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An Empirical Comparison of Structural and  

Reduced-Form Credit Risk Frameworks: Evidence from the 

Credit Default Swap Market  
  

Abstract 

Increasing interest in credit risk modeling necessitates empirical validation of the numerous 

theoretical alternatives. However, the empirical literature on credit risk has so far yielded 

mixed results. The aim of this paper is three-fold: First, it compares the basic forms of 

structural (the Merton model) and reduced-form (constant intensity) models in a cross-

sectional and time series setup. Second, it utilizes a credit default swap dataset exclusively 

for both estimation and out-of-sample prediction. Finally, it contrasts the results to the 

performance of a machine learning algorithm, Support Vector Machines Regression, to 

compare prediction capability. We show that although the Merton and the constant intensity 

models handle default timing and interest rates differently, the prediction performance in 

cross-sectional and time series analyses is, on average, similar. In one-, five-, and ten-step-

ahead predictions of time series, the machine learning algorithm significantly outperformed 

financial models. 

 

Keywords: Credit Risk, Structural Models, Reduced-Form Models, Credit Default Swaps, 

Support Vector Machines Regression. 
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1. Introduction 

In the last decade, credit risk modeling has received increasing attention within academia 

and practice. On the “structural” modeling side, various extensions have been made to the 

early Merton model (1974), whereas on the “reduced-form” side, alternative variations for 

the intensity process are proposed in modeling. The literature is continuously renewed by 

new approaches, but there is no dominant framework capable of achieving “a shift of a 

paradigm” in the field in the Kuhnian sense. So far, there is no consensus on a model that 

could serve as a benchmark on a par with the Black/Scholes framework in equity and 

foreign exchange derivatives. One of the main reasons for this deficit is the fact that the 

sources of validation for theoretical approaches, the empirical studies, have yielded 

controversial results, leaving the theory adrift. At this stage, it is necessary to re-evaluate 

what the frameworks have put forward, and thereby undertake a first step towards 

comparing the main structures. 

 

The rapid expansion of the credit derivatives market has in turn placed increased demands 

on credit risk analysis. These contracts, whose payoffs depend on the creditworthiness of 

corporations, banks, or sovereign entities, are expected to reach a global market of about 

USD 8.2 trillion by the end of 2006, according to British Bankers’ Association’s Credit 

Derivatives Report (BBA, 2004). With 51 per cent of the market share, credit default swaps 

are by far the most frequently traded type of credit derivatives (BBA, 2004; p. 21). This 

popularity has generated interest and launched efforts for adapting theoretical pricing 

models. By its nature, the price of a credit default swap (CDS) represents a near-ideal 
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measure of credit risk. By virtue of being almost unconstrained by liquidity effects, CDSs 

provide an indispensable media for credit risk analysis. 

 

Within this evolving scene in the field of credit risk, the contributions of this study are 

three-fold. Firstly, the same dataset is applied to structural and reduced-form approaches. 

So far, the credit risk literature has analyzed the empirical fit to bond or CDS prices only 

within a certain framework of models. The empirical performance of the two major 

approaches to model credit risk, structural and reduced-form, have performed variably in 

different studies. When the dataset characteristics and the time frame involved were altered, 

there was no means of comparison among alternative models. Our study overcomes this 

difficulty by applying a CDS dataset to both model types, and compares the out-of-sample 

prediction errors. In addition, our study fills the gap in the literature on empirical tests that 

depend solely on CDS data. To date, there has been no effort using only CDS data for the 

estimation and subsequent testing of the out-of-sample prediction ability of credit risk 

models. Comparable studies have either worked only with bond data1, or utilized bond data 

in estimation and predicted CDS prices2, or, conversely, made use of CDS data in 

estimation, and predicted bond prices.3 Moreover, our study distinguishes between the 

results of cross-sectional and time series out-of-sample predictions, with the latter 

achieving far better results than the former. The third contribution of the study is to apply a 

machine learning algorithm whose recent empirical results have been promising. The 

Support Vector Machines Regression method has been utilized as a possible alternative to 

financial approaches. The prediction errors of the machine learning algorithm, which has no 

financially backed structure at all, is compared to structural and reduced-form frameworks 
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in a cross-sectional and time series setup. In the cross-sectional setup, our results indicate 

an overall poor fit with close prediction performance of financial models. We attribute this 

closeness to the similarity of the model settings, which is due to not having a breakdown 

into asset value parameters for the Merton model. Still, both financial models are superior 

to SVM methods, whose errors are mostly out of the reasonable range. Interestingly, the 

one-, five- and ten-day-ahead predictions of the SVM method dominate the financial 

methods in time series setups.     

 

The remaining sections of the study are organized as follows: Section 2 provides a review 

of the literature on credit risk. Section 3 introduces the credit default swap dataset used in 

the analysis. In Section 4, the three modeling approaches, (i) Merton, (ii) constant intensity, 

and (iii) Support Vector Machine Regression are explained, and the pricing of CDSs with 

these models is discussed. Sections 5 and 6 present the results with cross-sectional and time 

series analyses, respectively. The last section concludes with remarks, providing 

implications on the path towards a widely accepted credit risk modeling framework. 

 

2. Review of Literature and Purpose of the Study 

The history of credit risk modeling dates back to the 1970s. The introduction of the Black 

and Scholes (1973) and Merton (1973) valuation framework eventually led to the 

development of a new branch of finance. Extending this framework to include corporate 

bonds, Merton’s (1974) methodology was based on the central point that debt and equity 

can be interpreted as options on the firm value of a corporation. Over time, different 

approaches to modeling credit risk have been developed, resulting in two main branches of 
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research in the current academic literature. Following Merton’s (1974) idea, the structural 

approach is based on modeling the evolution of issuer balance sheets. Default occurs when 

the value of assets falls below a certain level and the issuer is unable or unwilling to meet 

its obligations. There have been various structural modeling extensions of Merton’s 

approach (1974), most significantly in terms of (i) allowing default at any time during  

maturity, (ii) endogenously deriving the level of the default barrier, and (iii) introducing 

stochastic interest rates. Black and Cox (1976) have provided a closed form solution for the 

“first-passage time” models. In addition, their study was important for its derivation of an 

endogenous default barrier, which has since been extended by Leland (1994) and many 

others. Longstaff and Schwartz (1995) carried the debate to include stochastic interest rates. 

 

In contrast to structural models, reduced-form models specify the default probabilities 

exogenously. According to these models, default time is unpredictable and is calculated by 

means of a default intensity function. Instead of relying upon the diffusion process inherent 

in structural models, reduced-form approaches model the default time as the first 

occurrence of an event in a jump process. The simplest type of reduced-form models is one 

in which default intensity is constant, as put forward by Jarrow and Turnbull (1995). Many 

variations of this model have been developed. Important contributions among them include 

Jarrow et al.’s version (1997) with rating-dependent intensities in a Markov chain setup, as 

well as the Cox processes used by Lando (1998) and Duffie and Singleton (1999) for 

default intensity modeling. A comprehensive review on both structural and reduced-form 

credit risk models can be found in Uhrig-Homburg (2002).  

 

 5



With all these different approaches available, the question becomes: How well do they 

represent a good benchmark for real prices? In the end, all the above models have arisen to 

serve the need of reaching consensus on a single approach. To date, there has been no 

common agreement in academia or practice as to which model framework better represents 

default risk. One main reason for the lack of consensus is that empirical studies have 

provided controversial guidance in the validation process for theoretical models. The 

unevenness of the studies can be attributed to three factors: (i) When testing a given model 

empirically, the usage of different datasets produces widely varying prediction results. For 

instance, structural models were often criticized by early empirical studies as under-

predicting credit spreads (Jones et al., 1984; Ogden, 1987; Lyden and Saraniti, 2000), 

whereas more recent studies utilizing the same models suggest that this is not a consistent 

occurrence (Eom et al., 2004). It is unclear, however, whether this is due to the models or 

the datasets used. (ii) Even though the prediction performances of structural and reduced-

form models have been compared within each framework, there have been no empirical 

studies examining the results of studies in which the same dataset and methodology were 

applied to both frameworks. For instance, although Eom et al.’s (2004) study is the most 

comprehensive study to date in which several structural models are compared in one 

setting, it does not address the results acquired with reduced-form approaches. Similarly, 

empirical studies conducted by Anderson and Sunderasan (2000) or Bakshi et al. (2006) 

have approved a special model setup without any basis of comparison across frameworks. 

(iii) Moreover, although the error results between the compared models might turn out to be 

similar, the estimation technique and the sampling setup for prediction highly influences 

the forecasting ability. As an example, Ericsson and Reneby’s (2004) out-of-sample 
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prediction results, obtained by using an extension of Leland’s (1994) endogenous structural 

model and employing an innovative estimation technique in Duan (1994), seem well 

comparable to Duffee’s (1999) in-sample results with a reduced-form model utilizing 

Kalman filter estimation, both having a root mean squared error of around 10 bps. 

Apparently, looking at the prediction results alone would be misleading, since these do not 

express the detailed aspects of both settings. The presence of all these issues therefore 

necessitates that further efforts be undertaken. Ideally, this would be accomplished by 

testing structural and reduced-form models via the application of the same methodology to 

the same dataset, as will be presented. 

 

In addition to comparing the two financial credit risk frameworks, we employ a third 

alternative method in this study. The recent developments in machine learning have opened 

a new pathway for computing empirical predictions: Support Vector Machines (SVM) is an 

innovative technique for data classification and regression. As an alternative to traditional 

neural network approaches, SVM, whose fundamentals were developed by Vapnik (1995), 

have become popular due to their promising empirical performance. Specifically, the SVM 

regression method proposes alternative kernel functions to be used in mapping into a high 

dimensional feature space. Literature on SVM regression applications on finance is sparse; 

there has been coverage especially on financial time series forecasting (Cao and Tay, 2001; 

Müller et al., 1997). To our knowledge, SVM has not been applied to credit derivatives 

pricing, and its results have accordingly not yet been compared with financial methods.  
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3. Data 

A study that compares credit risk modeling approaches needs to make use of a pure 

instrument whose price fully reflects the credit risk premium. Until recent years, corporate 

and sovereign bonds were the only tools available for studies on credit risk. However, the 

utilization of bonds has so far yielded intricate results. In the early years, the credit risk 

analysis was complicated because the bond price often included a callable option (Jones et 

al., 1984; Ogden, 1987). Even though this difficulty was later overcome with the 

availability of non-callable bond data (Eom et al., 2004), the bond spreads have prompted 

arguments as to which proportion of the spread credit risk actually constitutes. In an in-

depth analysis, Collin-Dufresne et al. (2001) have attributed the spread changes primarily to 

a non-credit risk related systematic factor, such as local supply-demand shocks. After 

dividing the risky portion of the bond premium into default and non-default components, 

the results of Longstaff et al. (2005) confirm that the non-default component in spreads are 

strongly related to a number of liquidity measures. 

 

Over the last decade, the expansion of the credit default swap market has provided a good 

alternative for transferring credit risk. The buyer of the CDS is insured against the default 

of the underlying entity by the seller of the CDS, who in exchange receives periodic 

payments, the CDS premiums. Obviously, this premium should be driven only by the credit 

risk of the underlying entity; the higher the credit risk, the higher the CDS premium will be. 

Since CDSs are contracts but not securities, they are not subject to squeezing effects. They 

are also less likely to be under supply and demand pressures since they are not in fixed 

supply like securities are.4 Blanco et al.’s results (2005) demonstrate that the CDS market 
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leads the bond market in price discovery, and therefore suggest higher liquidity of CDSs. 

All these reasons imply that in relative terms, liquidity constraints are far less applicable to 

CDSs, hence leaving the CDS premium with only the credit risk component. With these 

facts in mind, our study utilizes a CDS dataset for credit risk modeling analysis.  

 

Our dataset consists of over 235,000 daily quotes of the prices of liquid CDS contracts. 

CreditTrade’s daily indicative bid-ask quotes5 range over the period of January 2001 to 

December 2004. Figure 1 plots the CDS bid-ask midpoints as a function of credit ratings, 

which are a proxy for credit quality. The dataset is in line with the theoretical hypothesis 

that the higher the risk of default, the higher the premium will be. The full set of prices 

comes from interdealer voice brokerage, and the descriptive statistics can be found in Table 

1. In Panel A, it can be observed that the number of observations increase from around 

24,000 in 2001 to 76,000 in 2004, indicating an expanding market. One direct measure for 

liquidity of the market is the size of the bid-ask spread, which shows the tightness of orders 

to buy and sell.6 The bid-ask spread is observed to decrease over time, attaining its lowest 

level in 2004. Due to the steady level of daily observations after December 2002, this 

period has been focused on to the exclusion of earlier intervals. There is a cut-off point in 

the dataset in December 2002 as well, occasioned by a shift from 10 million notionals to 5 

million notionals. Moreover, as the dataset is mostly dominated by corporates and banks as 

the underlying entities; the sovereign entities are excluded due to (i) having too few data 

points, and (ii) for being mostly non-investment grade CDSs (as in the case of Latin 

America, which actually has higher number of observations). Panel B of Table 1 presents 

the descriptive data on rating classes across different maturities. The most liquid maturity is 
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the 5-year CDS, followed by 10- and 3-year CDSs. For similar reasons as above, we focus 

on the liquid segments of Aa- and A-rated classes, senior and 5-year maturity CDSs. 

[Figure 1 is presented here] 

[Table 1 is presented here] 

Table 2 provides the average spreads across ratings for the CDSs that are focused upon in 

the remainder of the study. The offer price minus the bid price for a given quote in our 

dataset has an average of 4.75 bps for the Aa-European class, whereas it is 6.81 bps for A-

European CDSs. A similar rise is observed for North American CDSs. Notably, the average 

premiums and spreads are observed to steadily decrease over time.  

[Table 2 is presented here] 

In addition to the CDS dataset, riskless interest rates are required as a major variable in 

models. In doing this, USD- and Euro-denominated contracts have to be treated separately. 

The daily estimates of Svensson (1994) model are used as the rates for the European region. 

Deutsche Bundesbank has estimated these parameters from government bonds. For the 

North American region, US Treasury Constant Maturity rates were linearly interpolated for 

quarterly intervals. The data are directly available from the corresponding web sites. 

 

4. Selected Approaches and CDS Valuation 

In our attempt to compare financial modeling frameworks, we have chosen to work with 

the Merton model (1974), which has the simplest form that a structural model can have. 

Meanwhile, we employ the constant default intensity as outlined by Jarrow and Turnbull 
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(1995), which can be regarded as the simplest form in the reduced-form framework. 

Although there are many extensions that have developed on top of these structures, we 

concentrate initially on a comparison of the two basic models. The results of both 

approaches are contrasted with the prediction results of a machine learning approach. The 

analysis is therefore three-fold: 

i. It applies the most financially structured models to a CDS dataset under the 

hypothesis that default is triggered by the asset value of the firm being below a 

certain threshold at maturity. 

ii. It applies the intensity-based Poisson jump process setting to the same dataset under 

the hypothesis that default is defined as a surprise event that can occur at any time 

during the lifetime. 

iii. It applies Support Vector Machines – a machine learning algorithm that does not 

have an economically-backed structure at all – under the hypothesis that whatever 

resides in the prices is the best source to train the function for predictions. 

 

4.1 The Merton Model 

We start by applying Merton’s (1974) model to the CDS dataset. This model allows default 

only at maturity, and does not incorporate a stochastic process for the interest rate. In order 

to value a CDS, consider its two legs, the premium and the protection leg. The premium leg 

is the fee as a percentage of the contract amount that the buyer of the insurance has to pay 

to the seller until maturity or default, whichever comes first. The protection leg is the single 

payment that the seller of the contract is obliged to undertake in case of default of the entity 
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upon which the contract is written. In Merton’s setting, the premium leg is nothing but the 

discounting of each fair premium stheo paid until maturity: 

Premium Leg =        (1) ∑
=

−
n

i

iTirtheo es
1

)()(

where T(i) is the time interval in yearly terms, and, as the usual practice is quarterly paid 

premiums, T(1) is 0.25, T(2) is 0.5, and so on;  the maturity of the contract T(n) is 5 years. 

r(i) is the riskless interest rate for maturity T(i) on the contract setup date. The protection 

leg constitutes the discounting of the probability of default at maturity, multiplied with the 

non-recoverable amount: 

Protection Leg =           (2)                           ))(()1( )()(
2

nTnred −−Φ− ω

where Φ(−d2) is the risk-neutral default probability in the Merton setting. The recovery rate 

in case of default, ω, also enters the protection leg. It might have been a sound approach to 

estimate the recovery rate simultaneously with the default intensity; however, recent 

applications undertaken by Houweling and Vorst (2005) and Frühwirth and Sögner (2006) 

have shown the insensitivity of the results based upon the selection of this variable. To 

simplify methods, the recovery rate can be fixed to a value obtained in empirical studies 

based on historically defaulted bonds. Following the results produced by Altman and 

Kishore (1996) and recent practice, we use 0.5 for the senior class.7 As a last step, the 

theoretically fair CDS premium is reached by equating the premium and protection legs at 

time zero:  
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This premium ensures that the CDS contract has zero value on initiation, which in turn 

guarantees that the buyer and the seller are even under no-arbitrage assumptions. 

 

4.2 Default Intensity Model 

The basic structure of a constant default intensity model was introduced by Jarrow and 

Turnbull (1995). This model has simplifying features: The default time is the first jump of a 

Poisson counting process, with the default intensity as the constant parameter. While 

Jarrow and Turnbull assume a constant intensity under the real world measure, the intensity 

becomes time-varying when they turn to the risk-neutral world. In our application, we start 

directly with a constant risk-neutral intensity. In contrast to more advanced intensity-based 

models, the stochastic process driving the riskless term structure and the default process is 

assumed to be independent in the Jarrow and Turnbull setting. Following Duffie and 

Singleton (2003), it can be shown that the pricing of CDS is composed of a premium and 

protection leg as below:  

Premium Leg  =        (4)  ∑
=

+−
n

i

iTirtheo es
1

)())((λ

Protection Leg  =                            (5) ∑
=

−−−− −−
n

i

iTiTiTir eee
1

)()1()()( )()1( λλω

where λ  is the constant default intensity parameter. Equating these two legs to extract the 

theoretically fair premium leads to: 
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Fair (Theoretical) Premium of a CDS = = 
theos )1)(1( −− ∆teλω    (6) 

when intervals T(i+1)-T(i) = ∆t are constant between premiums. Thus, in our case of 

quarterly payments, the interest rate parameters cancel out, and the constant intensity case 

is insensitive to interest rates. This is the most significant difference in the constant 

intensity setting from the Merton model in our application. A second important 

distinguishing feature is that the Merton model allows default only at maturity, whereas our 

setup permits early default in the intensity setting. 

 

4.3 Support Vector Machines Regression (SVM) 

After introducing the finance-based models, we now turn to present a machine learning 

approach, the SVM regression method. SVM has proven to be a good alternative to 

traditional neural network applications: The problem of building architecture for neural 

networks is replaced by the problem of choosing a suitable kernel8 for the SVM. In our 

study, the results of the financial models are compared to SVM regression models with 

linear, polynomial, Gaussian radial basis and exponential radial basis kernel functions. 

These four fundamental kernel functions are described below. The most basic kernel 

function is linear; it is simply the inner product of training points u and test points v: 

vuvuK ,),( =       (7) 

An alternative approach would be to analyze polynomial kernel function with degree 2. 

This is a popular method for non-linear modeling: 

( 21,),( += vuvuK )       (8) 
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The third type to have received significant attention in the literature is the Gaussian radial 

basis function, which is: 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
−= 2

2

2
exp),(

σ
vu

vuK      (9) 

where σ is taken to be 0.5 after observing fits of alternative parameter choices used in the 

literature (Müller et al., 1997; Gunn, 1998; Cao and Tay, 2001). A final choice would be 

exponential radial basis function, which is a similar alternative to Gaussian RBF. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= 22

exp),(
σ

vu
vuK      (10) 

A parameter value C, which allows slack in the system that permits the samples to be on the 

wrong side of the decision boundary (a penalty parameter of the error term), is also taken as 

10, in all runs, after a search for the best-fitting value. Similarly, the ε−insensitive band has 

been set to 10E-4. 

 

5. Results of the Cross-Sectional Design 

In order to pursue a cross-sectional analysis within a specific set of CDS prices, we divide 

our dataset into certain risk clusters that ought to exhibit identical risk characteristics. Thus 

the main hypothesis of the cross-sectional study is that within certain risk classes, the credit 

risk is priced the same. As outlined in Section 3, specific risk clusters were focused on, 

namely the contracts on Aa- and A-rated companies with 5-year maturity ranked senior. 

Although the literature does not distinguish between North American and European 

entities, this breakdown would enable us to analyze regional characteristics. An additional 
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split according to the currency of the contract that the CDS is written on was not necessary, 

because European and North American entities had a natural breakdown into euros and US 

dollars, respectively. The number of price observations for each firm in the selected rating 

classes can be found in the appendix. 

 

5.1 Credit Risk Models 

5.1.1 Setting with Merton’s Model 

Our cross-sectional/out-of-sample prediction methodology is to first estimate the daily risk-

neutral default probabilities for each firm in a “risk cluster” described above from the 

observed CDS premiums of the firms in the estimation sample. Individual default 

probabilities (Φj (−d2)) were estimated for each firm j each day using:  

))(1(
)( )()(

1

)()(

2 nTnr

n

i

iTirobs
j

j e

es
d

−
=

−

−
=−Φ

∑
ω                   (11) 

where is the observed CDS premium for firm j. Afterwards, the Black/Scholes 

parameter d2 was averaged across the full set of companies in the estimation sample to 

reach a daily value. Our estimation therefore results in an aggregate default probability for 

each class and day.9 Figure 2 plots the daily risk-neutral default probability estimates for 

the Aa-rated North American and European CDSs. Interestingly, the North American CDSs 

have a higher default probability throughout the time horizon, which justifies our inclusion 

of the regional breakdown when setting up risk classes.      

obs
js

[Figure 2 is presented here] 
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This daily value is used to predict the theoretical CDS premiums of a second set of firms in 

the prediction sample. Given the specific set of companies in the cluster (all with the same 

rating class, rank, currency and region), the division of the estimation sample and 

prediction sample are taken to be around the ratio of 2:1 – 4:1. Sample selection for 

estimation and prediction groups was fully random in order to preclude any biases due to 

sample choice.  

 

5.1.2 Setting with the Constant Intensity Model 

To ensure that the parameter estimates of the constant default intensity setting are 

comparable to the Merton model, the firms in the estimation and prediction samples are 

kept the same. Similar to the Merton setup, the default intensity is estimated for each firm j 

each day from the first sample of firms using Equation (6): 

=jλ
t

sobs
j

∆

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

−
1

)1(
ln

ω
        (12) 

Again, is the observed CDS premium for firm j. Next, we obtain an average daily 

default intensity for each risk class. This value is then plugged into Equation (6) to predict 

the fair value of the firms’ CDS premium in the prediction sample. 

obs
js

 

At this point, it would be insightful to compare our estimates with a recent study. Table 3 

compares the average default intensities with the results of Frühwirth and Sögner (2006), 

which is an application of the Jarrow and Turnbull model to European corporate/bank 

bonds. Our default intensity estimates from CDS prices and a larger dataset extend the 
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estimates of this study. Moreover, some of the inconsistencies of their results have been 

overcome in our findings.10  

[Table 3 is presented here] 

 

5.1.3 Prediction Results with Cross-Sectional Design 

Before comparing the out-of-sample prediction quality, we would first like to provide some 

insights on the parameter estimates of the two modeling approaches. In order to make the 

intensity estimates comparable to the estimates advanced in Merton’s model, the intensity 

estimates are used to calculate the 5-year risk-neutral default probability: 

TeTp λ−−=1)(        (13) 

This enables the direct comparison of the default probability estimates for the four risk 

classes. First, it is expected that the constant intensity model would yield lower default 

probability estimates than the Merton model, since it incorporates early default. Figure 3 

provides the trajectories for the Aa-North American risk class. Table 4 provides the means, 

deviations and the number of days that the Merton default probability is higher than the 5-

year estimate obtained with the intensity model. It is observed that the means are close, and 

except for a few weekly intervals, the Merton probability estimate is higher, in line with our 

expectations. However, note that a higher default probability does not directly translate into 

a higher CDS premium. In fact, although not tabulated explicitly, the Merton model 

prediction for the premium is significantly lower than the intensity prediction for three out 

of four risk classes. The reason for this is that the default payment of (1-ω) is made 
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available only at T in the Merton setting, whereas in the intensity setting the same level of 

payment can be made earlier. 

[Figure 3 is presented here] 

[Table 4 is presented here] 

The out-of-sample prediction errors are summarized in Table 5. Our results indicate a low 

fit in basis points for all classes, while Mean Absolute Percentage Errors (MAPE) are high. 

The best fit in terms of MAPE is around 23-25%.  It can be observed that European/Euro-

denominated CDSs have a better fit than North American/USD-denominated CDSs.  

[Table 5 is presented here] 

A comparison of the prediction errors produced by the Merton and the constant intensity 

models shows that the results are close. To test this observation statistically, we focus on 

the difference between the absolute prediction errors in order to determine whether the 

models have predicted significantly differently. Table 6 summarizes the t-statistic results of 

the significance tests with the Yule-Walker estimation method. By so doing, we were able 

to reach autocorrelation adjusted estimates of the time series for each rating class via 

backward elimination of insignificant autoregressive lags. In one out of four classes, the 

Merton model has lower average errors, while there is no statistical difference in the 

remaining three. This result is rather surprising; by allowing default only at maturity, the 

Merton model appears to be more restrictive. This may be due to the treatment of default 

probability as a single parameter rather than breaking it down into Black/Scholes 

parameters like asset value and asset volatility. Structural models have often been criticized 
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for their weakness of lacking a robust estimation process in these parameters, which hinders 

their predictive performance. Our cross-sectional results signify that in the absence of an 

estimation process for the asset value and asset volatility parameters, Merton’s model can 

perform at least as well as a reduced-form model.11  

 [Table 6 is presented here] 

 

5.2 Setting and Prediction Results with SVM Regression Method 

In order to design cross-sectional samples for SVM comparable to the Merton/Intensity 

setups, two datasets are required for training the SVM function, plus two additional datasets 

for test input and test output. Therefore, the firms in the estimation samples in the previous 

sections have also been selected for training input, training output and test input samples. 

For instance, if the estimation in the Merton/Intensity setups includes data from 23 firms 

(as in AA-North America), then these 23 firms were divided into 3 groups; the training 

input, the training output and the test input samples. Specifically, an out-of-sample SVM 

prediction is maintained as follows: First, within each risk class, the firms’ CDS premiums 

within each of the four samples (three estimative and one predictive) are averaged to obtain 

a daily value. In order to train the function, the daily average of the training input sample is 

mapped to the average of the training output sample. Afterwards, the daily average of the 

premiums in the test input sample are used to predict a theoretical daily premium based on 

the SVM function. Finally, the predicted value is compared to the test output sample daily 

average values, so that the out-of-sample prediction errors can be computed.  
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The results from the cross-sectional approach can be found in Table 7. It can be observed 

that the SVM algorithm yields poor results in comparison to the financial models in most 

cases. Some kernels produce results that are too inaccurate to be considered an alternative, 

e.g. the polynomial kernel. Among all kernels, the linear kernel has the best MAPE in three 

out of four risk classes. In Table 8, the difference between the absolute errors of the 

Merton/Intensity models and the best performing linear kernel SVM is tabulated. The 

financial methods are a better predictor in two risk classes, whereas there is insignificance 

in the remaining two. For the indecisive risk classes, the linear kernel MAPE results come 

close to the financial methods, one being the A North American class, which produces the 

best result of all. Due to the overall poor fit of SVM kernels, we discontinue efforts with 

the full set of kernels, and focus instead on the linear kernel in the rest of the study.12 

[Table 7 is presented here] 

[Table 8 is presented here] 

 

6. Results of the Time Series Design 

6.1 Credit Risk Models 

As an alternative to cross-sectional estimation and prediction, we analyze the models in a 

time series design. This effort hypothesizes that every firm in the sample has a constant 

default probability/intensity. In contrast to the cross-sectional design, in which the daily 

default probabilities/intensities are averaged, we now estimate the default 

probabilities/intensities from a fixed interval, and predict one-, five-, and ten-day-ahead 

default probabilities/intensities separately for each firm. 
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A rolling estimation and prediction is applied to both the Merton and intensity settings. 

Frühwirth and Sögner (2006) analyzed the impact of the length of the estimation period on 

the prediction errors. Within a 5-25 day period, the 14-day mark gave one of the best 

results. Parallel to these findings, our rolling estimation period is set at 14 days. In order to 

estimate the default probabilities and predict the CDS premium one day ahead, the 

approach below has been adapted. First, default probabilities are estimated by minimizing 

the sum of squared errors between the observed and theoretical CDS premiums:  

2
2

13

)2(142 )))(((minarg)ˆ( dssd theo
k

t

tk

obs
kdt −Φ−=−Φ ∑

+

=−Φ+ ,   (14) 

where is the observed CDS premium on the kth
 day within the 14-day period, and  

is the theoretically fair price computed from Equation (3). For each firm’s 14-day period, a 

default probability estimate is reached, and this figure is plugged into Equation (3) to obtain 

a theoretically fair CDS premium for the 15th day. By comparing the observed and 

theoretical CDS premiums for one day ahead in a rolling procedure, out-of-sample 

prediction error statistics are computed.  

obs
ks theo

ks

 

In Table 9, Mean Errors (ME), Mean Absolute Errors (MAE) and Mean Absolute 

Percentage Errors (MAPE) for the prediction process are given.13 As can be observed from 

Table 9, MAEs and MAPEs are significantly lower in the time series prediction in 

comparison to cross-sectioning. The Merton model predicted the four datasets with a 

MAPE of around 6 per cent. Furthermore, all the error statistics decline in increasing credit 

quality. 
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With the constant intensity model, a similar analysis is applied to the same dataset. The 

sum of squared errors was minimized in 14-day periods to reach an estimate of the default 

intensity, as can be seen in Equation (15), where corresponds to the theoretically fair 

price of the CDS premium from Equation (6). 

theo
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+

=
+      (15) 

Again, Table 9 shows that a fit superior to cross-sectional estimation has been reached. A 

similar pattern of decreasing errors with increasing credit quality is also indicated by the 

figures. Moreover, the time series prediction results of the Merton and intensity settings 

appear even closer than in the cross-sectional setup. Nevertheless, a test for significance has 

revealed that the intensity model outperformed its counterpart in three out of four risk 

classes in absolute error terms. Panel A of Table 11 tabulates these results. Although the 

mean difference of absolute errors is close, low standard deviation and large sample size 

caused high significance.  

[Table 9 is presented here] 

A second step would be to look at further horizon out-of-sample results. In a similar setup, 

14-day time series are utilized to predict five-day- and ten-day-ahead CDS premiums. 

These results can be found in Table 10. As expected, the prediction quality deteriorates 

stepwise, to a MAPE of around 7-9% for five-day-ahead and to around 9-11% for ten-day-

ahead predictions. When viewed side by side, the differences between the models become 

less pronounced. The significance tests in Table 11 Panels B and C reveal that for five-day-

ahead prediction, the intensity model outperforms the Merton model in only two cases now 
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(Aa-Europe, A-Europe), and in one (A-North America), the Merton model even provided 

smaller absolute errors. Turning to the ten-day-ahead prediction, there is a balance between 

the Merton and intensity models, with each proving superior for one class apiece (Aa-North 

America and AA-Europe, respectively), and the two remaining classes are indifferent for 

the models. Again, these results have mostly arisen from a very small mean difference, 

complemented by a very low standard error and large sample size.  

[Table 10 is presented here] 

[Table 11 is presented here] 

Overall, the comparison shows that it is hard to distinguish between the Merton and 

intensity model in a time series setup as well. Nevertheless, the errors are much lower than 

in the cross-sectional analysis. This better fit in the time series analysis over cross-

sectioning signifies that credit risk may not be uniformly priced in a given risk class. This 

result parallels the findings of Frühwirth and Sögner (2006), who have applied the constant 

intensity model to out-of-sample bond price prediction and concluded that any kind of 

cross-sectioning would provide poorer estimates than a bond-by-bond analysis. 

 

6.2 SVM Regression Method 

In a final step, we compare the machine learning approach to the financial models in a time 

series setup. To this end, we concentrate on the linear kernel due to its overall best 

performance in the cross-sectional setting. In order to use an analogous setup with the same 

number of observations as in the financial models, we divided the time series of prices of 

each firm into estimation and prediction samples. A ratio of 3:1 for estimation and 
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prediction sample sizes was applied to each firm, which indicates that the first three 

quarters of the time series was used to train the SVM function. With a rolling time horizon 

in this estimation sample, the consecutive 14-day observations were used as the training 

input dataset, whereas the observation on the following day was used as the training output. 

After the function was trained, the unused last quarter of the time series was utilized for 

prediction. This time the remaining consecutive 14-day observations were used as test input 

to predict the observation on the following day as the test output. By virtue of such a setup, 

we were able to ensure the comparability of the out-of-sample design to the design used for 

the financial models. 

 

Interestingly, the results presented in Panel A of Table 12 are very promising. For one-day-

ahead prediction, the SVM method exhibited a surprisingly good fit in terms of mean 

absolute percentage errors, which are around 2-3%. Similar to financial models, as the 

prediction horizon extends, this figure worsens. Panels B and C present the five-day- and 

ten-day-ahead prediction errors; these deteriorate to 4-6% and 6-8%, respectively. Again, 

these figures indicate that the time series design achieved results superior to those of the 

cross-sectional design for SVM as well.  

[Table 12 is presented here] 

Furthermore, in comparison to the financial model results with the same setting, this time 

the SVM method also yielded very strong results. Each of the one-day-, five-day- and ten- 

day-ahead prediction results signifies a better fit than either of the financial models 

presented in Table 9. In all four risk classes, SVM errors were significantly lower than both 
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the Merton and intensity one-day-ahead absolute prediction errors (Table 13).14 This result 

is interesting and suggests that further work on the subject is warranted. However, it should 

be kept in mind that we chose to utilize the best performing case among different kernels, 

whereas structural and reduced-form models were presented in their simplest forms. It 

therefore remains to be seen if these results would vary if more sophisticated financial 

models were applied. 

[Table 13 is presented here] 

 

7. Conclusion and Outlook 

This study compared basic versions of structural (Merton) and reduced-form (constant 

intensity) models as a first attempt. In this regard, four aspects of the study stand out: First, 

while cross-sectional results indicated a better fit of the Merton model in only one out of 

four cases, the one-day-ahead time series analysis revealed the significance of lower 

absolute prediction errors with the constant intensity model in three classes. Five-day- and 

ten-day-ahead predictions produced mixed results, signifying that one framework’s 

performance does not significantly outperform the other. The most distinctive feature of the 

models is the default timing, which revealed in the cross-sectional setup that the Merton 

model estimated higher default probabilities on average, as the constant intensity model 

allows early default. The second major feature is the inclusion of interest rates in the 

Merton model, whereas the intensity model is insensitive to this parameter. Despite these 

factors, the error results are rather close. This could be attributable to treating the default 

probability in the Merton setting as the firm value variable on its own, rather than breaking 
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it down into Black/Scholes parameters, such as asset value and volatility. An extension of 

this study should investigate whether the differences in prediction power between 

frameworks arises from this choice. Secondly, estimation and out-of-sample prediction 

using solely CDS data was unique to this study and requires special attention. The usage of 

CDS data enabled us to concentrate the prediction ability of credit models directly on the 

default risk premiums that constitute the prices. Without the presence of liquidity and other 

non-default premiums in CDS prices, the models could be applied to investigate the credit 

risk factors. Nevertheless, further efforts could include bond and stock price data to extend 

the estimation process for both modeling classes. Third, our results confirm recent results in 

the literature indicating that cross-sectioning is inferior to separate estimation. The high 

prediction errors from cross-sectional analysis in comparison to lower errors in the time 

series analysis revealed that credit risk is priced separately for each individual firm, rather 

than the joint classification provided by rating classes/regions. Fourth, although most of the 

cross-sectional predictions with SVM algorithms have ended in poor results, it is important 

to underline that one-day-, five-day-, and ten-day-ahead time series prediction results with 

the linear kernel SVM have achieved significantly lower error figures than financial 

methods. A thorough analysis for applying alternative kernel functions should be pursued 

that investigates cross-sectional and time series mappings of the data. Overall, our results 

should be extended by applying different versions of structural and reduced-form models. 

Introducing endogenous default barriers and stochastic interest rates for structural models 

while modeling intensity to be stochastically dependent on state variables for reduced-form 

models should be the next step in the comparison of both frameworks.  
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Notes 

1 These include Jones et al. (1984), Ogden (1987), Eom et al. (2004), Ericsson and Reneby 
(2004), Frühwirth and Sögner (2006), Bakshi et al. (2006). 
 
2  See Houweling and Vorst (2005). 
 
3 Longstaff et al. (2005). The study also incorporates bond data in the estimation process 
for the liquidity premium. 
 
4  A thorough discussion can be found in Longstaff et al. (2005).  
 
5 Usage of actual transaction data would result in a rather small dataset with inferior time 
series. In order to pursue an empirical study with abundant data, the indicative prices are 
utilized. 
 
6 For a more in-depth study on the microstructural effects on credit default swap prices, 
Gündüz et al. (2006) analyzes the choice of trading venues with the same dataset.  
 
7 Although the 0.5 figure is derived from the US market, recent efforts with European data 
have also relied on this figure (Houweling and Vorst, 2005; Frühwirth and Sögner, 2006). 
Considering the fact that Basle 2 provisions accept a loss given default of 50% for bank 
loans independent of the country chosen, this is not an unrealistic assumption.  
 
8 Without the use of kernels, the problem of non-linear machine construction would have 
required two steps: First, a fixed non-linear mapping to transform the data into a “feature” 
space where the analysis is easier, and then a linear machine to classify/regress it in the 
feature space. Kernel theory stipulates that an inner product in feature space has an 
equivalent kernel in input space; utilizing kernel functions therefore simplifies the 
algorithm. There is no more need to think about the mapping and evaluation of the feature 
map, but only about the inner products of test and training variables (for details see 
Cristianini and Shawe-Taylor, 2000; Gunn, 1998). 
 
9 Minimizing the sum of squared differences was a possible alternative, which would have 
simply returned the default probability for the average of sobs on any given day. The results 
from using this approach do not differ significantly.  
 

10 The authors utilized a period between January 1999 and July 2000. In their estimates, A-
rated banks had a lower average intensity than Aa-rated banks, which should supposedly be 
higher. 
 
11 The traditional approach for estimating asset value and asset volatility is based on Jones 
et al.’s (1984) study. Here, the asset value is estimated as the sum of traded debt, non-
traded debt and equity value. After an initial estimate for asset volatility is reached from the 
returns on asset value, this is refined through an equality reached from Ito’s Lemma, which 
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formulates asset volatility as a function of equity volatility. Alternative versions of this 
approach are followed by Lyden and Saraniti (2000), Anderson and Sunderasan (2000) and 
Eom et al. (2004). Ronn and Verma (1986) extended Jones et al.’s (1984) single equation to 
solve two simultaneous equations for two unknowns, asset value and volatility, where the 
second equation is simply used to view equity as the call option on asset value. A 
completely different alternative has arisen from the work of Duan (1994), who introduced 
an ML approach, proponed by Ericsson and Reneby (2004, 2005), with good prediction 
results. Overall, the estimation technique for structural models remains an open research 
question in the field.   
 
12 Alternative to the cross-sectional setup, a panel setting was analyzed as well. There are 
2,650 data points in the training input and output sets from the data of five companies for 
each set, respectively; 2,120 data points in test input and output sets were used from the 
data of four companies for each set. This is a setting that is computationally more 
expensive, and whose prediction results are inferior to those yielded by the cross-sectional 
design. The results are therefore not presented. 
 

13 Only consecutive 14-day periods of observation were used to ensure the continuity of the 
time series. The estimation sample is simply 14 more for each firm in the risk class and  
have not been explicitly tabulated. 
 
14 The five-day- and ten-day-ahead prediction errors are also significantly better than the 
financial models, which have not been tabulated. 
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Figure 1. Average Bid-Ask Midpoints (bps) vs. Credit Quality   (Moody’s Ratings) 

 

Panel A. Number of Observations and Bid-Ask Spreads across CDS Types and Regions. 

Type Region Currency Obs Spread Obs Spread Obs Spread Obs Spread Obs Spread
Europe EUR 4409 21.38 26719 25.91 31890 13.21 33922 6.35 96940 14.68
N. America USD 8092 40.72 11749 44.81 15841 27.25 16286 17.10 51968 30.14
Europe EUR 1917 9.90 10402 13.48 11262 8.00 11308 3.25 34889 8.20
N. America USD 3646 13.17 4056 18.62 4000 11.42 3780 9.99 15482 13.37

Europe USD 777 2.86 1330 3.60 2530 2.80 2570 1.41 7207 2.46
E. Europe USD 1554 34.27 1746 25.10 3289 15.83 3341 10.82 9930 18.66
L. America USD 3369 77.70 4539 165.82 5252 72.21 5169 29.48 18329 84.35

Full Horizon

Corporate

Bank

Sovereign

2001 2002 2003 2004

 

Panel B. Number of Observations and Bid-Ask Spreads across Ratings, Ranks and Maturities. 

Obs Spread Obs Spread Obs Spread Obs Spread Obs Spread
Aaa Senior - - 3230 9.11 - - - - 3230 9.11

Senior 767 8.07 25462 8.30 787 10.88 - - 27016 8.37
Subordinate - - 5457 8.90 - - - - 5457 8.90
Senior 2534 9.93 55003 11.97 4649 9.25 717 38.73 62903 11.99
Subordinate - - 6663 10.19 - - - - 6663 10.19

Baa and Worse Sen./Sub. 6821 47.21 62773 28.61 5546 46.65 5431 82.49 80571 35.06
Non-rated Sen./Sub. 6529 32.73 31152 20.84 4299 29.08 7852 47.03 49832 27.23

Cross Sectional Total/Avg. 16651 34.06 189740 18.24 15281 28.49 14000 60.36 235672 22.53

Maturity (Years)
3 5 10 Other All Maturities

Aa

A

Moody's 
Rating Rank

 
Obs: Number of observations in the risk class 
Spread (bps): Average of the difference of offer price - bid price in basis points 

Table 1. Descriptive Statistics of the CDS Dataset. 
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Rating Region Mid Spread Obs Mid Spread Obs Mid Spread Obs Mid Spread Obs
Aa Europe 30.83 9.17 400 22.06 6.06 5119 14.46 3.17 5382 18.63 4.75 10901

Aa N. America 46.99 13.66 231 33.81 10.40 2374 26.45 10.03 2441 30.85 10.37 5046

A Europe 65.06 13.18 858 48.91 8.69 10081 33.43 4.17 9273 42.49 6.81 20212
A N. America 98.28 21.12 459 53.27 14.56 5493 34.82 9.96 5187 46.53 12.69 11139

Mid (bps): Average of the midpoint of each bid and offer price 
Spread (bps): Average of the difference of offer price - bid price 
Obs: Number of observations in the cluster

2002 2003 2004 TOTAL

Table 2. Descriptive Statistics of CDS Dataset between December 2002-December 2004. 
Midpoints of Bid-Ask Prices, Average Bid-Ask Spreads and Number of Observations 

across Ratings and Regions for 5-year, Senior CDS. 
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Figure 2. Default Probability Estimates with the Merton Model 

AA-rated North American vs. European Contracts 
 

Our Estimation of Intensity 
European, Senior Risk Class 

No. of Obs Results       
with CDS 

Frühwirth/Sögner  
Estimation of            

Intensity with Bonds 

AA-rated Banks 4584 0.0036 0.0041 
AA-rated Corporates 3037 0.0041 0.0085 
A-  rated Banks 3366 0.0069 0.0035 
A-  rated Corporates 11179 0.0090 0.0116 

 
Table 3. Comparison of Two Studies with Constant Default Intensity 

 34



0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
ec

-0
2

Fe
b-

03

A
pr

-0
3

Ju
n-

03

A
ug

-0
3

O
ct

-0
3

D
ec

-0
3

Fe
b-

04

A
pr

-0
4

Ju
n-

04

A
ug

-0
4

O
ct

-0
4

D
ec

-0
4

Time

D
ef

au
lt 

Pr
ob

ab
ili

ty

Merton

Intensity

 
Figure 3. Default Probability Estimates with the Merton and the Constant Intensity Models 

Aa-rated North American Contracts 
 
 
 

(bps) (bps) (%)
Aa Europe
Merton 197 67
Intensity 188 66
Aa N. America
Merton 358 90
Intensity 328 83

A Europe
Merton 422 148
Intensity 408 146

A N. America
Merton 479 198
Intensity 452 196

Mean DP (bps): Average default probability in basis point
Std Dev DP (bps): Standard deviation of the default probability in basis points
Obs: Number of observation days
Merton DP > Intensity DP (%): Percentage of the total sample where Merton default 
probability is higher than 5-year constant intensity default probability.

Mean DP

93.2%

Std Dev DP

524

523

526

100%

97.1%

100%

Obs Merton DP > 
Intensity DP

524

 
Table 4. 5-year Default Probability Estimates of the Merton and Intensity Models 
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Mean Mean Abs 
Error Error
(bps) (bps) (%) Estimation Prediction

Aa Europe
Merton -0.13 4.82 23.82% 7621 3135
Intensity 0.90 5.36 27.64% 7621 3135
Aa N. America
Merton 9.13 9.30 43.16% 3475 1571
Intensity 9.87 10.01 46.16% 3475 1571
A Europe
Merton -2.92 10.18 25.57% 14545 5393
Intensity 0.46 10.20 27.49% 14545 5393
A N. America
Merton 2.00 10.69 25.61% 9046 2093
Intensity 1.98 10.68 25.60% 9046 2093

Mean Abs 
Perc Error

Total   
Sample Size

Total   
Sample Size 
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stheo is the theoretical CDS premium predicted by the Merton and Intensity models on day f, where F is the 

number of available days in the time series. sobs is the observed CDS premium on day f for firm h, where 

h=1..H  represents the number of firms in the prediction sample. 

Table 5. Out-of-sample Prediction Errors of the Merton and the Constant Intensity Models 
in Cross-Sectional Design 

 
 

Mean Difference t-statistic p-value
Aa Europe -0.54 -1.64 0.1011
Aa N. America -0.72 -4.68 < 0.0001 ***
A Europe 0.02 0.04 0.9713
A N. America 0.01 0.41 0.6816

Mean Difference (bps): Difference of Absolute Errors for prediction 
(Merton - Intensity) computed per day per firm for risk class

Absolute Error on day f , for firm h  =

*** Significance at 95% level
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f ss ,−

Table 6. Significance Tests for the Difference of Absolute Errors with the Merton  
and the Constant Intensity Models in Cross-Sectional Design 
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Mean Mean Abs 
Error Error
(bps) (bps) (%) Estimation Prediction

Aa Europe
Linear -0.55 5.60 26.77% 7621 3135
Polynomial  (Deg:2) -1.05 5.25 24.69% 7621 3135
Gaussian RBF -6.87 9.31 41.04% 7621 3135
Exponential RBF -7.21 9.45 42.57% 7621 3135
Aa N. America
Linear 3.14 17.75 81.18% 3475 1571
Polynomial  (Deg:2) 49.85 157.68 657.85% 3475 1571
Gaussian RBF -3.33 15.72 68.55% 3475 1571
Exponential RBF -4.01 14.44 61.89% 3475 1571
A Europe
Linear 6.82 12.57 37.17% 14545 5393
Polynomial  (Deg:2) 6.57 12.51 37.30% 14545 5393
Gaussian RBF -0.59 1.15 166.51% 14545 5393
Exponential RBF -9.51 18.22 41.49% 14545 5393
A N. America
Linear -9.70 12.07 23.11% 9046 2093
Polynomial  (Deg:2) 152.67 152.67 310.13% 9046 2093
Gaussian RBF -17.10 18.02 35.06% 9046 2093
Exponential RBF -4.01 14.44 61.89% 9046 2093

Mean Abs 
Perc Error

Total   
Sample Size 

Total   
Sample Size
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stheo is the theoretical CDS premium predicted by SVM algorithms on day f, where F is the number of 

available days in the time series. sobs is the observed CDS premium on day f for firm h, where h=1..H 

represents the number of firms in the prediction (test output) sample. 

Table 7. Out-of-sample Prediction Errors of SVM Algorithms in Cross-Sectional Design 
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Mean Difference t-statistic p-value
Aa Europe
Merton - SVM -0.85 -1.65 0.0998
Intensity - SVM -0.28 -0.6 0.5494
Aa N. America
Merton - SVM -8.46 -19.25 < 0.0001 ***
Intensity - SVM -7.75 -24.29 < 0.0001 ***
A Europe
Merton - SVM -2.32 -2.03 0.0426 ***
Intensity - SVM -2.30 -3.01 0.0026 ***
A N. America
Merton - SVM -0.49 -0.14 0.8897
Intensity - SVM -0.49 -0.14 0.8892

Mean Difference (bps): Difference of Absolute Errors for prediction 
(Merton - SVM) and (Intensity - SVM) computed per day per firm.

Absolute Error on day f , for firm h  =

*** Significance at 95% level
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Table 8. Significance Tests for the Difference of Absolute Errors between the 
Merton/Intensity models and Linear Kernel SVM in Cross-Sectional Design 
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Mean Mean Abs 
Error Error
(bps) (bps) (%) Prediction

Aa Europe
Merton 0.30 1.06 5.71% 10373
Intensity 0.28 1.00 5.25% 10373
Aa N. America
Merton 0.33 1.56 5.30% 4850
Intensity 0.33 1.54 5.17% 4850
A Europe
Merton 0.49 2.78 6.15% 19200
Intensity 0.46 2.75 6.04% 19200
A N. America
Merton 0.93 2.97 6.61% 10672
Intensity 0.93 2.98 6.59% 10672

Mean Abs 
Perc Error

Total       
Sample Size
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stheo is the theoretical CDS premium predicted by the Merton and Intensity models on day f for firm h, 

where f =1..F is the number of available days for prediction (preceded by 14 consecutive days of 

CDS premiums for estimation), with h=1..H being the number of firms in the risk class. sobs is the 

observed CDS premium on day f  for firm h. 

Table 9. One-Day-Ahead Out-of-sample Prediction Errors of the Merton and the Constant 
Intensity Models in Time Series Design 
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Panel A. Five-Day-Ahead Out-of-Sample Prediction Errors 
Mean Mean Abs 
Error Error
(bps) (bps) (%) Prediction

Aa Europe
Merton 0.47 1.39 7.51% 10270
Intensity 0.44 1.34 7.11% 10270
Aa N. America
Merton 0.50 2.09 7.13% 4798
Intensity 0.50 2.09 7.08% 4798
A Europe
Merton 0.76 3.73 8.32% 19004
Intensity 0.72 3.71 8.23% 19004
A N. America
Merton 1.41 4.00 9.02% 10567
Intensity 1.42 4.02 9.04% 10567

Panel B. Ten-Day-Ahead Out-of-Sample Prediction Errors 
Mean Mean Abs Perc Error Sample Size
Error Error Perc Error Sample Size
(bps) (bps) (%) Prediction

Aa Europe
Merton 0.67 1.71 9.30% 10150
Intensity 0.64 1.67 8.96% 10150
Aa N. America
Merton 0.69 2.62 9.02% 4733
Intensity 0.70 2.61 9.00% 4733
A Europe
Merton 1.10 4.69 10.64% 18768
Intensity 1.05 4.67 10.54% 18768
A N. America
Merton 2.00 4.99 11.47% 10437
Intensity 2.01 5.01 11.51% 10437

Mean Abs 
Perc Error

Total   
Sample Size
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stheo is the theoretical CDS premium predicted by the Merton and Intensity models on day f for firm h, 

where f =1..F is the number of available days for prediction (preceded by 18 consecutive days, with 

the first 14 consisting of the CDS premiums for estimation) and h=1..H representing the number of 

firms in the risk class.  sobs is the observed CDS premium on day f for firm h. 

Table 10. Five- and Ten-Day-Ahead Out-of-sample Prediction Errors of the Merton and the 
Constant Intensity Models in Time Series Design 
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Panel A. Significance Tests for the Difference of One-Day-Ahead Absolute Prediction Errors  
Mean Difference t-statistic p-value

Aa Europe 0.06 11.67 < 0.0001 ***
Aa N. America 0.03 3.23 0.0012 ***
A Europe 0.03 5.09 < 0.0001 ***
A N. America -0.01 -0.94 0.3488

Panel B. Significance Tests for the Difference of Five-Day-Ahead Absolute Prediction Errors  
Mean Difference t-statistic p-value

Aa Europe 0.05 8.45 < 0.0001 ***
Aa N. America 0.01 1.28 0.2010
A Europe 0.02 3.32 0.0009 ***
A N. America -0.02 -2.49 0.0128 ***

Panel C. Significance Tests for the Difference of Ten-Day-Ahead Absolute Prediction Errors  
Mean Difference t-statistic p-value

Aa Europe 0.04 6.62 <0.0001 ***
Aa N. America 0.01 0.97 0.3297
A Europe -0.01 -0.96 0.3348
A N. America -0.02 -2.78 0.0054 ***

Mean Difference (bps): Difference of Absolute Errors for prediction 
(Merton - Intensity) computed per day per firm.
Absolute Error on day f , for firm h  =

*** Significance at 95%level
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Table 11. Significance Tests for the Difference of One-Day-Ahead Absolute Prediction 

Errors with the Merton and the Constant Intensity Models in Time Series Design 
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Panel A. One-Day-Ahead SVM Out-of-Sample Prediction Errors
Mean Mean Abs 
Error Error
(bps) (bps) (%)

Aa Europe 0.09 0.32 2.48% 10373
Aa N. America 0.34 0.87 3.18% 4850
A Europe 0.005 0.90 2.32% 19200
A N. America -0.02 1.02 2.88% 10672

Panel B. Five-Day-Ahead SVM Out-of-Sample Prediction Errors
Mean Mean Abs 
Error Error
(bps) (bps) (%)

Aa Europe 0.25 0.60 4.65% 10270
Aa N. America 0.62 1.38 5.14% 4798
A Europe 0.85 2.52 6.23% 19004
A N. America 0.35 1.96 5.84% 10567

Panel C. Ten-Day-Ahead SVM Out-of-Sample Prediction Errors
Mean Mean Abs 
Error Error
(bps) (bps) (%)

Aa Europe 0.47 0.92 7.12% 10150
Aa N. America 0.99 1.86 7.15% 4733
A Europe 0.83 3.17 8.61% 18768
A N. America 0.97 2.73 8.68% 10437

Mean Abs 
Perc Error

Total   
Sample Size

Mean Abs 
Perc Error

Total   
Sample Size

Mean Abs 
Perc Error

Total   
Sample Size
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stheo is the theoretical CDS premium predicted by the SVM algorithm with a linear kernel on day f for 

firm h, where f =1..F is the number of available days for test output (approximately 1/4th of the full 

sample) and h=1..H representing the number of firms in the risk class.  sobs is the observed CDS 

premium on day f for firm h. 

Table 12. One-Day-, Five-Day-, and Ten-Day-Ahead Out-of-sample Prediction Errors with 
Linear Kernel SVM in Time Series Design 
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Mean Difference t-statistic p-value
Aa Europe
Merton - SVM 0.31 4.36 < 0.0001 ***
Intensity - SVM 0.21 2.85 0.0044 ***
Aa N. America
Merton - SVM 0.30 2.20 0.0277 ***
Intensity - SVM 0.26 1.88 0.0607 *
A Europe
Merton - SVM 0.91 3.56 0.0004 ***
Intensity - SVM 0.84 3.30 0.0010 ***
A N. America
Merton - SVM 0.91 7.58 < 0.0001 ***
Intensity - SVM 0.88 7.31 < 0.0001 ***

Mean Difference (bps): Difference of Absolute Errors for prediction 
(Merton - SVM) and (Intensity - SVM) computed per day per firm.

Absolute Error on day f , for firm h  =

*** Significance at 95% level
* Significance at 90% level
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Table 13. Significance Tests for the Difference of One-Day-Ahead Absolute Prediction 
Errors between the Merton/Intensity models and Linear Kernel SVM in Time Series Design  
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APPENDIX  

 

Aa-Rated Issuers and Their Industry, Type, Region, Currency and Number of Quotes 

in the CDS Dataset  

 

Issuer Name Industry Type Region Currency Quotes
ABN AMRO BANK NV Financial Bank Europe EUR 520
ALLIANZ AG Ins/Re-Ins Corporate Europe EUR 427
ALLIED IRISH BANKS PLC Financial Bank Europe EUR 530
BANCO BILBAO VIZCAYA Financial Bank Europe EUR 530
BANCO SANTANDER CENTRAL Financial Bank Europe EUR 284
BANK OF AMERICA CORP Financial Bank North America USD 524
BANK OF IRELAND Financial Bank Europe EUR 105
BANK ONE CORP Financial Bank North America USD 474
BARCLAYS BANK PLC Financial Bank Europe EUR 530
BASF AG Manufacturing Corporate Europe EUR 530
BELLSOUTH CORPORATION Telecommunications Corporate North America USD 90
BNP PARIBAS SA Financial Bank Europe EUR 530
BP PLC Energy Corporate Europe EUR 530
CITIGROUP INC Financial Bank North America USD 524
CREDIT LYONNAIS Financial Bank Europe EUR 413
DEUTSCHE BANK AG Financial Bank Europe EUR 515
DRESDNER BANK AG Financial Bank Europe EUR 162
ELECTRICITE DE FRANCE Utilities Corporate Europe EUR 530
ENI SPA Energy Corporate Europe EUR 530
FLEETBOSTON FINANCIAL Financial Bank North America USD 84
GLAXOSMITHKLINE PLC Pharms/Biotech Corporate Europe EUR 530
GOLDMAN SACHS GROUP Financial Bank North America USD 524
JP MORGAN CHASE & CO Financial Bank North America USD 131
MERRILL LYNCH CO INC Financial Bank North America USD 524
MORGAN STANLEY Financial Bank North America USD 524
ROYAL BANK OF SCOTLAND Financial Bank Europe EUR 528
SANPAOLO IMI SPA Financial Bank Europe EUR 530
SBC COMMUNICATIONS INC Telecommunications Corporate North America USD 76
SIEMENS AG Manufacturing Corporate Europe EUR 530
SOCIETE GENERALE Financial Bank Europe EUR 530
TOTALFINAELF SA Energy Corporate Europe EUR 530
UBS AG Financial Bank Europe EUR 527
UNICREDITO ITALIANO SPA Financial Bank Europe EUR 530
WACHOVIA CORP Financial Bank North America USD 524
WAL-MART STORES INC Retail Corporate North America USD 523
WELLS FARGO AND CO Financial Bank North America USD 524

TOTAL 15947  
 

 

 44



A-Rated Issuers and Their Industry, Type, Region, Currency and Number of Quotes 

in the CDS Dataset  

 
Issuer Name Industry Type Region Currency Quotes
AKZO NOBEL NV Chemicals Corporate Europe EUR 530
AMERICAN EXPRESS CO Financial Bank North America USD 524
AVENTIS SA Pharms/Biotech Corporate Europe EUR 530
AXA SA Ins/Re-Ins Corporate Europe EUR 530
BAA (BRITISH AIRPORT AUTHORITY) Transport Corporate Europe EUR 530
BAE SYSTEMS PLC Aerospace/Defense Corporate Europe EUR 56
BANCA MONTE DEI PASCHI DI SIENA Financial Bank Europe EUR 530
BANCO COMERCIAL PORTUGUES SA Financial Bank Europe EUR 530
BANCO SANTANDER CENTRAL Financial Bank Europe EUR 246
BAYER AG Chemicals Corporate Europe EUR 530
BAYERISCHE HVBANK Financial Bank Europe EUR 507
BELLSOUTH CORPORATION Telecommunications Corporate North America USD 434
BOEING CO Manufacturing Corporate North America USD 524
BOOTS GROUP PLC Retail Corporate Europe EUR 530
CADBURY SCHWEPPES PLC Food/Beverage Corporate Europe EUR 11
CAMPBELL SOUP CO Food/Beverage Corporate North America USD 5
CARNIVAL CORP Hospitality Corporate North America USD 523
CARREFOUR SA Retail Corporate Europe EUR 530
CATERPILLAR INC Manufacturing Corporate North America USD 524
CINGULAR WIRELESS LLC Telecommunications Corporate North America USD 394
CIT GROUP INC Financial Bank North America USD 524
COMMERZBANK AG Financial Bank Europe EUR 530
COUNTRYWIDE HOME LOANS INC Financial Bank North America USD 524
CREDIT LYONNAIS Financial Bank Europe EUR 117
CVS CORP Retail Corporate North America USD 523
DAIMLERCHRYSLER AG Auto Corporate Europe EUR 530
DANONE Food/Beverage Corporate Europe EUR 530
DEERE AND CO Manufacturing Corporate North America USD 524
DELL INC Technology Corporate North America USD 521
DIAGEO PLC Food/Beverage Corporate Europe EUR 530
DOW CHEMICAL CO, THE Chemicals Corporate North America USD 524
DRESDNER BANK AG Financial Bank Europe EUR 358
DSM NV Chemicals Corporate Europe EUR 530
ELECTRICIDADE DE PORTUGAL SA Utilities Corporate Europe EUR 530
ELECTRONIC DATA SYSTEMS CORP Technology Corporate North America USD 48
ENDESA (SPAIN) Utilities Corporate Europe EUR 83
ENEL SPA Utilities Corporate Europe EUR 530
ERSTE BANK Financial Bank Europe EUR 65
FLEETBOSTON FINANCIAL CORP Financial Bank North America USD 331
GUS PLC Retail Corporate Europe EUR 7

(continued on next page)  
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A-Rated Issuers and Their Industry, Type, Region, Currency and Number of Quotes 

in the CDS Dataset (cont’d) 

 
Issuer Name Industry Type Region Currency Quotes
HEWLETT-PACKARD CO Technology Corporate North America USD 523
IBERDROLA SA Utilities Corporate Europe EUR 530
INTERNATIONAL BUSINESS MACHINES Technology Corporate North America USD 523
INTESABCI SPA Financial Bank Europe EUR 530
JP MORGAN CHASE & CO Financial Bank North America USD 393
LAND SECURITIES PLC Property Corporate Europe EUR 298
LEHMAN BROTHERS HOLDINGS INC Financial Bank North America USD 522
MARKS & SPENCER Retail Corporate Europe EUR 406
MAY DEPARTMENT STORES CO Retail Corporate North America USD 53
OMNICOM GROUP Entertainment Corporate North America USD 56
PHILIP MORRIS COS INC Food/Beverage Corporate North America USD 81
PHILIPS ELECTRONICS NV Electronics Corporate Europe EUR 530
REED ELSEVIER PLC Publishing Corporate Europe EUR 530
REUTERS GROUP PLC Media Corporate Europe EUR 455
RWE AG Utilities Corporate Europe EUR 530
SAFEWAY PLC Retail Corporate Europe EUR 41
SAINSBURY J PLC Retail Corporate Europe EUR 361
SAINT GOBAIN Construction Corporate Europe EUR 530
SBC COMMUNICATIONS INC Telecommunications Corporate North America USD 448
SIX CONTINENTS PLC Hospitality Corporate Europe EUR 77
TARGET CORP Retail Corporate North America USD 523
TELEFONICA SA Telecommunications Corporate Europe EUR 530
TELIASONERA AB Telecommunications Corporate Europe EUR 530
TESCO PLC Retail Corporate Europe EUR 530
THALES SA Electronics Corporate Europe EUR 530
UNILEVER PLC Food/Beverage Corporate Europe EUR 530
VALEO SA Auto Corporate Europe EUR 453
VATTENFALL AB Utilities Corporate Europe EUR 530
VERIZON GLOBAL FUNDING CORP Telecommunications Corporate North America USD 524
VERIZON WIRELESS CAPITAL LLC Telecommunications Corporate North America USD 522
VIACOM INC Media Corporate North America USD 524
VODAFONE GROUP PLC Telecommunications Corporate Europe EUR 530
VOLKSWAGEN AG Auto Corporate Europe EUR 530
VOLVO AB Manufacturing Corporate Europe EUR 530
WOLTERS KLUWER NV Publishing Corporate Europe EUR 241

TOTAL 31351  
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