distribution, is generally 
associated with smaller capitalisation stocks. However, inspection of the columns 
labelled Max% and Min% indicate that there are exceptions to this. For example, the 
row labelled GTω-σ and GSTωυσ both contain stocks with very small weights, as 
well as those with large capitalisation. An interesting point to note is that the average 
capitalisation of GTω-σ stocks is about 0.6%, which is larger than the average for 
Student t. Overall, stocks with symmetric return distributions account for about 84% 
of total market capitalisation. The 92 stocks with skewed returns account for the 
remaining 16%.  
 
The constituents of the contemporaneous FTSE100 index will be present in the 
FTSE350. It is therefore reasonable to infer from the analysis based on capitalisation 
in Table 3 that daily returns of many FTSE100 securities will be distributed as 
Student t. Indeed, out of the 100 stocks in this analysis with the largest average 
capitalisation weight, 88 are classified as Student t. 
 
4.1 Student t distribution 
 
For the 184 stocks, including the index, which are classified at Student t, the most 
significant feature is the behaviour of the tail probabilities. Table 4 shows an analysis 
of the effect of using the normal distribution as a model for returns when the correct 
model is Student t. The table entries are computed as follows. The critical values 
corresponding to the eight nominal probabilities shown in the table are computed 
using estimated parameters based on an assumed normal distribution. The actual 
probability corresponding to each critical value is then computed using the estimated 
parameters based on Student t distribution. The computed probability is treated as 
being the same as the nominal value if the absolute difference between them is 0.0001 
or less. 
 
Perusal of the columns in section A of Table 4 shows that an assumption of normality 
in the case of Student returns causes under-estimation of the tail probabilities at the 
two-sided 1% and 5% levels for the vast majority of stocks. Conversely, the two sided 
10% tail probabilities are over estimated. It may also be noted that extreme tail 
probabilities, two-sided 0.1%, are also over-estimated.  
 
 

Table 4 about here 
 
 
The columns in section B repeat the analysis, but show the percentage of the index 
capitalisation weight in each category. As these columns show, under-estimation of 
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tail probabilities at the 1% and 5% levels occurs for stocks accounting for between 
75% and 82% of the total capitalisation. 
 
The distribution of the estimated degrees of freedom is shown in Figure 7. There are 4 
stocks with degrees of freedom less than 1 and for which the tails are therefore fatter 
than those of the Cauchy distribution. The maximum of the estimated degrees of 
freedom is less than 10. As noted above, the returns on UK FTSE350 index are 
classified as having a Student t distribution, with estimated degrees of freedom being 
about 3.9. The small values of the degrees of freedom for stocks classified at Student t 
is not a surprise. This is because the probability distribution increasingly resembles 
the normal as the degrees of freedom increase above 10. 
 
 

Figures 7 & 8 about here 
 
 
A graphical view of the effect on the tail probabilities is in Figure 8. This figure 
shows the estimated Value at Risk (VaR) at 1% for the stocks which are classified as 
Student t. The VaR is computed as a percentage and the graphs are plotted in the 
order of decreasing risk according to the value given by the correctly specified 
Student t distribution. As the graph shows, use of the normal distribution generally 
causes an under-estimation of the VaR. It may also be noted that as the Student VaR 
increases the corresponding estimates based on a normal distribution become 
progressively more unreliable.  
 
4.2 The Symmetric Generalised Student Distribution 
 
This corresponds to bin E, the GSTωυσ model. This is a symmetric distribution, but 
the Studentness parameter ω is unrestricted. According to Table 2, at the 1% 
significance level there are 87 stocks in this category. Table 5 shows an analysis of 
the effect of using Student t distribution as a model for returns when the correct model 
is the GSTωυσ. The table entries are computed in the same way as those in Table 5. 
The critical values corresponding to the eight nominal probabilities are computed 
using estimated parameters based on an assumed t distribution. The actual probability 
corresponding to each critical value is then computed using the estimated parameters 
based on the GSTωυσ distribution. 
 
 

Table 5 about here 
 
 
Similar to the results shown in Table 4, use of Student t distribution when the correct 
model is the symmetric generalised Student distribution cause serious under-
estimation of the tail probabilities at the (two sided) 5% levels for the majority of 
stocks. Under-estimation also occurs at the (two-sided) 1% level, although for a 
smaller number of stocks.  
 
When these results are viewed using market capitalisation (section B of the table), a 
similar picture emerges. However, the analysis based on capitalisation weights makes 
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it clear that stocks which are classified as having the GSTωυσ model only account for 
about 4% of the total weight of the index. From a purely statistical perspective, one 
could argue that this is a small percentage and therefore use of Student t distribution 
would represent a specification error that is of a minor consequence in practice. From 
the portfolio selection perspective, however, these specification errors could be of 
greater significance. This is because it is common practice in the investment industry 
to construct portfolios for which the holdings are generally similar in percentage 
terms to those of the index weight. Portfolio managers then seek to obtain excess 
return over and above that of the index by over-weighting (under-weighting) stocks 
that are expected to out-perform (under-perform) the index. Such stocks are likely to 
be those which exhibit unusual return characteristics. Thus it is possible that stocks 
with the GST distribution may assume an importance in the portfolio that is greater 
than their index weight alone might suggest. To put it another way: the 3.23% of 
market capitalisation whose 2.5% (left hand tail) probability is underestimated may 
comprise precisely those stocks which could lead to excess profits or losses! 
 
Examination of the estimated values of ω and ν for the symmetric generalised Student 
distribution provides further evidence of the differences with the Student t model.  
 
 

Table 6 about here 
 
 
Table 6 has two panels. Panel (i) summarises the estimated values of ω and υ for the 
87 stocks which are classified as GSTωυσ . Also shown in panel (i) are the 
corresponding summaries for the estimated degrees of freedom υ under the 
assumption that the 87 stocks are Student t. As panel (i) of the table shows, the 
estimated values of ω vary between 0.97 and 1.70. The estimated degrees of freedom 
υ vary between 0.6 and 4.3. Panel (ii) of the table shows the same information for the 
184 stocks that are classified as Student t. It is clear from the table that most of these 
securities have an estimated value of ω that is numerically close to 2. The average 
value of the degrees of freedom are similar under Student t and the GSTωυσ models.  
 
In order to investigate the possibility, as suggested in section 2 after equation (7.), that 
the symmetric GSTωυσ model may be replaced by a Student distribution with 
degrees of freedom equal to ωυ/2 an OLS regression is performed. This uses the 
appropriate estimates for the 87 stocks classified as GSTωυσ. The dependent variable 
is the estimated degrees of freedom for Student t and the independent variable is the 
product of the estimates of ω and υ, estimated for the GSTωυσ model. The null 
hypothesis is that the intercept in the regression equals zero and the slope coefficient 
equals 0.5. There is little evidence to support the view that there is a relationship 
between the parameters of the kind postulated in section 2. By contrast, for the 184 
stocks that are classified as Student t, a similar OLS regression supports the 
proposition that, for such stocks, the degrees of freedom under Student t is very well 
approximated by ωυ/2,where the ω and υ are estimated under the GSTωυσ model. 
That is, if returns are indeed Student t there is no advantage from using the GSTωυσ 
model, but equally little harm results. By contrast, if returns are indeed GSTωυσ then 
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it is wise to use the correct model. Details of these OLS regressions are omitted, but 
are available on request.  
 
The effects of using the GSTωυσ model when the correct model is in fact Student t is 
summarised in Table 7. The first column of the table shows the probabilities 
computed under the GSTωυσ model when the nominal Student t probability is 1%. 
Panel (i) shows the four stocks for which the computed probabilities are the smallest. 
Panel (ii) shows the four stocks for which the computed probabilities are closest to the 
nominal value and panel (iii) shows the four stocks for which the computed 
probabilities are the largest. In panel (iii) the error in probability is not great; at worst 
9%. In both panels (ii) and (iii) the estimated values of the Studentness parameter ω 
are all numerically close to 2 and the computation 0.5ωυ gives values close to the 
estimated degrees of freedom under the correct model. By contrast, in panel (i) the 
estimated values of ω are between 1.1 and 1.4. However, it is only these four stocks 
which may have been mis-classified by the method described in Section 3. 
 
 

Table 7 about here 
 
 
4.3  Asymmetric Distributions 
 
This section covers the three most commonly selected asymmetric distributions. 
These are the GTω-σ (16 stocks), GSTω-σ (31) and GST-υσ (29). Table 8 shows an 
analysis of the tail probabilities constructed in a similar manner to that shown in Table 
5. Critical values are computed using estimated parameters that assume a Student t 
distribution. Actual probabilities corresponding to the critical values are computed 
using the selected asymmetric distribution. Panels (i), (ii) and (iii) show results for the 
GTω-σ, GSTω-σ and GST-υσ distributions. Panel (iv) shows the total. The data in 
section A shows the extent to which use of Student t causes tail probabilities to be 
under or over estimated. Depending on the nominal probability, under or over 
estimation occurs for a substantial proportion of stocks for which the correct model is 
GSTω-σ or GST-υσ. However, as shown in section B, these stocks account for a very 
small percentage of market capitalisation. For the GTω-σ model, accounting for about 
9.8% of market capitalisation, the majority of the computed probabilities are 
acceptably close the nominal values.  
 
 

Table 8 about here 
 
 
There is a small number of FTSE350 stocks, 9 out of 365, which require 6 or even 7 
free parameters. It is difficult to argue either on statistical or, in this case, investment 
grounds that there is a case for using these models. Overall, therefore, the data used 
for this study supports the use of parsimonious versions of the GST family. 
Furthermore, the implication of the results shown in Table 8 is that symmetric 
members of the GST family are adequate to model returns on most of the FTSE350 
stocks included in the study if capitalisation is taken into account. This view is further 
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supported by the two graphs of Value at Risk which are shown in Figure 9. This 
shows the VaR as a percentage at the 1% level of probability for all stocks for which 
the selected model is one of the three skewed models above. The VaR is computed 
using both the correctly specified model and Student t distribution. To aid 
visualization, the results are shown sorted in increasing order of VaR based on the 
selected model.  
 
 

Figure 9 about here 
 
 
As Figure 9 makes clear, the differences in VaR at the 1% level are generally small. 
However, there is a small number of securities, between 10 and 20 depending on 
one’s point of view, for which the VaR computed using Student t underestimates the 
value based on the selected skewed model.  
 
4.4 Persistence of Distributions 
 
As described in Section 3 of the paper, the estimation exercise was also carried out for 
two earlier contiguous but non-overlapping blocks of 500 days, periods A and B. The 
detailed results from this exercise are omitted but are available on request. The two 
following tables summarise the extent of persistence in the models selected for each 
stock.  
 
Table 9 summarises the dynamics in the return distributions for the 327 stocks for 
which data was available for all three 500 days blocks. The table shows only entries 
for the three selected symmetric models (Normal, Student and GSTωυσ) and the three 
most common skewed models (GTω-σ, GSTω-σ and GST-υσ). Panel (i) shows the 
dynamics between the end of periods A and B. Panel (ii) shows the same data 
between the end of periods B and C. The two sets of row totals show the situation at 
the end of periods A and B. The column totals show the situation at the end of periods 
B and C. Note that the column totals in the first panel do not agree exactly with the 
row totals in the second panel because of some migration to less common asymmetric 
models not shown in the table.  
 
 

Table 9 about here 
 
 
It is clear from the table that about two thirds of stocks have symmetric distributions 
at the end of each period. Of these between 10 and 20% will cease to be classified as 
symmetric by the end of the following period. For stocks which are non-symmetric, 
around half become symmetric at the end of the following period.  
 
The issue of migration between symmetric models is also of interest. Table 10 shows 
the number of stocks that migrate between the two symmetric classes and any other 
class. Panel (i) shows numbers of stocks in each category. Panel (ii) shows the results 
as percentages. The rows of the table may be interpreted as follows: of the 136 stocks 
that were classified as Student t at the end of period A, 99 remained Student stocks for 
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both periods B and C, 6 became GSTωυσ and remained so, 9 moved between the two 
symmetric categories and 22 were skewed for at least one 500 day period. The 
implication of this row of the table is that the majority of Student stocks remain so. 
By contrast, the second row of the table shows that the distribution of returns on 
stocks which were classified as GSTωυσ at the end of period A showed a greater 
propensity to change.  
 
 

Table 10 about here 
 

 
5. PORTFOLIOS OF UK STOCKS 

 
The results of carrying out the series of likelihood ratio tests as described in section 3 
for portfolios of UK FTSE350 stocks are shown in Table 11 based on data for period 
C. The table shows the number of portfolios classified in each bin at four levels of 
probability, ranging from 10% to 0.1%. Bins containing no portfolios at all four levels 
of probability are omitted. As the table shows, the vast majority of portfolios follow a 
Student t distribution. Very few, and at the 1% level none, follow the symmetric GST 
distribution. There is a small number of portfolios which exhibit skewed returns and 
which are classified as GSTω-σ. 
 
 

Table 11 about here 
 
 
In view of the pre-eminence of Student t as the model for portfolio returns, a detailed 
analysis similar to that in section 4 is omitted. The following results are noteworthy. 
First, an analysis similar to that in Table 4 shows that an erroneous assumption of 
normality results in errors in the computation of tail probabilities. Secondly, Student t 
distribution is remarkably persistent. At the end of periods B and C, over 180 
portfolios were Student t and the majority of the remainder were normal. The fact that 
200 were Student t at the end of period A reflects some change in market conditions 
but does not undermine the conclusion that on the basis of this data the Student model 
is the single most important model for portfolio returns 
 
Thirdly, the estimated degrees of freedom of portfolios classified as Student varies 
between 3 and 9. These low values are interesting for two reasons. They offer 
empirical evidence that suggests that the central limit theorem does not hold for 
portfolios of FTSE350 stocks. The range of degrees of freedom for portfolios is 
consistent with that for stocks and with the FTSE350 index itself. This lends some 
support to the use of the multivariate Student distribution as a model for stock returns. 
See for example Johnson & Kotz (1972, page 162 et sec) or Bernardo and Smith 
(1994, page 435 and 441) for details. The multivariate Student distribution is 
characterised by a single degree of freedom parameter. Under this model, individual 
stocks follow a Student t distribution with the same degrees of freedom. More 
importantly, any portfolio has a distribution that is proportional to Student t with the 
same degrees of freedom. 
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6.  COMPARATIVE STUDY OF JAPAN SOUTH AFRICA AND THE UNITED 
STATES 

 
The computations done for UK FTSE350 stocks were repeated for the selected stocks 
in the Japanese Nikkei225, FTSE Johannesburg stock exchange and US S&P500 
indices. The results reported in this section are a comparative study of the four 
markets. Japan was selected as an example of a mature stock market. South Africa 
was selected as a representative of markets with a large number of securities which, 
because of economic change, might exhibit different patterns of a symmetry from the 
UK. The USA was selected because a priori it might be expected that the high level 
of market efficiency would preclude the existence of many stocks with skewness. 
 
Table 12 shows the results of carrying out the series of likelihood ratio tests for all 
four markets. The significance level used is 1%. The table has two sections, the first 
for stocks and the second for portfolios. Panel (i) shows the number of stocks and 
portfolios with symmetric return distributions. Panel (ii) shows the numbers of stocks 
and portfolios with the most common asymmetric distributions.  
 
 

Table 12 about here 
 
 
The most striking feature of the table is that 98% of Japanese stocks and 97% of US 
stocks have symmetric distributions, almost all of which are the normal or Student t. 
In South Africa, 54% of stocks have a symmetric distribution. Of these, 1 is normal, 
36, including the index, follow Student t and 42 follow the GSTωυσ model. The 
GSTωυσ model is only selected for a substantial number of stocks in South Africa 
and the UK. The returns on all four indices are Student t. 
 
For stocks which have asymmetric returns, the models selected are more or less the 
same as those selected for the UK. However, the presence of asymmetry only occurs 
for a significant number of stocks in the UK and South Africa. In Japan and the USA 
asymmetry occurs in two and three percent of stocks respectively. As is the case for 
the UK, the GED model is never selected and the GT model is only selected in the 
GTω-σ form. There are further comments on these results in the conclusions to this 
paper. 
 
For portfolios of stocks, asymmetry in the return distribution virtually disappears. 
Furthermore, the symmetric GSTωυσ distribution is never selected. In Japan, the 
majority of portfolios have a normal distribution. In South Africa about 20% of 
portfolios are normally distributed. By contrast, and somewhat curiously, in the UK 
and the US, the majority of portfolios have return distributions that are Student t. 
 
The analysis of market value corresponding to that in Table 3 is omitted. This 
confirms the main findings from Table 3, namely that on average the larger 
capitalisation stocks follow a Student t distribution and that the average size of stocks 
with other return distributions is small. 
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Table 13 about here 
 
 
Table 13 contains two panels which summarise values of the estimated degrees of 
freedom and Studentness parameters for stocks in all four markets which are 
classified as Student t or as GSTωυσ. Panel (i) summarises stocks which are 
classified as Student t. For the UK, South Africa and the USA the average degrees of 
freedom is broadly equal to 5. In Japan it is closer to 7. In both the UK and South 
Africa, the minimum is less that one implying distributions that have fatter tails than 
the Cauchy. The maximum degrees of freedom is about 10 for the UK and South 
Africa and about 12 for Japan and the USA. For portfolios, the distribution of the 
estimated values of υ does not change greatly. The average increases somewhat. In 
the Japan, the UK and the USA all portfolios have variances which exist, that is the 
estimated value of υ is always greater than two. In South Africa this is not the case. 
Panel (ii) of Table 13 shows summary statistics for UK and South African stocks 
which are classified as GSTωυσ. The interesting result is that the average estimated 
value of ω is about 1.35 with a minimum of 0.97 (found in the UK) and a maximum 
of 1.95 (South Africa).  
 
An analysis of the tail probabilities computed using the methods described in Section 
4 confirms the finding already reported above. It is important to classify correctly 
those stocks whose returns are distributed as Student t, but it is less important from a 
capitalisation perspective to correctly classify other stocks.  
 
Table 14, which is similar to Table 9, summarises the dynamics in the return 
distributions for South African stocks for which data was available for all three 500 
days blocks. The table entries show the percentage of stocks classified in each cell. As 
the table shows, over the past three 500 day periods, there has been a substantial 
number of stocks for which the selected model is not persistent. Furthermore, there is 
lack of persistence in skewness per se. Many stocks exhibit skewness in one period 
but not the next and vice versa. The dynamics for Japan and the USA are omitted. 
These show some migration between Student t and normality, but the number of 
stocks which migrate between symmetric and asymmetric distributions is very small. 
For portfolios there is a small amount of migration between normality and Student t. 
 
 

Table 14 about here 
 
 
Table 15 presents summary of 1% VaR computations for stocks and portfolios in all 
four markets which are classified as Student t. The table summarises the VaR 
computations based on an assumed normal distribution and the correctly specified 
Student t distribution. Panel (i) shows results for stocks and panel (ii) for portfolios. 
The column entitled Avg shows that on average use of the normal distribution results 
in the 1% VaR being under estimated. The other columns of the table present other 
summary statistics which confirm that in general use of the normal distribution results 
in under-estimation of VaR at the 1% level. For stocks, these differences are 
substantial. For portfolios, the differences are smaller. For example, for UK portfolios 
the average 1% VaR is about 3% under the normal model and about 3.5% under 
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Student t. However, in monetary terms this could still be substantial; about £5,000 per 
million. Computations for conditional expected loss (CEL), the expected loss givenm 
that it is worse than the VaR,  are omitted, but give similar results; use of the normal 
distribution causes CEL to be under estimated.  
 
 

Table 15 about here 
 
 
Table 16 shows the equivalent results for the UK and South Africa. Panel (i) shows a 
comparison between a correctly specified GSTωυσ model and Student t. Panel (ii) 
shows a comparison between all skewed models and Student t. These show results 
which are the opposite of those presented in Table 15; the use of Student t when the 
correct model is a skewed distribution results in 1% VaR being over-estimated.  
 
 

Table 16 about here 
 
 
 

7.   CONCLUSIONS 
 
The main conclusions of the study are as follows. A well known stylised fact 
concerning returns is confirmed. The normal distribution is not in general a useful 
model for daily returns. It is only appropriate in a few cases for stocks with large 
market capitalisation. Student t distribution is the single most common model of daily 
returns. This is particularly true in Japan and the United States, where almost all 
stocks have the t distribution. The symmetric version of the GST distribution is a 
common model for UK FTSE350 and South African stocks, but not for Japanese or 
American securities. As noted in Section 4 the returns on the majority of FTSE100 
stocks follow a Student t distribution. Other members of the GST family are therefore 
more common among the next 250 securities ranked by capitalisation. 
 
Analysis of the tail probabilities indicates that it is important to use the correctly 
specified model when returns are Student t. Incorrect use of the normal distribution 
results in errors in computation of tail probabilities and hence in the calculation of risk 
measures like VaR and CEL. Using Student t when the correct model is the 
symmetric GST distribution will also result in errors in the computation of tail 
probabilities. This is true even when the estimated moments are similar in value. On a 
market capitalisation basis, this may be viewed as a less serious problem because such 
stocks have small weights in their index. However, the designer of a small cap 
portfolio might disagree. Overall, the analysis of the tail probabilities confirms the 
findings of Longin (2005).  
 
Returns for stocks with significant asymmetry are generally modelled with a member 
of the GST class with 5 free parameters. This is in agreement with the study reported 
in Theodossiou (1998). However in his paper, asymmetry is generated by variations 
of the scale parameter only. Our findings indicate that asymmetry is more often 
generated by variations in the degrees of freedom or by the parameter that reflects 
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Studentness. As is the case with symmetric returns, failure to use the correctly 
specified model will result in errors in the computation of tail probabilities. From a 
statistical perspective, it can be argued that such errors will be of minor practical 
consequence since such stocks typically have small capitalisation. However, when 
viewed from an investment perspective, such stocks may play an important role in a 
portfolio. The errors in the computation of tail probabilities that result from mis-
specification may not then be ignored so easily. 
 
The general version of the GST distribution with 6 or 7 free parameters is selected 
only rarely as an appropriate model for daily stock returns. The data thus supports a 
reasonable degree of parsimony even though it is clear from the results of this study 
that four parameters are often required in the symmetric case and five parameters 
generally needed when asymmetry is present. 
 
The study of persistence shows that there is some migration between the symmetric 
classes. For the UK and South Africa, the analysis of stocks with asymmetric 
distributions shows that skewness is not generally persistent. There is a substantial 
degree of migration within members of the class of asymmetric distributions and 
between symmetric and asymmetric distributions. These findings are consistent with 
those reported by Singleton and Wingender (1986) and Bekaert et al (1998). The 
presence of asymmetry in returns on many South African stocks is not a surprise in 
view of the economic changes that have taken place. However, the incidence of 
skewness in the returns in UK FTSE350 stocks is a surprising finding when 
contrasted with the almost total lack of asymmetry in returns in Japan and the United 
States.  
 
Very few portfolios, even those with only 5 stocks, exhibit skewness. The normal and 
Student t are the distributions selected in the vast majority of cases. The symmetric 
GSTωυσ model is never selected. These findings are consistent with the fact that 
index returns are Student t. As noted above, this suggests that the central limit 
theorem does not hold for daily returns on stocks. Furthermore it provides support for 
the use of the multivariate Student distribution as a coherent model for stock returns. 
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Table 1 - Definition of the Data Sets 
 
Country  No. of Stocks   No. of Portfolios 
  Index Period   
    A B C   
Japan 225 214 216  221 180 
South Africa 162 122 138 145 150 
United Kingdom 380 326 340 364 210 
United States 500 453 473 484 240 
  
 
 
Table 2 – Analysis of the Categorisation of UK FTSE350 Stocks Using the 
Decision Tree in Figure 6 
 
Estimated using 500 daily returns from 4th December 2001 to 3rd 
November 2003. 

Bin Model 
  

Probability level (%) 
    10 5 1 0.1 

A Normal 0 0 2 11 
B Student t 159 173 184 187 
C GTω-σ 32 19 16 15 
D GEDωυσ 0 0 0 0 
E GSTωυσ 76 81 87 88 
F GSTω-σ 25 25 31 37 
G GED-υσ 0 0 0 0 
H GST-υσ 46 43 29 19 
I GST--σ 4 4 3 2 
J GEDωυ- 0 0 0 0 
K GTωυ- 0 0 0 0 
L GTω-- 0 0 0 0 
M GEDωυ- 0 0 0 0 
N GSTωυ- 9 7 4 3 
O GSTω-- 3 3 2 0 
P GED-υ- 0 0 0 0 
Q GST-υ- 8 7 4 2 
R GST--- 3 3 3 1 

NOTE: The bin labels are as shown in the diagram in Figure 6. The nomenclature for the 
models is defined in section 2. Each column shows the number of stocks falling in each 
bin at the specified level of probability. 
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Table 3 – Analysis of Capitalisation Weights for Commonly Selected Models for 
UK FTSE350 Stocks 
 
Estimated using 500 daily returns from 4th December 2001 to 3rd 
November 2003. 
 

Bin Model 
No. of 
stocks Min% Avg% Max%

 B  Student t 183 0.0070 0.4500 8.6103
 C GTω-σ 16 0.0004 0.6073 6.6936
 E GSTωυσ 87 0.0025 0.0452 0.2846
 F GSTω-σ 31 0.0111 0.0429 0.1864
 H GST-υσ 29 0.0082 0.0299 0.0748
 N GSTωυ- 4 0.0144 0.0226 0.0353
NOTE: The bin labels are as shown in the diagram in Figure 6. The nomenclature for the 
models is defined in section 2. The column No. of stocks shows the number of stocks 
falling in each bin at the 1% probability level. The bins and models shown are those that 
contain the most stocks. The main table entries are based on the percentage capitalisation 
weights for each stock averaged over the same 500 days used for estimation. Avg% is the 
average weight, Min% and Max% are respectively the minimum and maximum.  
 
 
 
Table 4 – Analysis of Tail Probabilities Student t Distribution vs the Normal 
Distribution for UK FTSE350 Stocks 
 
Estimated using 500 daily returns from 4th December 2001 to 3rd November 2003. 

  Section A    Section B     
Nominal Prob 

(%) > Prob% Same < Prob%> Prob% Same < Prob% 
0.05% 4 0 180 0.06 0.00 82.09 
0.50% 180 0 4 81.97 0.00 0.19 
1.00% 174 2 8 81.09 0.37 0.70 
2.50% 146 1 37 74.66 1.17 6.33 
5.00% 7 0 177 1.33 0.00 80.83 
95.00% 180 0 4 82.09 0.00 0.06 
97.50% 35 4 145 5.95 1.04 75.17 
99.00% 9 1 174 0.86 0.21 81.09 
99.50% 2 2 180 0.14 0.05 81.97 
99.95% 180 0 4 82.09 0.00 0.06 

NOTE: Critical values corresponding to the eight nominal probabilities are computed using estimated parameters 
based on an assumed normal distribution. The actual probability corresponding to each critical value is then 
computed using the estimated parameters based on Student t distribution. In section A, the entries in the columns 
headed >Prob% (<Prob%) are the numbers of stocks for which the tail probability based on Student t is greater (less) 
than the nominal values shown in the rows of the table plus (minus) 0.0001. The computed probability is treated as 
being the same as the nominal value if the absolute difference between them is 0.0001 or less. Section B presents the 
same analysis using the average capitalisation weights of each stock shown as a percentage correct to 2 decimal 
places. 
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Table 5 – Analysis of Tail Probabilities for GSTωυσ Distribution vs Student t 
Distribution for UK FTSE350 Stocks 
 
Estimated using 500 daily returns from 4th December 2001 to 3rd November 2003. 

    Section A    Section B   
Nominal Prob (%) > Prob% Same < Prob%> Prob% Same < Prob% 

0.50% 8 9 70 0.27 0.43 3.23 
1.00% 24 5 58 1.07 0.13 2.72 
2.50% 64 4 19 3.23 0.20 0.50 
5.00% 73 0 14 3.60 0.00 0.33 
95.00% 10 0 77 0.23 0.00 3.70 
97.50% 20 2 65 0.54 0.06 3.33 
99.00% 56 4 27 2.49 0.18 1.26 
99.50% 70 9 8 3.31 0.39 0.23 

NOTE: Critical values corresponding to the eight nominal probabilities are computed using estimated parameters 
based on an assumed Student t distribution. The actual probability corresponding to each critical value is then 
computed using the estimated parameters based on the GSTωυσ distribution. In section A, the entries in the columns 
headed >Prob% (<Prob%) are the numbers of stocks for which the tail probability based on Student t is greater (less) 
than the nominal values shown in the rows of the table plus (minus) 0.0001. The computed probability is treated as 
being the same as the nominal value if the absolute difference between them is 0.0001 or less. Section B presents the 
same analysis using the average capitalisation weights of each stock shown as a percentage correct to 2 decimal 
places. 
 
 
 
Table 6 – Summary Of The Estimated Values Of ω And ν For The GSTωυσ 
Distribution For UK FTSE350 Stocks 
 
Estimated using 500 daily returns from 4th December 2001 to 3rd November 2003. 
Parameter Avg Vol Min LowerQ Median UpperQ Max 
 (i) Stocks classified as GSTωυσ       
GSTωυσ-ω 1.3438 0.1305 0.9684 1.2691 1.3435 1.3435 1.6895 
GSTωυσ-υ 4.9569 6.7091 0.5931 1.6963 3.8322 3.8322 13.5303
Student t-υ 1.9185 1.0499 0.4108 0.9900 1.8868 1.8868 4.8142 
 (ii) Stocks classified as Student t       
GSTωυσ-ω 1.9562 0.1188 1.1247 1.9716 1.9847 1.9847 2.0053 
GSTωυσ-υ 4.8426 1.7351 1.3048 3.4985 4.4817 4.4817 11.9338
Student t-υ 4.7330 1.7250 0.3979 3.4596 4.4588 4.4588 9.8528 
NOTE: Panel (i) contains summary data for stocks which are classified as GSTωυσ. The first two rows summarise the estimated 
values of the ω and υ parameters. The third row summarises the estimated values of the degrees of freedom υ for GSTωυσ 
stocks when the Student t distribution is estimated instead. Panel (ii) contains the same information for stocks which are 
classified as Student t. The column headed Avg is the average value for stocks in each of the four markets. The other columns are 
the usual summary statistics. 
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Table 7 – Examples of Nominal Probabilities and Model Parameters for a 
selection of Stocks with Student t Distribution 
 
 
Estimated using 500 daily returns from 4th December 2001 
to 3rd November 2003. 
Prob. ω υ 0.5ωυ Studt υ 
 (i) 4 stocks with lowest computed probabilities 

0.0011 1.3677 2.5806 1.7647 0.4277 
0.1201 1.3137 1.3200 0.8670 0.4438 
0.1483 1.1247 1.3048 0.7338 0.3979 
0.1483 1.1247 1.3048 0.7338 0.3979 

 (ii) 4 stocks closest to the nominal value  
0.9962 2.0014 3.5007 3.5032 3.5007 
0.9978 2.0007 6.4494 6.4517 6.4494 
1.0007 1.9998 6.8880 6.8873 6.8880 
1.0013 1.9996 8.1561 8.1545 8.1561 

 (iii) 4 stocks with highest computed probabilities
1.0702 1.9755 3.9753 3.9266 3.9753 
1.0740 1.9200 2.9967 2.8768 2.9078 
1.0763 1.9219 3.4943 3.3578 3.3994 
1.0931 1.8543 3.0902 2.8651 2.8888 

NOTE: The first column of the table shows the probabilities computed 
under the GSTωυσ model when the nominal Student t probability is 1%. 
Panel (i) shows the four stocks for which the computed probabilities are the 
smallest. Panel (ii) shows the four stocks for which the computed 
probabilities are closest to the nominal value and panel (iii) shows the four 
stocks for which the computed probabilities are the largest. The columns 
headed ω and υ show the estimated values of the corresponding parameters 
under the GSTωυσ distribution. The column headed Studt υ shows the 
estimated degrees of freedom under Student t distribution.  
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Table 8 – Analysis of Tail Probabilities for Selected Asymmetric GST 
Distributions vs Student t Distribution for UK FTSE350 Stocks 
 
Estimated using 500 daily returns from 4th December 2001 to 3rd November 2003. 

   Section A   Section B   
Nominal Prob (%) > Prob% Same < Prob%> Prob% Same < Prob% 
 (i) Bin C GTω-σ vs Student 16 stocks     

1% 0 14 2 0.00 9.70 0.02 
2.50% 0 13 3 0.00 9.62 0.09 

5% 2 12 2 0.09 9.53 0.09 
95% 3 13 0 0.10 9.61 0.00 

97.50% 3 13 0 0.10 9.61 0.00 
99% 2 14 0 0.02 9.70 0.00 

 (ii) Bin F GSTω-σ vs Student 31 stocks     
1% 9 0 22 0.26 0.00 1.07 

2.50% 13 1 17 0.47 0.05 0.81 
5% 19 0 12 0.71 0.00 0.62 

95% 4 1 26 0.11 0.05 1.17 
97.50% 12 0 19 0.39 0.00 0.94 

99% 17 1 13 0.54 0.03 0.76 
 (iii) Bin H GST-υσ vs Student 29 stocks     

1% 1 0 28 0.07 0.04 0.76 
2.50% 2 0 27 0.25 0.05 0.56 

5% 7 0 22 0.37 0.00 0.50 
95% 13 0 16 0.20 0.03 0.64 

97.50% 15 1 13 0.43 0.02 0.41 
99% 19 0 10 0.51 0.00 0.35 

 (iv) Totals        
1% 10 14 52 0.33 9.74 1.85 

2.50% 15 14 47 0.72 9.72 1.46 
5% 28 12 36 1.17 9.53 1.21 

95% 20 14 42 0.41 9.69 1.81 
97.50% 30 14 32 0.92 9.63 1.35 

99% 38 15 23 1.07 9.73 1.11 
NOTE: See Table 5 for explanation of method of computation.  
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Table 9 – Model Specification Dynamics for FTSE350 Stocks 
 
Estimated using 500 daily returns in each of three contiguous non-overlapping blocks.  

  Normal Student t GSTωυσ GTω-σ GSTω-σ GST-υσ Totals
        
 (i) Periods A & B          
    
Normal 0 1 0 0 0 0 1
Student t 2 112 14 4 3 1 136
GSTωυσ 0 31 36 0 10 7 84
GTω-σ 0 3 3 12 4 6 28
GSTω-σ 0 1 15 0 1 5 22
GST-υσ 0 1 16 0 2 7 26
Totals 2 149 84 16 20 26 297
        
 (i) Periods B & C          
    
Normal 0 2 0 0 0 0 2
Student t 1 127 11 8 5 1 153
GSTωυσ 0 23 36 0 15 13 87
GTω-σ 1 2 5 5 1 2 16
GSTω-σ 0 6 8 0 3 1 18
GST-υσ 0 2 12 1 3 8 26
Totals 2 162 72 14 27 25 302
NOTE: The table shows only entries for the three selected symmetric models (Normal, Student and GSTωυσ) and the three most 
common skewed models (GTω-σ, GSTω-σ and GST-υσ). Panel (i) shows the dynamics between the end of periods A and B. Panel 
(ii) shows the same data between the end of periods B and C. The two sets of row totals show the situation at the end of periods A 
and B. The column totals show the situation at the end of periods B and C. Note that the column totals in the first panel do not 
agree exactly with the row totals in the second panel because of some migration to less common asymmetric models not shown in 
the table. Period A ends on 3rd January 2000, B on 3rd December 2001and C on 3rd November 2003 

 
 



 - 28 -   
 
 
C:\Documents and Settings\ec1cja\Desktop\Generalized-Skew-Student-070113.doc 

Table10 – Model Specification Dynamics for Stocks with Symmetrically 
Distributed Returns for UKFTSE350 Stocks 
 
Estimated using 500 daily returns in each of three contiguous non-overlapping blocks.  

Inital model No. of stocks S&S S&GST GST&S GST&GST Symmetric Other
 (i) Number of stocks       
Student 136 99 3 6 6 114 22 
GSTωυσ 87 22 5 11 13 51 36 
All other 104 6 3 6 17 32 72 
 (ii) Percentages       
Student 41.59 30.28 0.92 1.83 1.83 34.86 6.73 
GSTωυσ 26.61 6.73 1.53 3.36 3.98 15.60 11.01
All other 31.80 1.83 0.92 1.83 5.20 9.79 22.02
NOTE: Panel (i) shows numbers of stocks in each category. Panel (ii) shows the results as percentages. The rows of the table 
may be interpreted as follows: of the 136 stocks that were classified as Student t at the end of period A, 99 remained Student 
stocks (column titled S&S) for both periods B and C, 6 became GSTωυσ and remained so (GST&GST), 9 moved between the 
two symmetric categories and 22 were skewed for at least one 500 day period.  
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Table 11 – Analysis of the Categorisation of Portfolios of UK FTSE350 Stocks 
Using the Decision Tree in Figure 6 
 
Estimated using 500 daily returns from 4th December 2001 to 3rd November 2003. 

Bin Model   
Probability level 
(%)   

    10 5 1 0.1 
A Normal 0 0 2 5
B Student t 166 181 200 201
C GTω-σ 41 27 8 4
E GSTωυσ 1 2 0 0
F GSTω-σ 1 0 0 0
H GST-υσ 1 0 0 0

NOTE: The bin labels are as shown in the diagram in Figure 6. The nomenclature for the 
models is defined in section 2. Each column shows the number of stocks falling in each 
bin at the specified level of probability. 
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Table 12 – Comparative Analysis of Skewness And Kurtosis For UK FTSE350 
Japanese Nikkei225 South African FTSE Johannesburg and S&P500 Stocks 
Using the Decision Tree in Figure 6 
 
Estimated using 500 daily returns from 4th December 2001 to 3rd November 2003.  

  Stocks    Portfolios    
  UK JPN RSA USA UK JPN RSA USA 
 (i) Symmetric Models            
         
Normal 2 47 1 17 2 143 32 8 
Student t 184 166 36 455 201 37 117 231 
GSTωυσ 87 4 42 0 0 0 0 0 
No. of stocks 273 217 79 472 203 180 149 239 
%'age of total 75 98 54 97 96 99 99 99 
         
 (ii) Asymmetric Models            
         
GTω-σ 16 1 22 8 8 0 2 2 
GSTω-σ 31 0 21 0 0 0 0 0 
GST-υσ 29 3 17 5 0 1 0 0 
GST--σ 3 1 3 0 0 0 0 0 
GSTωυ- 4 0 3 0 0 0 0 0 
GST--- 3 0 0 0 0 0 0 0 
No. of stocks 86 5 66 13 8 1 2 2 
%'age of total 24 2 45 3 4 1 1 1 
         
 (iii) Other Asymmetric            
         
No. of stocks 6 0 1 0 0 0 0 0 
%'age of total 2 0 1 0 0 0 0 0 
NOTE: See Table 2 for explanation of contents. The level of probability used in this table is 1%.. The country 
abbreviations are UK for FTSE350 stocks. JPN for Nikkei225, RSA for South African FTSE and USA for 
S&P500. 
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Table 13 – Summary of the Estimated Degrees of Freedom And Studentness 
Parameters For Stocks Distributed As Student t Or GSTωυσ 
 
Estimated using 500 daily returns from 4th December 2001 to 3rd November 2003. Table 
entries rounded to two decimal places. 
  Avg Vol Min LowerQ Median UpperQ Max 
      
 (i) Stocks Classified as Student t       
        
Stocks         
UK 4.73 1.73 0.40 3.46 4.46 5.48 9.85 
Japan 6.63 2.09 2.17 5.09 6.39 7.95 11.56 
South Africa 4.97 2.44 0.35 3.37 5.43 6.91 9.88 
USA 4.64 1.58 1.54 3.55 4.41 5.41 12.09 
Portfolios         
UK 4.71 1.07 2.99 3.90 4.66 5.15 8.98 
Japan 8.40 1.87 3.48 7.45 8.82 9.85 11.08 
South Africa 7.24 2.15 1.52 5.74 7.98 8.83 11.02 
USA 6.45 1.30 2.33 5.92 6.39 6.89 10.02 
      
 (ii) Stocks Classified at GSTωυσ       
        
UK         
ω 1.34 0.13 0.97 1.26 1.34 1.42 1.69 
υ 4.96 6.71 0.59 1.68 3.83 6.26 60.37 
υ-Studt 1.92 1.05 0.41 0.99 1.89 2.79 4.81 
South Africa         
ω 1.35 0.15 1.09 1.24 1.33 1.43 1.95 
υ 6.28 5.26 0.65 2.74 4.56 8.66 23.89 
υ-Studt 2.31 1.28 0.36 1.34 2.31 3.10 5.85 
NOTE: The columns of the table summarise the distribution of the estimated Studentness and degrees of freedom 
parameters for stocks classified as Student t or GSTωυσ. The column headed Avg is the average value for stocks in each of 
the four markets. The other columns are the usual summary statistics. 
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Table 14 – Model Specification Dynamics for FTSE Johannesburg Stocks Using 
the Decision Tree in Figure 6 
 
Estimated using 500 daily returns in each of three contiguous non-overlapping blocks. Table 
entries are shown as percentages of the total number of stocks for which data is available for all 
three periods. 

  Normal Student t GSTωυσGTω-σGSTω-σGST-υσ GSTωυ- Totals
         
 (i) Periods A & B          
    
Normal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Student t 0.00 12.20 0.00 1.63 3.25 1.63 0.00 18.71
GSTωυσ 0.00 9.76 18.70 0.81 4.07 0.81 0.00 34.15
GTω-σ 0.00 0.00 4.07 11.38 2.44 0.81 0.00 18.70
GSTω-σ 0.00 4.07 4.07 0.00 2.44 1.63 0.81 13.02
GST-υσ 0.00 2.44 2.44 1.63 0.81 0.00 0.81 8.13
GSTωυ- 0.00 0.00 1.63 0.00 0.00 0.00 0.00 1.63
Totals 0.00 28.47 30.91 15.45 13.01 4.88 1.62 94.34
         
 (i) Periods B & C          
    
Normal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Student t 0.81 17.07 7.32 0.81 1.63 0.81 0.00 28.45
GSTωυσ 0.00 4.88 9.76 0.81 8.13 6.50 0.00 30.08
GTω-σ 0.00 0.81 1.63 9.76 0.00 2.44 0.00 14.64
GSTω-σ 0.00 1.63 6.50 1.63 3.25 0.81 0.00 13.82
GST-υσ 0.00 0.00 2.44 0.81 0.00 1.63 0.00 4.88
GSTωυ- 0.00 0.00 0.81 0.00 0.00 0.00 0.00 0.81
Totals 0.81 24.39 28.46 13.82 13.01 12.19 0.00 92.68
NOTE: Constructed in the same manner as Table 9, except that cell entries are the number of stocks shown as a percentage, 
correct to 2 decimal places.  
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Table 15 – Summary of Value at Risk Computations for Stocks and Portfolios 
Classified as Student t 
 
Estimated using 500 daily returns from 4th December 2001 to 3rd November 2003. Table entries 
rounded to two decimal places. 
  Avg Vol Min LowerQ Median UpperQ Max 
I Stocks         
        
 (i) UK         
Normal -5.75 2.50 -17.65 -7.01 -5.14 -4.04 -1.77 
Student -8.36 13.82 -99.87 -7.88 -5.92 -4.62 -2.46 
 (ii) Japan         
Normal -5.61 1.63 -10.72 -6.54 -5.29 -4.49 -2.28 
Student -6.27 2.02 -15.14 -7.25 -5.78 -4.98 -2.48 
 (iii) South Africa        
Normal -5.48 1.95 -11.45 -6.13 -5.16 -4.24 -2.75 
Student -16.63 29.51 -100.00 -9.49 -6.07 -4.76 -2.94 
 (iv) USA         
Normal -5.62 2.45 -21.40 -6.27 -4.97 -4.12 -2.20 
Student -6.40 2.87 -26.14 -7.10 -5.67 -4.64 -2.53 
        
II Portfolios         
        
 (i) UK         
Normal -3.01 0.79 -6.23 -3.50 -2.97 -2.35 -1.86 
Student -3.48 0.98 -7.78 -4.12 -3.37 -2.65 -2.12 
 (ii) Japan         
Normal -4.08 0.73 -6.29 -4.54 -3.89 -3.57 -2.98 
Student -4.40 0.86 -7.14 -4.89 -4.12 -3.78 -3.27 
 (iii) South Africa        
Normal -2.60 1.00 -5.30 -3.31 -2.70 -1.78 -0.97 
Student -2.88 1.13 -5.94 -3.72 -2.94 -1.96 -1.06 
 (iv) USA         
Normal -3.40 0.56 -7.65 -3.45 -3.24 -3.16 -2.54 
Student -3.77 0.63 -8.48 -3.81 -3.60 -3.51 -2.80 
NOTE: Panel I shows summaries of the VaR computed for stocks in each of the four markets shown. The Normal row 
shows summaries computed using an assumed normal distribution. The Student row shows summaries based on the 
correctly specified Student t distribution. Panel II presents the same information for portfolios. The column entitled Avg 
is the average VaR for all stocks in the market in question with available data computed using each distribution. The 
other columns of the table present other standard summary statistics computed in the usual way. 
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Table 16 – Summary of Value at Risk Computations for UKFTE 350 and South 
African Stocks Classified With GSTωυσ Or A Skewed Distribution 
 
Estimated using 500 daily returns from 4th December 2001 to 3rd November 2003. Table entries 
rounded to two decimal places. 
  Avg Vol Min LowerQ Median UpperQ Max 
       
I GSTωυσ         
        
 (i) UK         
Student -15.78 20.16 -99.54 -14.71 -8.70 -5.73 -1.85 
GSTωυσ -13.83 18.38 -100.00 -12.16 -8.07 -5.28 -1.85 
 (ii) South Africa        
Student -18.78 29.86 -100.00 -11.71 -7.87 -5.30 -3.13 
GSTωυσ -16.41 25.17 -99.97 -10.35 -7.46 -5.20 -4.21 
       
II Skewed        
        
 (i) UK         
Student -24.81 30.57 -100.00 -31.73 -10.83 -5.37 -2.41 
Skewed -18.12 23.05 -100.00 -16.86 -9.29 -5.16 -2.26 
 (ii) South Africa        
Student -26.03 35.81 -100.00 -41.11 -6.06 -3.13 -3.13 
Skewed -18.13 27.82 -100.00 -13.17 -5.52 -3.13 -3.13 
NOTE: Panel I shows summaries of the VaR computed for stocks in each of the four markets shown. The Student row 
shows summaries computed using an assumed Student distribution. The GSTωυσ row shows summaries based on the 
correctly specified GSTωυσdistribution. The column entitled Avg is the average VaR for all stocks in the market in 
question with available data computed using each distribution. The other columns of the table present other standard 
summary statistics computed in the usual way. Panel II presents the same results for stocks which have one of the four 
main skewed distributions. 
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Figure 1. Two GSTs both with skewness of –1.6 
but displaying different forms of asymmetry 
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Figure 2. The Effect Of The Shape Parameter, ω , On The Generalised Weibull 
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Figures 3 – 5. The Effects Of Asymmetric Parameter Values On The Shape Of 
The GST 
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Figure 6. Tree of likelihood ratio tests applied to each series of stock returns 

 
 
Figure 7. Histogram of the estimated degrees of freedom for stocks with Student 
t distribution for UK FTSE350 Stocks (Estimated using 500 daily returns from 4th 
December 2001 to 3rd November 2003) 
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Figure 8 Graph of the Value at Risk for stocks with Student t distribution for 
UK FTSE350 Stocks (Estimated using 500 daily returns from 4th December 2001 to 
3rd November 2003) 

 
Stocks sorted by Studt VaR

-18

-16

-14

-12

-10

-8

-6

-4

-2

0
1 21 41 61 81 101 121 141 161

V
aR

(1
%

) a
s p

er
ce

nt
ag

e

VaR-normal|Studt VaR-Studt|Studt

 
The VaR is computed as a percentage, the graphs are plotted in the order of decreasing risk 
according to the correctly specified Student t distribution. value The curve entitled VaR-Studt|Studt 
is the correctly specified Student t distribtion. The curve VaR-normal|Studt shows the corresponding 
values if a normal distribution is assumed.  

 
 
 
 
Figure 9 Graph of the Value at Risk For Stocks With GSωνσ Distribution for UK 
FTSE350 Stocks (Estimated using 500 daily returns from 4th December 2001 to 3rd 
November 2003) 
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The VaR is computed as a percentage, the graphs are plotted in the order of decreasing 
risk according to the correctly specified GSωνσ distribution. value The curve entitled 
VaR-GSwnv|GSwnv is the correctly specified distribution. The curve VaR-Studt|GSwnv 
shows the corresponding values if Student t distribution is assumed.  

 
 
 


