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Abstract

It is crucial to model, quantify and understand ¥agables and dynamics that underlie
the well-known extreme behaviour of spot electyigtices in wholesale markets. We
explicitly model the conditional volatility and skeess of electricity prices. A
GARCH-type model allowing for time-varying volatii and skewness, which is
estimated assuming a Gram-Charlier expansion ofnibrenal density function, is
presented. This model is applied to data from Pdumasia- New Jersey, NordPool and
Victoria (Australia) markets. We document the estise of a rich structure in the
conditional skewness of spot prices and we showela¢ionship between skewness and
demand-supply related variables.
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1. Introduction

The worldwide electrical power industry has faeetkestructuring process over
the last decades. It is well documented that spettricity prices present a complex
behavior in restructured (wholesale) markets. Sofitee characteristics that have been
noted in the literature are seasonality (intra-dagekly, monthly, calendar effects),
mean reversion, stochastic volatility and extrerabdvior with fast-reverting spikes. It
must be noted that electricity is non-storable, dechand and supply must be matched
at every instant, and as a consequence spikestygpecal feature of electricity prices.

Recent econometric studies of spot market pries® firied to capture the main
characteristics of electricity prices. Many authbeve tried to capture the behavior of
electricity prices either through mixtures of Gaassdistributions (Escribano et al.
(2002), Goto and Karolyi (2004), Knittel and Rolsef2005), Tipping et al. (2004)) or
through regime-switching models (Huisman and Mal{iZ01), Mount et al. (2006)).
See also Geman and Roncoroni (2004) and Bunn arek&gani (2003) for a survey.
One of the most interesting but difficult task asrmhodel the spikes. The spikes being
abrupt (positive) changes in electricity priceseeffthe conditional distribution of
electricity prices, and in particular affect thenddional skewness of the process.
Therefore if we claim that modeling spikes is agssary task, we have to conclude that
is obviously important to understand the dynamied aconomic determinnats of the
conditional skewness of electricity prices.

It must be stressed that the modeling of conditimkewness of spot prices is
not only important to forecast the future distribat of spot prices, but also to
understand the behavior of derivatives prices ya#ikies valuation) and to quantify the
risk of a given position (risk management). In gatar, Bessembinder and Lemmon
(2002) in their equilibrium model showed thakéwness will affect the equilibrium
forward premium and optimal forward positidn§pecifically, the skewness of the spot
power price distribution increases the equilibridonward premium. Therefore it is
crucial to understand the dynamics and to idemté@ierminants of electricity spot price
skewness in order to understand and forecast tloespof electricity derivatives, the
compensation required by the agents to face pigie (forward premium) and the
hedging decisions made by the participants in kbetrécity market.

The goal of this paper is to model not only tbenditional) mean and volatility
of electricity prices, but also the conditional wkess, which is needed to understand

the dynamics and determinants of skewness. On e, hunderstanding and



forecasting the skewness of electricity pricesnisnaportant aspect by itself. The effects
of time-varying skewness have been studied in #s ©of some financial assets like
daily returns of stock indices or exchange ratad, they have not been deeply
investigated in the case of daily spot electrigitices. On the other hand, time-varying
skewness has also implications for instance, omptlee of electricity derivatives, the

behavior of forward risk premium, optimal strategywf execution of swing contracts,
and estimation of at-risk measures.

There is a growing literature on stock and oppace behavior dealing with the
role of skewness, see Corrado and Su (1996), Hawed\5iddique (1999), Jondeau and
Rockinger (2000), Premaratne and Bera (2003) and k¢ al. (2005) among others.

In this paper, we focus on the work by Leon e{2005). The authors propose a
GARCH-type model allowing for time-varying volatyli skewness and kurtosis. The
model is estimated assuming a Gram-Charlier ses@ansion of the normal density
function for the error term. Our goal is to apgig tmodel to electricity spot prices and
to analyze which variables generate the observedrsiss in electricity prices. Apart
from analysing the temporal evolution of skewnegsrgistence) we are also very
interested in introducing explanatory variablesthe skewness process. Specifically,
spikes, probably due to some demand and/or supylgks, generate higher positive
skewness. Therefore, we present an extended GAR@drbodel allowing not only for
time-varying volatility and skewness, but also tbe potential effect of demand and
supply shocks on price skewness.

Moreover, as pointed out by Leon et al. (2005¢jrttmodel for time-varying
moments is particularly useful for financial seriesaracterized by high risk and
pronounced departures from normality, which isipalarly the case of spot electricity
markets.

The rest of the paper is organized as followsti&e@ presents the data and
some preliminary results. In Section 3 we preskatgeneral GARCH-type model for
estimating time-varying variance and skewness lpind/e also present the specific
models we have analysed. Section 4 presents theriesmhpresults regarding the
estimation of the models and compares the modeiwiag for time-varying skewness
and the standard models with constant third mom8ettion 5 concludes with a

summary and discussion.



2. Data and descriptive statistics

The data employed in the study are average dedgpfor electricity from three
different markets: NordPool (Scandinavia), Penrayla-New Jersey-Maryland market
(henceforth PJM) and Victoria market (Australiapble 1 summarizes the dataset.
Table 2 presents some descriptive statistics. Eggur to 3 show the evolution of
electricity prices and the evolution of the extmm®omic variable we have in our data
set. As usual in electricity markets, we may obseelectricity prices face some
seasonal behavior (more clear in the case of NaijPmean-reversion, non-constant
volatility and occasional spikes. From Table 2 we slectricity price (and log-prices)
are quite volatile, and highly non-normal. In féo¢ null of normality of price and log-
price series is rejected with the Jarque-Berainesll three markets.

Table 3 presents the (unconditional) skewness@plice series per month, see
also Figure 4. Table 3 illustrates that skewnessas constant across the year,
suggesting that time-varying skewness should berpuzated in the model for the
electricity price.

Scatter plots in Figures 5 to 7 show the relatignsletween prices and weekly
hydro reservoirs in NordPool (figures 5a and 5h¢; telationship between price and the
ratio load/capacity in PJM (figures 6a and 6b) #mel relationship between price and
demand in Victoria (figure 7). We see that therestsxa positive relationship between
price and ratio load capacity and between price dachand in PJM and Victoria
markets, respectively. Moreover the relationshima$ necessarily linear, and it may
resemble in some cases and inverted L. This “iedett” pattern appears clearly in
figure 6b. We will take into account this nonlingarin the specification for the

skewness process below.

3. Methodology

In this section we propose a model for conditioramiance and skewness. Given
a series of electricity price®{, P, ..., B}, we denote the natural logarithm of the price
by y: = log(P;). Specifically, we present a GARCH(1,1)-type mofitelthe conditional
variance and also a GARCH (1,1) structure for comwial skewness. This model,
denoted as GARCHS is given'by

! See Ledn, Rubio and Serna (2005).



Y, = f®)+ X, (1a)

X, =X, +€&; £ ~ (O, af) (1b)
e =n’n; n.~(0) &[l.~(h) (1c)
h =6+ B &L+ 6, Th, (1d)
S =Vt +y, B+ ) (le)

whereli.; denotes an information set till periad-1 andh; ands denote conditional
variance and skewness respectivélyaccounts for the potential effect of demand and

supply shocks on conditional skewness.

As usual in the literature, Lucia and Schwarzt @0@ve have incorporated a

deterministic seasonal functiofi(t) given by:

f(t) — ao +aT K +a’d Ddet +al B|n((t +a2) 3—3255j +a3 E$|n((t +a4)|]§67;j (2)

wherewkd is a dummy variable that takes a value of 1 ifdbservation is in weekday
and zero otherwiSdweekend). Parametess and a; capture the amplitude of the cycle,
while parametersr, and a, capture the location of the (local) peak of theleyWith

this general formulation for the sinusoidal funatiove allow for the possibility of
having two cycles per year (two local maximum pear). In the case of a single annual
cycle we should haver, =a, = .(Equation (1b) captures the mean-reversion pattern
usually observed in electricity prices. Equatiods){(1d) characterize the volatility
process, in particular we have specified a GARCH(Iprocess for volatility of
electricity prices, although another type of moafshe GARCH family could be uséd

The (nonnegative) parametes £ and 5, characterize the dynamics of the volatility

following a GARCH(1,1) process3 > O; £: , [~ =0). The non-negativity restrictions

2 |t should be noted that very similar results haeen found with monthly dummy variables instead of
sinusoidal cycles. However, the sinusoidal speafiim is preferably given its reduced number of
parameters, which is important in the estimatiacpss.

* In particular, some kind of non-linear GARCH prsseould be appealing in this case. In fact, Khitte
and Roberts (2005) reported that at least for thifdZnia market, an “inverse leverage” effect abul
exist. We have estimated a modified version ofrtteaglel incorporating a NAGARCH(1,1) process. It is
found that the (inverse) leverage effect is ongndicant in the Victoria market.



are needed to guarantee that the conditional \@i& positive and als@ has to be

strictly positive for the process not to degenerdttes, + £, <1, then the variance
reverts back to its unconditional mean = 3,/(1-B,- 3, . )

Finally, equation (1e) captures the dynamics ofwsless. We establish that
E..(7)=0, Et_l(nf):l and E[_l(nf'): §, Wheres is driven by a GARCH (1,1)

structure. Hence,s represents the skewness corresponding to the toovali

distribution of the standardized residugl = gtht_j/z. Therefore, we propose to model

the skewness process as a kind of GARCH(1,1) psoeeth an extra variable (Z
related to demand and supply conditions. Given datalability, the variable Zwill
differ among markets. Although below we show thaatdefinition of variable Zfor
each market it is worth to mention that variablenbien applied to NordPool data is
related to supply shocks (*hydro reservoir shocksthile is related to “demand
shocks” when estimating the model with prices fribra Victoria market and finally is
related to the Load / Capacity ratio when estingatire model with PIM prices.

Using a Gram-Charlier (GC) series expansion ofibrenal density function and
truncating in the fourth momeéhtwe obtain the following density function for the

standardized residualg conditional on information available in-1:

k-3
o, 11) = e, )[1%(05 A (AR 3)} =g w@n) ()
where qa([)] denotes the probability density function (hencidfqrdf) corresponding to
the standard normal distributiokdenotes standardized kurtosis, which is conside&red
be constant over timgand LIJ([)] is the fourth order polynomial in brackets in (Rpte
that the pdf defined in (3) is not really a dengiigction because it might be negative

for some parameter values in (1) due to the comutod4l]. Also, the integral ofg([)

on [ is not equal to one. We propose a truly pdf, demats f ([, by transforming the

* See Jarrow and Rudd (1982) and also, Corrado arti996).

® |t should be noted that this procedure also allforsime-varying kurtosis (see for example Leonadt
2005). However, our main goal is to investigate effects of time-varying skewness on electricitptsp
prices. Therefore, we present a model for time-waryskewness, allowing for non-normal (although
constant) kurtosis. Furthermore, it is importanthie estimation process to keep the number of peteam
as small as possible.



density g([)] according to the methodology in Gallant and Tanoi®©89). Specifically,
in order to insure positivity we shall square tlodypomial parth([)], and to insure that
the density integrates to dhere shall divide by the integral cgj([)] overR. Hence, the

resulting pdf written in abbreviated form is:

f(m]1)=e(n)w? (n)IT, )

where

Therefore, after omitting unessential constants, ltdtgarithm of the likelihood

1/2

function for one observation corresponding to taditional distributiorz, = h"7,,
whose pdf s (1,]1,.,), is given by:
1 1, 2
l==2Inh =2t +In(¢? (7)) =In(r) (5)

It is important to note that this likelihood fuimt is smoother and easier to
estimate than the one based on a non-central bpeopby Harvey and Siddique (1999).
In fact, the likelihood function in (3) is the sam® in the standard normal case plus two
adjustment terms accounting for non-normal skewrasd kurtosis. The density
function based on a Gram-Charlier series expansicgguation (4) nests the normal
density function (whes; = 0 andk = 3), while the non-central t does not. Thereftine,
restrictions imposed by the normal density functwith respect to the more general

density based on a Gram-Charlier series expansiome easily tested.

Before presenting the estimation results, it igpomant to note that the
likelihood function in (5) is highly nonlinear. Thedore the starting values of the
parameters must be selected with care. As usudhese cases, we estimate our

GARCHS model following several stages, using theupeters estimated from simpler

® See the appendix to prove that this nonnegatiuetion is really a density function that integrates
one.



(nested) models as starting values for more compf®s. These nested models can be
summarized, together with the distribution assufieedhe unconditional standardized

error, as follows

GARCH(1,1) — N(0,1) h =8, + B+ B.h.,
s =0
GARCHS(1,1) / NAGARCH(L,1) —h = g, + B,e2, + B,h.,
Gallant &Tauchen h =8, +181(£t—1 +183ht1—/12)2 +Bh,

S = Vot Villea t VoS
GARCHS(1,1) / NAGARCH(1,1) —h = B, + B2, + Bh.,
Gallant & Tauchen with explanator 2

¥'t =5 +ﬁl(£t—l +ﬁ3htl—/12) + B0,

S = Vo * WL VoSt VRZ,

variable

The GARCH(1,1) specification for the volatility gmess has been used in the
NordPool and PJM markets, whereas the NAGARCH(4pEcification has been used
in the Victoria market (see footnote 3).

We have the following definitions for the variatde

PJM market

Z: is a dummy variable that takes the value 1 whenr#io load / capacity is
greater or equal than 0.7, and zero otherwisetherovords, Zis a dummy variable
capturing those days in which the system is nelrcépacity, and in particular when
demand is above 70% of the maximum available capadihe idea is that the
relationship between price and ratio load capasityon-linear and have an inverted L
shape.

In a regime-switching context Mount et al. (2006)irid that a similar value of
the ratio load capacity separates a low and hidatNity state. In our paper, in order to
decide the breaking point that defines this dumragable Z, we have run regressions
of the electricity price against the load/capacdtio, including a dummy variable for
the slope which takes the value 1 when the ratioigher than a certain value, say

and 0 otherwise, with varying from 0.40 and 0.82 (the minimum and maximaf the

" In all models bellow the mean equation is giverelgressions (1a) — (1c) and (2).



load/capacity ratio respectively). The breakingnpdias been chosen as the valua of
that maximizes the Rof the regression, which is 0.70 (see Tabfe @herefore if the

load / capacity ratio affects price skewness weukhobtain that the parametes is

positive (and significantly different from zero).

NordPool market

For NordPool we have weekly data on the level ef tlydro reservoir. Since
prices have daily frequency we have imposed tHadals in the same week have the
same value of hydro reservoir. From weekly hydreereoir we have substracted the
predictable part in order to obtain a measure ppsushock. The variable supply shock

is defined as the residuals obtained from thiseggjon:

11
Supply = B, +>_B}" D} + B** (Wweekday+ B' drend, +v,
=1

where Dm is a set of monthly dummies amgdare the residuals of the regression.

Instead of dealing with the variable we have defined a measure of shocks in

percentage terms, defined as: “supply shock” / dyRleservoir.

Finally since relationship between hydro resenamd prices could be a non-
linear, we have built a dummy that takes valuds'dupply shock” / Hydro Reservoir is
below -0.3 and 0 otherwise’.

Victoria market

As stated before, variablg in the case of the Victoria market is related to
demand shocks. We have defined demand shocks asditeials from the following
regression:

11
Demand = 3, + > B D} + " Weekday+ B' [{rend, +v,
j=1

where Dm is a set of monthly dummies amdare the residuals of the regression.

8 We agree that other possible definitions for ZIddwe used. In particular another plausible deéinit
for Z could be: Z = max { (Load / Capacity) — 00%,

° This breaking point has been chosen in a simiky as in the PIJM market, i.e. running regressidns o
the electricity price against “supply shock’/HydReservoir.



But instead of dealing with the variablg it has been defined a measure of
shocks in percentage terms: “demand shocks” / ddntanally we have built a dummy
variable that takes the value 1 if “demand shod&rmand is higher than 0.65.

4. Empirical results

Before we estimate our GARCHS/NAGARCHS models, wealye the
presence of unit roots in the level of the proceés. pointed out by Boswijik (2001)
and Kim and Schmidt (1993) among others, standac#dy-Fuller tests based on LS
estimators are often sensitive, in the presenc&@ARCH errors. This problem becomes
serious when the volatility process is near integtals,+ £, close to 1). Boswijk
(2001) and Boswijik and Doornik (2005) propose defstr a unit root in models with
GARCH errors, based on a likelihood ratio statjstuhich substantially improves the
asymptotic local power of the standard Dickey-Rulésts, specially when the volatility
process is near integrated and the short-run vamiat volatility (£,) is relatively high,
which is particularly the case of spot electrigtjces.

The likelihood ratio test will be based on the dating model:

AX, =(¢=D(Xy — ) +&,
£ =h"n;
N2 =B, + Bl + Bha
Where X, =y, — f(t ). The parametep describes the degree of mean-reversion. The

null hypothesis will be il (¢— 1) = 0, which is tested against the alternative(ig— 1)
< 0. The distribution for the likelihood ratio g&tic (under the null) is approximated by
a gamma distribution (see Boswijik and Doornik, 200

The results are presented in Table 5. The nulbthgsis can be rejected for PIM
and Victoria markets, but not for the NordPool nedlk Therefore, only in the
NordPool market, our GARCH/GARCHS model will beimstted with the variables in

the mean equation in first differences.

19 Other possible definition of Z could be used. Nittat we just defined a supply shock in percentages
and we have taken into account that the relatignisbtween supply shocks and log-prices is nonlinear

1 This breaking point has been decided in a simitay as in the PJM and NordPool markets, i.e. rupnin
regressions of the electricity price against “dedhaimock”/demand.

121n fact the autorregresive parameter in a stan@k&CH(1,1) model for the spot electricity price in
the NordPool market is around 0.99.



Tables 6, 7 and 8 contain the results of the edion of our three models
(GARCH/NAGARCH-N(0,1), GARCHS/NAGARCHSGallant & Tauchen and
GARCHS/NAGARCHSGallant & Tauchen with explanatory variable) forrNBool,
PJM and Victoria respectively. Concerning the megnation, it is found that all the
coefficients associated to the seasonal effectssaypeificant, except forar in the
NordPool. Specifically, trading days are charaettiby higher prices than non-trading
days, since the coefficienty is positive and significant in all markets. We aav
obtained that only one annual seasonal cycle idetem all markets.

As usual, volatility is found to be persistent @nthe coefficient of lagged
volatility is positive and significant, indicatinghat high conditional variance is
followed by high conditional variance. It is alsdaresting the relatively high value of
the short-run variation in volatility found in thidordPool (3). Finally, an inverse
leverage effect is found in the Victoria Marketdicating that positive shocks to the
price result in larger increases in volatility thaegative shocks. This inverse leverage
effect has also been found by Knittel and Rob&®95%) in the California market.

Concerning the skewness equation, it is found, tfat NordPool and PJM
markets, days with high skewness are followed bysdaith low skewness, since the
coefficient for lagged skewnesg) is negative and significant, although its magmétu
(in absolute value) is lower than the one for tlagiance case. The opposite result is
found in the Victoria market, i.e., days high skess are followed by days with high
sekwness. Also, shocks to skewness are signiftbanigh they are less relevant than its
persistence.

Next, we will briefly describe the results of tlestimation of the GARCHS
(1,1)/NAGARCH(1,1) model with explanatory variableith the pdf in (4) for the error
term. As argued above, the point is that jumps @sted to demand/supply related
variables could generate higher positive skewnBss.results confirm this hypothesis,
since the coefficient associated to the explanat@sgable Z ()5) is positive and
significant in all markets. Even though jumps gatethigher skewness, it is important
to model the time-varying skewness which is not tugumps, since the coefficients
associated to the GARCH(1,1) effects in the skewrexpuation | and ) are still
significant.

Finally, it is worth noting that the value of ti8xhwarz Information Criterion

(SIC), shown at the bottom of Tables 6, 7 and 8srismionotonically in all cases when
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we move from the simpler models to the more comapdid ones, with the
GARCHS/NAGARCHS model with explanatory variable wirg the highest figure.

Figure 8 shows the behavior of the conditionalarare obtained with both the
standard GARCH — N(0,l) model and with the GARCHSallant & Tauchen with
explanatory variable model, in the PIM matkelt is clear that conditional variance
obtained with the model accounting for conditioskéwness is smoother than the one
obtained with the standard GARCH model. This isfeored by the results in Table 9,
which shows the main descriptive statistics forhbodnditional variances. In fact, the
conditional variance obtained with the GARCHS modébws a lower standard
deviation and less skewness and kurtosis than ahance obtained with the standard
GARCH model. This is consistent with the findingsHarvey and Siddique (1999) and
Ledn, Rubio and Serna (2005).

The behavior of the conditional skewness obtaingd the GARCHS — Gallant
& Tauchen model with explanatory variable is algpidted in Figure 8. Looking at the
three graphics in Figure 8 we can see that pemotshigh volatility in the conditional
variances series are also characterized by higatiltyl in the conditional skewness
series.

To determine how well the standard GARCH and thARGHS with
explanatory variable models perform in predictipgtselectricity volatility, tree metrics
have been calculated. The variable predicted issthmred forecast errog%) and the
predictors are the conditional variancég from, respectively, the standard GARCH
and GARCHS with explanatory variable. The threericetre:

.
Mean absolute erroMAE = %Z‘gf - ht‘
t=1

=
Root mean squared errdRMSE= \/%Z( 2 — h)z
t=1
1< 2
? (‘gt2 - ht)
RZ :1_ t=1
1 2
T=

31n order to save space, only the results for thd Parket are presented.
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The results for the PIJM market are shown in TaBleln the full sample period
the model accounting for time-varying skewness witplanatory variable outperforms
the standard GARCH model, using all three metritss also the best performing
model in all the annual periods considered in trebld. Interestingly, the best
performance of the GARCHS with explanatory variamledel is found in the first and
last annual periods (1999 and 2003), which areaciarized by higher volatility (see
Figure 2).

Finally, Table 11 presents some descriptive siegisor a 30-day simple moving
average skewness and also the statistics corresomal the conditional skewness
under the GARCHS — Gallant & Tauchen with explanat@riable model, for the PJM
market. It is clear that conditional skewness shimgs standard deviation than the 30-
day moving average measure of skewness. Moremaing at the median statistic, we
can conclude that the conditional measure seerpsotade more pronounced positive

skewness than the moving average one.

5. Conclusions

It is well known that spot electricity prices inhwlesale markets present a
complex behaviour, i.e. high (time-varying voldyi)i fast reverting spikes and non-
normality. There have been many papers trying totura this extreme behaviour
through mixtures of Gaussian distributions (seetti€hiand Roberts, 2005, Goto and
Karolyi, 2004 and Escribano et al., 2002, amongish or through regime-switching
models (Huisman and Mahieu, 2001; Mount et al.,6200

In this paper it has been presented an alternatayeof capturing such extreme
behaviour. Instead of introducing extra terms tbaherate jumps, which indirectly
generate conditional skewness, we have presenteadal allowing not only for time-
varying volatility but also for time-varying skewssge Specifically, we propose a
GARCH-type model for conditional volatility and skeess of electricity prices,
assuming a Gram-Charlier series expansion of thealodensity function for the error
term. This model also allows for explanatory vaesbin the skewness process.
Particularly, we have investigated the effect ahps, associated to demand-supply
related variables, on skewness. The point is tinaipp due to demand-supply related
variables could generate higher positive skewnéss worth noting that understanding

of the process for conditional volatility and skease has consequences in terms of
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hedging, risk management and valuation of finandalvatives and real assets. In fact,
as pointed out by Besembinder and Lemmon (2002)etfuilibrium forward premium
and the optimal forward positions are affected bg skewness of the spot price
distribution.

The data employed in the study are average daibegrfor electricity in the
Pennsylvania-New Jersey-Maryland (PJM), Victorid &lordPool markets. The results
indicate significant presence of conditional skessmeAdditionally, the specification
allowing for time-varying skewness outperforms gtandard GARCH specification
with constant third moment. It is also found thamps associated to demand-supply
variables, generate high skewness. However, evength jumps generate higher
skewness, it is still important to model time-vagyiskewness which is not due to

jumps.
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APPENDIX

Here we show that the nonnegative functic6|(/7t|lt_l) in (4) is really a density

function, that is, it integrates to one. We canriay (17,) in (2) as:

w(0) =15 Hy () + <2 H ()

where {H; (x)},5, represents the Hermite polynomials such tHg{x) =1, H,(x) = x
and fori = 2 they hold the following recurrence relation:

H, (x) :(XHi—l(X)_mH—z(x))/\/_i

It is verified that{H; (x)};;, is an orthonormal basis satisfying that:
j:Hi(x)w(x) dx=1, Oi (A-1)
[ H () H; (We(x) dx=0, Tz j (A-2)

where ¢+) denotes the N(0,1) density function. If we intégrthe conditional density
function in (4), given conditions (A-1) and (A-2):

@ir )~ )] ko) 5220, 0) [

=(r)| [ eln)dn, +§! [~ H3 (0 )o(n,) g, +

:(1/rt)-1+§!+_(kt‘3)2}
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Table 1. Summary of available data

Market In-sample period| Spot Price Extra Variable
(dd/mmlyy) (daily)
NP 01/01/95 - 19/11/08 X Weekly Hydro Reservoir leve
PIM 01/01/99 - 31/05/03 X Ratio Load / Available
Generation Capacity (Daily)
VIC 01/05/99 - 30/09/04 X Daily Load (demand)

Table 2a. Descriptive statistics

. Price Series

Price | N. Obs| Mean Min| Max. |Std.Dev|Skew.| Kurt. | CV | Jarque-Bera
(p-value)
NP 3245 | 166.5821.27| 831.41| 89.00| 2.3§ 13.280.53 | 17302.17
(0.0000)
PIM 1612 | 29.42 819 397.34 23.719 7.47 78.M81 | 421415.7
(0.0000)
VIC 1980 | 30.79| 4.98 1014.6039.66 | 15.23324.33 1.29 8582505
(0.0000)

CV: Coefficient of variation: Standard DeviatioWgan

Table 2b. Descriptive statistics. Log-Price Series

Price | N. Obs| Mean Min| Max. | Std.Dev|Skew.| Kurt. | CV | Jarque-Bera
(p-value)
NP 3245 | 5.00| 3.06 6.72 0.48 -0.018.77 | 0.10 80.88
(0.0000)
PIM 1612 | 3.25| 2.10 5.98 0.45 1.28 7.29 014 1683,
(0.0000)
VIC 1980 | 3.26| 1.61 6.92 0.47 1.84 111D.14 6546.55
(0.0000)

CV: Coefficient of variation: Standard Deviatioiviean
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Figure 1: NordPool Price, Log-price series and Wedk Hydro Reservoir Level.
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Figure 2: PJM Price and Log-price series and DailyRatio Load / Capacity
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Figure 3: Victoria (Australia) price, log-price and load (demand) series.

Victoria
May 1, 1999 - September 30, 2004

Spot Price
1120

960 —
800 —
640 —
480
320 +

160

0 IR A A e .
1999 2000 001 2002 2003 2004

Spot Log-Price

1 LU L L L L L L L I I L B
1999 2000 2001 2002 2003 2004

Load

7000

6500 —

6000

5500

5000

4500

4000 -

3500 IR A A I e .
1999 2000 2001 2002 2003 2004

20



Table 3: Log-price skewness per month (p-value fothe null of zero skewness in
parenthesis)

NORDPOOL PJM VICTORIA

January 1.617 0.487 2.034
(0.00) (0.01) (0.00)

February 0.261 0.902 2.0428
(0.05) (0.00) (0.00)

March 0.186 0.884 0.793
(0.14) (0.00) (0.00)

April -0.239 0.103 0.248
(0.06) (0.61 (0.18)

May -1.02 0.716 1.777
(0.00) (0.00) (0.00)

June -0.548 1.875 1.785
(0.00) (0.00) (0.00)

July -0.526 1.728 1.737
(0.00) (0.00) (0.00)

August -1.043 1.177 1.662
(0.00) (0.00) (0.00)

September -1.64 0.149 1.533
(0.00) (0.51) (0.00)

October -1.11 -0.006 -0.225
(0.00) (0.98) (0.26)

November 0.427 -0.11 4.663
(0.00) (0.61) (0.00)

December 1.296 0.501 0.560
(0.00) (0.02) (0.00)
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Figure 4: Skewness of log-prices per month
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FIGURE 6a: PJM market. Scatter Plot: Log-Price (vetical axis) vs. Ratio Load
capacity (horizontal axis)
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FIGURE 6b: PJM market. Scatter Plot: Price (vertica axis) vs. Ratio Load
capacity (horizontal axis)
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FIGURE 7: Victoria. Scatter Plot: Log-Price (vertical axis) vs. Demand (horizontal
axis)
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TABLE 4

REGRESSIONS OF PRICE AGAINST LOAD/CAPACITY RATIO (PJM)

L/C R L/C R’

0.40 0.23053336  0.62 0.25237065
0.41 0.23143723  0.63 0.25187283
0.42 0.23302725  0.64 0.25560971
0.43 0.23442824  0.65 0.2559233
0.44 0.23487498  0.66 0.2544859
0.45 0.23518622  0.67 0.26185767
0.46 0.23626816  0.68 0.27388471
0.47 0.23848113  0.69 0.26968033
0.48 0.24100554  0.70 0.29011417
0.49 0.24436078  0.71 0.24646167
0.50 0.24565862  0.72 0.23149419
0.51 0.24687302  0.73 0.22952251
0.52 0.24813424  0.74 0.23628863
0.53 0.25134046  0.75 0.23242932
0.54 0.25356158  0.76 0.23949901
0.55 0.25289631  0.77 0.23643459
0.56 0.25293611  0.78 0.23301318
0.57 0.2528751 0.79 0.23362085
0.58 0.25286022  0.80 0.23362085
0.59 0.25305734  0.81 0.23166277
0.60 0.25206418  0.82 0.23059204
0.61 0.2519667

TABLE 5

BOSWIJK (2001) UNIT ROOT TEST

NordPool PIM Victoria
LR 5.514 254.6608 146.6158
p-value 0.2401 0.0000 0.0000
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TABLE 6. NORDPOOL ESTIMATION RESULTS

The reported coefficients shown in each row oftttide are ML estimates of the model:

y, =a, +a, [drend+a, veekday+ a, Bin((trend+az)%j +X,

X =@X 4 TE&
h =5+ ,31£t2—1 +B,h
SS=Wht y1’7t3—1 M Z W 2y

wherey, is the log-price of the electricity in NordPob).= var(y; | Ye1, Y2 ---), $= skewness(y V.1, V-2,
W= & h'? & | &1, &2 ... follows a distribution based on a Gram-Charlienieseexpansion of the
standard normal density, weekday is a dummy varialdlich takes the value 1 for trading days and 0
otherwise, and Z is a dummy variable related tqpluphocks and defined in the main text. All models
have been estimated using the Brendt-Hall-Hall-iHzars algorithm (quasi-maximum likelihood p-values
in parenthesis). The mean equation has been estimath the variables in first differences (unibtp

Parameter Estimated value
(p-value)
GARCH(1,1) - GARCHS(1,1)— GARCHS(1,1) -
N(0,1) GT GT EV
o - - -
ar 0.0001 0.0008 -0.00005
(0.9681) (0.5126) (0.9779)
Qy 0.0729 0.0748 0.0704
Mean equation (0.0000) (0.0000) (0.0000)
o) 0.6282 0.2114 0.4014
(0.0000) (0.0025) (0.0143)
a, 873.0643 825.3590 844.6245
(0.0000) (0.0000) (0.0000)
@ - — -
5o 0.0010 0.0013 0.0015
Variance equation (0.0064) (0.0007) (0.0247)
e 0.5241 0.3403 0.5247
(0.0000) (0.0000) (0.0000)
5 0.4659 0.4702 0.3463
(0.0000) (0.0000) (0.0000)
1% - 0.0136 0.0925
(0.7278) (0.2858)
Skewness equation A - 0.0498 0.0000
(0.0000) (0.0000)
% - -0.4165 -0.9225
(0.0000) (0.0000)
A - - 0.5575
(0.0000)
Kurtosis k - 3.6810 3.7690
(0.0000) (0.0000)
Log-Likelihood - 6886.54 6964.21 7060.5423
SIC - 6858.24 6919.74 7012.0368
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TABLE 7. PIM ESTIMATION RESULTS

The reported coefficients shown in each row oftttide are ML estimates of the model:

y, =a, +a, [drend+a, veekday a, Bin((trend+az)%j +X,

X =@X.,TE&
h =5+ ,31£t2—1 +B,h
Ss=Wht y1’7t3—1 M Z W 2y

wherey, is the log-price of the electricity in PIM, = var(y; | Ve1, Y2, ---)» $ = skewnessty Vi1, Vo,
W= & h'? & | &1, &2 ... follows a distribution based on a Gram-Charlienieseexpansion of the
standard normal density, weekday is a dummy varialdlich takes the value 1 for trading days and 0
otherwise, and Z is a dummy variable related tgpuphocks and defined in the main text.All models
have been estimated using the Brendt-Hall-Hall-iHgars algorithm (quasi-maximum likelihood p-values
in parenthesis).

Parameter Estimated value
(p-value)
GARCH(1,1) - GARCHS(1,1)- GARCHS(1,1) -
N(0,1) GT GTEV
o 2.8061 2.7945 2.8188
(0.0000) (0.0000) (0.0000)
ar 0.0002 0.0003 0.00025
(0.0000) (0.0000) (0.0000)
Mean equation Qy 0.2519 0.2445 0.2472
(0.0000) (0.0000) (0.0000)
I} -0.1111 -0.1029 -0.1033
(0.0153) (0.0102) (0.0065)
a> 109.8944 114.6934 116.3827
(0.0000) (0.0000) (0.0000)
7 0.6909) 0.7085 0.6991
(0.0000) (0.0000) (0.0000)
Lo 0.0019 0.0028 0.0030
Variance equation (0.1367) (0.1316) (0.0632)
Jea 0.0827 0.0986 0.0404
(0.0000) (0.0000) (0.0000)
B 0.8997 0.8764 0.9179
(0.0000) (0.0000) (0.0000)
) - 0.0859 0.1140
(0.0363) (0.0206)
Skewness equation I - 0.0248 0.0110
(0.0002) (0.0023)
¥% - -0.3036 -0.4709
(0.0000) (0.0000)
¥ - - 0.4072
(0.0283)
Kurtosis k - 3.3102 3.2800
(0.0000) (0.0000)
Log-Likelihood - 1273.4604 1298.5588 1307.7483
SIC - 1240.2324 1250.5629 1256.0604
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TABLE 8. VICTORIA ESTIMATION RESULTS

The reported coefficients shown in each row oftétide are ML estimates of the NAGARCH model:

y, =a, +a, [drend+a, veekday+ a, Bin((trend+a2)%j +X,

X =@X, T &
h =5+ /Bl(gt—l + 183ht1—/12 )2 + B0,

S=ht y1’7t3—1 M ZE Sl 2y
wherey, is the log-price of the electricity in Victori, = var(y; | Y1, Yo ---), $= skewness(y Vi1, V-2,
L= & h'? & | &1, &2, ... follows a distribution based on a Gram-Charlietieseexpansion of the
standard normal density, weekday is a dummy vaialdlich takes the value 1 for trading days and 0
otherwise, and Z is a dummy variable related toaleirshocks and defined in the main text. All models
have been estimated using the Brendt-Hall-Hall-t#ars algorithm (quasi-maximum likelihood p-values
in parenthesis).

Parameter Estimated value
(p-value)
NAGARCH (1,1) - NAGARCHS (1,1) NAGARCHS (1,1)
N(0,1) -GT - GTEV
o 3.3233 3.2432 3.2291
(0.0000) (0.0000) (0.0000)
ot -0.00007 -0.00003 -0.00004
(0.0000) (0.0000) (0.0000)
Mean equation ay 0.1726 0.1530 0.1533
(0.0000) (0.0000) (0.0000)
o) -0.2065 -0.2018 -0.1909
(0.0062) (0.0003) (0.0002)
a, 961.7241 948.4570 958.4993
(0.0000) (0.0000) (0.0000)
7 0.8824 0.8608 0.8421
(0.0000) (0.0000) (0.0000)
Lo 0.0056 0.0058 0.0062
(0.0014) (0.0050) (0.0214)
Variance e 0.1147 0.0703 0.0714
equation (0.0069) (0.0122) (0.0625)
5 0.5294 0.5690 0.6638
(0.0000) (0.0000) (0.0000)
J 1.7779 2.1603 1.7402
(0.0000) (0.0000) (0.0030)
% - 0.0998 0.0357
(0.0069) (0.0663)
Skewness U - 0.0059 -0.0001
equation (0.0727) (0.7518)
» - 0.5172 0.8118
(0.0000) (0.0000)
¥ - - 1.0389
(0.0010)
Kurtosis k - 3.7615 3.7745
(0.0000) (0.0000)
Log-Likelihood - 1514.7434 1661.4719 1666.5361
SIC - 1476.7942 1608.3430 1609.6123
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FIGURE 8. PIM
ESTIMATED CONDITIONAL MOMENTS
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TABLE 9
DESCRIPTIVE STATISTICS FOR CONDITIONAL VARIANCES. P JM

The table shows the main descriptive statisticstlier conditional variances obtained from the stashda
GARCH — N(0,01) model and from the GARCHS - Gallantauchen with explanatory variable model.

STATISTIC ht — GARCH ht — GARCHS
Sample size 1610 1610
Mean 0.0907 0.0795
Median 0.0718 0.0687
Maximum 0.7550 0.4224
Minimum 0.0298 0.0442
Standard Deviation 0.0762 0.0431
Skewness 4.2065 3.8512
Kurtosis 22.1987 18.3394
TABLE 10

IN-SAMPLE PREDICTIVE POWER.PJM

The variable predicted is the squared forecast €&f9 and the predictors are the conditional variances
(hy) from, respectively, the standard GARCH and theRGAIS with explanatory variable models. The

predictive ability of these models is compared tigio tree metrics: mean absolute error (MAE), root
mean squared error (RMSE) and the coefficiént R

PERIOD MODEL MAE RMSE R
GARCH 0.0857 0.1621 0.6558
1999-2003 GARCHS 0.0802 0.1601 0.6628
1999 GARCH 0.1084 0.2307 0.3293
GARCHS 0.0979 0.2284 0.3444
2000 GARCH 0.0920 0.1570 0.7338
GARCHS 0.0864 0.1554 0.7382
2001 GARCH 0.0745 0.1244 0.7670
GARCHS 0.0711 0.1239 0.7675
2002 GARCH 0.0609 0.0908 0.8621
GARCHS 0.0604 0.0909 0.8633
2003 GARCH 0.1027 0.1884 0.6186
GARCHS 0.0926 0.1815 0.6351

TABLE 11

DESCRIPTIVE STATISTICS FOR MOVING AVERAGE AND CONDI
SKEWNESS.PIM

TIONAL

The table shows the main descriptive statistics 3orday simple moving average and conditional
skewness obtained from the GARCHS — Gallant & Tanckith explanatory variable.

STATISTIC Mov.-Aver. S, Conditional S
Sample size 1582 1582
Mean 0.1402 0.0952
Median 0.0270 0.0777
Maximum 3.6786 3.7151
Minimum -1.3504 -1.1694
Standard Deviation 0.7047 0.1330
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