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Abstract

In the paper we study the debt valuation and non-flat reorganization
boundaries when strategic default and strategic interaction between debt
and equity holders are explicitly modeled. We obtain an approximate ana-
lytical solution for endogenously determined non-flat reorganization bound-
ary. The increasing and convex reorganization boundary shows that the
closer is the maturity, the more cautious are debt holders with respect to
a drop of firm’s asset value, as the recovery in the short period of time
becomes less probable. We also derive a closed form solution of the debt
value based on the model. The numerical results calculated from the so-
lution show that the model is capable of producing term structures of risk
premium that are consistent with some empirical findings. In addition, we
show that institutional and legal changes that alter the bargaining power of
debt and equity holders or the liquidation costs have twofold impact on the
risk premium through recovery rate and default probability: the premium
associated to the former is higher in magnitude than the one associated to
the latter and they work in opposite directions.
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1 Introduction

An essential feature of debt contracts, in both corporate and bank loan markets,
are covenants. A commonly observed covenant is the requirement that the bor-
rower must pay contractual payments to the lender at a pre-specified time in
the future, with or without intermediate periodic payments. In the case of in-
termediate periodic payments any missed or delayed disbursement is treated as
default. When there are no intermediate periodic payments any type of financial
distress, in the form of poor cash flows or devalued firm value (the latter is also
a market signal of a firm’s poor performance), is treated as default. Modeling of
such covenants is critical in the debt valuation literature. [Merton, R. C. (1974)],
[Black, F. and Cox, J. (1976)], [Leland, H. (1994)], and [Leland, H. and Toft, K. (1996)]
are examples of articles that study the valuation consequences of such debt covenants.

A number of recent articles, such as [Anderson, R. and Sundaresan, S. (1996)],
[Fan, H. and Sundaresan, S. (2000)], [Francois, P. and Morellec, E. (2004)] and
[Mella-Barral, P. and Perraudin, W. (1997)], have taken into consideration strate-
gic issues and renegotiation in the context of debt valuation. These papers in-
corporate, under the assumptions of costless renegotiation, debt reliefs granted to
firms in financial distress. Since liquidation is costly and bondholders bear liqui-
dation costs, there is a room for strategic default. Strategic default occurs each
time the state variable, typically the value of the firm’s assets, falls below some
endogenous default threshold.

Unfortunately the literature on debt valuation has assumed that the endoge-
nously determined default threshold is constant over time. When the debt has a
finite maturity this assumption means that close to the maturity debt holders are
as tolerant to the drop of firm’s asset value as they would be at the time when the
debt is issued. However, practice shows that close to the maturity debt holders
are more cautious to the drop of firm’s asset value, as the recovery in the short
period is less probable.

In the paper we consider an economy in which the borrowers (equity holders)
have exclusive access to a project that provides a continuous stream of cash flows.
They finance the project with debt, which could result in potentially inefficient
liquidation and financial distress. The driving force behind strategic behavior in
our model is the presence of proportional costs of liquidation. We endogenously
determine the optimal sharing rule between equity and debt holders upon default.
With the optimal sharing rule we next characterize the non-flat reorganization
boundary and provide an analytical solution for the two extreme situations: when
sharing rule provides debt holders with either all assets or nothing upon default.
The endogenously determined non-flat reorganization boundary in the former case
characterizes the situation where everything is seized without costs when the firm
is in the financial distress. Boundaries obtained in the two cases are the upper and
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the lower bounds, respectively, for any non-flat reorganization boundary when the
optimal sharing rule is in between those extreme cases.

We also derive a closed form solution for the value of the debt. The risk
premium analysis based on the valuation result show that the use of non-flat reor-
ganization boundary is capable of producing terms structures that are consistent
with some empirical findings.

Importantly, the debt valuation result allows us to conclude that the recov-
ery risk premium plays dominant role in relation to default risk premium in the
term structure of risk premium. When we decrease the optimal sharing rule it de-
creases the endogenously determined non-flat reorganization boundary, which in
turn decreases the probability of default. Decreased probability of default implies
lower risk premium. One the other hand, decreasing the sharing rule decreases
the recovery rate of the debt and, hence, increases the recovery risk. The latter
requires higher risk premium. The numerical results show that the net impact of
the decreased sharing rule is the increase in risk premium. The conclusion based
on the argument that runs in the direction of increased optimal sharing rule is
similar.

The reminder of the paper is organized as follows: Section 2 presents valuation
framework with non-flat reorganization boundary and debt-equity swap reorgani-
zation scheme in the form of bargaining game. In Section 3 we obtain expressions
characterizing the non-flat default boundary and its particular solutions. The
closed form solution for the value of the debt is obtained in Section 4. Numerical
results of the term structure of risk premium based on the pricing formula are
analyzed in Section 5. In Section 6 we conclude. All technical developments are
left for the Appendix.

2 Model Setup

In this section we develop a model, which allows determining the value of the
debt and non-flat reorganization boundary under a particular scheme known as
debt-equity swap. The model is set in continuous-time framework. The following
assumptions underline the model:

1. There is a firm which has equity and a single issue of finite maturity debt.
The time of maturity is denoted by T and by the indenture of debt the firm
promises to pay a total amount of K to debt holders on the specified time
T . We assume also that there are no coupon payments.
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2. The firm cannot issue any new senior (or of equivalent rank) claims nor can
pay cash dividends or do share repurchase prior to the maturity of the debt.

3. We assume that the default-free term structure is flat and the instantaneous
risk-less (default-free) rate is r per unit time.

4. The firm can be liquidated only at a cost. The proportional cost is α (0 ≤
α ≤ 1). The debt holders have strict absolute priority upon bankruptcy.
Liquidation happens when the value of assets of the firm reaches g(t), a time
varying trigger level. In that case a cost αg(t) is taken away by outsiders;
debt holders receive the remaining (1 − α)g(t); and equity holders receive
nothing.

5. The dynamics for the value of the assets, V , through time can be described
by a diffusion-type stochastic process with stochastic differential equation

dV

V
= µdt + σdWt (1)

where µ is the instantaneous expected rate of returns per unit time, σ2 is the
instantaneous variance per unit time and Wt is a standard Brownian Motion.

6. There are no taxes, transaction costs and trading of assets takes place con-
tinuously in time1.

The fact that the liquidation is costly and current legal arrangements pro-
vide opportunities for the borrower and the lender to avoid costly liquidation,
bankruptcies are often resolved using exchange offers of different types. They
include delayed or missed interest or principal payments, extension of maturity,
debt-equity swap, debt holidays, etc. Essentially all these distressed exchanges and
delayed payments can be considered as a value distribution between equity and
debt holders. For concreteness and better illustration of the main findings we will
concentrate on debt-equity swap. However, it is to be noted that in the absence of
taxes there is no difference between most of the above mentioned reorganization
schemes.

When reorganization results in a debt-equity swap, the firm becomes an all-
euqity firm. Since we have assumed away taxes or the possibility of bankruptcy
in the future, the total value of the firm is exactly the asset value V . At an
endogenously determined reorganization boundary (which we have denoted by

1Note that in the absence of taxes there is no distinction between the value of the assets of
the firm and the value of the firm.
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g(t)), debt holders are offered a proportion of the firm’s equity to replace their
original debt contract. As a consequence the sharing will be given by

E(g(t), t) = θg(t), D(g(t), t) = (1− θ)g(t) (2)

where E(·) and D(·) are the value of equity and debt, respectively, θ is a param-
eter that reflects the sharing rule for the value of residual assets. In our setting
parameter θ should satisfy 0 ≤ θ ≤ α. If not then for debt holders it will be
optimal to liquidate the firm and pay outsiders the proportional cost α.

In the existing literature on debt valuation with renegotiation the sharing rule
is determined by a bargaining game. For expositional simplicity we consider the
Nash bargaining solution.

Let us denote η as the equity holders’ bargaining power, and 1− η is the debt
holders’ bargaining power. The Nash solution θN can be derived as follows. The
incremental value for equity holders by continuing as opposed to liquidating is
θg(t) − 0. The Incremental value to debt holders by accepting the debt-equity
swap instead of forcing liquidation is (α− θ)g(t). The Nash bargaining solution is
characterized as:

θN = argmax0≤θ≤α [θg(t)]η [(α− θ)g(t)]1−η = ηα. (3)

The solution to the Nash bargaining game is characterized by the sharing rule,
which is a function of the bargaining power η. Note, in addition, that once θ > α
then no bargaining can take place as the incremental value to the debt holder is
negative. In the context of debt pricing this means that for debt holders the liq-
uidation is less costly then reorganization, and, hence they will liquidate the firm
whenever it defaults or is in a financial distress.

3 Reorganization Boundary

In this section we derive reorganization boundary g(t), which is a function of t and
changes over time. Time varying default boundary implies that the ”loss given
default” (LGD), which is equal to one minus the recovery rate in the event of
default, is not constant but rather depends on time. This is by the fact that the
recovery rate, defined by the ratio (1− θ)g(t)/K, also changes over time.

It is not difficult to show (see for example [Merton, R. C. (1974)]) that the debt
value satisfies the following partial differential equation:

1

2
σ2V 2∂2D

∂V 2
+ rV

∂D

∂V
− rD +

∂D

∂t
= 0 (4)
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As the value of the asset V approaches infinity, debt becomes riskless and
hence, the debt value is set to be the discounted face value of the debt, i.e.

lim
V→∞

D(V, t) = Ke−r(T−t) (5)

In the expression (5) Ke−r(T−t) is the price of riskless discount bond at time t,
which promises a payment of K at time T in the future. The conditions for the
non-flat reorganization boundary are given by

D(V, t)
∣∣∣
V =g(t)

= (1− θ)g(t) (6)

∂D(V, t)

∂V

∣∣∣
V =g(t)

= (1− θ). (7)

The equation (6) is the ”value matching” condition, which says that on the
endogenously determined non-flat boundary debt holders get (1− θ) proportion of
the firms equity as a result of debt-equity swap reorganization. The equation (7)
is the ”smooth pasting” condition, which ensures the continuity of D(V, t) on the
boundary.

The complete description of the valuation equation requires an initial condition,
which is given by

D(V, T ) =

{
K V ≥ K

(1− θ)V V < K
. (8)

On the maturity of the debt the debt holders are either payed the promised
payment of K (it happens only when the value of the firm is not smaller then the
promised payment K) or the firm is reorganized (it happens when the value of the
firm is not enough to pay the debt), in which case the debt holders receive (1− θ)
proportion of the firms equity.

The partial differential equation (4) and the conditions (5)-(8) together are
known as a free boundary problem, and a solution to such a problem gives the
value of the debt with an indenture, which assumes that default and reorganization
may occur any time between the issuance and maturity of the debt. It is conve-
nient to reformulate the free boundary problem making the following notations
f(V, t) = Ke−r(T−t) −D(V, t), V = Kex and h = 2r

σ2 . Then the partial differential
equation (4) and the conditions (5)-(8) become

∂2f

∂x2
+ (h− 1)

∂f

∂x
− hf +

2

σ2

∂f

∂t
= 0 (9)
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lim
x→∞

f(Kex, t) = 0 (10)

f(Kex, t)
∣∣∣
x=ln

g(t)
K

= Ke−r(T−t) − (1− θ)g(t) (11)

∂f(Kex, t)

∂x

∣∣∣
x=ln

g(t)
K

= −(1− θ)g(t) (12)

f(Kex, T ) =

{
0 x ≥ 0

K(1− (1− θ)ex) x < 0
. (13)

In line with the condition (10) it is natural to assume also that

lim
x→∞

∂f(Kex, t)

∂x
= 0. (14)

The next theorem characterizes the function f (for the notation and terminol-
ogy one is referred to the Appendix).

Theorem 1 The image of the function f(Kex, t), which is denoted by F (ω, t) =
F(f(Kex, t)), is given by

F (ω, t) = F (ω, T )e−
σ2

2
A(ω)(T−t) −

∫ T

t

σ2

2
B(ω, τ)e−

σ2

2
A(ω)(τ−t)dτ (15)

where F (ω, T ) = F(f(Kex, T )) and

A(ω) = ω2 + (h− 1)ıω + h (16)

B(ω, t) =

[(
h− 1− 2

σ2

g′(t)

g(t)
− ıω

)
Ke−r(T−t) − (1− θ)g(t)√

2π

]
eıω ln

(1−θ)g(t)
K − (17)

−(1− θ)g(t)√
2π

eıω ln
(1−θ)g(t)

K .

Proof of Theorem 1 See Appendix.

7



The result of Theorem 1 shows that the value of the debt is decomposed into
two components. The first term in the equation (15) characterizes the value of a
debt with an indenture, which allows default only at the maturity, in which case the
firm is reorganized through debt-equity swap reorganization scheme. The valuation
result obtained in Theorem 2, below, is similar to the classical debt valuation result
obtained in [Merton, R. C. (1974)], with only one difference. In Merton’s result
the reorganization scheme works in a way as if there are no liquidation costs and/or
the debt holders have the whole bargaining power, while in the current context
reorganization leads to sharing of defaulted firm’s value between equity and debt
holders at the maturity.

Theorem 2 The original of the function

F1(ω, t) = F (ω, T )e−
σ2

2
A(ω)(T−t). (18)

is given by

f1(V, t) = Ke−r(T−t)Φ(d−)− (1− θ)V Φ(d+), (19)

where

d± =
ln K

V
− (r ± σ2

2
)(T − t)

σ
√

T − t
(20)

and Φ(·) is the CDF of a standard Normal distribution. Moreover,

D1(V, t) = Ke−r(T−t) − f1(V, t) = Ke−r(T−t)Φ(−d−) + (1− θ)V Φ(d+). (21)

Proof of Theorem 2 See Appendix.

Intuitively, the equation (18) can be interpreted as follows. The value of a
function (in a complex plain) at any given time t is equal to the discounted value
of the terminal value of the function, i.e. F (ω, T ), where the discount factor is
σ2

2
A(ω). The existence of the second term in the equation (15) shows that there is

a premium associated with the possibility of early reorganization of the firm when
it is in a financial distress. The second term also has an intuitive explanation.
It is the sum (or the integral in the continuous time setting) of present values
of net gains (losses) connected with reaching the reorganization boundary, where
σ2

2
B(ω, τ) has the interpretation of net gains (losses). Note that the discount factor

is the same as in the first term. Once inverted, the second term in the equation
(15), together with the equation (21), can be used to find the value of the debt
D(V, t). Moreover, one needs to use the inverted equations to derive the non-flat
reorganization boundary. The next theorem provides a condition, which should be
solved to find the unknown reorganization boundary.
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Theorem 3 The function g(t) satisfies the following integral equation

(1− θ)
g(t)

K
(1 + Erf(η1))− e−r(T−t)

(
1 + Erf(η0) + θErf

(
η0 −

ln(1− θ)

σ
√

2(T − t)

))
+

+e−r(T−t)sign(− ln(1− θ))− (1− θ)e−r(T−t)Erf

(
σ1

√
T − t− ln(1− θ)

σ
√

2(T − t)

)
+(22)

+

∫ T

t

g(τ)

K

1√
π

(
σ2√
τ − t

+
ln(1− θ)

σ
√

2(τ − t)3

)
e
−

„
σ2
√

τ−t− ln(1−θ)

σ
√

2(τ−t)

«2

dτ = 0

where

η0 =
ln g(t)

K
+ (r − σ2

2
)(T − t)

σ
√

2(T − t)
; η1 =

ln g(t)
K

+ (r + σ2

2
)(T − t)

σ
√

2(T − t)
(23)

σ1 =
r − σ2

2

σ
√

2
; σ2 =

r + σ2

2

σ
√

2
. (24)

Proof of Theorem 3 See Appendix.

The integral equation (22) with unknown function g(t) is highly nonlinear and
no methods are available to obtain an exact analytical solution for g(t). In one
special case, when θ = 1 the exact analytical solution for g(t) is readily available.
This case corresponds to a situation where the debt holders get nothing as a
result of debt-equity reorganization. With Nash bargaining solution this may
happen when equity holders have the whole bargaining power (i.e. η = 1) and the
proportional liquidation costs are equal to one. In practice, non of the situations
happens. In general, the liquidation costs and what debt holders obtain upon
firm’s default are always positive. However, considering the case when θ = 1 is
important as it provides the lower bound for reorganization boundaries. With
θ = 1 the equation (22) reduces to

Erf(η0) = −1, (25)

which is possible when g(t) ≡ 0. The intuition behind this result is as follows.
Because debt holders get noting as a result of announcing the firm bankrupt, they
are better off by letting the firm to continue its operation as for any given value
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of the firm’s assets, whatsoever low level it is, there is a positive probability that
it will outperform and repay the outstanding debt at the maturity.

On the other extreme, where θ = 0, debt holders get the whole equity as a
result of debt-equity swap reorganization. In the case of Nash bargaining solution
θ = 0 when either there are no liquidation costs (i.e. α = 0) or the debt holders
have the whole bargaining power (i.e. η = 0). This situation is also not realistic.
However, by considering it we obtain the upper bound for non-flat reorganization
boundaries. In the case when θ = 0 the equation (22) reduces to

g(t)

K
(1 + Erf(η1))− e−r(T−t)

(
1 + Erf(η0) + Erf(σ1

√
T − t)

)
+ (26)

+

∫ T

t

g(τ)

K

σ2√
π(τ − t)

e−σ2
2(τ−t)dτ = 0

We have derived an approximate analytical solution to the integral equation
(26) and the next theorem provides the details of the derivation.

Theorem 4 Assume θ = 0. Then the approximate solution to the reorganization
boundary g(t) is given by

g(t) = KeA(t1)+B(t1)−C(t1). (27)

where

A(t1) =
eσ2

0t1

r

(
σ2

1Erf
[
σ0

√
t1
]
+ σ0

(
σ1

(
1 + Erf

[
σ1

√
t1
])

+ ert1σ2Erfc
[
σ2

√
t1
]))

(28)

B(t1) = σ2e
σ2
0t1Erf

[
σ0

√
t1
]
∗

(
e(σ2

0−σ2
1)t1

√
πt1

+ σ2e
2σ0σ2t1Erf

[
σ2

√
t1
])

(29)

C(t1) =
σ2
√

σ0σ2√
2r

e2σ0σ2t1Erf[
√

σ0σ2t1] + 2σ0σ2t1 + 1 (30)

and σ0 = σ√
2

and t1 = T − t.

Proof of Theorem 4 See Appendix.

The plot of the function g(t) in Figure 1 shows that the reorganization boundary
is increasing and convex function in t.
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Figure 1: The plot of the reorganization boundary given in Theorem 4. The parameters
are: r = 0.06, σ = 0.2, K = 1 and T = 1.

Compared with a flat boundary, the result of Theorem 4 shows that the closer
is the maturity, more cautious are debt holders with respect to the drop of firm’s
value, as the recovery in the short period of time becomes less probable. On the
other hand, closer to the debt issuance time debt holders are more reckless towards
the drop of firm’s value. The results of comparative statics of the reorganization
boundary with respect to the model parameters, r, σ and T , are presented in Fig-
ure 6.

4 Debt Value

In this section we derive the closed form solution for the value of the debt with
non-flat reorganization boundary. In Section 3 we have shown that the value of the
debt has two components and provide the solution for the first term. In the next
Theorem we derive the premium term and together with the result of Theorem 2
obtain the value of the debt.

Theorem 5 The original of the integral expression in the equation (15) is given
by

f2(V, t) = V Φ

(
sign

(
ln

V

(1− θ)g(t)

)
q+

)
− (31)

−Ke−r(T−t)

sign
(
ln V

(1−θ)g(t)

)
− 1

2
+ Φ(q−)
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where

q± = d± +
ln(1− θ)

σ
√

T − t
. (32)

Moreover,

D(V, t) =
[
Ke−r(T−t)Φ(−d−) + (1− θ)V Φ(d+)

]
− (33)

−

Ke−r(T−t)

sign
(
ln V

(1−θ)g(t)

)
− 1

2
+ Φ(q−)

− V Φ

(
sign

(
ln

V

(1− θ)g(t)

)
q+

) .

Proof of Theorem 5 See Appendix.

In the special case, when θ = 1, the value of the debt becomes

D(V, t; θ = 1) = Ke−r(T−t)Φ(−d−). (34)

The intuition behind this result is as follows. When the debt holders get nothing as
a result of reorganization, they discount only the expected payoff at the maturity,
which is KΦ(−d−). At the maturity debt holders get K, only when the firms value
is not smaller then K, which happens with a probability Φ(−d−).

When θ = 1 the second term in the brackets is zero. As we change θ, it
becomes positive and increases reaching its maximum when θ = 0. In other words,
the premium, deducted from the pricing of the debt without a possibility of early
reorganization, is the highest when debt holders have the whole bargaining power
or there are no liquidation costs.

The plot of the value of the debt for extreme cases, premium and Merton’s
value of the debt against value of the firm is presented in Figure 2. As value of
the firm goes to infinity the premium term vanishes, and the values of the debt
for any given θ converges to Ke−r(T−t), that is to the discounted face value of the
debt. Merton’s value of the debt is always above the value of the debt derived
in Theorem 5. This means that the risk premium obtained in our paper and dis-
cusses in the next section are always higher than the risk premium obtained in
[Merton, R. C. (1974)].

5 Risk Premium

The term structure of risk premium for a low leveraged firm, with V = 1050 and
K = 100, is illustrated in Figure 3. The debt ratio K/V equal to 9.5% in this illus-
tration is similar to the market-value debt ratio of firms whose senior debt ratings
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Figure 2: Debt value for extreme cases, premium and Merton’s value of the debt plotted
against value of the firm. The parameters are: r = 0.06, σ = 0.25, T = 1, t = 0 and
K = 100.

from [Standard and Poor’s (2001)] are AA. The expected recovery rate for senior
unsecured debt is typically 48% according to [Carty, L. and Lieberman, D. (1998)].
Thus, we set θ = 0.52. The other parameters used in the calculations are σ = 0.25
and r = 0.06. The asset volatility σ = 0.25 is close to the median for publicly listed
companies. The term structure of risk premium based on our results is upward
sloping in Figure 3. At short maturities its shape is flat. This finding is similar
to the empirical studies in [Sarig, O. and Warga, A. (1989)]. They find that the
term structure of the risk premium is upward sloping for high rating pure discount
bonds.

5 10 15 20 25
Τ

0

0.2
0.4
0.6
0.8
Θ

0
0.01
0.02
Risk Premium

0
0.4
0.6
0.8
Θ

Figure 3: The terms structure of risk premium of a low leveraged firm (AA) for various
values of sharing parameter. The parameters are: r = 0.06, σ = 0.25, V = 1050 and
K = 100.

Figure 3 also shows that the risk premium based on non-flat reorganization
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boundary increases with θ. In Section 3 we have shown that with increasing θ
the default boundary decreases and in the limit when θ = 1 it becomes flat and
equal to zero. Decreasing default boundary implies lower default risk. However,
positive relation between risk premium and θ shows that not only the default risk
but the recovery risk have an impact on risk premium. More importantly, the risk
premium related to the recovery risk is higher in magnitude than the risk premium
related to the default risk and the sign of the former determines the net impact.
In other words, the recovery risk plays more important role in determining the risk
premium than default risk.

The term structure of risk premium for a medium leveraged firm, with V =
317 and K = 100 is illustrated in Figure 4. The debt ratio K/V = 31.5% is
similar to the market-value debt ratios of firms whose senior debt ratings from
[Standard and Poor’s (2001)] are BBB. Other parameters are the same as those
used in Figure 3. The shapes are consistent with the empirical findings by
[Sarig, O. and Warga, A. (1989)] that the term structure is humped for medium
rating bonds.

5 10 15 20 25
Τ

0

0.2
0.4
0.6
0.8
Θ

0
0.1
0.2
0.3
Risk Premium

0
0.4
0.6
0.8
Θ

Figure 4: The term structure of risk premium of a medium leveraged firm (BBB) for
various values of sharing parameter. The parameters are: r = 0.06, σ = 0.25, V = 317
and K = 100.

Similar to Figure 3, Figure 4 also shows that the risk premium increase with
θ. This finding also shows that recovery rates have important impact on the
risk premium for medium leveraged firms. In addition, the term structure of risk
premium becomes more humped with high θ.

Figure 5 shows the term structure of risk premium for a highly leveraged firm,
with V = 200 and K = 100. The debt ratio K/V = 50% is similar to the market-
value debt ratios of firms whose senior debt ratings from [Standard and Poor’s (2001)]
are BB. Other parameters are the same as those used in Figure 3. The depicted
term structures exhibit steep upward slopes at short maturities and are downward
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Figure 5: The term structure of risk premium of high leveraged firm (BB) for various
values of sharing parameters. The parameters are: r = 0.06, σ = 0.25, V = 200 and
K = 100.

sloping for maturities longer than a few years. The shapes are consistent with the
empirical findings of the downward sloping term structure of low ratings bonds
reported by [Sarig, O. and Warga, A. (1989)]. The phenomenon of high risk pre-
mium at short maturities is called ”crisis-at-maturity” by [Johnson, R. (1967)].
This downward slope is generated by high initial default probabilities which are
expected to decrease over time as the firm survives. In this case also, the risk
premium increases with θ, leaving our conclusion about relative importance of re-
covery risk unchanged.

6 Conclusion

This paper provides a framework of early debt renegotiation with non-flat reorgani-
zation boundary. The bargaining powers of equity and debt holders can be varied
to examine their effects on reorganization boundaries and risk premiums. The
non-flat reorganization boundary is endogenously determined and approximate
analytical expression for it is obtained. We also derived a closed form solution
of the corporate bond price as a function of, among other model parameters, the
sharing rule that is determined through bargaining process over the residual assets.
The numerical results show that the model is capable of producing term structure
of risk premium which are broadly consistent with some empirical findings. An
innovative finding in our paper is the fact that the recovery rate and premium
associated to it is much more important component of the risk premium than the
default risk and default premium.
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7 Appendix

7.1 Notation

In the text we have used the following notations. The imaginary number is denoted
by ı =

√
−1. Fourier transform (or image) of a function f(t) is defined to be

F (ω) =
1√
2π

∫ ∞

−∞
f(t)eıωtdt (35)

and is denoted by F(f(t)). The inverse Fourier transform (or the original) is
defined to be

f(t) =
1√
2π

∫ ∞

−∞
F (ω)e−ıωtdω (36)

and is denoted by F−1(F (ω)). The definition and the notation of Laplace trans-
form and inverse Laplace transform is given by, respectively

F (p) = L(f(t)) =

∫ ∞

0

f(t)e−ptdt (37)

f(t) = L−1(F (p)) =
1

2πı

∫ γ+ı∞

γ−ı∞
F (p)eptdp (38)

where γ is an arbitrary positive constant chosen so that the contour of integration
lies to the right of all singularities in F (p). The sign (∗) stands for a convolution
of two functions, which is defined to be

f ∗ g =

∫ t

0

f(τ)g(t− τ)dτ. (39)

The error function Erf(x) is defined by

Erf(x) =
2√
π

∫ x

0

e−z2

dz. (40)

7.2 Proof of Theorem 1

Let us denote the Fourier transform of the function f(Kex, t) by

F (ω, t) =
1√
2π

∫ ∞

−∞
f(Kex, t)eıωxdx =

1√
2π

∫ ∞

ln
(1−θ)g(t)

K

f(Kex, t)eıωxdx. (41)

Then, we have

F
(

∂f(Kex, t)

∂x

)
= −ıωF (ω, t)− Ke−r(T−t) − (1− θ)g(t)√

2π
eıω ln

(1−θ)g(t)
K , (42)
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F
(

∂2f(Kex, t)

∂x2

)
= ω2F (ω, t) + ıω

Ke−r(T−t) − (1− θ)g(t)√
2π

eıω ln
(1−θ)g(t)

K + (43)

+
(1− θ)g(t)√

2π
eıω ln

(1−θ)g(t)
K ,

F
(

∂f(Kex, t)

∂t

)
=

dF (ω, t)

dt
+

Ke−r(T−t) − (1− θ)g(t)√
2π

g′(t)

g(t)
eıω ln

(1−θ)g(t)
K . (44)

Plugging the expressions (41)-(44) in equation (9) and collecting the terms we
obtain an ordinary differential equation in F (ω, t):

σ2

2

dF (ω, t)

dt
− A(ω)F (ω, t) = B(ω, t) (45)

where A(ω) and B(ω, t) are given as in Theorem 1. The solution to the ODE with
the initial condition

F (ω, T ) = F(f(Kex, T )) (46)

yields the required result.

7.3 Proof of Theorem 2

To proof the theorem we use the convolution theorem, according to which the
original of the product of two functions is equal to the convolution of the originals
of the functions, i.e.

F−1(F (ω)G(ω))(x) =
1√
2π

∫ ∞

−∞
F−1(F (ω))(z)F−1(G(ω))(x− z)dz (47)

We have

F−1(F(f(Kex, T ))) = f(Kex, T ) (48)

and

F−1
(
e−

σ2

2
A(ω)(T−t)

)
=

e
−r(T−t)−

„„
r−σ2

2

«
(T−t)+x

«2

2σ2(T−t)√
(T − t)σ2

. (49)

By the convolution theorem and plugging the expression for f(Kex, T ) we obtain

f1(V, t) =
e−r(T−t)√

2πσ2(T − t)

∫ K

0

K − (1− θ)z

z
e
−

„
ln z

V
−

„
r−σ2

2

«
(T−t)

«2

2σ2(T−t) dz. (50)

Some algebra yields the required result.
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7.4 Proof of Theorem 3

To proof the theorem we start from the equation (15). Integration by parts of the
second term in the left hand side and some algebra yields

F2(ω, t) = − θK

ıω
√

2π
e
−

“
r+σ2ω2

2

”
(T−t)−ıω

““
r−σ2

2

”
(T−t)−ln(1−θ)

”
+ (51)

+
Ke−r(T−t) − (1− θ)g(t)

ıω
√

2π
eıω ln

(1−θ)g(t)
K +

+

∫ T

t

(1− θ)(rg(τ)− g′(τ))

ıω
√

2π
e
−

“
r+σ2ω2

2

”
(τ−t)−ıω

““
r−σ2

2

”
(τ−t)−ln

(1−θ)g(τ)
K

”
dτ−

−σ2

2

∫ T

t

(1− θ)g(τ)√
2π

e
−

“
r+σ2ω2

2

”
(τ−t)−ıω

““
r−σ2

2

”
(τ−t)−ln

(1−θ)g(τ)
K

”
dτ.

We have

F−1

(
− θK

ıω
√

2π
e
−

“
r+σ2ω2

2

”
(T−t)−ıω

““
r−σ2

2

”
(T−t)−ln(1−θ)

”)
= (52)

=
θKe−r(T−t)

2
Erf

(
x + (r − σ2

2
)(T − t)− ln(1− θ)

σ
√

2(T − t)

)
,

F−1

(
Ke−r(T−t) − (1− θ)g(t)√

2πıω
eıω ln

(1−θ)g(t)
K

)
= (53)

= −Ke−r(T−t) − (1− θ)g(t)

2
sign

(
x− ln

(1− θ)g(t)

K

)
,

F−1

(∫ T

t

(1− θ)(rg(τ)− g′(τ))

ıω
√

2π
e
−

“
r+σ2ω2

2

”
(τ−t)−ıω

““
r−σ2

2

”
(τ−t)−ln

(1−θ)g(τ)
K

”
dτ

)
=(54)

= −
∫ T

t

(1− θ)(rg(τ)− g′(τ))e−r(τ−t)

2
Erf

(
x + (r − σ2

2
)(τ − t)− ln (1−θ)g(τ)

K

σ
√

2(τ − t)

)
dτ
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F−1

(
σ2

2

∫ T

t

(1− θ)g(τ)√
2π

e
−

“
r+σ2ω2

2

”
(τ−t)−ıω

““
r−σ2

2

”
(τ−t)−ln

(1−θ)g(τ)
K

”
dτ

)
= (55)

=

∫ T

t

(1− θ)g(τ)e−r(τ−t)

2

σ0√
π(τ − t)

e
−

0@ x+

„
r−σ2

2

«
(τ−t)−ln

(1−θ)g(τ)
K

σ
√

2(τ−t)

1A2

dτ.

Using expressions (19), (52)-(55) in the condition (11) we obtain

K

2
e−r(T−t) (Erfc(η0) + sign (− ln(1− θ)))− (1− θ)

g(t)

2
Erfc(η1)+ (56)

+(1− θ)
g(t)

2
sign (− ln(1− θ))− θK

2
e−r(T−t)Erf

(
η0 −

ln(1− θ)

σ
√

2(T − t)

)
+

+

∫ T

t

(1− θ)(rg(τ)− g′(τ))e−r(τ−t)

2
Erf

(
σ1

√
τ − t− ln(1− θ)

σ
√

2(τ − t)

)
dτ+

+

∫ T

t

(1− θ)g(τ)e−r(τ−t)

2

σ0√
π(τ − t)

e
−

„
σ1
√

τ−t− ln(1−θ)

σ
√

2(τ−t)

«2

dτ =

= Ke−r(T−t) − (1− θ)g(t).

Integrating by parts the first integral in the equation (56) and some algebra
yields the required result.

7.5 Proof of Theorem 4

First of all denote τ = T − τ1 and t = T − t1 in the equation (26). Then the
integral equation becomes

g(T − t1)

K
[1 + Erf(η1(g(T − t1)))]− e−rt1

[
1 + Erf(η0(g(T − t1)) + Erf(σ1

√
t1)
]
+

+

∫ t1

0

g(T − τ1)

K

σ2√
π(t1 − τ1)

e−σ2
2(t1−τ1)dτ1 = 0. (57)
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Denote η1(g(T − t1)) by u(t1) and express g(T−t1)
K

and η0(g(T − t1)) in terms of

u(t1). Then, the first two terms in the equation (57) and g(T−τ1)
K

in the integrand
will be nonlinear functionals of unknown function u. Those functionals can be
approximated by the linear functionals in u, in which case we obtain the following
equation

−eσ2
0t1(1− Erf[σ0

√
t1] + Erf[σ1

√
t1]) +

(
1 + σu(t1)

√
2t1
)
+ (58)

+σ2

∫ t1

0

(1 + σu(τ1)
√

2τ1)
e(σ2

0−σ2
1)(t1−τ1)√

π(t1 − τ1)
dτ1 = 0.

Luckily, we obtain an integral equation for which solution methods are available.
Let L

(
σu(t1)

√
2t1
)

= U(p) and making Laplace transform of other expressions
in the integral equation (58) we obtain a linear equation in U(p), which has the
following solution

U(p) =
−√pσ0

√
p− σ2

0 + σ2
1 + p(σ1 − σ2) + σ2

0(
√

p− σ2
0 + σ2

1 + σ2)

p(p− σ2
0)(
√

p− σ2
0 + σ2

1 + σ2)
. (59)

Then, L−1(U(p)) yields the required result.

7.6 Proof of Theorem 5

It is not difficult to show that∫ T

t

(1− θ)(rg(τ)− g′(τ))e−r(τ−t)

2
Erf

(
x + (r − σ2

2
)(τ − t)− ln (1−θ)g(τ)

K

σ
√

2(τ − t)

)
dτ+

+

∫ T

t

(1− θ)g(τ)e−r(τ−t)

2

σ0√
π(τ − t)

e
−

0@ x+

„
r−σ2

2

«
(τ−t)−ln

(1−θ)g(τ)
K

σ
√

2(τ−t)

1A2

dτ = (60)

=
(1− θ)Ke−r(T−t)

2
Erf

(
σ1

√
T − t +

x− ln(1− θ)

σ
√

2(T − t)

)
−

−(1− θ)g(t)

2
sign

(
x− ln

(1− θ)g(t)

K

)
+

+
Kex

2
Erfc

(
sign

(
x− ln

(1− θ)g(t)

K

)(
σ2

√
T − t +

x− ln(1− θ)

σ
√

2(T − t)

))
The result (60), together with the expressions (52) and (53) yields the result

(31), while (31) together with (19) yields (33).
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Figure 6: The results of comparative statics of the reorganization boundary g(t) with
respect to the model parameters. Each line represents a graph of g(t), plotted against a
parameter r (top panel), σ (middle panel) and T (bottom panel), when t is fixed to be
0.9, 0.6, 0.3 and 0, respectively.
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