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1 Introduction and literature review

This paper tries to answer the question: how much one should pay for a piece of agricultural

land? As the land’s value should be closely tied to the market price of the products that can

be obtained from the land, our ultimate goal is trying to improve the benchmark to price

agricultural land.

What is the problem in valuing agricultural land? Several factors should be taken into

account to perform an accurate valuation:

1. The first problem is the characterization of the process followed by the asset. As we

just said, the value of the asset, that is the piece of land, depends on the price of the

crops that you seed. Those prices usually have a quite particular feature, since they

are supposed to follow some kind of mean reversion process.

2. The second characteristic is that there is some benefit or premium from holding the

underlying product, whether is it soya, corn, wheat, or other, rather than any contract

for the product. This implies that we should include the convenience yield as another

factor of the process for the price of the different crops.

3. The third interesting feature is that, to keep the quality of the land, it is of utmost

importance to rotate the crops. In our analysis we will contemplate two different cases:

(a) The first alternative will allocate a percentage to each of the crops and rotate it

every year in an ad hoc way. For instance, assuming we have three possible crops

(soya, corn and wheat), we would allocate 33 percent to each and rotate them on

a triangular basis.

(b) The alternative approach would be to look for the optimal way to decide those

percentages, depending on the existing prices.

So, if the price of one of the crops is too high (in comparison with its historical mean),

you may wish to seed only this crop for as long as the difference persists. But, as seeding

consecutively the same crop damages severely the quality of the soil, this cannot be

done for a long period. Therefore, there could be some “optimal” value for waiting

until the appropriate time comes to seed a particular crop.

4. There is some value from owning the land, other than the value of the land’s products.

The owner of the agricultural land has a certain ”advantage” since it is usually very

difficult to buy one at a ”fair” price. While this shortage in agricultural land supply

might be the result of some behavioral feature (like some emotional attachment to
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the asset or some rational decision to leave a bequest to the future generation), the

consequence on pricing agricultural lands could be important. This advantage can be

modelled as a put option on the land, and the product generated by the land is the

dividend or convenience yield that only the owner of the product has the possibility to

enjoy.

Thus, we should include all these components in order to calculate accurately the value

of the land.

There is a large literature examining the time path of commodities prices. It has been

suggested that some sort of mean reverting process provides a better description of the price

path for many commodities. As noted by Schwartz (1997), in an equilibrium setting we

would expect that when prices are relatively high, supply will increase as the higher cost

producers of the commodity will enter into the market putting downward pressure on prices.

Conversely, when prices are relatively low, the higher cost producers will exit the market

putting upward pressure on prices.

In that paper, Schwartz (1997) proposed a framework to test whether commodities prices

were mean reverting and to obtain the value of the corresponding parameters. In particular,

this author tested whether copper, oil and gold followed mean reverting processes using three

different models. He found out that both cooper and oil were mean reverting but this was

not the case with gold. He also used the discounted cash flow (DCF) criteria as well as the

real options approach to capital budgeting for a project involving copper extraction from a

mine. Whenever it was not take into account the mean reversion process, he found that the

Discounted Cash Flow technique made investment decision too early (that is, when prices

are too low) while the Real Options approach made that decision too late.

In other words, whenever we do not consider the mean reversion feature, we may conclude

that an investment is worth enough just because prices are too high in comparison with the

historical mean when using the DCF approach. On the other hand, on average, we will wait

until prices are too high if we use the RO approach.

Thus, it is quite important to be sure that the crops indeed follow a mean reverting process

and estimate the parameters of the process. The three processes suggested by Schwartz

(1997) are the following:

1. A one-factor model where the commodity spot price follows an Ornstein-Uhlenbeck

type of mean reversion.

2. A two-factor model that extends the previous one considering as a second factor the
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convenience yield, modelled as a mean-reverting process that can be correlated with

the spot price.

3. The third model is an extension of the second one by allowing for stochastic interest

rates.

The three models are analytically tractable and imply a linear relationship between the

logarithm of futures prices and the underlying factor.

Unfortunately there are some problems involving the O-U kind of processes. One of the

problems is that, in the long run, the expected price does not converge to the long-run price.

Also, negative values are not necessarily ruled out. Finally, the process does not satisfy a

very reasonable assumption, namely, the homogeneity condition. This condition states that,

if the price of one unit of the good reverts to some mean value, the price of two units of the

same good should revert to twice that same value.

Robel (2001) proposed the Inhomogeneous Geometric Brownian Motion (GBM) as a way

to satisfy the homogeneity condition and to preclude the possibility of negative values almost

sure.

Following this suggestion, this paper extends the two factor model of Schwartz (1997)

incorporating the inhomogeneous geometric brownian motion of Robel (2001) for the conve-

nience yield.

Once this has been done, the next task is to value the option to sell the land. Since once

you sell the land is very difficult to acquire it back, i.e. it has a large cost, the decision is in

some sense irreversible. Then, we should incorporate this feature into the price of the land,

in order to value it. Finally, we should also price the options for seeding the different crops

optimally. Since the underlying asset is a real asset, these are not financial options but real

options.

The real option framework was introduced in the finance literature by Brennan and

Schwartz (1985) to evaluate the decision of extracting minerals. In this case, the uncertainty

of the mineral prices was the source of value from waiting, whereas the excavation was time

consuming. The authors showed that the Net Present Value method would lead to a non-

optimal extraction of minerals because there is a value from waiting that is lost once the

excavation begins. As you can always stop the excavation, this example is very simple but

presented a new way to evaluate projects and to deal with capital budgeting: the issue is

that there is some value associated to the fact that once you own an asset you have the

opportunity to delay any relaated project until solving the uncertainty.
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The real option value is basically a premium over the expected net value of the project,

reflecting the opportunity cost of investing now and foregoing the option to delay investment

until more information about the future becomes available. Real Options usually involve cap-

ital investment and natural resources, but have also been applied to real estate development

decisions. The rationale behind using real options in real estate is similar to what happens in

financial options: there is uncertainty about future prices and there is some value in having

the possibility of delay a decision until some of the uncertainty is resolved.

There are three characteristics that give value to a real option: irreversibility, uncertainty

and timing. In the case we are interested, the owner of an agricultural land has uncertainty

about the future price of the crop. Since once the land has been sold is quite complicated

to buy it again at a negligible cost, there is some potential value in waiting for the optimal

moment to sell. So just as in corporate investment, holding a farmland involves a real put

option because the farmer has the right (but not the obligation) to keep the land for farming

or sell it to another for the same or other use.1Exercising this options means that the owner

is willing to sell his land and hence close the door to all future opportunities that might be

brought by the land being maintained.

There is a second type of option given by the decision on which crop to seed. As mentioned

before, the quality of the soil decreases quite fast if you seed the same crop consecutively.

Then, seeding a certain kind of seed provides the option to seed a different one in a later

stage.

So far, the literature of Agricultural Real Estate has priced the selling option by sub-

tracting the DCF from the Market Value assuming that the difference reflects the value of

the Real Option (see Isgin and Forster (2004). However, this procedure can lead to large

errors. Since the Data Generating Process of the underlying asset is (by definition) unknown,

without a more systematic way to compute the real option value of owning a land, the result

will be of no interest. The explanation of this fact is that there are many factors (like,

for instance, taxes or weather) that can not be included in the analysis without risking the

numerical solution to the problem.

Additionally, to the best of our knowledge, the rotation of crops has not been studied

deeply in the Agricultural Real Estate literature. So far, the literature has been interested

only in timber’s harvesting problem for rotation of the harvesting (see, for instance, Insley

and Rollins (2005). While the problems share similar features, the presence of different prices

for the different crops jointly with the possibility of introducing shocks in the production

function might make the problem interesting enough to be studied separately.

1Among the different uses we could mention urban development, agropecuary uses and organic products
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The remainder of the paper is organized as follows. Section 2 presents the different

processes for the crop prices. Section 3 introduces the Crop Rotation Model. Section 4

includes the empirical methodology and the numerical results. Finally, Section 5 summarizes

the main conclusions.

2 Stochastic models for the crop price

This section describes three different processes for the crop prices and compares them to the

usual benchmark case, which is a geometric brownian motion, which is not mean reverting.

Then we derive the stochastic partial differential equation of a portfolio holding an asset

function of these processes. Later we will incorporate the possibility of more than one crop

per land, with the possibility of correlation among the different processes.

We will assume that the land has a 30 years horizon of use and that, after this period,

the land is totally depreciated.2 In this part we will also assume that the land is a) seeded

either fully with one crop forever or b) seeded in equal proportions of the different crops

rotating them every period in an “ad hoc” way.

2.1 Benchmark process

We will start the analysis with the benchmark process, that is, a process without mean

reversion and a constant convenience yield, which will be a Geometric Brownian Motion:

dXt = (r − c)Xtdt + σXtdWt (1)

where Xt is the value of one unit of the crop, r is the instantaneous risk-free interest rate, c is

the convenience yield, σ is the volatility of the crop return and dWt is a standard Brownian

process.

Then, the discounted cash flow of owning a land that has been seeded with this kind of

crop is given by

NPV0 = DCF (Xt) − K = Xt

30∑

j=1

e−cj − C

30∑

j=1

e−rj − K (2)

where C indicates the production costs (assumed to be constant) and K is the strike price

of the option to sell the land. This strike price can be interpreted as the opportunity cost of

2This assumption might sound quite strong but is done only to assign some final day to the project.

Additionally, if we would add more years, the relative weight of this additional period would be very low.

But, without loss of generality, we could certainly drop this assumption and value a perpetuity instead.
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owing the land. Additionally, as we will assume that, ex ante, there should be no economic

profits, this strike price will be set as the one that makes the NPV equal to zero

Equation (2) can be rewritten as

DCF (Xt) = Xtβ1 − β2

where

β1 =
30∑

j=1

e−cj, β2 = C
30∑

j=1

e−rj + K

Now, at the beginning of each period, the land owner has to make a decision regarding

whether to sell or not the land. If the strike price is higher than the DCF, then the farmer

will sell the land. On the other hand, if the strike price is lower than the DCF, then the

farmer retains the land one more period. Since the realization of the new prices could lead

to a higher DCF, the option leads the farmer to a better decision making.

How to value then the option to sell the land? We will start assuming that the put option

lasts for the entire life of the project. Additionally, we will assume that the option to sell the

land can be exercised once every year. The motivation for this Bermuda feature is because

the farmer only collects the crop once per year, so the uncertainty is solved at that moment.

Thus, the value of the land to the owner is DCF (Xt) + V (Xt), where the term V (Xt)

denotes the value of the put option on the land.

There are several important issues related to this benchmark model:

• The above stochastic process for the spot price implies that the convenience yield is

constant. Thus, the model is not able to capture changes in the term structure of

future prices. In fact, the convenience yield changes through time.

• This model also implies that the volatility of all future returns is equal to the volatility

of spot returns.

• Finally, this process assumes that the variance of the spot price grows linearly with

time, whereas a general equilibrium model would imply some mean reversion in spot

commodity prices.
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2.2 One-factor process: The Crop Price follows an Inhomogeneous

Geometric Brownian Motion

We first describe the one-factor model where the crop price follows an Inhomogeneous Brow-

nian Motion. This process is given by the expression

dXt = λ(X − Xt)dt + σXtdWt (3)

where λ is the speed of mean reversion, X is the long-run crop price, σ is the instantaneous

volatility and dWt is a Wiener process. A full description of this process can be found in the

Appendix A. It is worth noting that now the convenience yield is no longer constant as it

depends on the (stochastic) crop price.

As before, the land value for the owner is the sum of the DCF plus the option to sell the

land. The DCF is the same as in equation (2), except that the DCF is now a function of the

price given in equation (3), adapted to the risk neutral version.

The price of the option for selling the land is given by the following stochastic differential

equation
1

2
σ2X2

t VXX + [λ(X − Xt) − ρσφXt]VX + Vt − rV = 0

subject to the boundary condition for the perpetual option3 at the last period to exercise

the option, that is4

max

[
0,

K

T
− DCFT

]

2.3 Two-factor model in which the stochastic convenience yield

follows an Ornstein-Uhlenbeck mean-reverting process

The convenience yield, δ, is included now as an additional second factor. In this case,

the convenience yield is assumed to follow an Ornstein-Uhlenbeck process. So, similar to

Schwartz (1997), for the joint stochastic process, we have the following:

dXt = (X − δt)Xtdt + σ1XtdW1

dδt = κ(α − δt)dt + σ2dW2

3Here perpetual means that the option can be exercised until the end of the asset’s life.
4As said previously, the strike price is computed such that the opportunity cost for owning the land

compensates the present value of the cash flows. The strike is computed at the starting day although, as

time goes by, it is decreased in a constant amount (K/T ) per period. In other words, at any time t(< T ),

we consider a value of K
(
1 − t

T

)
.
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where dW1dW2 = ρdt.

In this case, we allow for a stochastic convenience yield, instead of making it a function of

the stochastic price. In short, we assume the convenience yield follows a Ornstein-Uhlenbeck

stochastic process. To obtain the risk neutral process, we should remove the market price of

risk, where here is called µ. After this, we get the following:

dXt = (r − δt)Xtdt + σ1XtdW ∗
1

dδt = [κ(α − δt) − µ]dt + σ2dW ∗
2

where dW ∗
1 dW ∗

2 = ρdt.

2.4 Two-factor model with stochastic convenience yield following

an IHGBM process

The last model to be used is a two factor model, where the convenience yield follows an

Inhomogeneous Geometric Brownian Motion. Its expression is as follows:

dXt = (X − δt)Xtdt + σ1XtdW1

dδt = λ(λ − δt)dt + σ2δtdW2

where dW1dW2 = ρdt.

Converting this process to a risk-neutral one, the parameter for the mean reversion

changes too, so now we have that:

dXt = (r − δt)Xtdt + σ1XtdW ∗
1

dδt = [λ∗(δ − δt) − µ]dt + σ2δtdW ∗
2

where dW ∗
1 dW ∗

2 = ρdt.

3 Crop Rotation Model

Now we will introduce the possibility of rotating crops. Here the farmer will decide optimally

each year which crop should be seed. We will assume that the farmer seeds the whole land

with only one crop per period, introducing the possibility of crop rotation each period.5

5This assumption can always be relaxed since we can think of a percentage of the land being seeded.
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Unlike the previous case where we allocated a certain amount of land to each crop and

rotate them ad hoc, now we have a path dependent option.6 Here the land value depends

on the today’s crop value which depends on the volume, which depends on what was seed

previously, because of the quality of the soil problem. Path dependency complicates the

(numerical) solution to the problem.

In areas where rotation is fairly short, the seeding decision proscribed by this problem

will be expected to be quite different from the previous dummy decision model.

The price of the commodities are assumed to follow a known stochastic process. The

land value is estimated assuming that the seeding will be determined optimally in the future

no matter what the price path turns out to be.

The crop age, that is, the number of periods that the same crop has been seeded, α, will

be given as

α = t − th (4)

where th is the starting period from when the seed has been seeded consecutively. We will

assume that the volume produced is a (continuous) decreasing function of the number of

periods that the same seed is used consecutively, being zero a lower bound.7 So the state

variables for the dynamic problem are the crop age and the prices. Another possibility would

be to make the quantity of crop obtained from the agricultural land, Q, dependent on the

α-value of other crops such that the productivity of the soil is path dependent. Anyway,

differentiating equation (4), we have that dα = dt.

So the decision of the kind of crop to seed can be formulated as a dynamic problem, where

the owner of the farm must decide in each period whether it would be better to stop with

the kind of crop that is being used or continue with it. Calling Q(α) the volume obtained

after α periods seeding the same crop consecutively, the Bellman equation for this situation

would be:

V (X2, X1, α1, α2)

= max[(X1 − C)Q(α1) + (1 + r∆t)−1E[V (X1 + ∆t,X2 + ∆t, α1 + ∆α, α2)]

; (X2 − C)Q(α2) + (1 + r∆t)−1E[V (X1 + ∆t,X2 + ∆t, α2 + ∆α, α1)]]

6A path dependent option is one whose value depends on the history of an underlying state variable and

not just on its final value. Financial instruments with path-dependency features include, for instance, Asian

options or barrier options.
7This is a shortcut, since actually it is not recommended to seed more than three periods the same crop,

which means that the actual function should be discontinuous.
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The first term in this equation represents the return, conditional on seeding the crop

number 1, if continue seeding the current crop. It includes the net revenue from the current

crop and the value of the land if tomorrow we would seed the same crop. The second

expression is the value of the land if we seed a different crop.

From Itô’s lemma, we have that the PDE describing V in the continuation region depends

on the process followed by the crop price. For instance, when both crop prices follows an

IHGBM process, we have the following equation

Vt +
1

2
σ2X2VXX + λ(X − X)VX − rV + Vα = 0

Unlike the usual PDE, we have here the term Vα as a state variable, which reflects the

path dependency.

4 Empirical Estimation

4.1 Parameter estimation of the Commodity Prices

This section describes the procedure to estimate the parameters of the different processes.

This estimation could be done by means of a simple OLS Regression or a SURE regression.

The problem with the empirical implementation is basically that all the factors in the models

we presented are not directly observable. For instance spot prices are basically non existing

and, thus, we need to use futures contracts closest to maturity as a proxy for the spot prices.

The same problem appears with the convenience yield. In this case we will follow Gibson

and Schwartz (1990) and will use the difference between two futures prices with different

maturities to compute the convenience yield.

We will also need to adapt the models such that we can implement the corresponding

numerical simulations. For such task we will rely on the Euler discretization, described as

follows:

Assume that we face an stochastic differential equation of the form

dXt = µ(t,Xt)dt + σ(t,Xt)dBt

and that we wish to simulate values of XT but do not know its distribution.8 In particular,

we simulate a discretized process, [X̂h, X̂2h, X̂3h, ..., X̂mh], where m is the number of time

steps, h is a constant and mh = T . The smaller the value of h, the closer our discretized

8Simulating an SDE means we simulate a discretized version of the SDE.
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path will be to the continuous-time path we wish to simulate. The Euler scheme is intuitive

and satisfies the following condition

X̂kh = X̂(k−1)h + µ((k − 1)h, X̂(k−1)h)h + σ((k − 1)h, X̂(k−1)h)
√

hZk

where Zk’s are shocks distributed as i.i.d. standard normal random variables. With this

type of discretization, we will estimate the parameters of each process from the data.

For each process, we will obtain different discretizations. Then, we have the following:

• For the process (1), the discretization would then be the following.9 Working in loga-

rithms, the exact equation is Xt = Xt−1e
((r−c)∆t+σ

√
∆tǫ): where ǫ is a standard normal

random variable. Then using logarithms and applying Itô’s lemma we have that:

ln

(
Xt

Xt−1

)
=

(
r − c − 1

2
σ2

)
∆t + σ

√
∆tǫt

Calling
(
r − c − 1

2
σ2
)
∆t ≡ a and σ

√
∆tǫt ≡ et, we now have the following expression

Xt

Xt−1

− 1 = a + et

So, given a discretization of the time such that ∆t is - for instance - one week, we

will have the opportunity to exercisee the option once every 52 weeks because, as said

before, the option has a Bermuda feature.

Taking into account that ∆t is one week and that V ar(et) = σ2∆t, we can recover all

the parameters.

• A discretization for the Ornstein-Uhlenbeck process would look like the following:

Xt − Xt−1 = λµ∆t − λXt−1∆t + σ
√

∆tǫt

Calling a ≡ λµ∆t, b ≡ 1 − λ∆t and et ≡ σ
√

∆tǫt, we have the following regression

Xt = a + bXt−1 + et

• Finally, a discretization of (3) will be

Xt − Xt−1 = λX∆t − λXt−1∆t + σXt−1

√
∆tǫt

where, as usual, ǫt is distributed as a standard normal variable.

9We should be careful with the ∆t chosen. If this is too large, then it is quite likely that the approximation

would be a bad one.
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Applying Itô’s lemma to the usual log transformation gives us the following equation

ln

(
Xt

Xt−1

)
= −

(
λ − 1

2
σ2

)
∆t +

λX

Xt−1

∆t + σ
√

∆tǫt

Calling a ≡ −(λ − 1
2
σ2)∆t, b ≡ λ∆tX, et ≡ σ

√
∆tǫt and taking into account that ∆t

is one month, we can recover all the parameters from the regression:

Xt

Xt−1

− 1 = a + b
1

Xt−1

+ et

After having performed these regressions, we can use the estimated parameters to

generate a large number of paths for the processes to get the expected values. For

instance, to estimate E[f(XT )], we can use the following algorithm:

Set t = 0;X̂ = X0

for j = 1 to n

for k = 1 to T
h

= m

generate Z ∼ N(0, 1)

set X̂ = X̂ + µ(t, X̂)h + σ(t, X̂)
√

hZ

set t = t + h

end for

set fj = f(X̂)

end for

set θ̂n = (f1+...+fn)
n

set σ̂2
n =

∑n
j=1

(fj−θ̂n)2

n−1

set approximate 100(1 − α) CI = θ̂n ± z
1−α

2

θ̂n
√

n

The discretization error can be defined as D = |E[f(XT )]−E[f(X̂T )]| and we have to

ensure that is small enough, otherwise we will have very bad estimates of E[f(X̂T )].

For the multidimensional SDE, we will have vectors and matrixes. In this case, if there

are n correlated Brownian motions driving the SDE’s then at each time step, ti, we must

generate n i.i.d. standard normal random variables. We would use a Cholesky decomposition

to generate Xti+1
.
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4.2 Numerical solution to the sell option and the optimal rotation

scheme

The valuation of the put option on the land is harder than that of a simpler European option

as the sell option is a Bermuda-type one. Thus, at each exercise time, the holder of this

option must compare the profit for exercising the option against the profit if the option is

exercised in a later stage (continuation value).

Longstaff and Schwartz (2001) proposed a method named Least-Squares Monte Carlo

(LSM) to evaluate this continuation value using OLS regressions to provide a measure of

the expected value one period later. The expected value is just the estimated value. As the

process is iterated backwards in time starting at the expiration period, the right exercise

moment can be obtained and, then, the option price can be computed. The regressions can

be done through a linear combination of orthogonal basis such as, for instance, Chebichev

polynomials.10

For the rotation problem, the question is a little bit more complicate. First of all, the

Bellman equation involves too many states variables. Then, to find a numerical solution

we should reduce the number of variables. For instance, as only relative prices matter, we

could get rid of one state variables by expressing everything in terms of the price ratio or

differences in prices. If we assume that the relative age of the crop is the relevant variable,

we can get rid of another state variable. This assumption is not very strong since, if you

have seed the same crop for too many periods, we will have to seed another one to let the

soil recover from its exhaustive use. We could also set that, whenever we decide to change

the crop, the variable alpha goes to zero.

With these changes, we will try to find a numerical solution to the dynamic programming

problem. Since an explicit solution to the real option might be too complicated to be

obtained, we will rely on numerical methods for its solution. In particular, we can use the

Least Squares Monte Carlo technique proposed in Longstaff and Schwartz (2001) or the

Crank Nicolson method for solving the second order PDE’s that will be obtained.

We will assume that, whenever you decide to change the crop, you forgo the dividend

or payoff in that period. Then, you will never exercise the option at time T and change to

another crop. We will also assume that there is a constant rate of depreciation from seeding

the same crop consecutively, as a way to match the decrease in the productivity of the soil.

Therefore, the relevant backward decision process is the following:

10Moreno and Navas (2003) proved that the results do not depend on the chosen basis
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• At time T , it is never optimal to exercise the option. Therefore, you get the market

price of whatever was seeded in time T − 1.

• At time T−1, we should compare P1Q(α)+βE[(P1+∆t)Q(α+∆t)|It] against βE[(P2+

∆t)Q(0)|It].

If the first value is higher than the second one, we do not exercise the option at that

period. Then, at time T − 2, we have to compare P1Q(α) + βE[(P1 + ∆t)Q(α + ∆t) +

β(P1 + 2∆t)Q(α + 2∆t)|It] versus βE[(P2 + ∆t)Q(0) + β(P2 + 2∆t)Q(∆t)|It] and so

on.

Since it is pretty likely that, for a high α, there will not be a price path such that the

option is not exercised, we will consider that the relevant period for the option is that when

the option has some value.

Thus, the call option will be “in the money” whenever the termination value is higher

than the continuation one.

4.3 Empirical Results

The crops to be considered in our empirical application are wheat, soya, and corn.

China is the most important producer of wheat. It produces 16 percent of the total

amount. India and USA produce 12 percent each, and France, Australia, and Russia 6

percent each.

Soya is produced in many countries. USA produces almost 50 percent of the world soya

output. Brazil has a market share of 18 percent and Argentina and China account for another

10 percent each. These are the countries where a bad or good weather season will have a

significant impact on the soya price.

United States also produces a significant amount of the world output of corn sharing a

43 percent of the production. China, Brazil and Argentina produce 18 percent, 6 percent

and 2 percent, respectively. Also, USA is the most important corn exporter, with 60 percent

of the total exports.Additionally, Argentina, China and Brazil export 15 percent, 5 percent

and 4 percent, respectively.

The following graphs show the soya, wheat and corn prices, convenience yield and volatil-

ity from 1996 to 2006. As we can see, all the prices seem to be strongly mean reverting.

Also, the convenience yield for these commodities shows a mean-reverting pattern.
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Since mean reversion implies stationarity, the OLS regression parameters should be con-

sistent, provided that the model is the correct one.

[INSERT FIGURES 1 TO 3 ABOUT HERE]

The time series for the different prices is long enough to capture at least two changes

in the economic cycle. One is in 1995/96 and the other one is after 2001. This guarantees

enough variation in the price as we can see from the volatilities charts.

Additionally, the idea that economic slumps are followed by a drop in the price are

confirmed by the charts, since the 1997 recession led to a significant drop in the price of

the three different crops. Yet soya had a somehow different behavior. The super rates at

which China grew sustained the demand for that crop, which is one of the main foods for

the chinese.
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The following tables include the main statistics for the processes

Moments for the prices

Mean St Dev. Asymmetry Kurtosis Max Min

Wheat 120.5474 17.1826 0.5426 -0.6430 166.43 90.84

Soya 178.4769 37.6238 1.6216 2.9923 336 120.5

Corn 89.1951 11.0365 1.105971 1.02849 130.11 68.8

Correlation matrix of the prices

Wheat Soya Corn

Wheat

Soya 0.7161

Corn 0.713 0.7328
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The following tables present the results of the corresponding regressions.

Wheat Regressions Results

One Factor GBM Model

constant 0.0000096221 alpha 0.036206733

Variance 0.000268111 sigma 0.259930656

One Factor IHGBM Model

constant -0.007049087 lambda 1.742688948

beta 0.834525753 X 120.6758613

variance 0.00026731 sigma 0.259542133

Two Factor Model

constant 4.05e-05 alpha 0.044033

beta -7.31e-05 beta 1

variance 0.00026823 sigma 0.259988424

OU Two Factor Model

constant 0.03996306 kappa 4.957674307

beta -0.095339891 alpha 0.419164102

variance 0.010134632 sigma 0.72594248

Two Factor IHGBM Model

constant -0.035860816 lambda 1.8464762443

beta -0.037236857 δ -1.038371719

variance 1.571140913 sigma 9.038768029
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Soya Regressions Results

One Factor GBM Model

constant -0.00012676 alpha 0.002836971

Variance 0.00027603 sigma 0.23741353

One Factor IHGBM Model

constant -0.004133785 lambda 1.006955883

beta 0.473736433 X 118.5569133

variance 0.000275856 sigma 0.263658411

Two Factor Model

constant 6.98e-05 alpha 0.052194

beta 4.23e-03

variance 0.000274632 sigma 0.263072565

OU Two Factor Model

constant 0.133213014 kappa 6.927076706

beta 0.063412222 alpha -0.476021228

variance 28.00300442 sigma 38.1596517
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Corn Regressions Results

One Factor GBM Model

constant -0.0000575879 alpha 0.013487287

Variance 0.000222218 sigma 0.236640844

One Factor IHGBM Model

constant -0.009167264 lambda 2.282271271

beta 0.801340193 X 0.236132234

variance 0.000221264 sigma 0.236132234

Two Factor Model

constant -7.17e-04 alpha -0.152770

beta 1.76e-03

variance 0.000222087 sigma 0.236571381

OU Two Factor Model

constant 0.37972871 kappa 4.92781662

beta -0.094765704 alpha 0.400702676

variance 0.0011424663 sigma 0.70767469

Two Factor IHGBM Model

constant -0.18027616 lambda 0.374360337

beta 0.078834652 δ 0.437299373

variance 1.172393716 sigma 7.807974977

The regressions results are consistent with the idea of mean reversion. For instance, the

estimated growth rate in the standard GBM is very low. Also, the O-U one factor model

shows strong mean reversion for the three processes, as well as when we calibrated with two

factors.

The IHGBM for two factors throws some wear results. This is mainly because the process

discards negative values for the convenience yield, something that it is not reflected in the

data.

Except for the soya process, all other coefficients are significant at 10 percent or less.

Anyway, in order to have some idea of what the value would have been, we are going to

use it as if it were statistically different from zero. Nevertheless we will have to discard the

two-factor model with convenience yield following an IHGM because the process did not

converge.

With the above parameters we simulated 10,000 price paths for each process. We then

calculated the value of the discounted cash flow at an interest rate of 7 percent and we
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evaluated the Bermuda put option. The results are the following11:

Wheat Soya Corn

K Put K Put K Put

One-factor model

GBM 3524 1537 2743 1153 1649 1482

IHGBM 1858 767 1854 750 1360 543

Two-factor model

OU 391 92 16215 7541 220 49

IHGBM 19134 8942 NA NA 197.36 40.46

As we can see, the sell option for the owner is by no means insignificant. The value of

being the owner has some strategic content which is, at least, 20 percent of the total value of

the land (see the corresponding strike price). Obviously, when the process is not necessarily

mean reverting, as with the GBM, the put value will be higher. But the ratio of put value

to total value is not that different from the other processes.

Are our estimation close to the market price of agricultural lands? The following ta-

ble reports the prices of the agricultural land in Argentina for the period 1977-2006. Our

estimation was done for a land that begins to produce in the period 2005 - 2006.

Agricultural Lands Prices in Argentina

Year USD per Ha. Year USD per Ha. Year USD per Ha.

1977 1,985 1987 1,457 1997 4,042

1978 1,483 1988 1,550 1998 4,858

1979 2,427 1989 1,696 1999 4,000

1980 3,001 1990 2,058 2000 3,950

1981 1,868 1991 2,292 2001 3,592

1982 1,388 1992 2,592 2002 3,000

1983 2,070 1993 2,129 2003 3,900

1984 1,990 1994 2,254 2004 5,360

1985 1,655 1995 2,400 2005 6,100

1986 1,575 1996 3,142 2006 7,500

Source: Margenes Agropecuarios

Part of the variation observed in land prices can not be attributed just to an update in

the future price paths given the new information available to traders. In fact, as mentioned

11Recall that these results are in US dollars per ton
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briefly in the introduction, there are several variables that we are not incorporating into the

analysis. For instance, we can mention weather conditions, soil productivity and governments

policies regarding taxes.

Anyway, here we treat land productivity as a constant. In more detail, we will use an

average of the productivity in the last years to compare our results with the actual data.

Average Productivity of the soil in Argentina

Crop Tons per HA

Wheat 2

Soya 2.8

Corn 3

Source: Margenes Agropecuarios

Using this average productivity we can transform the obtained results to compute what

the predicted value of the lands would be in USD per HA. Still, it should be clear that the

two-factor model for the soya should not be used as the result is too far away from reality.

We should also recall that so far our assumption is that we are seeding the land split equally

among the three crops. Thus, the results are:12:

Predicted values for the land (USD per Ha)

GBM IHGBM 2OU 2IHGBM

10677 7132 24508 30919

As we can see, both the one-factor IHGBM and the two-factor OU throw results that

are close to the values that we observe in reality, with the two-factor model more accurate,

while the GBM and the two-factor IHGBM are far away from what we observe as market

prices. It should be noted that, for the case of Corn, the two-factor model with IHGBM in

the convenience yield is accurate enough. So, maybe a combination of the process is more

relevant to get the ”correct price”.

The reason for the bad performance of the two-factor IHGBM is probably due to an

incompatibility of the two processes. IHGBM forces convenience yield to be positive, but we

know that this is not so in reality. In particular, for both wheat and soya, the convenience

yield is negative in a large part of the sample.

The results for the optimal way of rotating the crops are also interesting. As crops are

rotated ad hoc, a relatively small value in the call option price would indicate that the

farmer’s decision is not far away from optimality.

12We will use the one-factor IHGBM as the relevant process for the Soya two-factor models
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In fact, as we can see in the following table, our empirical findings support in some

way the behavior of the farmers. For instance, the call option to seed wheat when you are

currently seeding soya is worth only $2.6062 per Ha.

Call Options on the rotation of crops

Wheat Soya Corn

Wheat - 2.2642 0.053

Soya 2.6062 - 0.1621

Corn 7.1612 110.15 -

The explanation for these finding is possibly linked to the high correlation among the

different crops. Because of this, it is quite unlikely that waiting for the right moment will

provide a substantially higher benefit.

5 Conclusions

The price of an asset should be tied to its dividends, payoff or cash-flows. Agricultural lands

are in no sense different to this. We have introduced and tried different process for the cash-

flows from an agricultural land to check which one is best suited for predicting land values.

We found out that the models with higher forecasting power are the one-factor IHGBM and

the two-factor Ornstein-Uhlenbeck.

We have also priced the put option for the land and we evaluated the decision of which

crop to seed. The put option on the agricultural land is nontrivial, as it represents around

40 percent of the land value.

On the other hand, the decision to rotate the crops in an ad hoc way has proven to be

a wise decision, since the increase in the value from rotating the crops in an optimal (much

more sophisticated) way is almost negligible. Thus, the way in which things are usually

carried on in any agricultural farm is not far away from optimality.

We think that the predictability of the model will increase considerably if we include the

possibility of jumps in the productivity of the soil or to match the weather changes as well

as improvements in the production function.

For further research, several variables can be incorporated into the analysis. For instance,

we can mention three of them as the most relevant ones: weather conditions, soil productiv-

ity and governments policies regarding taxes. Regarding wether, the distributions of rains
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could be incorporated into the model as there exists a historical probability matrix that pro-

vides enough information to obtain future paths. On the other hand, the soil productivity

changes appear to arrive in jumps. As government policy is always treated as a random

shock in macroeconomic models, this might not affect results that much. Thus, any future

improvements in the set up presented here could arise from considering these variables.
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Appendix A

• The first moment for the Inhomogeneous Geometric Brownian Motion process (3 can

be computed in the following way:

E(dXt) = λ(X − E(Xt))dt

Using the linearity of the expectation, we arrive at the following formula

dE(Xt)

dt
= λ(X − E(Xt))

)

Then,

eλt

[
dE(Xt)

dt
+ λE(Xt)

]
= eλtλX

Integrating this equation, we can find the first moment.

∫ t

0

eλt

[
dE(Xt)

dt
+ λE(Xt)

]
dt =

∫ t

0

eλtλXdt

Solving that we get

E(Xt)e
λt − E [X0] = Xeλt − X

Thus, we have that

E(Xt) = X + (X0 − X)e−λt

As expected, as time goes to infinity, E(X∞) = X, corroborating that X is the long-

term value at which the variable X converges to.

• For the second moment, defining f(Xt) = X2
t and applying Itô’s lemma, we obtain

dE(X2
t )

dt
= 2λXE(Xt) + (σ2 − 2λ)E(X2

t )

Substituting for E(Xt)

dE(X2
t )

dt
+ (2λ − σ2)E(X2

t ) = 2λX
(
X + (X0 − X)e−λt

)

Using (2λ − σ2)t as the integrating factor, we have

∫ t

0

e(2λ−σ2)t

[
dE(X2

t )

dt
+ (2λ − σ2)E(X2

t )

]
dt =

∫ t

0

e(2λ−σ2)t[2λX(X +(X0 −X)e−λt)]dt

Solving the integral, we obtain

E(X2
t )e(2λ−σ2)t − X2

0 =

∫ t

0

2λX
2
e(2λ−σ2)tdt +

∫ t

0

2λX
(
X0 − Xe(λ−σ2)t

)
dt

24



Then,

e(2λ−σ2)tE(X2
t ) =

2λX
2

2λ − σ2
(e(2λ−σ2)t − 1) +

2λX(X0 − X)

λ − σ2
(e(λ−σ2)t − 1) + X2

0

Then,

E(X2
t ) =

2λX
2

2λ − σ2

(
1 − e(σ2−2λ)t

)
+

2λX(X0 − X)

λ − σ2

(
e−λt − e(σ2−2λ)t

)
+ X2

0e
(σ2−2λ)t

provided that (2λ − σ2)(λ − σ2) 6= 0.13

As V ar(X2
t ) = E[(Xt −E(Xt))

2], the second non-central moment can be computed as

V ar(Xt) = e(σ2−2λ)t

(
X2

0 +
2λX

2

σ2 − 2λ
+

2λX(X0 − X)

σ2 − λ

)

+ e−λt

(
2λX(X0 − X)

λ − σ2
− 2X(X0 − X)

)

+ −e−2λt(X0 − X)2 +
2λX

2

2λ − σ2
− X

2

So V ar(X∞) = 2λX
2

2λ−σ2 − X
2

= σ2

2λ−σ2 X
2

This means that the speed of reversion should

be high enough (λ > σ2/2) for the variance to converge to a finite value.

The explicit solution to the Inhomogeneous Geometric Brownian Motion is:

Xt = e−(λ+σ2

2
)t+σWt

[
X0 + λX

∫ t

0

e(λ+σ2

2
)s−σWsds

]

Now, since the above process is not risk-neutral, we should replace the drift with the

growth rate in a risk-neutral world which is achieved by discounting the risk premium

to obtain the correspondent risk-neutral process14 The risk premium is ρσ rm−r
σm

Xt =

ρσφXt

Then, the risk-neutral version is:

dX̂t = [λ(X − X̂t) − ρσφXt]dt + σX̂tdZt

Following the same method that in the previous part, the first two moments can be

shown to be

E(X̂t) =
λX

λ + ρσφ
[1 − e−(λ+ρσφ)t] + X0e

−(λ+ρσφ)t

13We actually have two more possibilities: If σ2 − 2λ = 0, then E(X2

t ) = −(2kX
2

)t + 2(X0 − X)(e−λt −
1) + X2

0
. Alternatively, if λ = σ2, then E(X2

t ) = 2X
2

(1 − e−λt) + 2X(X − X0)te
−λt + X2

0
e−λt.

14The growth rate in a risk-neutral world is given by r − δ, where δ is the convenience yield.
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