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1. Introduction 

 The worldwide electrical power industry has faced a restructuring process over 

the last decades.  It is well documented that spot electricity prices present a complex 

behavior in restructured (wholesale) markets. Some of the characteristics that have been 

noted in the literature are seasonality (intra-day, weekly, monthly, calendar effects), 

mean reversion, stochastic volatility and extreme behavior with fast-reverting spikes. It 

must be noted that electricity is non-storable, and demand and supply must be matched 

at every instant, and as a consequence spikes are a typical feature of electricity prices. 

 Recent econometric studies of spot market prices have tried to capture the main 

characteristics of electricity prices. Many authors have tried to capture the behavior of 

electricity prices either through mixtures of Gaussian distributions (Escribano et al. 

(2002), Goto and Karolyi (2004), Knittel and Roberts (2005), Tipping et al. (2004)) or 

through regime-switching models (Huisman and Mahieu (2001), Mount et al. (2006)). 

See also Geman and Roncoroni (2004) and Bunn and Karakatsani (2003) for a survey. 

One of the most interesting but difficult task is to model the spikes. The spikes being 

abrupt (positive) changes in electricity prices affect the conditional distribution of 

electricity prices, and in particular affect the conditional skewness of the process. 

Therefore if we claim that modeling spikes is a necessary task, we have to conclude that 

is obviously important to understand the dynamics and economic determinnats of the 

conditional skewness of electricity prices. 

 It must be stressed that the modeling of conditional skewness of spot prices is 

not only important to forecast the future distribution of spot prices, but also to 

understand the behavior of derivatives prices (derivatives valuation) and to quantify the 

risk of a given position (risk management). In particular, Bessembinder and Lemmon 

(2002) in their equilibrium model showed that “skewness will affect the equilibrium 

forward premium and optimal forward positions”. Specifically, the skewness of the spot 

power price distribution increases the equilibrium forward premium. Therefore it is 

crucial to understand the dynamics and to identify determinants of electricity spot price 

skewness in order to understand and forecast the prices of electricity derivatives, the 

compensation required by the agents to face price risk (forward premium) and the 

hedging decisions made by the participants in the electricity market. 

  The goal of this paper is to model not only the (conditional) mean and volatility 

of electricity prices, but also the conditional skewness, which is needed to understand 

the dynamics and determinants of skewness. On one hand, understanding and 
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forecasting the skewness of electricity prices is an important aspect by itself. The effects 

of time-varying skewness have been studied in the case of some financial assets like 

daily returns of stock indices or exchange rates, but they have not been deeply 

investigated in the case of daily spot electricity prices. On the other hand, time-varying 

skewness has also implications for instance, on the price of electricity derivatives, the 

behavior of forward risk premium, optimal strategies of execution of swing contracts, 

and estimation of at-risk measures. 

 There is a growing literature on stock and option price behavior dealing with the 

role of skewness, see Corrado and Su (1996), Harvey and Siddique (1999), Jondeau and 

Rockinger (2000), Premaratne and Bera (2003) and Leon et al. (2005) among others.  

 In this paper, we focus on the work by Leon et al. (2005). The authors propose a 

GARCH-type model allowing for time-varying volatility, skewness and kurtosis. The 

model is estimated assuming a Gram-Charlier series expansion of the normal density 

function for the error term. Our goal is to apply the model to electricity spot prices and 

to analyze which variables generate the observed skewness in electricity prices. Apart 

from analysing the temporal evolution of skewness (persistence) we are also very 

interested in introducing explanatory variables in the skewness process. Specifically, 

spikes, probably due to some demand and/or supply shocks, generate higher positive 

skewness. Therefore, we present an extended GARCH-type model allowing not only for 

time-varying volatility and skewness, but also for the potential effect of demand and 

supply shocks on price skewness. 

 Moreover, as pointed out by Leon et al. (2005), their model for time-varying 

moments is particularly useful for financial series characterized by high risk and 

pronounced departures from normality, which is particularly the case of spot electricity 

markets. 

 The rest of the paper is organized as follows. Section 2 presents the data and 

some preliminary results. In Section 3 we present the general GARCH-type model for 

estimating time-varying variance and skewness jointly. We also present the specific 

models we have analysed. Section 4 presents the empirical results regarding the 

estimation of the models and compares the models allowing for time-varying skewness 

and the standard models with constant third moment. Section 5 concludes with a 

summary and discussion. 
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2. Data and descriptive statistics 
 
 The data employed in the study are average daily prices for electricity from three 

different markets: NordPool (Scandinavia), Pennsylvania-New Jersey-Maryland market 

(henceforth PJM) and Victoria market (Australia). Table 1 summarizes the dataset. 

Table 2 presents some descriptive statistics. Figures 1 to 3 show the evolution of 

electricity prices and the evolution of the extra economic variable we have in our data 

set. As usual in electricity markets, we may observe electricity prices face some 

seasonal behavior (more clear in the case of NordPool), mean-reversion, non-constant 

volatility and occasional spikes. From Table 2 we see electricity price (and log-prices) 

are quite volatile, and highly non-normal. In fact the null of normality of price and log-

price series is rejected with the Jarque-Bera test in all three markets. 

Table 3 presents the (unconditional) skewness of log-price series per month, see 

also Figure 4. Table 3 illustrates that skewness is not constant across the year, 

suggesting that time-varying skewness should be incorporated in the model for the 

electricity price.  

Scatter plots in Figures 5 to 7 show the relationship between prices and weekly 

hydro reservoirs in NordPool (figures 5a and 5b); the relationship between price and the 

ratio load/capacity in PJM (figures 6a and 6b) and the relationship between price and 

demand in Victoria (figure 7). We see that there exists a positive relationship between 

price and ratio load capacity and between price and demand in PJM and Victoria 

markets, respectively. Moreover the relationship is not necessarily linear, and it may 

resemble in some cases and inverted L. This “inverted L” pattern appears clearly in 

figure 6b. We will take into account this nonlinearity in the specification for the 

skewness process below. 

 
3. Methodology 
 

In this section we propose a model for conditional variance and skewness. Given 

a series of electricity prices {P0, P1, …, PT}, we denote the natural logarithm of the price 

by yt = log(Pt). Specifically, we present a GARCH(1,1)-type model for the conditional 

variance and also a GARCH (1,1) structure for conditional skewness. This model, 

denoted as GARCHS  is given by1: 

 

                                                 
1 See León, Rubio and Serna (2005). 
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where It-1 denotes an information set till period 1t −  and ht and st denote conditional 

variance and skewness respectively. Zt accounts for the potential effect of demand and 

supply shocks on conditional skewness. 

 

As usual in the literature, Lucía and Schwarzt (2002), we have incorporated a 

deterministic seasonal function,  f(t) given by: 
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where wkdt is a dummy variable that takes a value of 1 if the observation is in weekday 

and zero otherwise2 (weekend). Parameters α1 and α3 capture the amplitude of the cycle, 

while parameters α2 and α4 capture the location of the (local) peak of the cycle. With 

this general formulation for the sinusoidal function we allow for the possibility of 

having two cycles per year (two local maximum per year). In the case of a single annual 

cycle we should have 043 == αα . Equation (1b) captures the mean-reversion pattern 

usually observed in electricity prices. Equations (1c)-(1d) characterize the volatility 

process, in particular we have specified a GARCH(1,1) process for volatility of 

electricity prices, although another type of model of the GARCH family could be used3. 

The (nonnegative) parameters β0, β1 and β2 characterize the dynamics of the volatility 

following a GARCH(1,1) process (β0 > 0; β1 , β2 ≥0). The non-negativity restrictions 

                                                 
2 It should be noted that very similar results have been found with monthly dummy variables instead of 
sinusoidal cycles. However, the sinusoidal specification is preferably given its reduced number of 
parameters, which is important in the estimation process. 
3 In particular, some kind of non-linear GARCH process could be appealing in this case. In fact, Knittel 
and Roberts (2005) reported that at least for the California market, an “inverse leverage” effect could 
exist. We have estimated a modified version of the model incorporating a NAGARCH(1,1) process. It is 
found that the (inverse) leverage effect is only significant in the Victoria market.  
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are needed to guarantee that the conditional variance is positive and also ω has to be 

strictly positive for the process not to degenerate. If 111 <+ ββ , then the variance 

reverts back to its unconditional mean )1/( 210
2 βββσ −−= . 

Finally, equation (1e) captures the dynamics of skewness. We establish that 

( )1 0t tE η− = , ( )2
1 1t tE η− =  and ( )3

1t t tE sη− = ,  where ts  is driven by a GARCH (1,1) 

structure. Hence, ts  represents the skewness corresponding to the conditional 

distribution of the standardized residual 21
ttt h−= εη . Therefore, we propose to model 

the skewness process as a kind of GARCH(1,1) process with an extra variable Zt  

related to demand and supply conditions. Given data availability, the variable Zt will 

differ among markets. Although below we show the exact definition of variable Zt for 

each market it is worth to mention that variable Zt when applied to NordPool data is 

related to supply shocks (“hydro reservoir shocks”), while is related to “demand 

shocks” when estimating the model with prices from the Victoria market and finally is 

related to the Load / Capacity ratio when estimating the model with PJM prices. 

Using a Gram-Charlier (GC) series expansion of the normal density function and 

truncating in the fourth moment4, we obtain the following density function for the 

standardized residuals tη  conditional on information available in 1t − : 
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where ( )⋅φ  denotes the probability density function (henceforth pdf) corresponding to 

the standard normal distribution, k denotes standardized kurtosis, which is considered to 

be constant over time5, and ( )⋅Ψ  is the fourth order polynomial in brackets in (3). Note 

that the pdf defined in (3) is not really a density function because it might be negative 

for some parameter values in (1) due to the component ( )⋅Ψ . Also, the integral of ( )⋅g  

on ℜ is not equal to one. We propose a truly pdf, denoted as ( )⋅f , by transforming the 

                                                 
4 See Jarrow and Rudd (1982) and also, Corrado and Su (1996). 
5 It should be noted that this procedure also allows for time-varying kurtosis (see for example Leon et. al, 
2005). However, our main goal is to investigate the effects of time-varying skewness on electricity spot 
prices. Therefore, we present a model for time-varying skewness, allowing for non-normal (although 
constant) kurtosis. Furthermore, it is important in the estimation process to keep the number of parameters 
as small as possible. 
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density ( )⋅g  according to the methodology in Gallant and Tauchen (1989). Specifically, 

in order to insure positivity we shall square the polynomial part ( )⋅Ψ , and to insure that 

the density integrates to one6 we shall divide by the integral of ( )⋅g  over R. Hence, the 

resulting pdf written in abbreviated form is: 

 

( ) ( ) ( )2
1 /t t t t tf Iη φ η ψ η− = Γ                                              (4) 

where  

( )
!4

3

!3
1

23 −++=Γ kst
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Therefore, after omitting unessential constants, the logarithm of the likelihood 

function for one observation corresponding to the conditional distribution 1/ 2
t t thε η= , 

whose pdf is ( )1/2
1t t th f Iη−

− , is given by: 

 

( )( ) ( )2 21 1
ln ln ln

2 2t t t t tl h η ψ η= − − + − Γ                                   (5) 

 

 It is important to note that this likelihood function is smoother and easier to 

estimate than the one based on a non-central t proposed by Harvey and Siddique (1999). 

In fact, the likelihood function in (3) is the same as in the standard normal case plus two 

adjustment terms accounting for non-normal skewness and kurtosis. The density 

function based on a Gram-Charlier series expansion in equation (4) nests the normal 

density function (when st = 0 and k = 3), while the non-central t does not. Therefore, the 

restrictions imposed by the normal density function with respect to the more general 

density based on a Gram-Charlier series expansion can be easily tested. 

 

 Before presenting the estimation results, it is important to note that the 

likelihood function in (5) is highly nonlinear. Therefore the starting values of the 

parameters must be selected with care. As usual in these cases, we estimate our 

GARCHS model following several stages, using the parameters estimated from simpler 

                                                 
6 See the appendix to prove that this nonnegative function is really a density function that integrates to 
one. 
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(nested) models as starting values for more complex ones. These nested models can be 

summarized, together with the distribution assumed for the unconditional standardized 

error, as follows7: 

 

GARCH(1,1) – N(0,1) 
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 The GARCH(1,1) specification for the volatility process has been used in the 

NordPool and PJM markets, whereas the NAGARCH(1,1) specification has been used 

in the Victoria market (see footnote 3). 

We have the following definitions for the variable Zt: 

 

PJM market 

Zt is a dummy variable that takes the value 1 when the ratio load / capacity is 

greater or equal than 0.7, and zero otherwise. In other words, Zt is a dummy variable 

capturing those days in which the system is near full capacity, and in particular when 

demand is above 70% of the maximum available capacity. The idea is that the 

relationship between price and ratio load capacity is non-linear and have an inverted L 

shape. 

In a regime-switching context Mount et al. (2006) found that a similar value of 

the ratio load capacity separates a low and high volatility state. In our paper, in order to 

decide the breaking point that defines this dummy variable Z, we have run regressions 

of the electricity price against the load/capacity ratio, including a dummy variable for 

the slope which takes the value 1 when the ratio is higher than a certain value, say a, 

and 0 otherwise, with a varying from 0.40 and 0.82 (the minimum and maximum of the 

                                                 
7 In all models bellow the mean equation is given by expressions (1a) – (1c) and (2). 
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load/capacity ratio respectively). The breaking point has been chosen as the value of a 

that maximizes the R2 of the regression, which is 0.70 (see Table 4)8. Therefore if the 

load / capacity ratio affects price skewness we should obtain that the parameter 3γ  is 

positive (and significantly different from zero). 

 

NordPool market 

For NordPool we have weekly data on the level of the hydro reservoir. Since 

prices have daily frequency we have imposed that all days in the same week have the 

same value of hydro reservoir. From weekly hydro reservoir we have substracted the 

predictable part in order to obtain a measure of supply shock. The variable supply shock 

is defined as the residuals obtained from this regression:  

 

∑
=

+⋅+⋅+⋅+=
11

1
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j
tt

T
t

wkdM
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M
jt vtrendweekdayDSupply ββββ

 

where M
tjD ,  is a set of monthly dummies and νt are the residuals of the regression. 

Instead of dealing with the variable tv  we have defined a measure of shocks in 

percentage terms, defined as: “supply shock” / Hydro Reservoir. 

Finally since relationship between hydro reservoir and prices could be a non-

linear, we have built a dummy that takes values 1 if “supply shock” / Hydro Reservoir is 

below -0.3 and 0 otherwise9, 10.  

 

Victoria market 

As stated before, variable Zt in the case of the Victoria market is related to 

demand shocks. We have defined demand shocks as the residuals from the following 

regression: 
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where M
tjD ,  is a set of monthly dummies and νt are the residuals of the regression. 

                                                 
8 We agree that other possible definitions for Z could be used. In particular another plausible definition 
for Z could be: Z = max { (Load / Capacity) – 0.7, 0}.  
9 This breaking point has been chosen in a similar way as in the PJM market, i.e. running regressions of 
the electricity price against “supply shock”/Hydro Reservoir. 
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But instead of dealing with the variable νt it has been defined a measure of 

shocks in percentage terms: “demand shocks” / demand. Finally we have built a dummy 

variable that takes the value 1 if “demand shock” / demand is higher than 0.05.11 

 

4. Empirical results 

 

Before we estimate our GARCHS/NAGARCHS models, we analyze the 

presence of unit roots in the level of the process.  As pointed out by Boswijik (2001) 

and Kim and Schmidt (1993) among others, standard Dickey-Fuller tests based on LS 

estimators are often sensitive, in the presence of GARCH errors. This problem becomes 

serious when the volatility process is near integrated (β1 + β2 close to 1). Boswijk 

(2001) and Boswijik and Doornik (2005) propose tests for a unit root in models with 

GARCH errors, based on a likelihood ratio statistic, which substantially improves the 

asymptotic local power of the standard Dickey-Fuller tests, specially when the volatility 

process is near integrated and the short-run variation in volatility (β1) is relatively high, 

which is particularly the case of spot electricity prices. 

The likelihood ratio test will be based on the following model: 

12
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Where )(tfyX tt −= . The parameter φ describes the degree of mean-reversion. The 

null hypothesis will be H0: (φ − 1) = 0, which is tested against the alternative H1: (φ − 1) 

< 0. The distribution for the likelihood ratio statistic (under the null) is approximated by 

a gamma distribution (see Boswijik and Doornik, 2005).  

 The results are presented in Table 5. The null hypothesis can be rejected for PJM 

and Victoria markets, but not for the NordPool market12. Therefore, only in the 

NordPool market, our GARCH/GARCHS model will be estimated with the variables in 

the mean equation in first differences. 

                                                                                                                                               
10 Other possible definition of Z could be used. Note that we just defined a supply shock in percentages 
and we have taken into account that the relationship between supply shocks and log-prices is nonlinear. 
11 This breaking point has been decided in a similar way as in the PJM and NordPool markets, i.e. running 
regressions of the electricity price against “demand shock”/demand. 
12 In fact the autorregresive parameter in a standard GARCH(1,1) model for the spot electricity price in 
the NordPool market is around 0.99. 



 

 10  

 Tables 6, 7 and 8 contain the results of the estimation of our three models 

(GARCH/NAGARCH−N(0,1), GARCHS/NAGARCHS−Gallant & Tauchen and 

GARCHS/NAGARCHS−Gallant & Tauchen with explanatory variable) for NordPool, 

PJM and Victoria respectively. Concerning the mean equation, it is found that all the 

coefficients associated to the seasonal effects are significant, except for αT in the 

NordPool. Specifically, trading days are characterized by higher prices than non-trading 

days, since the coefficient αd is positive and significant in all markets. We have 

obtained that only one annual seasonal cycle is needed in all markets.  

As usual, volatility is found to be persistent since the coefficient of lagged 

volatility is positive and significant, indicating that high conditional variance is 

followed by high conditional variance. It is also interesting the relatively high value of 

the short-run variation in volatility found in the NordPool (β1). Finally, an inverse 

leverage effect is found in the Victoria Market, indicating that positive shocks to the 

price result in larger increases in volatility than negative shocks. This inverse leverage 

effect has also been found by Knittel and Roberts (2005) in the California market. 

 Concerning the skewness equation, it is found that, for NordPool and PJM 

markets, days with high skewness are followed by days with low skewness, since the 

coefficient for lagged skewness (γ2) is negative and significant, although its magnitude 

(in absolute value) is lower than the one for the variance case. The opposite result is 

found in the Victoria market, i.e., days high skewness are followed by days with high 

sekwness. Also, shocks to skewness are significant though they are less relevant than its 

persistence. 

 Next, we will briefly describe the results of the estimation of the GARCHS 

(1,1)/NAGARCH(1,1) model with explanatory variable, with the pdf in (4) for the error 

term. As argued above, the point is that jumps associated to demand/supply related 

variables could generate higher positive skewness. The results confirm this hypothesis, 

since the coefficient associated to the explanatory variable Zt (γ3) is positive and 

significant in all markets. Even though jumps generate higher skewness, it is important 

to model the time-varying skewness which is not due to jumps, since the coefficients 

associated to the GARCH(1,1) effects in the skewness equation (γ1 and γ2) are still 

significant.  

 Finally, it is worth noting that the value of the Schwarz Information Criterion 

(SIC), shown at the bottom of Tables 6, 7 and 8 rises monotonically in all cases when 
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we move from the simpler models to the more complicated ones, with the 

GARCHS/NAGARCHS model with explanatory variable showing the highest figure. 

 Figure 8 shows the behavior of the conditional variance obtained with both the 

standard GARCH – N(0,l) model and with the GARCHS – Gallant & Tauchen with 

explanatory variable model, in the PJM market13. It is clear that conditional variance 

obtained with the model accounting for conditional skewness is smoother than the one 

obtained with the standard GARCH model. This is confirmed by the results in Table 9, 

which shows the main descriptive statistics for both conditional variances. In fact, the 

conditional variance obtained with the GARCHS model shows a lower standard 

deviation and less skewness and kurtosis than the variance obtained with the standard 

GARCH model. This is consistent with the findings of Harvey and Siddique (1999) and 

León, Rubio and Serna (2005). 

 The behavior of the conditional skewness obtained with the GARCHS – Gallant 

& Tauchen model with explanatory variable is also depicted in Figure 8. Looking at the 

three graphics in Figure 8 we can see that periods with high volatility in the conditional 

variances series are also characterized by high volatility in the conditional skewness 

series. 

 To determine how well the standard GARCH and the GARCHS with 

explanatory variable models perform in predicting spot electricity volatility, tree metrics 

have been calculated. The variable predicted is the squared forecast error (ε2
t) and the 

predictors are the conditional variances (ht) from, respectively, the standard GARCH 

and GARCHS with explanatory variable. The three metrics are: 
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13 In order to save space, only the results for the PJM market are presented. 



 

 12  

 The results for the PJM market are shown in Table 10. In the full sample period 

the model accounting for time-varying skewness with explanatory variable outperforms 

the standard GARCH model, using all three metrics. It is also the best performing 

model in all the annual periods considered in the Table. Interestingly, the best 

performance of the GARCHS with explanatory variable model is found in the first and 

last annual periods (1999 and 2003), which are characterized by higher volatility (see 

Figure 2).  

 Finally, Table 11 presents some descriptive statistics for a 30-day simple moving 

average skewness and also the statistics corresponding to the conditional skewness 

under the GARCHS – Gallant & Tauchen with explanatory variable model, for the PJM 

market. It is clear that conditional skewness shows less standard deviation than the 30-

day moving average measure of skewness. Moreover, looking at the median statistic, we 

can conclude that the conditional measure seems to provide more pronounced positive 

skewness than the moving average one.  

 

5. Conclusions 

 

 It is well known that spot electricity prices in wholesale markets present a 

complex behaviour, i.e. high (time-varying volatility), fast reverting spikes and non-

normality. There have been many papers trying to capture this extreme behaviour 

through mixtures of Gaussian distributions (see Knittel and Roberts, 2005, Goto and 

Karolyi, 2004 and Escribano et al., 2002, among others), or through regime-switching 

models (Huisman and Mahieu, 2001; Mount et al., 2006).  

 In this paper it has been presented an alternative way of capturing such extreme 

behaviour. Instead of introducing extra terms that generate jumps, which indirectly 

generate conditional skewness, we have presented a model allowing not only for time-

varying volatility but also for time-varying skewness. Specifically, we propose a 

GARCH-type model for conditional volatility and skewness of electricity prices, 

assuming a Gram-Charlier series expansion of the normal density function for the error 

term. This model also allows for explanatory variables in the skewness process. 

Particularly, we have investigated the effect of jumps, associated to demand-supply 

related variables, on skewness. The point is that jumps due to demand-supply related 

variables could generate higher positive skewness. It is worth noting that understanding 

of the process for conditional volatility and skewness has consequences in terms of 
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hedging, risk management and valuation of financial derivatives and real assets. In fact, 

as pointed out by Besembinder and Lemmon (2002), the equilibrium forward premium 

and the optimal forward positions are affected by the skewness of the spot price 

distribution. 

The data employed in the study are average daily prices for electricity in the 

Pennsylvania-New Jersey-Maryland (PJM), Victoria and NordPool markets. The results 

indicate significant presence of conditional skewness. Additionally, the specification 

allowing for time-varying skewness outperforms the standard GARCH specification 

with constant third moment. It is also found that jumps associated to demand-supply 

variables, generate high skewness. However, even though jumps generate higher 

skewness, it is still important to model time-varying skewness which is not due to 

jumps. 
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APPENDIX  

 
Here we show that the nonnegative function ( )1t tf Iη −  in (4) is really a density 

function, that is, it integrates to one. We can rewrite ( )tψ η  in (2) as: 

  

( ) ( ) ( )3 4

3
1

3! 4!
t t

t t t

s k
H Hψ η η η−= + +  

 
where  ( ){ } Ν∈ii xH  represents the Hermite polynomials such that ( ) ( )0 11,H x H x x= =  

and for 2i ≥  they hold the following recurrence relation: 
 

( ) ( ) ( )( )1 21 /i i iH x xH x i H x i− −= − −  

 
It is verified that ( ){ } Ν∈ii xH  is an orthonormal basis satisfying that: 
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= ∀ ≠∫                                   (A-2) 

 
 
where ( )•φ  denotes the N(0,1) density function. If we integrate the conditional density 
function in (4), given conditions (A-1) and (A-2): 
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 Table 1. Summary of available data 
 
 
Market In-sample period 

(dd/mm/yy) 
Spot Price 

(daily) 
Extra Variable 

NP  
 

01/01/95 - 19/11/03 X Weekly Hydro Reservoir level 

PJM 01/01/99 - 31/05/03 X Ratio Load / Available 
Generation Capacity (Daily) 

VIC 01/05/99 - 30/09/04 X Daily Load (demand) 
 
 

 

Table 2a. Descriptive statistics. Price Series 

Price  N. Obs. Mean Min. Max. Std.Dev. Skew. Kurt. CV Jarque-Bera 
(p-value) 

NP 3245 166.53 21.27 831.41 89.00 2.36 13.28 0.53 17302.17 
(0.0000) 

PJM 1612 29.42 8.19 397.34 23.79 7.47 78.04 0.81 421415.7 
(0.0000) 

VIC 1980 30.79 4.98 1014.60 39.66 15.23 324.33 1.29 8582505 
(0.0000) 

 
CV: Coefficient of variation: Standard Deviation / Mean 
 

 
 

 
Table 2b. Descriptive statistics. Log-Price Series 

Price  N. Obs. Mean Min. Max. Std.Dev. Skew. Kurt. CV Jarque-Bera 
(p-value) 

NP 3245 5.00 3.06 6.72 0.48 -0.016 3.77 0.10 80.88 
(0.0000) 

PJM 1612 3.25 2.10 5.98 0.45 1.28 7.29 0.14 1683.50 
(0.0000) 

VIC 1980 3.26 1.61 6.92 0.47 1.84 11.12 0.14 6546.55 
(0.0000) 

 
CV: Coefficient of variation: Standard Deviation / Mean 
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Figure 1: NordPool Price, Log-price series and Weekly Hydro Reservoir Level.  
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Figure 2: PJM Price and Log-price series and Daily Ratio Load / Capacity 
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Figure 3: Victoria (Australia) price, log-price and load (demand) series. 
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Table 3: Log-price skewness per month (p-value for the null of zero skewness in 
parenthesis) 
 

 NORDPOOL PJM VICTORIA 
January 1.617 

(0.00) 
0.487 
(0.01) 

2.034 
(0.00) 

February 0.261 
(0.05) 

0.902 
(0.00) 

2.0428 
(0.00) 

March 0.186 
(0.14) 

0.884 
(0.00) 

0.793 
(0.00) 

April -0.239 
(0.06) 

0.103 
(0.61 

0.248 
(0.18) 

May -1.02 
(0.00) 

0.716 
(0.00) 

1.777 
(0.00) 

June -0.548 
(0.00) 

1.875 
(0.00) 

1.785 
(0.00) 

July -0.526 
(0.00) 

1.728 
(0.00) 

1.737 
(0.00) 

August -1.043 
(0.00) 

1.177 
(0.00) 

1.662 
(0.00) 

September -1.64 
(0.00) 

0.149 
(0.51) 

1.533 
(0.00) 

October -1.11 
(0.00) 

-0.006 
(0.98) 

-0.225 
(0.26) 

November 0.427 
(0.00) 

-0.11 
(0.61) 

4.663 
(0.00) 

December 1.296 
(0.00) 

0.501 
(0.02) 

0.560 
(0.00) 
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Figure 4: Skewness of log-prices per month 
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FIGURE 5a: NordPool. Scatter Plot: Log-Price (vertical axis) vs. Weekly Hydro 

Reservoirs (horizontal axis) 
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FIGURE 5b: NordPool. Scatter Plot: Price (vertical axis) vs. Weekly Hydro 

Reservoirs (horizontal axis) 
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FIGURE 6a: PJM market. Scatter Plot: Log-Price (vertical axis) vs. Ratio Load 
capacity (horizontal axis) 
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FIGURE 6b: PJM market. Scatter Plot: Price (vertical axis) vs. Ratio Load 
capacity (horizontal axis) 
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FIGURE 7: Victoria. Scatter Plot: Log-Price (vertical axis) vs. Demand (horizontal 
axis) 
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TABLE 4  

 
      REGRESSIONS OF PRICE AGAINST LOAD/CAPACITY RA TIO (PJM) 

 
 

L/C R2 L/C R2 

0.40 0.23053336 0.62 0.25237065 
0.41 0.23143723 0.63 0.25187283 
0.42 0.23302725 0.64 0.25560971 
0.43 0.23442824 0.65 0.2559233 
0.44 0.23487498 0.66 0.2544859 
0.45 0.23518622 0.67 0.26185767 
0.46 0.23626816 0.68 0.27388471 
0.47 0.23848113 0.69 0.26968033 
0.48 0.24100554 0.70 0.29011417 
0.49 0.24436078 0.71 0.24646167 
0.50 0.24565862 0.72 0.23149419 
0.51 0.24687302 0.73 0.22952251 
0.52 0.24813424 0.74 0.23628863 
0.53 0.25134046 0.75 0.23242932 
0.54 0.25356158 0.76 0.23949901 
0.55 0.25289631 0.77 0.23643459 
0.56 0.25293611 0.78 0.23301318 
0.57 0.2528751 0.79 0.23362085 
0.58 0.25286022 0.80 0.23362085 
0.59 0.25305734 0.81 0.23166277 
0.60 0.25206418 0.82 0.23059204 
0.61 0.2519667   

 

 

TABLE 5 
 

 BOSWIJK (2001) UNIT ROOT TEST 
 

 NordPool PJM Victoria 
LR 5.514 254.6608 146.6158 
p-value 0.2401 0.0000 0.0000 
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TABLE 6. NORDPOOL ESTIMATION RESULTS 
 

The reported coefficients shown in each row of the table are ML estimates of the model: 
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where yt is the log-price of the electricity in NordPool. ht = var(yt | yt-1, yt-2, …), st = skewness(yt | yt-1, yt-2, 
…), ηt = εt ht

-1/2, εt | εt-1, εt-2, … follows a distribution based on a Gram-Charlier series expansion of the 
standard normal density, weekday is a dummy variable which takes the value 1 for trading days and 0 
otherwise, and Z is a dummy variable related to supply shocks and defined in the main text. All models 
have been estimated using the Brendt-Hall-Hall-Hausman algorithm (quasi-maximum likelihood p-values 
in parenthesis). The mean equation has been estimated with the variables in first differences (unit root). 
 
 
 Parameter Estimated value  

(p-value) 
  GARCH(1,1) – 

N(0,1) 
GARCHS(1,1) – 

GT 
GARCHS(1,1) – 

GT EV 
α0 – – – 
αT 0.0001 

(0.9681) 
0.0008 

(0.5126) 
-0.00005 
(0.9779) 

αd 0.0729 
(0.0000) 

0.0748 
(0.0000) 

0.0704 
(0.0000) 

α1 0.6282 
(0.0000) 

0.2114 
(0.0025) 

0.4014 
(0.0143) 

α2 873.0643 
(0.0000) 

825.3590 
(0.0000) 

844.6245 
(0.0000) 

 
 
 
 
Mean equation 

φ – – – 

β0 0.0010 
(0.0064) 

0.0013 
(0.0007) 

0.0015 
(0.0247) 

β1 0.5241 
(0.0000) 

0.3403 
(0.0000) 

0.5247 
(0.0000) 

 
Variance equation 
 

β2 0.4659 
(0.0000) 

0.4702 
(0.0000) 

0.3463 
(0.0000) 

γ0 – 0.0136 
(0.7278) 

0.0925 
(0.2858) 

γ1 – 0.0498 
(0.0000) 

0.0000 
(0.0000) 

γ2 – -0.4165 
(0.0000) 

-0.9225 
(0.0000) 

 
 
Skewness equation 

γ3 – – 0.5575 
(0.0000) 

Kurtosis k – 3.6810 
(0.0000) 

3.7690 
(0.0000) 

Log-Likelihood – 6886.54 6964.21 7060.5423 

SIC – 6858.24 6919.74 7012.0368 
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TABLE 7. PJM ESTIMATION RESULTS 
 

The reported coefficients shown in each row of the table are ML estimates of the model: 
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where yt is the log-price of the electricity in PJM. ht = var(yt | yt-1, yt-2, …), st = skewness(yt | yt-1, yt-2, 
…), ηt = εt ht

-1/2, εt | εt-1, εt-2, … follows a distribution based on a Gram-Charlier series expansion of the 
standard normal density, weekday is a dummy variable which takes the value 1 for trading days and 0 
otherwise, and Z is a dummy variable related to supply shocks and defined in the main text.All models 
have been estimated using the Brendt-Hall-Hall-Hausman algorithm (quasi-maximum likelihood p-values 
in parenthesis). 
 
 Parameter Estimated value  

(p-value) 
  GARCH(1,1) – 

N(0,1) 
GARCHS(1,1) – 

GT 
GARCHS(1,1) – 

GT EV 
α0 2.8061 

(0.0000) 
2.7945 

(0.0000) 
2.8188 

(0.0000) 

αT 0.0002 
(0.0000) 

0.0003 
(0.0000) 

0.00025 
(0.0000) 

αd 0.2519 
(0.0000) 

0.2445 
(0.0000) 

0.2472 
(0.0000) 

α1 -0.1111 
(0.0153) 

-0.1029 
(0.0102) 

-0.1033 
(0.0065) 

α2 109.8944 
(0.0000) 

114.6934 
(0.0000) 

116.3827 
(0.0000) 

 
 
 
 
Mean equation 

φ 0.6909) 
(0.0000) 

0.7085 
(0.0000) 

0.6991 
(0.0000) 

β0 0.0019 
(0.1367) 

0.0028 
(0.1316) 

0.0030 
(0.0632) 

β1 0.0827 
(0.0000) 

0.0986 
(0.0000) 

0.0404 
(0.0000) 

 
Variance equation 
 

β2 0.8997 
(0.0000) 

0.8764 
(0.0000) 

0.9179 
(0.0000) 

γ0 – 0.0859 
(0.0363) 

0.1140 
(0.0206) 

γ1 – 0.0248 
(0.0002) 

0.0110 
(0.0023) 

γ2 – -0.3036 
(0.0000) 

-0.4709 
(0.0000) 

 
 
Skewness equation 

γ3 – – 0.4072 
(0.0283) 

Kurtosis k – 3.3102 
(0.0000) 

3.2800 
(0.0000) 

Log-Likelihood – 1273.4604 1298.5588 1307.7483 

SIC – 1240.2324 1250.5629 1256.0604 
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TABLE 8. VICTORIA ESTIMATION RESULTS 
 

The reported coefficients shown in each row of the table are ML estimates of the NAGARCH model: 
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where yt is the log-price of the electricity in Victoria. ht = var(yt | yt-1, yt-2, …), st = skewness(yt | yt-1, yt-2, 
…), ηt = εt ht

-1/2, εt | εt-1, εt-2, … follows a distribution based on a Gram-Charlier series expansion of the 
standard normal density, weekday is a dummy variable which takes the value 1 for trading days and 0 
otherwise, and Z is a dummy variable related to demand shocks and defined in the main text. All models 
have been estimated using the Brendt-Hall-Hall-Hausman algorithm (quasi-maximum likelihood p-values 
in parenthesis). 
 

 Parameter Estimated value 
(p-value) 

  NAGARCH (1,1) – 
N(0,1) 

NAGARCHS (1,1) 
– GT 

NAGARCHS (1,1) 
– GT EV 

α0 3.3233 
(0.0000) 

3.2432 
(0.0000) 

3.2291 
(0.0000) 

αT -0.00007 
(0.0000) 

-0.00003 
(0.0000) 

-0.00004 
(0.0000) 

αd 0.1726 
(0.0000) 

0.1530 
(0.0000) 

0.1533 
(0.0000) 

α1 -0.2065 
(0.0062) 

-0.2018 
(0.0003) 

-0.1909 
(0.0002) 

α2 961.7241 
(0.0000) 

948.4570 
(0.0000) 

958.4993 
(0.0000) 

 
 
 
 
Mean equation 

φ 0.8824 
(0.0000) 

0.8608 
(0.0000) 

0.8421 
(0.0000) 

β0 0.0056 
(0.0014) 

0.0058 
(0.0050) 

0.0062 
(0.0214) 

β1 0.1147 
(0.0069) 

0.0703 
(0.0122) 

0.0714 
(0.0625) 

 
 
Variance 
equation 

β2 0.5294 
(0.0000) 

0.5690 
(0.0000) 

0.6638 
(0.0000) 

 
β3 1.7779 

(0.0000) 
2.1603 

(0.0000) 
1.7402 

(0.0030) 

γ0 – 0.0998 
(0.0069) 

0.0357 
(0.0663) 

γ1 – 0.0059 
(0.0727) 

-0.0001 
(0.7518) 

 
 
Skewness 
equation 

γ2 – 0.5172 
(0.0000) 

0.8118 
(0.0000) 

 γ3 – – 1.0389 
(0.0010) 

Kurtosis k – 3.7615 
(0.0000) 

3.7745 
(0.0000) 

Log-Likelihood – 1514.7434 1661.4719 1666.5361 

SIC – 1476.7942 1608.3430 1609.6123 
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FIGURE 8. PJM 

ESTIMATED CONDITIONAL MOMENTS 

 
CONDITIONAL VARIANCE GARCH – N(0,1) 

 
 

 
 
 

CONDITIONAL VARIANCE GARCHS – G&T WITH EXPLAN. VARI ABLE 
 

 
 
 

CONDITIONAL SKEWNESS G&T WITH EXPLAN. VARIABLE 
 

-1,2

-0,7

-0,2

0,3

0,8

1,3

1,8

2,3

2,8

1 165 329 493 657 821 985 1149 1313 1477

 

0

0.2

0.4

0.6

0.8

1 165 329 493 657 821 985 1149 1313 1477

0

0.1

0.2

0.3

0.4

0.5

1 165 329 493 657 821 985 1149 1313 1477



 

 31  

TABLE 9 
DESCRIPTIVE STATISTICS FOR CONDITIONAL VARIANCES. P JM 

The table shows the main descriptive statistics for the conditional variances obtained from the standard 
GARCH – N(0,01) model and from the GARCHS – Gallant & Tauchen with explanatory variable model. 

 
STATISTIC ht – GARCH ht – GARCHS 
Sample size 1610 1610 
Mean 0.0907 0.0795 
Median 0.0718 0.0687 
Maximum 0.7550 0.4224 
Minimum 0.0298 0.0442 
Standard Deviation 0.0762 0.0431 
Skewness 4.2065 3.8512 
Kurtosis 22.1987 18.3394 

 
TABLE 10 

IN-SAMPLE PREDICTIVE POWER.PJM 

The variable predicted is the squared forecast error (ε2
t) and the predictors are the conditional variances 

(ht) from, respectively, the standard GARCH and the GARCHS with explanatory variable models. The 
predictive ability of these models is compared through tree metrics: mean absolute error (MAE), root 
mean squared error (RMSE) and the coefficient R2. 
 

PERIOD MODEL MAE RMSE R2 

GARCH 0.0857 0.1621 0.6558 
1999-2003 

GARCHS 0.0802 0.1601 0.6628 
GARCH 0.1084 0.2307 0.3293 

1999 
GARCHS 0.0979 0.2284 0.3444 
GARCH 0.0920 0.1570 0.7338 

2000 
GARCHS 0.0864 0.1554 0.7382 
GARCH 0.0745 0.1244 0.7670 

2001 
GARCHS 0.0711 0.1239 0.7675 
GARCH 0.0609 0.0908 0.8621 

2002 
GARCHS 0.0604 0.0909 0.8633 
GARCH 0.1027 0.1884 0.6186 

2003 
GARCHS 0.0926 0.1815 0.6351 

 
TABLE 11 

DESCRIPTIVE STATISTICS FOR MOVING AVERAGE AND CONDI TIONAL 
SKEWNESS.PJM 

 
The table shows the main descriptive statistics for 30-day simple moving average and conditional 
skewness obtained from the GARCHS – Gallant & Tauchen with explanatory variable. 
 

STATISTIC Mov.-Aver. S t Conditional St 
Sample size 1582 1582 
Mean 0.1402 0.0952 
Median 0.0270 0.0777 
Maximum 3.6786 3.7151 
Minimum -1.3504 -1.1694 
Standard Deviation 0.7047 0.1330 

 
 


