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Abstract
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1 Introduction

There are two important questions concerning the pricing of credit default swaps (CDS) which have not
received enough attention in the academic literature so far. One question is related to the recovery value
of the reference asset in a credit event, and the other relates to the nature of the stochastic process used
for the default intensity of an obligor when modeling credit risk within the reduced-form framework.

Credit default swaps are derivative contracts aimed at transferring default risk of a third party, termed
the reference entity, from one market participant to another. The protection seller assumes the credit risk
of the underlying entity by committing to compensate the protection buyer for the loss suffered in case
of a default of the entity on its outstanding debt, in return for a regular protection fee paid by the CDS
buyer. Following a credit event, and assuming physical settlement, the seller makes a payment to the
buyer equalling the notional value of the contract, and in turn receives defaulted obligations of equivalent
notional value.

From the mechanism of a CDS it becomes clear that the seller is additionally exposed to recovery
risk over and above the default risk of the underlying entity since his loss given default, LGD, equals
the difference between the protection payment of par (100%) and the post-default market value of the
delivered obligation(s), i.e. the recovery rate. Naturally, the seller wants to price this risk in already at the
inception of the CDS contract. Holding the underlying term structure of default probabilities fixed, the
more the seller expects to receive as recovery in default, the less premium he will demand for protection.
By symmetric reasoning, the cost of protection for the CDS buyer should be lower if a high recovery rate
is likely because it makes his benefit lower. This simple argument is also reflected in the pricing formula
for CDS: In its rudimentary form the CDS premium can be expressed as PD x LGD, where PD denotes
the (risk-neutral) probability of default during the life of the contract. Conversely, if loss given default is
fixed, the CDS spread is driven exclusively by default probabilities, forcing them to behave unrealistically.

The first contribution of the present paper (Section 6.2) provides insight into the distribution of loss
given default implied by market CDS premia across industries. Moreover, we investigate the relationship
between loss given default and probability of default by looking at its behavior across ratings as a crude
proxy for credit quality. Our analyses reveal that market-implied LGDs are particularly dependent on
the investment grade of the obligor; industry affiliation has some explanatory power in the cross-section
of implied LGDs, though coefficients exhibit high standard errors relative to their size.

The vast majority of empirical literature namely restricts the recovery rate to an exogenously specified,
mostly arbitrary level, which is normally held constant regardless of the type of business the obligor
pursues. The reasons put forward for doing this are that CDS prices purportedly do not react to the
recovery parameter (e.g. Houweling and Vorst (2005), Longstaff et al. (2005)), that it is market practice
to fix the recovery rate at some particular level (e.g. 25% in Pan and Singleton (2006), 40% in Chen et al.
(2005)), or because the papers focus only on the (most liquid) 5-year CDS maturity and otherwise could
not disentangle recovery from credit risk (e.g. Berndt et al. (2005), Longstaff et al. (2005)).

Since the recovery of face value (RFV) assumption is satisfied in the CDS market, Pan and Singleton
(2006) demonstrate that the recovery rate (equivalently, the loss given default) can actually be estimated
from CDS data if the calibration is performed on the full term structure of spreads. The authors take
approximately 5.5 years of recent sovereign CDS data for Mexico, Korea and Turkey with maturities of 1,
2, 3, 5 and 10 years, and find LGD estimates of 23 and 83 percent, in contrast to the standard assumption
of 75 percent. Our analysis confirms that implied loss given default rates can be identified from the term
structure of CDS spreads. Pan and Singleton (2006) further illustrate that long-maturity CDS premia



should be essential for identification since the effect of changes in the recovery rate on short-maturity CDS
premia turns out relatively low. In contrast to the CDS market, recovery rates are poorly identified when
considering the bond market (see e.g. Frithwirth and Sogner (2006)).

Of course there exist surveys of historically realized recovery rates, such as Batterman et al. (2005) for
US defaults in the 2000 to 2004 period, as well as Altman and Kishore (1996), Altman et al. (2003), Altman
et al. (2004) and Acharya et al. (2004) based on US defaults data from the 70ies, 80ies and 90ies. The most
recent survey on recovery rates, Batterman et al. (2005), covering the years 2000 to 2004, reports an average
annual recovery rate! of 34% (33% par-weighted) for senior unsecured bonds, with substantial variability
among industries. The following factors are pointed out as the most likely determinants of recovery rates:
debt seniority, macroeconomic variables, and industry characteristics (such as competitiveness, leverage,
nature of assets, or regulation). Controlling for default risk through the rating, a comparison of recovery
rates and CDS spreads between sectors reveals that while the corresponding spreads hardly differ, realized
recoveries vary tremendously. The authors conjecture that recovery is usually disregarded as long as the
probability of default is considered low, but can dominate CDS valuation for high-yield and distressed
obligors.

Altman and Kishore (1996) is one of the first papers to investigate bond prices at default stratified
by industry affiliation and seniority of the issue. They report an average recovery rate of 41% in US
default data from 1978 to 1995, with a standard deviation of 25.56%, and conclude that issuer-specific
knowledge is still indispensable. Altman et al. (2003) find an average annual recovery rate of 41.8% in
(mostly) US data between 1982 and 2001 (37.2% if weighted by the market value of defaulted corporate
bonds). Using a regression model it is shown that (the logarithm of) the default rate, the changes in the
default rate, the amount of high-yield bonds outstanding, and the changes in the gross domestic product
significantly impact the recovery rate. Altman et al. (2004) point out the effect of debt seniority on
recovery rates from US defaults data between 1974 and 2003. As expected, the recovery rates decrease
with subordination, however the differences are insignificant due to huge standard deviations: The mean
recovery rates at default? (standard deviations in parentheses) in this period were 52.84% (23.05) for
senior secured bonds, 34.89% (26.62) for senior unsecured bonds, 30.17% (24.97) for senior subordinated
bonds, and 29.03% (22.53) for junior subordinated bonds. Similar figures on historical recovery rates are
also cited in Schonbucher (2003, pg. 160). In addition to seniority, Acharya et al. (2004) identify the
industry as the second important determinant of recovery rates based on US data from 1982 to 1999.
Again, due to high standard deviations of the estimates, the differences are insignificant. A decrease of
10 to 12 percent in the recovery rate is estimated when an industry is in distress (defined by aggregate
equity returns being below -30%).

The second contribution of the present paper (Sections 4.2 and 6.2) concerns the nature of the dynamics
employed for the default intensity of the latent Cox process governing the default and survival of an
obligor. Our specification of the stochastic intensity is embedded in the affine framework of Duffie et al.
(2000). Our analyses generate the following results concerning the specification of an affine model for
the default intensity. First, as conjectured by Pan and Singleton (2006) for the sovereign market, a two-
factor specification significantly improves the cross-sectional as well as the time-series fit for corporate
obligors as well, in particular for the shortest- and longest-maturity contracts. Second, we find no linear
relationship between the default intensity and the long-run mean and the stochastic variance of the risk

!Based on bond prices one month after default, which is the value relevant for the CDS market.
2Based on bond prices just after default, which is the value relevant for the CDS market.



free short rate to support correlation between the risk free term structure and the default intensity. Third,
incorporating jumps significantly improves the model’s capability to reproduce the time-series behavior of
CDS premia, and captures the following empirical stylized facts inferred from an exhaustive cross-section
of US corporate obligors:

A If a discontinuity occurs, it mostly affects both the short end and the long end of the CDS maturity
spectrum.

B When a discontinuity occurs, the change in the premia is mostly positive, and the jump size is related
to the time to maturity.

C The 1-year CDS premium exhibits a unique variation pattern.

Furthermore, intensities of jumps in the credit risk components under the physical measure increase with
deteriorating rating.

The academic literature testing alternative specifications of stochastic intensity-based models is rather
scarce? compared to the vast number of empirical studies on affine models for the term structure of riskless
interest rates. Empirical evidence for jumps in risk free discount rates is mixed. While the majority of
papers specifies the risk free term structure by means of an A, (m) model (see Dai and Singleton (2002))
or an unspanned stochastic volatility setting (see Collin-Dufresne et al. (2004)), Johannes (2004) inferred
jumps even in the risk free term structure.

Pan and Singleton (2006) estimate a log-normal diffusion model using extended affine market prices
of risk (see Cheridito et al. (2006)). The estimates of the default rates are persistent under the physical
measure and partially explosive under the pricing measure. Moreover, their risk-neutral default intensities
exhibit substantial pairwise correlation and correlation with the VIX option volatility index.

As a further contribution (Sections 4.1 and 6.1) we estimate an Andersen et al. (2004)-type model
for the risk free term structure. To the best of our knowledge we are the first to estimate this model on
a panel of risk free zero yields. The parameter estimates are comparable to the ones in Andersen et al.
(2004), but we find a substantial risk premium on the standard deviation of the jump size. As already
observed in an earlier version of Pan and Singleton (2006), our sophisticated risk free model negligibly
affects model-implied CDS premia.

Our final contribution (Section 3.2) is an investigation of the pricing differences resulting from contin-
uous vs. discrete monitoring of default events. Using a one-factor jump-diffusion intensity model, we find
that a discretized formulation results in substantial underpricing for several parameters.

2 CDS Data

The CDS history is obtained from Markit, a leading data provider specializing in mark-to-market CDS
pricing, among other products. Their data is sourced from a broad range of dealers* contributing on a
daily basis. The data points in the history represent neither trades nor quotes; the contributed values
are based on the dealers’ books of record or feeds to automated trading systems, and are subsequently
aggregated by Markit. The data is commonly used by global financial institutions for price verification
and risk management purposes.

3Moreover, most of these studies do not use CDS, but corporate bond data.
4There are 62 contributors as of April 2006.



Though the credit derivatives market, and especially the CDS market, have grown tremendously in
the past ten years, the quality and availability of data still present a considerable restriction to empirical
research: There is a clear trade-off between the length of the time period and the number of spreads in
the cross-section of maturities — the further one reaches into the past, the less data points are available
per day. For this reason our data set contains daily spreads spanning two years from October 19, 2004 to
October 19, 2006 (totaling 523 days).

There are approximately 1500 names altogether at our disposal, but for the results to be comparable
to other studies our focus is exclusively on obligors based in the United States. At the same time, by
restricting the analysis to US obligors only, we reduce the effect of the delivery option on CDS spreads.
Namely, CDS contracts with physical settlement never specify one single obligation to be solely deliverable,
but rather admit a basket of deliverable obligations. At default, the protection buyer thus has the
option to deliver the cheapest obligation from this basket. Deliverable obligations are defined by a set of
characteristics, the most relevant of which are currency and seniority.

There are six standard specified currencies®, and obligations are normally accepted for delivery if
denominated in one of these. In conversations with practitioners we have learned that a higher value is
attached to the delivery option if the reference entity has debt outstanding in several currencies because
of the foreign exchange risk and foreign interest rate risk induced. Since the US corporate bond market
is globally the most developed, we conjecture that it is more probable for US obligors — than for those
based e.g. in FKurope — not to issue debt in foreign currencies. We therefore restrict our analysis to USD-
denominated CDS contracts and do not take into account foreign interest rate risk or foreign exchange
risk when modeling the recovery rate.

Let us now turn to the seniority characteristic. The debt acceleration clause® in bond indentures and
bankruptcy codes essentially establishes that the principal amount of all specified debt becomes immedi-
ately due and payable if a credit event applies to any single obligation involved. This provision allows CDS
contracts to be written on a certain tier of the obligor’s debt (e.g. secured, senior unsecured, subordinated
or junior subordinated) without the explicit need for specifying one concrete reference obligation. The
most widely referred to tier is senior unsecured, which is also adopted for our analysis.

Though the existence of the debt acceleration clause reduces the value of the delivery option, it can
never completely remove it. In a broad study of bond prices following actual credit events from the recent
past Guha (2002) investigates whether obligations of the same seniority (but possibly having different
maturities or coupons) trade at the same price after the credit event, which would be a consequence of the
debt acceleration clause. The evidence he finds is ambiguous (cf. Guha (2002, Table VIII)). Nevertheless,
this provision theoretically justifies the recovery of face value (also called the recovery of par) assumption”
we employ in CDS pricing.

Furthermore, the CDS restructuring clause, which restricts the maturity of deliverable obligations in
case of a restructuring credit event, needs to be taken into account for comparability of CDS spreads. The
modified restructuring clause is the US market standard, where it e.g. accounts for approximately 90% of
investment-grade CDS contracts (cf. Reyfman and Toft (2004)).

These four criteria (USD-denominated CDS contracts with the modified restructuring clause on senior

5The Standard Specified Currencies are the currencies of Canada, Japan, Switzerland, the United Kingdom and the United
States, and the euro, cf. Section 2.19.(b)(ii) of the 2003 ISDA Credit Derivatives Definitions.

5Sometimes also termed the cross-default clause.

"For detailed comparisons of pricing properties for different recovery assumptions cf. Bakshi et al. (2006), Delianedis and
Lagnado (2002) and Schénbucher (2003, Section 6).



unsecured debt issued by US-domiciled obligors) leave us with 675 obligors. Another 7 names must be
excluded because of taking part in mergers or demergers during our sample period. For each obligor we
have at our disposal a panel {s;(M): M = 1y, 3y, 5y, 7y, 10y, t =1,...,T} of CDS premia:

51(1y) 51(3y) 51(5y) 51(7Ty) 51(10y)
s(ly) sGy) 56w &7y 5(10y) (2.1)

sr(ly) sr(3y) sr(5y) sr(Ty) sr(l0y)

where the subscript ¢t = 1,...,T with T = 523 indicates the observation day, and the index M the
maturity of the CDS. Only the five canonical CDS maturities (cf. Brigo and Mercurio (2006, pg. 719))
of 1 year, 3 years, 5 years, 7 years and 10 years are used in our analysis since these are known to be the
most frequently quoted and traded. Though Markit’s approach to collecting data mitigates the problem of
missing and stale values to a large extent, it does not completely eliminate it. CDS spreads for individual
maturities, or even whole days, are missing in some panels, and there is a non-negligible proportion of
stale spreads, which we treat as if they were missing. Since high-quality time-series are necessary for a
meaningful analysis, we set high thresholds on data quality: First, the overall percentage of missing spreads
per obligor (which in our definition includes stale spreads) must not exceed 10%, and second, the length
of the longest series of consecutive missing spreads must be 5 days or shorter. The former requirement
guarantees enough data points for estimation, and the latter ensures that the missing data points are not
clustered together. These two quality criteria are satisfied by 282 of the selected 668 obligors.

The processed set of obligors is classified into industry sectors according to the ICB® scheme provided
to us by Dow Jones. The ICB classification system consists of four layers, the first of which is the Industry
layer. With only ten categories in total it is probably too rough a classification because the resulting groups
of obligors are still too heterogeneous with respect to their businesses (assets), but it suffices to obtain
preliminary results. On the other hand there exists a trade-off between the level of partition and the
number of obligors in each sector. We are currently investigating the effects of using finer classification
layers (the so-called Supersector or even Sector level).

3 CDS Valuation

3.1 CDS Pricing

Consider the standard intensity-based setup (for details consult standard references, such as Lando (2004)
or Schonbucher (2003)), where a filtered probability space (Q, F,{F:},Q) is given, with Q being a risk-
neutral or pricing measure. The intensity-based framework postulates a latent Cox process N whose first
jump time 7 determines the default time of the obligor. Let A be the non-negative stochastic process for
the jump intensity of N (concrete specifications are discussed in Section 4.2). There also exists a risk

8The Industry Classification Benchmark (ICB) is a four-tiered industry classification system launched by Dow Jones and
FTSE in 2005. It aims at providing standardized and comprehensive coverage of the global corporate universe, and has been
adopted to date by most of the leading financial institutions, exchanges and data providers. Please visit www.icbenchmark.com
for details.



free short rate r such that the time-t price of a risk free zero-coupon bond maturing at time 7" may be

expressed as
T
P(t,T)= E9 [exp {—/ Ts ds}] , (3.1)
t

where the expectation is taken under the measure Q and conditional on information available at time ¢.
Then, assuming zero recovery, the price of an equivalent defaultable zero-coupon bond is

P(t,T) = B [exp {— /tT (s + As) ds}] , (3.2)

where the riskless short rate is replaced by a default-adjusted short rate 7 := r + A.

There are two sides to a CDS contract: the fixed leg, comprising the fee payments by the protection
buyer, and the default leg, containing the contingent payment by the protection seller?. The exact cash
flow structure of the fixed leg in a standard contract, as laid down in the 2003 ISDA Credit Derivatives
Definitions, is specified as follows: Premium payment dates are fixed and do not depend on the specific
contract date. They are quarterly and happen on the 20th of March, June, September and December.
Thus, if a CDS is contracted between those dates, the first period is not a full quarter and the first
premium payment is adjusted accordingly. In addition, we account for the now variable maturity of CDS
contracts: As a result of fixing the premium payment dates, the length of the protection period varies and
depends on the contract date since the quoted CDS maturity begins on the first premium payment date.
Furthermore, the accrued premium in case of default must be taken into account. We assume absence of
any transaction costs.

Consider at time t a CDS with outstanding premium payments s at times 77 < Ts < ... < T,
T1 > t, maturity at T = Ty and notional normalized to 1. As discussed in Section 2, the recovery of face
value assumption is employed, and the recovery parameter under the pricing measure Q denoted by RY.
Denoting the time-t value of the fixed leg by V™ (T';s) and the time-t value of the default leg (with the
discounted payment normalized to 1) by V2(T)), then the time-t value of the CDS contract to the buyer
is (1 — RQ) V(T — V;"(T; s). Since CDS contracts are priced at initiation only, the values of the fixed
and the floating legs are considered at the time of initial offering, meaning that time-t values correspond
to contracts initiated at time t. This paper analyzes time-series of spreads, so the values of the legs and
of the spreads with initiation at time ¢ are called time-t values.

If default happens within the protection period, the protection buyer has made I(7) = max{1 < n <
N : T,, < 7} premium payments, the remaining ones I(7) 4+ 1,..., N being no longer due, except for an
accrual payment of s x (7 —Ty(;)) at the default time 7. Hence, the value of the fixed leg of a CDS contract
initiated at time ¢ with maturity 7T is given by

VA (Tys) = is(Tn—Tn_l)P(t,Tn) + EQ [/tTNs(u—TI(u)))\uexp{—/tu'dev}du}, (33)

n=1

90ur valuation approach ignores counterparty risk on both sides of the contract. More precisely, the assumption is that
during the life of the contract the counterparties either maintain the credit rating underlying generic (e.g. A-rated) CDS or
have symmetric default probabilities (credit quality), cf. Duffie and Singleton (1997). We presume that this aspect has a
relatively low impact on the spreads of typical CDS contracts.



where Ty = ¢t and Ty = T. On the other hand, the time-t value of the default leg (with the discounted
payment normalized to 1) is given by

Vi(T) = E2 [ /t ' Ay €XP {— /t 5 dv} du} . (3.4)

At initiation of a CDS the premium s;(7") is chosen such that the contract value to both parties is zero,
and since the value of the fixed leg is homogenous of degree 1 in s, it follows that
‘/;:def T

s¢(T) = (1 — RY) V(T 1) (3.5)

3.2 Discrete vs. Continuous CDS Pricing

The valuation described in the preceding section represents the most general approach, taking into account
all cash flows generated by a CDS contract and making no more assumptions than absolutely necessary:
absence of transaction costs, counterparty risk and the delivery option. The widely employed discretized
valuation formula (as presented in standard textbooks like Lando (2004, Section 8) or Schénbucher (2003,
Section 3)) is based upon several simplifying assumptions regarding the payoff structure of a CDS (cf.
Schénbucher (2003, Section 2) or Duffie (1999)). The exact payment structure of the fixed leg is ignored,
and premia are paid in regular (quarterly) intervals starting at the initiation date, so there is no maturity
shift. The fixed leg is additionally reduced by neglecting the payment of the accrued premium at default.
As for the default leg, an equally-spaced grid on the time interval (¢, 7] is assumed, interpreted as the time
points at which the obligor is monitored and the occurrence of a default since the previous observation
point is detected (for example monthly or weekly). As a consequence, the termination payment is made
at the observation date immediately following actual default. Technically speaking, the grid ¢ = Sy <
S1 < ...< Sk =T on (t,T] induces a discretization of the integral in (3.4), which is then numerically
approximated via finite differences. In most cases the risk free short rate r is additionally assumed at
least independent of the default intensity A, which simplifies equation (3.4) to:

VAT) = E2 [/tT/\SeXp{—/ts'dev}ds}
= E? [/tTexp{—/tsrvdv}dQ(t,s)] (3.6)

K
> P(t,Sk) (Q(t, Sk-1) — Q(t, Sk)) ,
k=1

%

where Q(t, 5) = E2[exp{— fts Ay dv}] denotes the (cumulative) survival probability over the interval (¢, S].

The aim of this section is to compare the magnitude of the pricing differences resulting from these two
formulations when individual parameters of the model specification are varied over a plausible spectrum
of values. As described in the preceding section, the general approach in particular involves continuously
discounting the LGD amount, whereas this integral is discretely approximated in the approach described
above. For this reason we call the former pricing continuous, and the latter discrete. Since the continuous
formulation involves a considerably greater computational effort, it is important to assess the trade-off



when choosing the discrete formula. For example, one expects the accuracy of the discretization to increase
by raising the default observation frequency governed by § = Sy — Sg_1.

Not to be distracted by a possible influence of a varying risk free short rate r, we fix it at a constant
value in order to focus only on the effects of the valuation formula. For the sake of simplicity we use a
one-factor specification for the default intensity, which is assumed to follow a square-root jump-diffusion:

dhi = k(0 = N\p) dt + o/ N AWy + dZ; | (3.7)

where Z is a compound Poisson process with jump intensity v and exponentially distributed jump sizes
with mean p, independent of the Brownian motion W. The absolute pricing errors in Figure 1 are
computed by holding all parameters fixed at plausible values (6§ = 1/8, Ao = 0.3%, k = 0.5, 6 = 0.3%,
o ="T7%, pn=0.2%, v =3, and r = 3%), while varying each of the parameters one by one over a reasonable
range of values.

The time step d is allowed to vary only up to one quarter of a year because a value larger than 0.25
would mean that the protection buyer is paying premia without knowing whether the obligor has defaulted
or not. Varying this parameter yields only minor absolute pricing differences (0.1 bp order of magnitude),
though only for “nice” values of the remaining parameters. For example, as soon as the long-run mean
0 is set to a higher value of e.g. 0.5 — which frequently happens when fitting persistent time-series like
riskless interest rates or CDS spreads — the pricing difference shoots up to 70 bp for a 10-year maturity.

Discretization is harmless for non-explosive values of the speed-of-mean-reversion parameter x; ex-
plosive values (k < 0), which are necessary for a reasonable fit to CDS spreads according to Pan and
Singleton (2006), induce huge pricing differences of up to 20 bp and worse the longer the maturity of the
CDS and the more negative the parameter. The effect of the long-run-mean parameter € is severe for high
values (up to 60 bp for a 10-year CDS), which (similarly to ) frequently appear when fitting persistent
time-series like CDS spreads (cp. to our results in Section 6). Even worse is the pricing error induced by
the expected jump size parameter u, ranging up to 400 bp for longer-dated contracts.

All other model parameters (the starting value \g, instantaneous volatility o, jump intensity v, and
the riskless interest rate r) produce negligible pricing errors. A final striking observation can be made with
respect to the sign of the pricing errors. All large deviations highlighted above exhibit a positive sign; a
discretization of the general, continuous pricing formula therefore yields underpricing for this model.

4 Model Specification

4.1 Riskless Model

We employ an observable stochastic volatility jump-diffusion model for riskless discount rates, where the
panel of zero yields is subject to diffusive risk generated by Brownian motions, as well as jump risk
generated by a compound Poisson process with normally N (0, a?,) distributed jump size. A parsimonious
version of the model below is introduced and tested extensively with respect to its time-series capabilities
in Andersen et al. (2004). To the best of our knowledge we are the first to estimate this model on a panel
of zero yields. The dynamics under Q are:

AV = (kv — Ky Vi)dt + ov\/V, AW (1)
dpe = (KO, — kv Vi — Ky ) dt + 0,/ AW () (4.1)
dry = kp(pe — 7¢)dt + \/‘ZdW;@(t) + dZ@(t)-
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Figure 1: Pricing Discretization Error: This figure shows absolute deviations computed as the difference
between the general pricing formula (3.5) and its discretized version (3.6). Errors are computed for CDS with
maturities 1 year and 10 years to cover the maturity spectrum.
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This formulation admits an interpretation of the state variables as stochastic volatility, long-run short
rate mean and short rate. In subsequent sections we use r* = (V, 1, ) to lighten notation. With extended
affine market prices of risk from Cheridito et al. (2005) one may estimate the drift coefficients under P
separately from the Q parameters. The dynamics under P are assumed to be determined by:

dVi = (k0% — K Vi)dt + o/ Vi AW ()
dpy = (k05 — Ky, Vi — Kb pe)dt + o, /fi AW (L) (4.2)
dry = KE (g — r)dt + / Ve dWE (t) + dZE (¢).

The Feller condition is imposed for the short rate variance process and the long-run mean process under
both probability measures. Riskless zero-coupon yields v/, v = (3m, 2y, by, 1m, 1y, 7y, 10y), are boot-
strapped from Libor rates (for maturities under one year: 1, 3, 6 and 9 months) and swap rates (for
maturities between 1 and 10 years: 1, 2, 3, 4, 5, 7 and 10 years). All riskless data is taken from DataS-
tream.

4.2 Default Risk Specifications

Observation A from the Introduction has intuitive appeal, since contracts with a longer time to maturity
are equally affected by a credit event which the market anticipates in the short run. Observation B
reflects the fact that financial distress, or rumours of financial distress, cause sudden upward moves in
CDS premia. On the other hand the market tends to forgive slowly or not at all after such an event.
Therefore premia move down slowly — if they move down at all. Observation C, together with preliminary
experiments with one-factor models'’, as well as empirical evidence in Pan and Singleton (2006) and Chen
et al. (2005), suggests the use of a two-factor model for a firm’s default intensity:

A = (8 — iy )t + 0 AW R () + d (25,0 + 28,(1)) (4.3)
dipe = k(v — me)dt + o TRAWE(E) + d (Z%(t) + ng,(t)) , (4.4)

where 7 is interpreted as the default intensity and « as its stochastic long-run mean. We found the
following parameterization under P to be reliable for estimation:

e = (kb — K5 )t -+ o TdWS (8) +d (25,(8) + 25, (1))

: (4.5)
dny = (Kyye — /f]];nt)dt + an\/@dWE(t) +d <an(t) + leymnr(t))

The Feller condition is imposed on the stochastic long-run mean process under both probablity mea-
sures. To model observation A we assume that jumps in the driving state variables may occur as mutually
exclusive events

1. to the risk free term structure only,

Y0ur experiments result in parameter estimates similar to Pan and Singleton (2006), even though they investigate the
sovereign market. Some firms admit a reasonable fit only by letting the default intensity explode under Q. Some firms cannot
be reasonably fitted even with an explosive process under Q, when the short end of the premia deviates too much from the
long end.
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2. to the default intensity of the firm and its long-run mean simultaneously,

3. to both the risk free term structure, the default intensity, and its long-run mean (all three state
variables at the same time).

The jump process Z2(t) from (4.1) is therefore shorthand for the sum Z9 —1-29777,. Jump times are governed
by exponentially distributed inter-arrival times 7, ~ Exp(l,), Tyy ~ Exp(lyy), and Ty ~ Exp(lyy). The
expected waiting times between two jumps of the corresponding Poisson processes are therefore [;., I,
and [y, respectively.

To accomodate observation B our model uses a multivariate jump-size distribution for jumps in 7 and
7. Recall from Section 4.1 that jumps in the riskless short rate are normally distributed with N (0, O'?,).
The moment generating function for a mean-zero normal distribution is known to be ®(u) = exp (%aglﬂ).
Here we follow Andersen et al. (2004), who also normalize expected jump size to zero. For the default risk
components we employ a bivariate exponential distribution with exponential marginals as developed in
Marshall and Olkin (1967). It is characterized by the parameters (,, ¢;, and (,,. The (marginal) expected
jump size for v is 5 e Jrll oo and @ +11 e for n. Marshall and Olkin (1967) also provide the moment

generating function:

(€ —u—v)(1/G+1/Cn) 1/ +1/Gm) +uv/Gy
(1/¢—u—v)(1/G + 1/ —u)(1/Gy + 1/ — v) ’

where ¢ :=1/¢, +1/¢, +1/¢yy. Le. de;(t), ngD(t) > 0 if we observe a jump in the risky term structure
only (ny-jump) or in the case of a joint jump of the risk free term structure and credit risk (nyr-jump).
In both cases, the jump sizes of the components () and () have a bivariate exponential distribution.

Both the normal and the bivariate exponential moment generating functions serve as ingredients to the
differential equations from Duffie et al. (2000) which we solve to evaluate the conditional expectations in
equations (3.3) and (3.4). To engineer our jump transform we proceed analogously to Duffie et al. (2000,
Section 4 and Appendix B) and specify

U(u,v) =

(4.6)

Qty 1, 0) = (LDt + Ly Wt 0) + Ly W (1, 0)B(E)) - (4.7)
by A Lyn A Ly

Evidence for dependence between risless rates and credit-risky rates is rather mixed. Some studies
find a positive relation, others find a negative relation. Feldhiitter and Lando (2005) provide a discussion
of evidence from the recent literature. We are not aware of any studies on the role of the riskless short
rate volatility or the expected short rate in credit-risky markets, however. To empirically investigate this
issue we perform preliminary estimations with a default intensity specification A = n + cu + eV, where
and V are the riskless stochastic long-run mean and stochastic variance, respectively, from system (4.1).
This does not cause an additional computational burden since the above formulation preserves affinity
and only the initial conditions of the pricing ODEs change. We deliberately do not include the riskless
short rate r directly since it is a Gaussian process. Estimates for e and ¢ turn out to be close to zero
and exhibit high variability, somewhat similar to the results in Feldhiitter and Lando (2005) for the short
rate; this indicates only weak evidence for dependence, if at all, and we therefore perform the reported

estimations with ¢ = e = 0.
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5 Methodology

Estimation is performed in two steps. First, model (4.1) is estimated on the panel data of riskless zero
yields. In a second step the CDS model is estimated firm by firm. For the first step we assume that
three zero yields are observed without error. This assumption is commonly not made in MCMC studies,
but frequently appears in the ML literature on term structure modeling (see for example Ait-Sahalia and
Kimmel, 2005; Duffee, 2002; Cheridito et al., 2006, for studies that estimate with some yields observed
without error). With this assumption the model-implied and parameter-implied state variables V;, u; and
ry can be inverted from observed zero yields. Appendix A.1 shows the link between observed zero yields
and state variables. We find this measure necessary to separate stochastic volatility from jumps. For both
steps (4.5) and (4.2) we employ an Euler discretization. Equations from system (4.2) in discretized form
read:

Viei =V + (/{9@ — KI‘P} VA + oy ViAey(t+1),
W1 = Mt + (K;HIEP - /-@I‘P/# Vi — liﬁ i) A + o/ e Aey(t 4+ 1), (5.1)
Tepr =T+ by (e — 1) A+ VVid e (t+ 1) + Zp(t + 1) (¢t + 1).

The step width A is taken to be constant at 1/250. Innovations ey, , are N(0,1)-distributed random
variables, J,(t+ 1) has a Bernoulli distribution B(l,/250), and Z,(t+1) ~ N(0,0%p). The bias introduced
by this discretization at a daily step width is small (see Johannes, 2004; Johannes and Polson, 2003, in a
very similar context). System (4.5) is treated analogously.

Our model is comprised of latent risk free state variables V', u, and r, a latent default intensity n, its
stochastic long-run mean ~ and a constant, yet unknown recovery rate R = 1 — LGD. From this model
we compute model-implied CDS premia s, where

Vdef(l) Vdef(3) Vdef(5) Vdef(?) Vdef(lo) T
= (s¢(1), 5¢(3), 5¢(5), 5¢(7), 5:(10)) " = LGD - . (52
st = (5¢(1), 8(3), 5¢(5), 5¢(7), 5¢(10)) <Vﬁx(1)’ Vix(3)? Vix(5)’ Vix(7) Vix(10) (52)
In our panel of CDS premia 5 = {5}, where 5 = (5:(1),5:(3),5:(5),5:(7),5:(10)) T, there are both
observed values, denoted by 57(-), as well as missing values, denoted by 57*(-). It holds that {s°, 5"} = s.
We assume that our panel is observed with an additive i.i.d. observation error gy ~ MV N(0,%.(t)),Vt
such that for each ¢ we have

St = 8¢ + &¢. (53)
The covariance matrix . (¢) is assumed to be a diagonal matrix where the i-th diagonal entry is given by
[Ze()] (i) = exp (ap + a1 (T; — t) + aao(T; — t)?). T; —t is the time to maturity of CDS contract i = 1,...5
at time .

Letting 6 comprise the parameters of the stochastic processes, >. and LGD, then the joint posterior
distribution of the parameters with the latent state variables and missing CDS prices is given by

p(s™ 1%y, m,0 | s°,y”) o p(s®, 8™ | ¥, v,m, 0) p(y”, A, 0)
oc p(s | r%,79,m,0) p(y”,v,m | 0) p(0)

= pls | 7. 0.0) o 07 | )20 | 0)p(6) (54
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by independence of the observation errors. For estimation on CDS premia we do not take into account
p(r* | 0) since it is determined by the risk free market. Note that the processes of the risk free term
structure r* need not be simulated, since by our assumption of riskless zero yields observed without error
r* is given by the model parameters and riskless zero yields y;; the functional relationship is described in
Appendix A.1. The density p(s | 7*, A, 6) is a multivariate normal distribution arising from 5.3 and the
specification of ¥.. p(A | 0) is defined from our specification of the process A;.

Since we perform a Bayesian analysis we also specify the priors 7(6). We use uninformative priors for
all elements of 6, normal priors for variables with support on the real line and gamma priors for variables
with support on the positive real line, with very high variances. Proposal densities for the Metropolis
steps are random walk, except for /. and [,,,, where we use normal proposals with mean I¥ and lfw,
respectively. We further restrict our parameterization of the jump size parameters to ¢, = ¢, and CE = CE .

6 Results

6.1 Risk Free Term Structure

This section presents and discusses the results from estimation of the risk free term structure model (4.1)
and (4.2) on zero yields bootstrapped from US swap rates. Table 1 in Appendix B presents the parameter
estimates. The respective parameter paths from the Metropolis-Gibbs sampler are reported in Figures 3
through 6. Estimation is based on 10 years of daily data from January 1997 to October 2006.

Andersen et al. (2004) (henceforth ABL) find no evidence for correlation between the state variables
and the “level effect”. The level effect stands for the empirical stylized fact that interest rate volatility is
high when interest rates are high. Our model differs from the ABL model in that it is able to accomodate
(positive) correlation between the stochastic long-run mean and stochastic variance via the x,y parameter
under both probability measures. Yet it is not able to reproduce the level-effect itself, but instead it may
induce the effect that interest rate volatility is high when expected interest rates are high, with similar
economic appeal. Under Q, tight confidence bands deem the parameter x,, well identified, while /{I‘P}M
displays high variability.

Johannes (2004) finds that Q jump parameters are poorly identified from yields only. In our estimation
procedure we therefore propose the jump intensity under Q, ., from a normal distribution with mean [,p
instead of a more standard random walk proposal. This includes the assumption into our proposal density
that the market for zero bonds does not put a risk premium on the jump intensity. As a consequence the
resulting point estimate of [, at 3.56 is only slightly higher than [,p at 3.53, which is approximately equal
to the ABL estimate. In turn, Figure 5 shows that the standard deviation of the jump size under Q is
very well identified at a very high 0.09, with a standard random walk proposal. This implies a large risk
premium on jump size risk, since the standard deviation of the jump size under P is estimated at 0.003,
which is very close to the ABL estimates.

From Table 1 we observe evidence for high persistency in the processes, under both the empirical
measure P and the equivalent martingale measure Q, respectively. This is a standard finding in the
empirical term structure literature. For example the coefficient of mean reversion for the short rate
variance and the stochastic long-run mean are both approximately 1 under PP, such that in discrete time
we have an autoregressive coefficient of around exp(—1/250) ~ 0.996 on a daily time scale. The confidence
band for HI‘P/ contains the ABL estimate, while our estimate for HE is slightly higher. Under Q the processes
are even more persistent.
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The most striking difference to ABL concerns our estimate for the standard deviation of the stochastic
short rate variance at 0.001, which is much lower than the 0.011 estimated by ABL. This may be due to
our much smaller sample, which does not contain the turbulent period at the beginning of the 80’s, or it
may be related to the fact that we estimate both on the time-series and the cross-section, an estimation
practice forcefully suggested by Chernov and Ghysels (2000).

The posterior distribution of the latent jump-time indicators J, (cf. Appendix A for details) provides
us with the posterior distribution of the jump events. The results are presented in Figure 2. The upper
panel reads as follows: On the horizontal axis we have the time scale ¢, while the vertical axis represents
the posterior probability of a jump at ¢. For values larger than 0.5 we infer a jump. The lower plot
in Figure 2 displays the posterior estimates of the jump sizes and thus clarifies why we use normally
distributed jumps for the risk free term structure since both upward and downward jumps in the short
rate are observed.

6.2 Analysis of Credit-Risky Components

This section presents and discusses our parameter estimates of models (4.3) and (4.5). Since we consider
282 obligors and parameters are estimated on a firm wise basis, we group firms either with respect to their
rating or with respect to their industry classification. The mean values of the point estimates, of their
quantiles and standard deviations for the model parameters are presented in Tables 2 to 8 in Appendix
B. Table 9 contains means and standard deviations of the latent instantaneous intensity process n and its
stochastic long-run mean process . The point estimates are taken to be the multivariate median from the
posterior distribution of the parameters, conditional on the data (we use the same multivariate median
as Collin-Dufresne et al., 2004). The quantiles and the standard deviation are also estimated on the basis
of the posterior distribution. Out of 5,000,000 draws from the MCMC sampler only every 1000th draw
is recorded to remedy high autocorrelation in the parameter paths. The first 3000 samples are discarded,
and the remaining 2000 used in the computation of the point estimate, the quantiles, and the standard
deviation.

The estimates are very similar to what one would expect from an analysis of the risk free term
structure. Since k, is small, the stochastic long-run mean 7 is extremely persistent. Figure 8 shows
posterior estimates for the trajectory of the intensity and its long run mean for ticker FDX as an example.
While the intensity process varies between 0.001 and 0.005, the long run mean process has its minimum at
0.06 and reaches 0.24 as its maximum level. It can also be seen that persistency is much more pronounced
under Q compared to the situation under P. Nevertheless, it is not necessary to let these processes explode,
neither under the pricing measure nor the physical measure, which would be necessary when fitting a panel
of CDS premia with a one-factor model. Autocorrelations of the pricing/observation errors are high and
reminiscent of what is seen in the riskless market.

Another interesting parameter is 6, the long-run mean of the stochastic long-run mean. Especially
under the Q measure we expect an increasing 6, with deteriorating rating. At the same time we are
aware that persistency in the processes, which is more pronounced under Q, will drive up variability of the
parameter estimates. The fifth and sixth column of Table 8 present our estimates. While the parameter
estimates for 09 are slightly increasing from AAA to A, we observe a decrease in these parameters from
A to BBB followed by a further drastic decrease from BBB to BB and B. For CCC the estimates rise to a
level above the AA and BB level. We have to remark that the standard deviations are often larger than the
point estimates due to persistency, such that no significant differences with respect to the rating categories

16



can be inferred on statistical grounds. This result is confirmed by running a regression of the parameter
estimates for 99 on rating and industry. Using either only rating or only industry no significant parameters
with p-values smaller than 10% can be observed. On the other hand, if both rating and industry are used,
the Industrials sector (p-value 10.5%) is close to being significant, but all other variables are insignificant.
The same effects are observed under the P measure, where Industrials exhibit a p-value of 1.8%. Summing
up, with respect to the long-run mean of the credit spread neither the rating nor the industry provides us
with sufficient information on the credit spreads across sectors. The differences across sectors are too large
due to persistency. The only exception are Industrials where significantly higher 99 and 9]1; are observed.

We observe jumps in different CDS maturities with size approximately proportional to time to maturity.
The process 17 determines the short end, while v controls the long end of the credit spread term structure.
It is therefore economically meaningful to expect similar jump sizes for the long and for the short end.
Additionally, preliminary estimates of ¢;, and (, with both parameters freely varying are poorly identified;
we therefore impose the restriction (;, = ¢y, thereby greatly improving the stability of the Metropolis-
Gibbs sampler. Joint jump sizes (;, are much larger than individual jump sizes under Q. This indicates
that empirical fact B (see the Introduction) is priced into CDS contracts. Under P the results are mixed
(see Tables 4 and 7). For (, we observe a similar structure with respect to the rating as for 6,. On the
other hand, significant coefficients for Financials (p-value 0.3%), AA (p-value 11.8%), BB (p-value 1.1%)
and B (p-value 9.4%) are observed under the P measure.

Our model accomodates separate jumps in the risk free and risky processes, as well as simultaneous
jumps in the risk free and risky components. The intensity of jumps specific to credit risk components,
lyy, is very much alike across issuers under the Q measure, while under the P measure we observe an
increase with deteriorating rating. Under the empirical measure we expect between 2 and 10 yn-jumps in
the credit risk processes per year. For the joint jumps we observe a homogenous structure across ratings.
The ynr-jumps arrive at a much lower frequency, averaging about 0.2 to 0.3 jumps per year under both the
Q and P measures. A regression of l,,, on industry and rating shows a significant effect for BB, all other
industries and ratings being insignificant. The investment-grade variable has a negative and significant
effect on the jump intensities. For l%r, p-values are smaller than 10% only for the BB rating. For l;l;’w,
p-values are smaller than 10% for Technology (p-value 8.7%), Telecommunications (p-value 9.3%) and
Utilities (p-value 2.3%) sectors. Using investment grade instead of rating slightly alters the p-values under
P, but the results remain stable, while investment grade is highly significant under Q.

LGD is very well identified, which confirms the claim in Pan and Singleton (2006) that it is possible
to disentangle recovery from default risk when using the recovery of face value formulation. This can be
inferred from extremely small confidence bands from the posterior distribution of the LGD parameters.
Our estimates shed light on the relation between realized LGDs from the studies in Batterman et al.
(2005), Altman and Kishore (1996), Altman et al. (2003), Altman et al. (2004), Acharya et al. (2004)
and Singh (2004), and market-implied LGDs from traded CDS premia. Our estimates indicate that
there are common determinants behind realized and market-implied LGDs. A Tobit regression analysis
of LGD on industry and rating shows a positive and significant effect for the BB, B and CCC ratings.
This is in line with the conjecture from Batterman et al. (2005) that recovery is usually disregarded as
long as the probability of default is considered low, but can dominate CDS valuation for high-yield and
distressed obligors. The coefficient of determination is about 34%. Using investment grade instead of
rating results in a highly significant and negative effect, LGD is small for investment-grade issuers (R? is
25%). No significant relationship can be shown to industry, however, in a Tobit regression on a constant,
industry, and rating. The BB, B and CCC ratings remain highly significant with positive coefficients, while
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coefficients for industry are too close to zero, with too high standard errors. The constant is estimated
at 0.28 with a p-value of 0.0058. To check whether industry should be dropped from the Tobit regression
we perform a likelihood-ratio test between a model with a constant and the ratings, and a model with
constant, industry and ratings. The test decides for the unrestricted model with constant, industry, and
ratings, even though the industry coefficients have too high standard errors for common significance levels.
A Wald test rejects the hypothesis that the constant from the Tobit regression is 0.75, a standard setting,
at all common significance levels. Adding 6’9 and 93 to the regression parameters on LGD, we observe a
positive and significant impact of the BB, B and CCC ratings and a negative and significant effect for 93.
Le. the higher the long-run mean of the credit spread 99, the smaller the LGD, which is in contrast to
existing literature, but is easily explained by the persistency the data exhibit.

Finally, we investigate the posterior trajectories of the instantaneous spread process 77 and its long-run
mean processes v. Table 9 presents descriptive statistics of these time-series. We perform a panel regression
with 7, resp. 4 regressed on lagged terms, the rating history, and the VIX implied volatility index for the
corresponding time period. Despite the econometric model being a first-order autoregressive model, the
data demands an order-two specification in the regression analysis. A p-value of 12.62% is observed for
the rating histories in the regression with «, the stochastic long-run mean. For the instantaneous default
intensity 7, rating history is highly significant; the regression parameters are positive. The VIX index is
positive and highly significant in both cases. These findings are in line with existing literature. Worse
ratings induce higher instantaneous spreads and higher long-run means. Volatility measured by the VIX
increases the spreads.

7 Conclusion

In this article we investigate two important questions concerning the pricing of credit default swaps which
have not received enough attention in the academic literature so far. One question is related to the nature
of the stochastic process used for the default intensity of an obligor when modeling credit risk within the
reduced-form framework. The second question relates to the recovery value of the reference asset in a
credit event, and its determinants.

For this purpose we estimate a five-factor specification of an affine intensity-based model. The for-
mulation is comprised of a three-factor Andersen et al. (2004)-type observable jump-diffusion model for
the riskless short rate of interest and a two-factor jump-diffusion model for the default intensity of an
obligor. The model accomodates simultaneous as well as individual jumps in the risk free and credit-risky
state variables. The jump size distribution for the credit-risky state variables is multivariate exponential,
a feature that is called for by the data. The dataset at our disposal consists of two years of daily obser-
vations for CDS spreads in the five most liquid maturities (1ly, 3y, 5y, 7y, and 10y). The estimation is
engineered by means of Bayesian simulation methods. This methodology reliably provides a distribution
of the parameters conditional on the data even in relatively small samples such as ours (only two years in
the time-series dimension).

Estimates for the risk free model are similar to the ones reported in Andersen et al. (2004) with
respect to the parameters under the physical probablity measure. However, the cross-section of zero
yields identifies an “expected” level effect, dependency between short rate variance and the long-run mean
of the short rate under the martingale measure. Furthermore we find a large risk premium on the standard
deviation of jumps in the short rate.
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We find no evidence for linear dependence of credit spreads and stochastic long-run mean and variance
of the short rate. The stochastic long-run mean of the intensity itself is extremely persistent, as well as
the default intensity itself. Nevertheless, it is not necessary to let the processes explode, neither under
the pricing measure nor under the physical measure. Autocorrelations of the pricing errors are very high,
similar to pricing errors reported from the risk free literature. By estimating a panel regression of implied
stochastic long-run mean processes on the VIX index and rating, both the rating and the VIX have a
positive impact on the long-run mean, i.e. the spread increases when the rating deteriorates or the VIX
increases. Exactly the same relationship is inferred for the default intensity itself.

Regarding jumps, we estimate two to fifteen events per year when the credit risky components jump.
In the risk free term structure we estimate approximately four jumps per year. Simultaneous jumps of
the riskfree, and the credit-risky components arrive at a rate of approximately 0.3 jumps per year.

Parameters for loss given default are very well identified, which confirms the claim in Pan and Singleton
(2006) that it is possible to disentangle recovery from default risk when using the recovery of face value
formulation. This can be inferred from the extremely small confidence band from the posterior distribution
of the LGD parameters. On the other hand, the values themselves are widely dispersed within sectors,
similar to realized LGDs from earlier studies. Nevertheless, in a regression analysis we observe that 30% of
the variance in the LGDs is explained by rating and industry; a likelihood-ratio test supports a significant
dependence of the LGDs on rating and industry.

Comparing the mean CDS spread levels with the LGD estimates a positive dependence is detected
— the higher the spreads, the higher the LGD (resp. the lower the recovery). The observation is further
strengthened by looking at ratings as a crude proxy for credit quality. This finding supports the conjecture
by Batterman et al. (2005) that market participants usually do not take into consideration the prospective
recovery as long as there is a seemingly low chance of default, but that it dominates CDS pricing once
the issuer is in distress. We obtain that a clear-cut distinction in the levels of the LGD shows between
investment-grade and speculative-grade issuers.
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A Conditional Densities for MCMC estimation

Most of the full conditional densities in this appendix can be found in Johannes and Polson (2003) and
Jones (1998) but we state them here for completeness.

Before we describe the conditional densities necessary to perform a MCMC analysis, we investigate the
parameterization of the jump times. Equivalently to Johannes and Polson (2003) and Johannes (2004), we
use a time discretization for the jump process. With this approximation jumps are only permitted at the
grid points t = 1,...,T. More than one jump event of an individual process and joint jumps of exclusive
jump component and the common jump component are excluded by this approximation. In this setting
the jump times are parameterized by means of the latent indicators J,.(t), J,(t) and Joyy(t), t =1,...,T.
If, only the short rate jumps at ¢, then J,(t) = 1,J,,(t) = 0, Jryy(t) = 0, while an exclusive jump in
the default intensity results in J,.(t) = 0, Jy,(t) = 1, Jpyy(t) = 0. For common jumps the indicators are
Jr(t) =0,y (t) = 0, Jpyy(t) = 1, while with no jumps we get J,.(t) = 0, Jy,(t) = 0, Jpyyy(t) = 0.

Using this parameterization the jump time indicators J, = (J,(1),...,J.(T)), etc. have the binomial
distributions B(T,1,), B(T,ly,) and B(T, ), respectively; the corresponding densities are abbreviated
by p(Jr1lr), p(Iynllyy)s P(Irynllryy) where the joint density p(J|l, 1y, L) is the product of the former
densities. The correspond jump sizes are Z, where Z = (Z,(1), Z,(1), Z,(1), ..., Z.(T), Z,(T), Z,(T)).

Let 6 comprise the parameters of the stochastic processes, 3., ¢,e and LG D. Furthermore, we augment
the parameter space by the latent processes n = (n1,...,nx) and v = (71,...,7K) and the initial values
Xo for the processes 1,7, V, i, r, such that the conditional density of the first period can be computed.
By (5.4) the joint posterior distribution of the parameters is given by

p(s™, r*,y,m,0 | s°,y") o p(s®, 8™ |, v,m, 0, Xo) p(y”, X, 0) (A1)
o p(s | r*,7v,m,0, Xo) p(y”,v,m | 0, Xo0) p(0)p(Xo) (A.2)
1
— x 10, X, X, X, A.
p(s|r*,X,0) det‘H‘p(r | 0, Xo0) p(v,n |0, Xo) p(0)p(Xo), (A.3)

Note that the first densities are determined by the model assumption while by p(6) and p(Xj) have to
determined exogenously. For these density we use uninformative priors.

A.1 Riskless Model

We assume that the 6m, 2y, and 5y zero yields are observed without error. The remaining zero yields are
assumed to be observed with normally distributed i.i.d errors gy ~ MV N(0,%,). In total we use 7 yields
for maturities v = (6m, 2y, 5y, lm, 1y, Ty, 10y). We stack the solutions to the pricing ODE’s for our risk
free model (4.1) into matrices G*, H* and G, H, where

a(v) /v By (v1)/11 ﬁu(yl)/Vl Br(v1) /11
G=—|aw)/ve |, H=—|pBv(nr)/va Bu(v2)/va Br(v2)/v2
a(vs)/vs Bv(v3)/vs Bu(vz)/vs Br(vs)/vs N
a(va) fva Bewi)fvs  Buwa)/va  Be(va)fva (A.-4)
G* =— : JH = — :
a(vn)/vN Bv(vn)/vn Bu(vn)/vn Br(vn)/vn
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Using the matrices from (A.4) it is now possible to write

Vi Yt
pe | =H |y ] -G
Tt Y

A.1.1 Drawing Q Parameters for the Riskless Model

We draw the Q parameters with Metropolis steps. The target density for oy and o, is determined by the
likelihood of the observation errors and the transition densities of the yields that are observed without

error:
1

det |H|

The likelihood for the remaining parameters is determined by p(g; | ) by the independence assumption.

(Vi s e | Viet, pte—1,76—1,0)p( 0 | 6).

A.1.2 Drawing P Parameters for the Riskless Model

Our data is available on a daily basis. Many studies show that an Euler discretization is innocuous in
this case (see for example Jones, 2003; Duffee and Stanton, 2004; Schneider, 2006, for empirical studies),
in particular with affine systems like (4.1). Conditioning on jump times and jumpsizes we can write the
dynamics in regression form and draw the parameters with Gibbs steps.

A.2 Default Risky model

A.2.1 Drawing the Recovery Rate

From equation (5.3) one observes that, conditional on other parameters and all state variables, as well
as the data, missing and observed, the LGD is a coefficient in a panel regression model. We assume
a truncated normal prior, where the truncation function is 1{rgpepo,1}- A standard Gibbs sampler is
employed to sample from the posterior distribution.

A.2.2 Drawing Missing CDS Premia

The target density is

p(s™ | 8%, ,m,7,0) o< p(s™,s% | r*,m,7,0) = p(s|r*,n,7,0),

which is a normal density from equation (5.3). Proposing from a random walk we draw missing prices
SE’; 1) one by one with probability

o m *
o = min p(S ’8(g+1) ‘ LR/ D) 9) 1 '
p(8078?‘;) | 7"*7777% 0) ’
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A.2.3 Drawing Intensity Realizations

Since intensities cannot be directly inverted from CDS prices as a consequence of the observation error in
equation (5.3), we draw realizations from the latent time-series with a Metropolis step conditional on the
parameters, CDS prices, risk free state variables, jump times, jump sizes and LGD. The target density is
given by:

P Ye | e N 7755 8, I Z,0) o p(ne, ey Bt | e W S\es 775 S5 2, 0)
o< p(5¢ | 1,76, 75 0) P(Nes e | Mo 15 Vo1, -1, Vo157, J, Z,6)
o< P8¢ | 0es v 75 0) P15 Yerr | My e 775 Jev1, Ziga, 0) X
X p(ne, Ve | =1, Ye—1,7" Jt, Z,0).

From the Euler discretization the above density is a product of normal densities and is thus easy to sample.
We employ random-walk proposals and accept (ngg H), ’yt(g +1)) with probability

- (g+1) _(g+1) (9+1) _(9+1)
o min{l, p(Se |2 0) p(megrs vesr | o, T, Ziga, 0) "

p(5¢ | ngg)a’Yt(g)ﬂ’*,@) P41, Ye+1 | 77t 7%@) ™, Jev1, Zit1,0)

x )

(77§9+1),7t(g+ | o1, Ye—1, 77, Jt,Zt,Q)}
P(n 77)& ‘77t 1, Vt— 17T Jt)Zt)e)

The target density for the first realization of the default intensity, (n9,70), is (the first CDS premia are
observed at t = 1):

p(M0s Y0 | Mos Mos 75 85 s Z,0) o< p(n1, 71 | 10,705 J15 Z1,0) p(no, 70 | 6)-

We employ random-walk proposals and accept the (g + 1)-st Metropolis step with probability

(g+1) _(g+1) (g+1) _ (g+1)
a:min{ (771,’71’77 7'70 J17Z170) (770 770 ’9)’1}

(771,71|7Io 7’7(() )7‘]1,2179) (77(() 770 “9)

The target density of (nr,yr) is given by

P(UTKYT ‘ T*7<§7 n\TafY\Ta J7 Za 0) ocp(nT,’yT,ET ’ 77\T77\T7r*7§\T76)
= p(57 | nryr, 7, 0) POy YT | =15 YT -1, 5 21, 6).

Proposing from p(nr,yr | n7-1,vr-1, J7, Z1,6) We accept the (g + 1)-th Metropolis step with probability

(g+1) _(9+1) 9
Oz:min{ ( (|7I T 1T ),1}.

ST | nT ,r}/é“g)arT)e)

A.2.4 Drawing Jump Times and Jump Sizes

For the jump times use a proxy based on the parameterization on the discrete grid (see Johannes and
Polson (2003) and Johannes (2004)). It is necessary to split-up the estimation into an estimation of the
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risk free and the risky term structure, respectively. Due to our model assumptions, we consider separate
jumps and joint jumps in both structures. When only the risk free term structure is investigated we
cannot identify a pure jump in the risk free term structure or a joint jump. Thus, with exponentially
distributed arrival intervals with parameters [, and [,,, the distribution of inter-arrival times is derived
as follows. The arrival times are 71 and 7. From the properties of our arrival times, both arrival times
do not depend on past history. Therefore, the probability of a jump before ¢ (at least one) corresponds
to the event Prob(m V 1o < t) = Prob(min(ri,72) <t) =1— Prob(m A 72 > t). For independent arrival
times, like on our case, this results in Prob(m At < t) = Prob(ri > t)Prob(ry > t)= F; (t)F,  (t). For
exponentially distributed random variables Fj (t) = exp(—I,t). This results in Prob(min(r,m) < t) =
1 —exp(—(ly + lyyr)t). Le. the arrival time are exponential with parameter I, + [,y,. This sum can be
estimated in the first estimation step.

Now the updates can be performed by the Metropolis Hastings algorithm. For each ¢t we propose
a jump event JUHD(t) from a Bernoulli distribution, i.e. ¢(J.(t)) ~ B(0.5). If JO () = JUtD(t) we
continue with ¢ + 1. Otherwise we accept J (t) with probability

min p(J(g+1)(t) | l’r‘>l’y777lT’Yn)p(‘/h,ufturt)’ytant ‘ ‘/t—lvut—l)rt—lufyt—bnt—hZt)J,(g+1)(t)79) 1
p(TD () | Ly Ly LoDV, s Tt | Vit p—1, Te—1, Y15 =1, Zt, IO (¢), 0) ’

Updates of blocks of jump times work in the same way. By using a Beta(a, 8) prior for I, Ly, and Ly,
samples can be obtained by means Gibbs sampling, e.g. if N, s is the number of exclusive jumps in short
rate, then 7(l.|Jy) = Beta(ag + Ny, T — N,y + (o). Equivalently we sample [y and [,y.

Next we investigate the update of the jump sizes Z. Uncorrelated jump sizes, i.e. (,, = 0, or the
single factor setting where the jump sizes of the default intensity are £xp((,) are special cases of the
following. Jump sizes in the risk free model are normally distributed N (0, 0%5). Updates of Z,(t) and 02p

by means of the Metropolis Hasting algorithm are straightforward, i.e. we accept jumpsize Zﬁg Jrl)(t) with
probability

min {p(Zr(g+1)(t> | 02p)p(Vis i 7t | Vt—lnut—lart—l,Jr(t)aZ£g+1)(t)7‘9> 1}
(20 (t) | 62p)p(Ve, it 7t | Vi1, pe—1, mi—1, Jo(t), Z9(£), 6)

where p(Z; | o%p) is a normal N (0, 0%,) and p(Zr(gH)(t) | 026)p(Vay ity 7t | Vie1, pe—1, me—1, Jr(t), Zﬁgﬂ)(t), 0)
is also normal from the Euler approximation. By using a gamma conjugate prior, samples of a%P are de-
rived by Gibbs-sampling.

In contrast to independent exponential random variables, where an application of the Metropolis
Hastings algorithm is straightforward, the bivariate exponential density exhibits a singular part such that
we have to deal with a non-standard Metropolis-Hastings problem; in Gottardo and Raftery (2006) it is
shown, however, that for mixtures of mutually singular distributions the MH scheme can be applied. The
joint density of the jump sizes in the 1 and y processes is given by

7T(Z|Q,, Cw C’yn) = HlegBVE(Zw(t)a Zn(ﬂ? Cna va (’yn) . (A-5)

Fist, the distribution function is given by:
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FBVE(Zv(t)7 Zn(t)S Cm C% Cvn) = 1- <WFQ(Z7@): Zn(t)) + 1/?77 FC(Zv(t)y Zn(t))>

= 1= (wFa(Z(t), Zy(t)) + (1 — w)Fe(Z,(t), Zy(1))) (A.6)
with

/Gy 1641/ it = LY

o~
I

Ful2,(0).2,(0) = O e (1/6,2,(0) = 1/ 24(6) = 1/ max{2,(0). Z, (1)
_1/51/‘%;/(7 exp(—1/(¢y 4 Gy + Gyy) max{Z, (1), Zy(1)})
Fo(Zy(t), Zy(t) = exp(=1/(Cy + Gy + Cyy) max{ Zy(t), Zy(t)}) (A7)

where F,, is the absolute continuous part (with respect to the Lebesque measure A) and F, is the singular
part of this distribution. Note, that the support of the singular part of this distribution is the diagonal
Z(t) = Zy(t). Le. in addition to (Z,(t), Z,(t)) € R*T where Prob(Z,(t) = Z,(t) = 0 we have a set where
(Z,(t) = Z,(t)) with a probability of (,,/¢ > 0. Since max{Z,(t), Z,(t)}= Z,(t) = Z,(t) = O on the
diagonal, the jump sizes are exponentially distributed with parameter (. The density of the jump sizes
with respect to (6 + A) is now given by

5B\/E(Zw Zn; Gny Gy C“m) = (1- w)é(ZV, Zn) eXP(_CZ'y) +w(l - 5(Zw Zn))fa(Z% Zn) (A.8)

VW) (1 — Fpyp(Zy, Zni Gy G Cyn)) ifE 2y > 2

Jol(Zy, 23 Gy Gys Goym) - = {VGU/CHH/CW)Q — Fpvi(Zy, Zn; s Gyy Cyn)) iff 2, < Zy

where 0 is the Dirac measure; 6(Z,, Z,) = 1 iff Z, = Z, otherwise it is zero and f,(.) is the density of the
absolutely continuous part.

According to Gottardo and Raftery (2006) the Metropolis-Hastings algorithm can now be applied,
where we have to ensure that draws from the absolutely continuous as well as the singular part are
possible. We construct our proposal as follows:

1. We perform a Bernoulli trial with probability w,, i.e. we a probability of w,; we sample from the
absolutely continuous part, with 1 — w, from the singular. If the latter case is the result of the
Bernoulli trail 6(Zy, Z,)) = 0, in the former case it is one. For our application we choose w, = 1/2

2. When sampling from the singular part we propose Zggﬂ) = Z7(79+1) from 1log(0.5(Z,, + Z,)) + cz¢,
where ¢ is standard normal

3. When sampling from the absolutely continuous part we propose Zgg +1), Zn(g+1) fromlog(Z,)+c.e1
and log(Z,) + c.e2
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B Parameter Estimates

Parameter 2.5% Quantile Point Estimate 97.5% Quantile
oy 0.00139602 0.00156328 0.00168477
oy 0.105893 0.111559 0.12109
Ky 0.0448812 0.0516368 0.0609556
KOy 2.18186e-06 2.48114e-06 2.83792e-06
Kuv -947.79 -887.084 -801.309
K0, 0.00597344 0.0073798 0.00901734
Ky 0.516936 0.54546 0.559314
Ky 1.84877 1.93549 2.03173
Iy 1.86648 3.56638 13.0233
oJ 0.046547 0.0933689 0.126679
ao -13.4039 -13.34 -13.2835
a1 -1.06222 -1.01301 -0.97078
as 0.0889003 0.0933726 0.0985766
HI‘P/ 0.277158 0.958854 1.83104
/{9%1; 7.47689¢-06 2.69525e-05 5.42897e-05
KEV -1727.58 -1061.4 -42.0052
kO 0.00742807 0.0179177 0.0485912
m]}# 0.521018 1.03673 1.69241
mg 0.254746 7.33498 15.6641

lp/250 0.00790119 0.0141274 0.0549086
oJp 0.00224649 0.00301166 0.00383766

Table 1: Posterior Estimates for Model (4.1) and (4.2): This table shows point estimates, taken to be
the multivariate median, as well as quantiles from the posterior distribution of the parameters conditional on
the data (see Collin-Dufresne et al., 2004, for definition of multivariate posterior median). Estimates are based
on 10 years of daily panel data of zero youpon yields bootstrapped from US swap rates. From 5,000,000 draws
from the Gibbs-Metropolis sampler only every 1000-th draw is recorded to remedy high autocorrelation in the
parameter paths. From the remaining 5000 draws only the last 3000 are taken into the computation.
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Figure 2: Posterior Estimates for Jump Times and Jump Flags for Model (4.2): This figure displays
the posterior mean of daily realizations of the discretized processes J,(t) and Z,(t) from (5.1). From 5,000,000
draws from the Gibbs-Metropolis sampler only every 1000-th draw is recorded to remedy high autocorrelation in
the parameter sample paths. From the remaining 5000 draws only the last 3000 are taken into the computation.
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Figure 3: Posterior Estimates for Model (4.1) and (4.2): This table shows point estimates, taken to be
the multivariate median, as well as quantiles from the posterior distribution of the parameters conditional on
the data (see Collin-Dufresne et al., 2004, for definition of multivariate posterior median). Estimates are based
on 10 years of daily panel data of zero youpon yields bootstrapped from US swap rates. From 5,000,000 draws
from the Gibbs-Metropolis sampler only every 1000-th draw is recorded to remedy high autocorrelation in the
parameter paths. From the remaining 5000 draws only the last 3000 are taken into the computation of the

quantiles and the multivariate posterior median.
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Figure 4: Posterior Estimates for Model (4.1) and (4.2): This table shows point estimates, taken to be
the multivariate median, as well as quantiles from the posterior distribution of the parameters conditional on
the data (see Collin-Dufresne et al., 2004, for definition of multivariate posterior median). Estimates are based
on 10 years of daily panel data of zero youpon yields bootstrapped from US swap rates. From 5,000,000 draws
from the Gibbs-Metropolis sampler only every 1000-th draw is recorded to remedy high autocorrelation in the
parameter paths. From the remaining 5000 draws only the last 3000 are taken into the computation of the
quantiles and the multivariate posterior median.
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Figure 5: Posterior Estimates for Model (4.1) and (4.2): This table shows point estimates, taken to be
the multivariate median, as well as quantiles from the posterior distribution of the parameters conditional on
the data (see Collin-Dufresne et al., 2004, for definition of multivariate posterior median). Estimates are based
on 10 years of daily panel data of zero youpon yields bootstrapped from US swap rates. From 5,000,000 draws
from the Gibbs-Metropolis sampler only every 1000-th draw is recorded to remedy high autocorrelation in the
parameter paths. From the remaining 5000 draws only the last 3000 are taken into the computation of the

quantiles and the multivariate posterior median.
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Figure 6: Posterior Estimates for Model (4.1) and (4.2): This table shows point estimates, taken to be
the multivariate median, as well as quantiles from the posterior distribution of the parameters conditional on
the data (see Collin-Dufresne et al., 2004, for definition of multivariate posterior median). Estimates are based
on 10 years of daily panel data of zero youpon yields bootstrapped from US swap rates. From 5,000,000 draws
from the Gibbs-Metropolis sampler only every 1000-th draw is recorded to remedy high autocorrelation in the
parameter paths. From the remaining 5000 draws only the last 3000 are taken into the computation of the

quantiles and the multivariate posterior median.
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Figure 7: CDS premia and Pricing Errors: The figures display observed CDS premia for FDX and
posterior pricing errors implied by specification (4.3) through (4.5). Missing and stale premia are treated as
missing values. They exhibit strong autocorrelation.
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Figure 8: Posterior Estimates for Realizations of v and 7n processes conditional on FDX CDS
premia and Missing Data: The figures display posterior realizations of v and 7n processes conditional on
FDX CDS premia, missing values and specification (4.3) through (4.5). The blue lines depict the standard
deviation of the 4 and 7 draws. From 5,000,000 draws from the Gibbs-Metropolis sampler only every 1000-th
draw is recorded to remedy high autocorrelation in the parameter paths. From the remaining 5000 draws only
the last 3000 draws from the time-series are used for the computation.
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n Y

AAA 0.0004 0.012
(0.0004) (0.0091)
AA 0.0011 0.0399
(0.0018)  (0.0638)
A 0.0026 0.1621
(0.0032) (0.1823)
BBB 0.0024 0.1685
(0.004)  (0.2296)
BB 0.0051 0.0914
(0.0125)  (0.1657)
B 0.0194 0.1823
(0.0495)  (0.2086)
CCC 0.0355 0.165
(0.0384)  (0.0928)
Basic Materials 0.0034 0.1536
(0.0044) (0.1711)
Consumer Goods 0.0024 0.1064

(0.0061) (0.1601)
Consumer Services 0.0068 0.1695
(0.0302) (0.2323)

Financials 0.0032 0.1572
(0.0107)  (0.2311)
Government 0.0008 0.1268
(0.0011)  (0.0459)
Health Care 0.0078 0.2094
(0.0212)  (0.2365)
Industrials 0.0054 0.1944
(0.0132)  (0.2408)
Oil & Gas 0.0021 0.1307
(0.003)  (0.1649)
Technology 0.0084 0.1189

(0.0228)  (0.1226)
Telecommunications  0.0024 0.131

(0.0041)  (0.2094)
Utilities 0.0036 0.1149

(0.005)  (0.1201)

Table 9: Posterior Mean Estimates of latent processes (1) and (v) This table shows the empirical
means of the posterior trajectories of the default intensity « and its stochastic long-run mean 7 averaged over
the respective rating classes, as well as industries, respectively. The values reported in brackets are standard
deviations for the values reported above.
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