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in an Arbitrage-free Basel II Consistent Framework 

 
 

 

 

Abstract 

This paper analyzes the joint influence of the quality of a bank’s loan portfolio, the bank’s 

maturity gap and its deposit rate policy on the value of deposit insurance in an arbitrage-free 

Basel II consistent framework. We develop and apply a two-stage structural model of a bank 

where deposit insurance is a European put option on the loan portfolio, the default of each 

loan is driven by the borrower’s asset value and interest rates are stochastic. Modeling the 

firms’ asset values by conditional independent three-factor geometric Brownian motions and 

applying forward measure techniques, we obtain semi-analytical solutions of arbitrage-free 

deposit insurance premiums for sufficiently large and homogenous loan portfolios. We show 

for realistic parameter combinations that the correlation within the loan portfolio and the 

bank’s maturity gap can have a material impact on fair deposit insurance premiums. 

Furthermore, we find that fair deposit insurance premiums can depend negatively on the 

borrowers’ default risk when the bank faces a maturity gap. The fair deposit insurance 

premium for a bank holding defaultable loans can even be lower than for a bank investing in 

default-free bonds. 

 

(JEL G13, G21, G22, G28)  
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1 Introduction 

Since the seminal work by Merton (1974), analyzing and valuing credit risk by 

structural models and option pricing theory in both theoretical and empirical work 

has had a long tradition. Structural models where the default event is driven by the 

firm’s asset value have been developed in order to better understand the pricing of 

defaultable bonds and derivatives on corporate bonds (e.g., Longstaff and Schwartz, 

1995, Briys and de Varenne, 1997) and of vulnerable derivatives (e.g., Johnson and 

Stulz, 1987, Klein, 1996). Another branch of literature develops and applies 

structural models in order to analyze topics of theoretical corporate finance such as 

financing decisions of companies and optimal default policies (e.g., Leland, 1994, 

Uhrig-Homburg, 2005).  

In conjunction with banks, structural models have widely been applied to analyzing 

and valuing deposit insurance contracts. Following Merton (1977), a variety of 

papers such as Marcus and Shaked (1984), Ronn and Verma (1986), Pennacchi 

(1987), Crouhy and Galai (1991), Allen and Saunders (1993), Duan, Moreau and 

Sealey (1995), Anderson and Cakici (1999), Falkenheim and Pennacchi (2003) and 

others, model and value deposit insurance in an option-theoretical framework. They 

mainly differ in assumptions related to the deposit insurance agencies’ behavior, the 

particular type of option representing the deposit insurance, and the statistical 

methods and data sets when empirical analyses are carried out. With the exception of 

Crouhy and Galai (1991) and Anderson and Cakici (1999), models coincide in the 

assumption of banks’ asset value to follow geometric Brownian motion under 

stochastic or non-stochastic interest rates.  

The economic intuition behind using geometric Brownian motion to model the asset 

values of banks is straightforward: It does not solely reflect the value of a bank’s 
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total balance assets but also the value of all its future income.1 This is a natural 

approach if equity, as a call option on the asset value, is to be used to infer major 

bank risk parameters such as asset volatility from market data in empirical analyses. 

However, it is not obvious how the implied distributional assumptions and the related 

“abstract” risk parameters are related to the major sources of risk for banks that 

accounted for the majority of historical bank defaults and for the financial distress of 

banks over the last decades: the credit risk of the (real) assets the bank holds, 

especially of loans and bonds, and the maturity gap, i.e. the difference between the 

maturity or duration of the loans and/or bonds and the bank’s debt.  

First steps to analyze the effect of (real) assets the banks holds and of the maturity 

gap, respectively, on the valuation of deposit insurance in structural models were 

taken by Crouhy and Galai (1991) and Anderson and Cakici (1999). Crouhy and 

Galai (1991) assume that the assets of the bank consist of a geometric Brownian 

motion and a default-free short-term bond. This setup allows them to revert to the 

option pricing formulas by Rubinstein (1983). Anderson and Cakici (1999) analyze a 

model with stochastic interest rates according to Cox, Ingersoll and Ross (1985), 

where the bank holds a single default-free or defaultable bond whose maturity is 

assumed to be larger than the maturity of the deposits, i.e. when the bank faces a 

positive maturity gap. For their numerical results they rely on numerical solutions of 

partial differential equations.  

Our approach contributes to recent literature in several ways: We develop a two-

stage structural model for banks under stochastic interest rates with which we can 

jointly analyze a) the influence of the quality of a bank’s loan portfolio, b) the bank’s 

maturity gap, and c) its deposit rate policy on the fair value of deposit insurance. 

Each single loan the bank holds is a derivative on the borrower’s assets that we 

                                                 
1  Of course, another reason for using geometric Brownian motion is related to its nicely 

tractable mathematical attributes.  
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assume to follow conditional independent 3-factor geometric Brownian motions. 

This approach is consistent with conditional independent factor models widely 

applied to model loan portfolio distributions under the real-world measure (e.g., 

Schönbucher, 2000) and also serve, in the 1-factor case, as a theoretical foundation 

of Basel II-risk weight functions (e.g., Wilde, 2001). Applying the theory of forward 

martingale measures (Geman, El Karoui and Rochet, 1995) and large-sample 

approximation techniques2 (Vasicek, 1991, Gordy, 2003) we obtain semi-analytical 

solutions of arbitrage-free deposit insurance premiums when the bank holds a 

sufficiently large and homogenous loan portfolio and deposit insurance is modeled as 

a European put option on the loan portfolio.  

This setup allows us to analyze the effect of a) default-free and defaultable bonds, b) 

positive and zero maturity gaps, c) different correlations within the loan portfolio, d) 

different correlations between the asset values of the borrowing firms and interest 

rates, and e) the effect of idiosyncratic risk in the borrower’s asset value on the value 

of deposit insurance. Additionally, we can analyze f) the influence of the deposit rate 

policy. 

The paper is organized as follows: Section 2 describes the model. We first provide 

the general setup and the stochastic processes we use. Then we derive pricing 

formulas for the loans and the general pricing formula for deposit insurance. Finally, 

we consider two special cases: a bank holding default-free loans and a bank with a 

maturity gap of zero, respectively. Section 3 provides numerical examples for fair 

deposit insurance premiums with realistic parameter combinations and analyzes the 

economic behavior of our model. This section also reports on several robustness 

checks we carried out to assess whether our major results depend on the concrete 

                                                 
2  A related approach under the real-world measure has recently been introduced by 

Grundke (2004). However, his main focus is the effect of jointly modeling credit and 
interest rate risk on a bond portfolio’s value at risk.  
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modeling of the borrowing firms’ default mechanism, of the recovery rate in case of 

default, or of the interest rate dynamics. Finally, Section 4 discusses policy 

implications for deposit insurance agencies and regulators, and concludes. 

2 Model  

2.1 Technical basics 

We assume an underlying probability space (Ω, F, P) equipped with a filtration (Ft)t 

that is generated by the processes defined later and that fulfills the usual conditions. 

Trading in securities takes place continuously with a finite time horizon [0, T’]. We 

assume the economy to be arbitrage-free and complete. Under mild regularity 

conditions, this ensures the existence of a unique equivalent spot martingale measure 

Q (Harrison and Pliska, 1981, Heath, Jarrow and Morton, 1992). Under Q, non-

dividend-paying security prices discounted by the money market account are 

martingales. Let P(t, T), 0 ≤ t ≤ T ≤ T’, denote the price at time t of a default-free 

zero bond maturing in T with face value 1. P(t, T) can be represented by 

P(t, T) = EQ
t











exp










–⌡⌠
t

T
 r(s) ds , (1) 

where r(s) is the continuously compounded short rate in s and EQ
t (⋅) denotes Ft-

conditional expectation with respect to Q. Let R(t, T) denote the continuously 

compounded spot rate in t for T, i.e. the continuously compounded yield of P(t, T), 

and Rac(t, T) its annually compounded equivalent. The instantaneous forward rate in t 
for T is defined by f(t, T) = – ∂ln P(t, T)

 ∂T  = R(t, T) + ∂R(t, T)
 ∂T  T. 

When dealing with stochastic interest rates, as we will do in this paper, it is often 

more convenient to apply (risk-adjusted) forward martingale measures instead of the 

spot martingale measure for the valuation of derivatives. Let QT denote the 
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equivalent T-forward measure (Geman, El Karoui and Rochet, 1995) and QT
t (⋅) and 

ET
t(⋅) Ft-conditional probability and expectation with respect to QT, respectively. 

Under QT, T-year forward prices of non-dividend-paying securities, i.e. security 

prices discounted by the default-free zero bond P(t, T) that matures in T, are 

martingales.3 If CT denotes the payoff of a European derivative in T, its value in t ≤ T 

is given by  

Ct = P(t, T) ET
t(CT). (2) 

Hence, the value equals the discounted expected payoff under the T-forward 

measure. Since the discount factor is the value of a default-free zero bond the 

representation (2) later allows us to analyze the maturity gap effect and the credit risk 

effect separately.    

2.2 General setup 

Throughout the paper, we consider a bank (or a depository institution) with today’s 

total asset value A(0) that is financed through equity and deposits with face value 

FVDP and maturity S = 1 year. A maturity of 1 year is the common assumption in 

structural models dealing with deposit insurance. It is motivated by the monitoring 

period of deposit insurance agencies.  

The bank promises its depositors an annually compounded interest rate of RDP that is 

paid at the maturity date of the deposits. Since we aim to analyze fair values of 

deposit insurance, we assume that the total promised payment 

DP(S) = DP(1) = FVDP (1 + RDP) (3) 

                                                 
3  If interest rates are non-stochastic, the forward measures and the spot martingale measure 

coincide. 
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is guaranteed by some default-free4 deposit insurance agency. Therefore, today’s 

value of deposits DP(0) is given by the promised payment discounted by the 

annually compounded (S = 1)-year default-free spot rate Rac(0, S): 

DP(0) = 
FVDP (1 + RDP)

1 + Rac(0, 1)  (4) 

In order to avoid arbitrage opportunities for private investors we assume 

RDP ≤ Rac(0, 1). In contrast, we allow for arbitrage opportunities for banks in the 

context of deposits, i.e. RDP < Rac(0, S) is possible, which is consistent with the 

market segmentation hypothesis by Jarrow and van Deventer (1998) in the context of 

deposits when markets are arbitrage-free in all other respects. The difference 

between the face value of deposits and the value DP(0) is usually referred to as 

deposit premium. For simplicity, we assume a linear relationship between the 

default-free interest rate and the deposit rate:5  

RDP = b1 + b2 Rac(0, S), (5) 

where the constants b1 and b2 denote the basic deposit rate and the so-called deposit 

rate elasticity6, respectively. Together, b1 and b2 display the bank’s deposit rate 

policy that relates the deposit rates to the default-free interest rates.  

Deposit insurance in our model can be identified as a European put option on the 

bank’s asset value with strike price DP(S) and expiry date S = 1. Hence, the payoff of 

the deposit insurance in S equals 

DI(S) = max(DP(S) – A(S); 0). (6) 

                                                 
4  This assumption allows us to ignore counterparty risk of the deposit insurance contract. 

5  In an equilibrium framework, Hutchison and Pennacchi (1996) derive a (for a bank) 
optimal relationship between interest rates and deposits rate that is approximately linear. 

6  Note, that this “elasticity” is rather a sensitivity than an elasticity. However, we use this 
expression since it is common practice.  
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The key to the analysis is the modeling of the bank’s asset A. We assume that the 

bank holds n loans. The loans are zero bonds that all mature in T ≥ S. Hence, for 

T > S the bank faces a maturity gap of T – S > 0 years, whereas for T = S the bank has 

a maturity gap of zero. The total face value of the loan portfolio equals FVLP, each 

loan has a face value of FVLP n-1. Let the value of loan i in t ≤ T be given by Pd,i(t, T) 

per one unit of face value, i.e. its total value equals FVLP n-1 Pd,i(t, T). The value of 

the loan portfolio is then given by: 

LP(t, T) = FVLP n-1 ∑
i=1

n
 Pd,i(t, T). (7) 

Hence, the payoff of the deposit insurance in S equals: 

DI(S) = max(DP(S) – LP(S, T); 0) 

= max(FVDP (1 + RDP) – FVLP n-1 ∑
i=1

n
 Pd,i(S, T); 0). (8) 

Applying the S-forward measure, we find today’s value of deposit insurance (see 

(2)): 

DI(0) = P(0, S) ES
0(D(S)). (9) 

The next step is to model the loans. As already pointed out in Section 1, we value 

each loan by applying a separate structural model. We assume that the default of a 

borrowing firm is driven by its total asset value. In order to get (semi-)analytical, 

tractable solutions in our later analysis we rely on a comparatively simple default 

mechanism of the firms. More precisely, firm i defaults if and only if its total asset 

value Vi(t) falls below some default point Di at the maturity date T of the loan, i.e. if 

Vi(T) < Di. In case of default, the bank receives a fraction δi of the notional amount.7 

                                                 
7  An exogenous recovery rate is, for example, also considered by Longstaff and Schwartz 

(1995). 
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Hence, the payoff of the loan in T per one unit of face value and of the loan portfolio, 

respectively, is given by: 

Pd,i(T, T) = 1 + (δi – 1) 1{V
 
i(T) < D

 
i} = δi + (1 – δi) 1{V

 
i(T) ≥ D

 
i}  (10) 

LP(T, T) = FVLP n-1 ∑
i=1

n
 Pd,i(T, T) = FVLP n-1 ∑

i=1

n
  (1 + (δi – 1) 1{V

 
i(T) < D}) (11) 

Note that each loan per one unit face value can be interpreted as a portfolio of a 

default-free zero bond with face value δi and a defaultable zero bond with face value 

(1 – δi) and recovery rate 0. Taking expectations with respect to the T-forward 

measure, we have at any time t < T:  

Pd,i(t, T) = P(t, T) ET
t(1 + (δi – 1) 1{V

 
i(T) < D

 
i})  

= P(t, T) ((1 + (δi – 1) QT
t(Vi(T) < Di)) 

(12) 

and 

LP(t, T) = FVLP P(t, T) n-1 ∑
i=1

n
  (1 + (δi – 1) ET

t  (1{V
 
i(T) < D

 
i})) 

= FVLP P(t, T) n-1 ∑
i=1

n
  (1 + (δi – 1) QT

t (Vi(T) < D 
i)) 

(13) 

By substituting into (7) and (8), we have the following representation of today’s 

value of deposit insurance: 

   DI(0) = P(0, S) ES
0(max(FVDP (1 + RDP)  

                                           – FVLP P(S, T) n-1 ∑
i=1

n
 (1 + (δi – 1) QT

S(Vi(T) < D); 0)) 
(14) 

2.3 Stochastic processes 

We need to specify the stochastic processes for the interest rate term structure and 

the asset values of the firms. First, we specify the processes under the spot 

martingale measure. Next, we provide the dynamics of the processes under the 

forward measures that we need to evaluate (12) to (14).  
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Among the vast variety of arbitrage-free or equilibrium interest rate models we rely 

on the class of affine term structure models (e.g., Dai and Singleton, 2000). More 

precisely, we apply the arbitrage-free Hull and White (1990) extension of the 1-

factor equilibrium model by Vasicek (1977) with constant volatility. Vasicek (1977) 

and its (multi-factor) extensions are still widely applied as reference models when 

other term structure models are analyzed. Furthermore, for the aim of our analysis, 

its distributional assumptions (i.e. short rates are normal and default-free zero bond 

prices are lognormal)8 later allow us to easily correlate the interest rate term structure 

with the asset values of the firms and hence to achieve a high degree of analytical 

tractability. We prefer the Hull and White model to the Vasicek model since, in our 

later numerical analysis, the Hull and White model allows us to change interest rate 

risk parameters such as volatility without affecting the implied term structure. 

The Hull and White (1990) model assumes the short rate to evolve under the spot 

martingale measure Q according to: 

dr(t) = (ϑ(t) – a r(t)) dt + σ dWr(t), (15) 

where Wr(t) denotes standard Brownian motion. The positive constants σ > 0 and 

a > 0 denote volatility and mean reversion speed, respectively. The time-dependent 

expression ϑ(t) is given by: 

ϑ(t) = 
∂f(0, t)

 ∂t  + a f(0, t) + 
σ2

2 a (1 – exp(– 2 a t)). (16) 

This specification ensures that the model can be fitted to any term structure of 

today’s spot rates by calculating the instantaneous forward rates f(0, t) from today’s 

term structure (Hull and White, 1990). Default-free zero bond prices are given by 

                                                 
8  One of the shortcomings of Vasicek (1977) and its extension is the positive probability of 

negative short rates. However, this probability is negligible if realistic parameter 
combinations are considered.  
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P(t, T) = A(t, T) exp(– B(t, T) r(t)), 

 where B(t, T) = 
1 – exp(– a (T – t))

a       

 and A(t, T) = 
P(0, T)
P(0, t)  exp



B(t, T) f(0, t) – 

σ2

4 a (1 – exp(– 2 a t)) B(t, T)2 . 

(17) 

 

 

 

 

Next, we consider the dynamics of the asset values of the borrowing firms. We 

follow the majority of structural models (e.g., Merton, 1974, Longstaff and Schwartz, 

1995, Briys and de Varenne, 1997) and assume the asset value of firm i to follow 

geometric Brownian motion with constant volatility ηi. Hence, under Q we have the 

dynamics:  

dVi(t) / Vi(t) = r(t) dt + ηi dW*

i(t), (18) 

where W*

i(t) denotes standard Brownian motion. Since we are dealing with several 

risk drivers we have to specify correlation effects. For this reason, we break down W*

i

(t) into three orthogonal factors. More precisely we assume a conditional 

independent 3-factor model for each asset value: 

W*

i(t) = ρi ( )θi Wr(t) + 1 – θi
 2 Wo(t)  + 1 – ρi

2 Wi(t). (19) 

Wr(t) is the risk driver of the short rate (see (15)). Wo(t) and Wi(t), i = 1, 2, ..., are 

mutually independent standard Brownian motions, also orthogonal to Wr(t), and 

0 ≤ ρi ≤ 1 and –1 ≤ θi ≤ 1 are constants. Substituting (19) into (18) yields: 

dVi(t) / Vi(t) = r(t) dt + ηi ( )ρi ( )θi dWr(t) + 1 – θ 
i
2 dWo(t)  + 1 – ρi

2 dWi(t)  

= r(t) dt + ηi ρi θi dWr(t) + ηi ρi 1 – θ 
i
2 dWo(t) + ηi 1 – ρi

2 dWi(t), 

(20) 

The economic intuition behind (19) and (20) is as follows: instantaneous unexpected 

changes in the asset value of firm i are driven by a systematic factor 

( )θi Wr(t) + 1 – θ 
i
2 Wo(t)  that affects all asset values simultaneously, and by a 

firm-specific idiosyncratic factor Wi(t) that solely affects firm i. The asset value loads 

to the systematic factor with factor loading ρi and to the idiosyncratic factor with 
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the systematic factor with factor loading ρi and to the idiosyncratic factor with 

loading 1 – ρi
2. Hence, unexpected changes in the asset values of firms i and j are 

instantaneously correlated by ρi ρj. The systematic factor consists of two other 

factors. It loads to the factor Wr(t) driving the short rate with θ i and with  1 – θi
 2 to 

a factor Wo(t), which represents that part of systematic risk that is not interest rate 

risk. Consequently, the instantaneous correlation of the asset value of firm i and the 

short rate is given by ρi θi.  

For valuing each loan (see (12)) we require the distribution of Vi(T) under the T-

forward measure, since the Ft-conditional probability of default has to be calculated. 

For valuing the deposit insurance (see (14)) we additionally have to use the joint 

distribution of Vi(S) and r(S) under the S-forward measure.9 The joint dynamics of 

r(t) and Vi(t) under the T-forward measure QT can be calculated by taking the Radon-

Nikodym derivative of QT with respect to Q and applying Girsanov’s theorem:10  

dr(t) = (ϑ(t) – σ2 / a (1 – e–a (T – t)) – a r(t)) dt + σ dWr(t) 

dVi(t) / Vi(t) = (r(t) – ηi ρi θi σ / a (1 – e–a (T – t))) dt  

+ ηi ρi θi dWr(t) + ηi ρi 1 – θi
 2 dWo(t) + ηi 1 – ρi

2 dWi(t) 

(21) 

 

 
(22) 

This means that r(t) and ln(Vi(t)) are bivariate normal under each measure. Let us 

first determine the Ft-conditional expectation and variance of ln(Vi(T)) under QT. We 

have 

ET
t(ln(Vi(T)) = ln(Vi(t) / P(t, T)) – ½ Σi(t, T)2 

 and VarT
t(ln(Vi(T)) = Σi(t, T)2 

(23) 

 
(24) 

 

                                                 
9  Vi(S) is required since the S-conditional probability QT

S(Vi(T) < D) depends on Vi(S). 

10  The proof is straightforward along the lines of Brigo and Mercurio (2001), pp. 453-458. 
Technically, the standard Brownian motions are different under different measures. For 
convenience, we forbear from adding measure-specific subscripts.  
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with Σi(t, T) = V(t, T) + ηi
2(T – t) + 

2 ρi θi ηi σ
a  



T – t – 

1
a (1 – e–a(T–t))   

and V(t, T) = 
σ2

a2 



T – t + 

2
a e–a(T–t) – 

1
2a e–2a(T–t) – 

3
2a  . 

 

 

 

The three summands in the variance Σi(t, T)2 can be interpreted quite well: ηi
2(T – t) 

is that part of the variance that is caused by the asset volatility. If interest rates were 

non-stochastic (e.g., if σ = 0) Σ(t, T)2 would equal ηi
2(T – t). The first summand 

V(t, T) is solely determined by the parameters that describe the risk structure of short 

rate dynamics. It appears in the variance expression because the short rate enters the 

drift of the asset value. The third summand adjusts for the instantaneous correlation 

(respectively the covariance) between unexpected changes in the short rate and the 

asset value. Note further, that the expectation ET
t(ln(Vi(T)) depends on both the asset 

value Vi(t) and the short r(t). The later holds because P(t, T) is a function of r(t) (see 

(17)). 

The next step is to determine the joint distribution of r(S) and ln(Vi(S)), conditional 

on today. According to (23) and (24), the expected value and the variance of ln(Vi(S)) 

equals ln(Vi(0) / P(0, S)) – ½ Σ(0, S)2 and Σ(0, S)2, respectively. The expected value 

and variance of r(S) is given by the instantaneous forward rate f(0, S) and σ2 (1 – e–

2aS) / (2 a), respectively. The covariance between r(S) and ln(Vi(S)) equals: 

CV = CoVarS
0(r(S), ln(Vi(S)) = σ 



σ

a + ηi ρi θi  
1 – e–aS

a  – 
σ2

a  
1 – e–2aS

2a . (25) 

Note, that even in the case of instantaneously uncorrelated short rates and asset 

values, i.e. ρi θi = 0, the covariance of both variables r(S) and ln(Vi(S) under the S-

forward measure need not be zero, since the short rate enters the drift of the asset 

values. 

The above considerations allow us to give the following representation of the joint 

distribution of r(S) and ln(Vi(S)). Under the S-forward measure we have, conditional 

on today, i.e. t = 0, in distribution:  
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r(S) ~ f(0, S) + σ1 ε1 

ln(Vi(S)) ~ ln(Vi(0) / P(0,S)) – ½ Σi(0, S)2 + x1,i ε1 + x2,i ε2 + x3,i ε3,i 

(26) 

 
(27) 

where ε1, ε2, ε3,1, ε3,2, ... are iid standard normal and 

σ1 = σ 
1
2a (1 – e–2aS), 

x1,i = CV / σ1,   x2,i = Σi(0, S)2 – (1 – ρi
2) ηi

2 S – x 2
1,i,   x3,i = ηi 1 – ρi

2 S. 

(28) 

 

 
(29) 

The different components of (26) and (27) can be interpreted analogously to the 

components of (15) and (20): ε1 represents the (systematic) “interest rate risk” that 

affects the short rate in S and all asset values simultaneously. ε2 represents that part 

of total systematic risk of the asset values that is not related to interest rate risk and 

ε3,i the firm-specific idiosyncratic risk. Note that the loading x3,i is zero if and only if 

the asset values are instantaneously perfectly correlated. Hence, the effect of 

idiosyncratic ε3,i vanishes in this case.  

2.4 Valuing loans and deposit insurance 

According to (12), we need to calculate the Ft-conditional probability of default, i.e. 

of the event {Vi(T) < Di} under the T-forward measure, in order to calculate the value 

of a loan in t. We have {Vi(T) < Di} = {ln(Vi(T)) < ln(Di)}. Since ln(Vi(T)) is 

normally distributed with parameters given by (23) and (24) we have via 

normalization of ln(Vi(T)):  

QT
t(Vi(T) < Di)) = N









ln

Di P(t, T)
Vi(t)  + ½ Σi(t, T)2

Σi(t, T) , (30) 

where N(⋅) denotes the cumulative standard normal distribution function. Substituting 

into (12) yields a closed-form solution for the value of a loan with face value 1 in t: 



  14 

Pd,i(t, T) = P(t, T) 










1 + (δi – 1) N








ln

Di P(t, T)
Vi(t)  + ½ Σi(t, T)2

Σi(t, T)  (31) 

Naturally, the value of the defaultable loan equals the value of a default-free bond if 

the recovery rate δi is set to 1. If the default point of firm i goes to zero, i.e. for 

Di ↓ 0, the value of the defaultable loan converges to the value of a default-free bond 

as well.  

By substituting (31) into (14) the value of deposit insurance is given by 

DI(0) = P(0, S) ES
0(max(FVDP (1 + RDP) – FVLP P(S, T) n-1 ∑

i=1

n
 











1 + (δi – 1) N








ln

Di P(S, T)
Vi(S)  + ½ Σi(S, T)2

Σi(S, T) ; 0)) 

(32) 

Since each loan is a derivative on the firm’s assets, deposit insurance is a derivate on 

a portfolio of derivatives. Even in the case of a simple compound equity option, it is 

well-known that closed-form solutions do not generally exist when stochastic interest 

rates are taken into account (Frey and Sommer, 1998). Hence, we cannot hope to find 

a closed-form solution for the value of deposit insurance (32) in our far more 

complex case.  

However, we can find a semi-analytical solution, i.e. an integral representation, of 

the value of deposit insurance (32), if we make the simplifying assumption that the 

borrowing firms are homogenous in their major risk parameters and if the number of 

loans in the portfolio is sufficiently large. Hence we assume that the firms’ asset 

value and asset volatility, their default points and the factor loadings, ρi and θi, 

coincide. Thus we can drop the subscripts and have V(0) = Vi(0) = Vj(0), η = ηi = ηj, 

D = Di = Dj, ρ = ρi = ρj, θ = θi = θj, Σ(t, T) = Σi(t, T) = Σj(t, T). Note that the asset 

correlation equals ρ2 with this notation. 
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Although we have assumed that today’s asset values Vi(0) are equal, the asset values 

Vi(S) in S will differ due to the idiosyncratic factor Wi(t) (see (20) and (22)). 

However, for large n, i.e. a large number of loans, the idiosyncratic factors Wi(t) 

diversify in such a way that the limit distribution of the loan portfolio value in S is 

independent of stochastic components that are related to Wi(t). Therefore, only the 

systematic factor(s) will matter for future loan portfolio values. This allows us to 

obtain a semi-analytical representation, i.e. an integral representation, of the value of 

deposit insurance (32). 

The key to the analysis is the distribution of the value of the loan portfolio in S under 

the S-forward measure: 

LP(S, T) = FVDP P(S, T) n-1 ∑
i=1

n
 










1 + (δ – 1) N








ln

D P(S, T)
Vi(S)  + ½ Σ(S, T)2

Σ(S, T)  (33) 

Conditional on today, the value of a default-free zero bond in S, P(S, T), and the asset 

values Vi(S) are random variables. P(S, T) depends on the future short rate r(S) (see 

(17)). For convenience, we shall write P(S, T)(r(S)) instead of P(S, T). Hence:  

LP(S, T) = FVDP P(S, T)(r(S)) n-1 ∑
i=1

n
 







1 + (δ – 1) N





ln

D P(S, T)(r(S))
Vi(S)  + ½ Σ(S, T)2

Σ(S, T)  (34) 

The representation (26) and (27) of the joint distribution of r(S) and ln(Vi(S)) allows 

us to obtain the following representation of the value of the loan portfolio in S under 

QS: 

LP(S, T) ~ FVDP P(S, T)( f(0, S) + σ1 ε1)  

                  n-1 ∑
i=1

n
 







1 + (δ – 1) N





ln

D P(0, S) P(S, T)( f(0, S) + σ1 ε1)
Vi(0)  + ½ Σ(0, S)2 – x1 ε1 – x2 ε2 – x3 ε3,i + ½ Σ(S, T)2

Σ(S, T)  

 

(35) 

 

 

Note that, conditional on the “systematic” variables ε1 and ε2, the Zi, defined in (35), 

are iid. Hence, conditional on ε1 = z1 and ε2 = z2, n-1 ∑
i=1

n
 Zi converges almost surely to 

:= Zi 
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E(Z1| ε1 = z1, ε2 = z2) according to the strong law of large numbers. Economically, 

this means that the influence of the idiosyncratic factors ε3,i that affect each loan 

value in S separately vanish for a large number of loans. Consequently, the future 

value of a sufficiently large loan portfolio is only driven by the systematic factor(s). 

This intuitive argument can be formalized by applying Lemma 1 from the Appendix 

with X = (ε1, ε2), Yi = ε3,i, and f given by the right hand side of (35). We find that 

LP(S, T) converges in L2 and, hence, in distribution to: 

LP(S, T) ~  FVDP P(S, T)( f(0, S) + σ1 ε1) 

               ∫ 



1 + (δ – 1) N





ln

D P(0, S) P(S, T)( f(0, S) + σ1 ε1)
 Vi(0)  + ½ Σ(0, S)2 – x1 ε1 – x2 ε2 – x3 z3 + ½ Σ(S, T)2

Σ(S, T)  dN(z3) (36) 

Furthermore, since the payoff of a put option is a continuous bounded function of the 

underlying, we can conclude that the value of deposit insurance converges to 

DI(0) = P(0, S) ∫(max(FVDP (1 + RDP) – FVLP P(S, T)( f(0, S) + σ1 z1)   (37) 

∫ 



1 + (δ – 1) N





ln

D P(0, S) P(S, T)( f(0, S) + σ1 z1)
 Vi(0)  + ½ Σ(0, S)2 – x1 z1 – x2 z2 – x3 z3 + ½ Σ(S, T)2

Σ(S, T)  dN(z3); 0)) dN(z1, z2), 
where N(⋅, ⋅) denotes the bivariate cumulative standard normal distribution function. 

From now on, we will work with the limit distribution (36) and the limit value of 

deposit insurance (37).  

2.5 Special cases 

In this section we analyze special cases of our general setup and hence special cases 

of our general pricing formula (37). Here we are dealing with the “extreme” cases: 

A) no credit risk, i.e. the loans are default-free, B) no maturity gap, i.e. T = S.  

If there is no credit risk in the loan portfolio, i.e. the borrowing firms cannot default, 

the promised payment at maturity is safe, i.e. Pd(T, T) = 1. The loan portfolio thus 



  17 

behaves as if it consisted of a single default-free zero bond with face value FVLP. 

Consequently, deposit insurance equals a put option on a default-free zero bond and 

we can apply the well-known formula for European puts with T > S (Hull and White, 

1990):  

DI(0) = FVDP (1 + RDP) P(0, S) N(–h + σP) – FVLP P(0, T) N(–h), 

where σP = σ 
1
2a (1 – e–2aS) B(S, T) = σ1 B(S, T), 

h = 
1
σP

 ln
P(0, T) FVLP

 P(0, S) FVDP (1 + RDP) + 
σP
2 . 

(38) 

 

 

 

 

 

Of course, this formula is a special case of our general formula (37) for D ↓ 0, or 

Vi(0) > D and η ↓ 0. Note that for T ↓ S the value of deposit insurance converges to 

zero, since a bank with a maturity gap of zero cannot default in our framework if the 

loans are default-free. 

In the case of no maturity gap i.e. T = S, the value of the loan portfolio in S is given 

by 

LP(S, S) = FVDP n-1 ∑
i=1

n
 (1 + (δ – 1) 1{V

 
i(S) < D}) 

 = FVDP n-1 ∑
i=1

n
 (1 + (δ – 1) 1{ln(V

 
i(S)) < ln(D)}) 

(39) 

We see that r(S) does not enter (39). This is natural, since for T = S the (expected) 

payoff of each loan need not be discounted from T to S. Hence it is only the 

distribution of ln(Vi(S)) rather than the joint distribution of ln(Vi(S)) and r(S) that 

matters. Consequently, we can collect the terms x1 ε1 and x2 ε2 in (27) and have  

ln(Vi(S)) ~ ln(Vi(0) / P(0, S)) – ½ Σ(0, S)2 + x4 ε4 + x3 ε3,i  (40) 

under the S-forward measure, where ε4 is standard normal and independent of ε3,i, 

and x4 is given by x4 = (x2
1 + x2

2)
0.5. By substituting (40) into (39), taking expectation 
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and applying analogous arguments as in the general case of Section 2.4 we find the 

limit distribution of the value of the loan portfolio in S: 

LP(S, S) ~ FVDP (1 + (δ – 1) N





ln

D P(0, S)
 Vi(0)  + ½ Σ(0, S)2 – x4 ε4

x3
) ρ < 1 (41) 

LP(S, S) ~ FVDP (1 + (δ – 1) 1{ε
 
4 < (ln(D P(0, S) / V

 
i(0)) + ½ Σ(0, S)

2
 )/x

 
4}) ρ = 1 (42) 

Of course, (41) and (42) are special cases of (36). N





ln

D P(0, S)
 Vi(0)  + ½ Σ(0, S)2 – x4 ε4

x3
 can 

be interpreted as the fraction of defaults in the loan portfolio under the S-forward 

measure. Observe that for ρ = 1, the value of the loan portfolio has a two-point 

distribution on {FVDP, δ FVDP}. This is plausible, since in the case of ρ = 1, the loan 

portfolio behaves like a single defaultable zero bond. In contrast, in the case of 

instantaneously uncorrelated loans (see (41)), the value of the loan portfolio does not 

have a point distribution since x4 is not zero. This is due to the fact that the short rate 

enters the drift of each asset value process. Hence the asset values in S are positively 

correlated, even if they are instantaneously uncorrelated. However, this effect 

vanishes if the short rate tends to zero or the mean reversion speed goes to infinity.  

These considerations are illustrated by Figure 1 where the density of (41) for 

different asset correlations and short rate volatilities are shown. As in the later 

numerical analysis, we set the face value of the loan portfolio to that number that 

ensures a today’s loan portfolio value of 100, according to (31). The total face value 

FVLP of the loan portfolio thus equals 112.65, 112.81 and 113.27 for σ = 0.005, 0.02, 

and 0.04, respectively, but is, of course, independent of the asset correlation ρ2 (see 

Table 2 for the other parameters). A large asset correlation favors large and small 

values of the loan portfolio, i.e. large and small portfolio values become more likely. 

Thus for increasing asset correlation, the distribution becomes broader. For ρ2 ↑ 1, 

the distribution converges to a two-point distribution, as already pointed out. For 

ρ2 ↓ 0, the distribution becomes tighter and converges to a one-point distribution if 

the asset volatility tends to zero. 
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3 Numerical results 

3.1 General setting 

To gain deeper insights into the economic behavior of our model, we analyze in this 

section the model outputs in dependence on the model input parameters. We first 

analyze the case of default-free loans (Section 3.2). We then consider a bank with a 

maturity gap of zero, but allow for defaultable loans (Section 3.3). Finally, we 

analyze the general case, i.e. allow for a positive maturity gap and defaultable loans 

(Section 3.4).  

Throughout our analysis, we assume the bank to have a total asset value of 

A(0) = 100. Hence, the value of the loan portfolio is also 100 by definition. In our 

analysis we assume the loan portfolio to be priced fairly according to the general 

pricing formula (31) for each parameter combination we look at.11 Thus for all 

parameter sets we adjust the face value of the loan portfolio to 

FVLP = A(0) / Pd,i(0, T) before calculating the value of deposit insurance.  

Furthermore, we assume that the bank has issued deposits with face value 

FVDP = 95.12 For each parameter combination we calculate the value of deposit 

insurance DI(0) according to the pricing formulas of Section 2 and report the fraction 

DI(0) / FVDP, which is the value of deposit insurance per one unit of nominal 

deposits. We refer to this fraction as deposit insurance premium. 

                                                 
11  Hence, we are not running a comparative-static analysis in the sense of analyzing the 

effects of parameter changes to the value of deposit insurance when parameters of the 
loan portfolio, especially its face value, are exogenously given. 

12  We have also run our analysis with other face values of deposits. Since the put option’s 
strike price is a linear function of the face value of deposits, a lower (higher) face value 
decreases (increases) the value of deposit insurance. Therefore, of course, the level of the 
deposit insurance value varies. However, we find that our qualitative results are 
substantially unaffected.  
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The Hull and White model requires the instantaneous forward rate curve and its 

derivation (see (16)), and hence a somewhat nicely behaved today’s spot rate term 

structure. Since we also want to analyze effects of different forms of term structures, 

we parameterize today’s annually-compounded spot interest rate term structure by 

the well-known Nelson and Siegel (1987) curve:  

Rac(0, T) = β0 + (β1 + β2) 
1 – exp(– T / β3)

 T / β3
 – β2 exp(– T / β3), (43) 

where β0, ..., β3 (β3 > 0) are constants. β0 can be interpreted as the long-term spot 

rate, i.e. limT→∞ Rac(0, T) = β0, whereas limT↓0 Rac(0, T) = β0 + β1 equals the annually 

compounded short rate. Thus we have r(0) = ln(1 + β0 + β1). If the difference 

between the long-term and short-term spot rate is interpreted as the slope, it is given 

by –β1. If β2 = 0, we see that a positive (negative) slope is equivalent to a concave 

(convex) curvature. The term structure is less curved if β3 is higher. Based on (43), it 

is straightforward to calculate the instantaneous forward rate curve and its 

derivation.13 

Throughout our analysis we will refer to 9 different term structures showing 3 

different short-term levels, (l(ow), m(edium), h(igh)) and three different slopes, 

(d(own), f(lat), u(p)). These are specified by the Nelson and Siegel-parameters 

shown in Table 1 and are illustrated by Figure 2. Further, we assume a exemplary set 

of parameters that we refer to if the parameters are not explicitly specified otherwise. 

In this exemplary scenario we set the short-rate volatility σ = 0.02 and the mean 

reversion speed a = 0.1. These interest rate risk parameters are close to Hull and 

White (1993). Setting a deposit maturity of S = 1 year, we assume a maturity gap of 3 

years, i.e. we set the maturity of the loans T = 4. If credit risk is taken into account, 

we set the borrowers’ asset value and asset volatility to V0 = 10 and η = 0.1, 

respectively, and the default point to D = 8. The chosen parameters determining the 

                                                 
13  For simplicity, we omit the relevant formulas here. 
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borrowers’ credit risk roughly imply a real-world default probability of 1%, 

assuming an average market price of risk for asset values of 0.15 (Huang and Huang, 

2003) and then transforming risk-neutral default probabilities into real-world default 

probabilities along the lines of Crouhy, Galai and Mark (2000). According to 

Moody’s (2000), a 4-year default probability of 1% is, on average, linked to the A 

rating category. In order to analyze the effect of “pure” credit risk we assume a zero 

recovery rate, i.e. δ = 0, in the exemplary scenario. The loading to the systematic 

factor is set at ρ = 0.447, which means that the asset correlation ρ2 equals 0.2, and is 

close to the Basel II assumptions. Further, we set θ = 0. The basic deposit rate is 

b1 = 0 and the deposit rate elasticity equals b2 = 1. Hence in this scenario, the 

deposits are promised the 1-year default-free annually compounded spot rate, i.e. RDP 

= Rac(0, 1). Table 2 summarizes the exemplary scenario. 

3.2 Default-free loans 

If we do not allow for default of the borrowing firms, the bank holds a single default-

free bond. If we do not allow for a positive maturity gap of the bank, i.e. if we set T = 

S, the value of deposit insurance equals 0, since the bank cannot default by 

definition. In the following we assume T > S. According to (38), the value of deposit 

insurance is influenced by today’s spot rate curve, its risk parameters σ and a, and b1 

and the deposit rate elasticity b2. Let us first examine the influence of today’s term 

structure on the value of deposit insurance when we set b1 = 0 and b2 = 1 as in our 

exemplary parameter set. Thus we have FVDP = 95 (1 + Rac(0, 1)). Since FVDP (1 + 

RDP) P(0, S) = FVDP and FVLP P(0, T) = A(0) hold, substituting into (38) yields:  

DI(0) = FVDP N(–h + σP) – A(0) N(–h), 

where σP = σ 
1
2a (1 – e–2aS) B(S, T) = σ1 B(S, T), 

h = 
1
σP

 ln
A(0)

 FVDP
 + 
σP
2 . 

(44) 
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Hence today’s value of deposit insurance is independent of today’s term structure 

but, of course, it does depend on the two risk parameters, namely short rate volatility 

σ and mean reversion speed a, and on the time to maturity T.  

Let us first consider the effect of T. Figure 3 shows the deposit insurance premium 

for different term structures and deposit rate elasticities in dependence on time to 

maturity. The “reference scenario” refers to a deposit rate elasticity of b2 = 1. 

Clearly, the deposit insurance premium increases with increasing time to maturity. 

This is plausible since a higher time to maturity T yields a broader distribution of 

zero bond prices in S = 1 (see (17), (26)) under the S-forward measure and broader 

distributions cause higher put option values in general. Additionally, Figure 3 shows 

the results for deposit rate elasticities of 0.7, 0.3, and 0. We find that higher deposit 

rate elasticities lead to a higher deposit insurance premium. Of course, this effect is 

caused by the monotone-increasing relationship between the deposit rate elasticity 

and the strike price of the put option we look at (see (3), (5), (6)). As this relationship 

is independent of the distribution of the bank’s assets, we omit the effect of the 

deposit rate elasticity in the subsequent sections. 

Interestingly, Figure 3 illustrates that the deposit insurance premium is no longer 

unaffected by today’s interest rate term structure if the deposit rate elasticity is 

smaller than one. The influence of the form of the term structure increases with lower 

deposit rate elasticity. Our numerical results indicate that both a higher level of the 

term structure and a higher slope cause the deposit insurance premium to decrease.  

Figure 4 and Figure 5 show the effect of the short rate volatility and the mean 

reversion speed, respectively, on the deposit insurance premium for different time-to-

maturities and different term structures. Except for the reference scenario, the deposit 

rate elasticity is set to b2 = 0.3. Since, similar to the influence of T, a higher short rate 

volatility and a lower mean reversion speed cause a broader distribution of zero bond 
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prices in S = 1, we find the deposit insurance premium to increase for higher σ and to 

decrease with higher a (see (17), (26)). 

Summarizing the numerical results of this section, we found what was expected, 

especially in relation to the risk parameters of the term structure. However, it should 

be pointed out that the deposit rate policy of banks, measured by the deposit rate 

elasticity, can materially affect the value of deposit insurance as it defines the strike 

price of the put option.  

3.3 No maturity gap 

If the bank has a maturity gap of zero and holds only default-free loans it cannot 

default as already pointed out in Section 3.2. Hence, the deposit insurance premium 

is zero. Consequently, if the bank holds a portfolio of defaultable loans, the deposit 

insurance premium can never be lower than in the default-free case. From now on, 

we omit consideration of different today’s interest rate term structures since the 

effects appear to be similar to those reported in Section 3.2. The same holds for the 

effects of short rate volatility and mean reversion speed in this section. 

Figure 6 and Figure 7 illustrate the deposit insurance premium for different default 

points of the borrowing firms, i.e. different default risk of the firms, and different 

asset correlations with respect to the asset volatility (Figure 6) and the recovery rate 

(Figure 7). In all figures, we find that the deposit insurance premium increases with 

higher asset correlation. This is consistent with the analysis of Section 2.5 that a 

higher asset correlation yields a broader distribution of the value of the loan portfolio 

in S, which naturally leads to a higher value of put options. The economic intuition 

behind this is quite clear: The lower the asset correlation the better value fluctuations 

and defaults of individual loans can be diversified within the loan portfolio. Note that 

these fluctuations are solely caused by the asset values of the firms, i.e. the credit 
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quality of the loan portfolio, since the value of the loan portfolio in S is not affected 

by the short rate in S, as we have already pointed out.  

Furthermore, Figure 6 and Figure 7 imply that higher default risk, i.e. a higher 

default point D (all considered figures) or a higher asset volatility η of the borrowing 

firms (Figure 6), causes higher deposit insurance premiums. The influence of the 

asset correlation on the deposit insurance seems to be higher, the higher the default 

risk of the firms is. Naturally, a higher recovery rate causes a lower deposit insurance 

premium (Figure 7). To summarize this section, we should point out that the asset 

correlation of the borrowing firm, i.e. roughly speaking the correlation within the 

loan portfolio, materially affects the value of deposit insurance. Whereas for low 

asset correlations, results are similar to the default-free case, there is a large 

difference when the loan portfolio is not well diversified. However, an assumption of 

perfectly correlated loans, as implicitly made by Anderson and Cakici (1999), 

strongly overestimates the effect of credit risk in the loan portfolio on the value of 

deposit insurance. 

3.4 General case 

Let us next consider the general case where loans are defaultable with a maturity 

T > S = 1, i.e. the bank faces a positive maturity gap. In the case of a maturity gap of 

zero the asset correlation of the borrowing firms appeared to be of particular 

importance. We therefore first analyze how the asset correlation influences the value 

of deposit insurance. Figure 10 to Figure 13 show, for different asset correlations, the 

deposit insurance premium in dependence on the short rate volatility (Figure 10), the 

mean reversion speed (Figure 11), the default point (Figure 12) and the asset 

volatility (Figure 13). As in Section 3.3, we find the deposit insurance premium to 

increase with higher asset correlation. The economic intuition is analogous to the 

case of a zero maturity gap: lower asset correlation increases the ability to diversify 

the value fluctuations of individual loans in the portfolio that are caused by changing 
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credit quality, thus yielding a tighter distribution of the portfolio value in S (under the 

S-forward measure) and decreasing the put option value. In the figures considered, 

the deposit insurance premium for a bank holding a default-free loan portfolio is also 

given, in addition to the deposit insurance premiums for the defaultable loan 

portfolios we have looked at so far. Interestingly, the value of deposit insurance in 

the default-free case need not necessarily be lower than the premium in the 

defaultable case. In fact, it can by far exceed the premium of the default-free case. 

This is an effect we did not find in the case of a zero maturity gap. By definition, the 

deposit insurance premium was zero for default-free loans. Hence, this must be 

caused by the positive maturity gap. 

To clarify this in more detail, let us take a look at Figure 12. Here we find the deposit 

insurance premium for different asset correlations and maturity gaps in dependence 

on the default point, i.e. today’s credit quality of the firms. For a low default point, 

the deposit insurance premiums for the default-free and the defaultable loan 

portfolios coincide or are close. For realistic default points like in our basis 

parameter set, the deposit insurance premium for the defaultable loan portfolio can 

be much lower than for the default-free loan portfolio, whereas for large default 

points we find the inverse effect.  

The key to the analysis of this - at first glance contra-intuitive - behavior is the 

distribution of the value of the loan portfolio in S = 1 under the S-forward measure. 

Figure 8 shows the portfolio value for recovery rates δ of 0, 0.5, and 1, and a 

maturity gap of 3 years according to (36) where the asset correlation is set to the 

“extreme value” ρ2 = 0 (see Table 2 for the other input parameters). On the axes, 

possible realizations of the systematic variables ε1 and ε2 are given. Remember that 

these variables are standard normal. Hence, they have an expected value of zero. 

Realizations below -3 and above 3 are very improbable. The lower graph of Figure 8 

assumes a recovery rate of δ = 1. Hence the loan portfolio behaves as if it were 

default-free. As a consequence, the value of the loan portfolio solely depends on ε1 
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but is independent of ε2. The upper graph shows the value of the loan portfolio for a 

recovery rate of zero. Naturally, the loan portfolio value depends on both ε1 and ε2. 

However, interestingly, the surface appears to be much flatter and hence less risky 

than in the default-free case. In fact, the default-free case implies a deposit insurance 

premium of 0.39%, whereas we have 0.12% for the defaultable case with δ = 0. This 

means that in this example, a bank holding a 4-year default-free bond has to pay a 

higher deposit insurance premium than a bank holding a well-diversified portfolio of 

defaultable loans. This also implies that a higher recovery rate increases the fair 

deposit insurance premium. This effect can even appear when the bank holds a single 

defaultable bond, or alternatively if ρ2 = 1 for certain parameter combinations. 

This effect can be explained by the potential diversification between fluctuations of 

the value of default-free zero bonds in S, that also serve as discount factors from T to 

S under the S-forward measure, and fluctuation of the firms’ asset values, i.e. 

fluctuations in the credit quality of the loan portfolio. The effect is more pronounced 

when we also have diversification between the credit quality of the borrowers in S, 

i.e. for low asset correlations.  

The following formula rewrites the value of the loan portfolio (36), when it consists 

only of a single defaultable loan, i.e. for ρ2 = 1, broken down into two factors, A and 

B: 

FVLP P(S, T)( f(0, S) + σ1 ε1) 







1 + (δ – 1) N





ln

D P(0, S) P(S, T)( f(0, S) + σ1 ε1)
 Vi(0)  + ½ Σ(0, S)2 – x1 ε1 – x2 ε2 + ½ Σ(S, T)2

Σ(S, T)  

 

(45)

A is the discount factor from T to S, i.e. the value in S of a default-free bond per one 

unit face value maturing in T, whereas B equals the expected loan portfolio payoff in 

S under the S-forward measure. In the default-free case, we have B = 1. Hence, the 

total risk of the loan portfolio value in S is solely related to fluctuations of A, that are 

caused by the randomness of ε1. If we have a high (low) realization of ε1, A is low 

B A 
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(high). In the case of a defaultable loan, B is stochastic as well, depending on ε1 and 

ε2. If x1 and x2 in B were zero, B would behave conversely to A, i.e. B would be high 

(low) for high (low) realizations of ε1. Roughly speaking, B would stabilize the 

fluctuations of the zero bond price A and vice versa. However, of course, in the case 

of a single defaultable bond, x1 and x2 are not zero, so the terms –x1 ε1 and –x2 ε2, that 

represent systematic risk of the asset value, in B can (over-)compensate the 

stabilizing effect. 

In the case of a low correlated loan portfolio (see (36)), i.e. where ρ2 is small, the 

stabilizing effect is much more likely (depending on the input parameters). For small 

ρ2, the influence of the unsystematic risk on the loan portfolio value in S vanishes, as 

shown in Section 2.4 and the relevance of systematic risk is small, i.e. x1 and x2 are 

comparatively small.  

Figure 8 also illustrates that for a higher recovery rate the loan portfolio distribution 

can become riskier. In view of the prior analysis this is plausible, since a higher 

recovery rate increases the default-free portion in the loan portfolio (see Section 2.2 

and (10)). 

Summarizing the major results of this section, we found that when a bank holds a 

defaultable loan portfolio and faces a positive maturity gap, the deposit insurance 

premium can depend strongly on the correlation within the loan portfolio, similar to 

the case of a zero maturity gap. In contrast, the deposit insurance premium can even 

be lower than for a bank holding default-free loans. 

3.5 Robustness 

We tested whether our results, especially the effect of correlation within the loan 

portfolio and the effect of the maturity gap, depend on the three main assumptions of 

our model: the simple default mechanism, i.e. default is only possible at the maturity 

date of the loans, the non-stochastic exogenous recovery rate, and the Hull and White 
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(1990) short rate model. Based on these assumptions we were able to derive the 

simple (semi-)analytical solution for deposit insurance premiums in section 2.4. For 

running several robustness checks, we modified our model in three ways: First, we 

allowed for early default of each borrower by including a default barrier similar to 

Longstaff and Schwartz (1995). Second, we analyzed the effect of a stochastic 

endogenous recovery rate that is proportional to the firms’ asset values at default, 

similar to Klein (1996). Third, we replaced the Hull and White (1990) short rate 

model by the Cox, Ingersoll und Ross (1985) model.  

For each of these modifications we calculated deposit insurance premiums for 

realistic parameter combinations and variations. Since closed-form or semi-analytical 

solutions are not available, we applied Monte Carlo simulation of the borrowers’ 

asset values and the short rate under the spot martingale measure. As the payoff of 

deposit insurance in S depends on the values of the loans in S that cannot be 

determined in standard Monte Carlo procedures for a single run, we applied the least 

squares Monte Carlo simulation according to Longstaff and Schwartz (2001) to 

calculate these conditional expectations.  

Our major results and the behavior of the model turned out to be robust against these 

modifications. The only exception is the default-free case when the Cox, Ingersoll 

and Ross (1985) model is applied. Clearly, the independence of the deposit insurance 

premium from today’s term structure (Section 2.5) is a feature of the Hull and White 

(1990) model that cannot be expected to exist when other term structure models are 

applied. Additionally, the results of variants of the Cox, Ingersoll and Ross interest 

rate risk parameters (mean reversion speed and interest rate volatility) cannot directly 

be compared to the Hull and White results since a variation in the risk parameters 

always affects today’s term structure in the Cox, Ingersoll and Ross model.         
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4 Conclusion and outlook 

In this paper we provided a structural model in order to analyze the value of deposit 

insurance, depending simultaneously on credit risk, the maturity gap and the deposit 

rate policy. Under the real world measure, it is an extension of the well-known 

conditional-independent 1-factor model that serves as the theoretical foundation of 

the Basel II-risk weight functions. We have shown that the correlation within the 

loan portfolio and the bank’s maturity gap can have a material impact on fair deposit 

insurance premiums. Furthermore, we find that fair deposit insurance premiums can 

depend negatively on the borrowers’ default risk when the bank faces a maturity gap. 

The deposit insurance premium for a bank holding defaultable loans can even be 

lower than for a bank investing in default-free bonds. Consequently, in these cases a 

higher recovery rate or, alternatively, better collaterals causes higher deposit 

insurance premiums. The economic intuition behind these results is that in certain 

circumstances interest rate risk, i.e. a maturity gap, can diversify changes in the 

credit quality of the loan portfolio in a way that it is even less risky than a default-

free bond. The influence of this effect increases with lower correlation within the 

loan portfolio.  

[Discuss policy implications for deposit insurance agencies here] 

[Discuss policy implications for banking supervision related to the joint treatment of 
credit risk, interest rate risk and other sources of bank risk such as commission risk, 
the future framework “Basel III” and Basel Committee on Banking Supervision 
(2004)]  

For practical and empirical purposes, our approach can easily be extended to more 

realistic assumptions such as inhomogeneous loan portfolios, more advanced affine 

(e.g., Dai and Singleton, 2000) or essentially-affine (Duffee, 2002) term structure 

models and early-default structural models (e.g., Longstaff and Schwartz, 1995, 

Briys and de Varenne, 1997), respectively. Additionally, loans that are not priced 

fairly can be considered. The parameters can be chosen to be consistent with 

information of regulators or deposit insurance agencies about the bank’s loan 
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portfolio quality and maturity gap. However, (semi-)closed form solutions cannot be 

expected to exist in those settings.  

Another challenging topic for future empirical research is the combination of our 

approach with the market-data-based empirical work of the papers mentioned in 

Section 1. This can be done by adding another geometric Brownian motion to the 

loan portfolio that reflects both other bank assets and the value of the remaining 

future income. Major risk parameters can then be inferred from both market data, i.e. 

equity prices, and accounting and regulatory data related to borrowers’ default risk 

and the bank’s maturity gap.  
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Appendix 

Lemma 1: Let (Ω, F, P) be a probability space, X an m-dimensional vector of random 
variables, and Yi, i = 1, 2, ... be iid random variables that are independent of X. Let f 
be a real-valued function on Rm+1 with E(f(X, Y1)2) = c < ∞. Then we have  

limn n-1 ∑
i=1

n
 f(X, Yi) = E(f(X, Y1)|X)  in L2. 

Proof  The conditional expectations E(f(X, Yi) | X) are iid. Hence, we have  

E((n-1 ∑
i=1

n
 f(X, Yi) – E(f(X, Y1)|X))2)  

= E(E((n-1 ∑
i=1

n
 f(X, Yi) – n-1 ∑

i=1

n
 E(f(X, Yi)|X))2|X)) 

= E(n-2 E((∑
i=1

n
 (f(X, Yi) – E(f(X, Yi)|X)))2|X)) 

= E(n-2 Var(∑
i=1

n
 f(X, Yi) |X)) = E(n-1Var(f(X, Y1) |X)) 

≤ E(n-1E(f(X, Y1)2 |X)) = n-1 c  

� 
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Tables 

Table 1: Specification of spot rate curves 
 Abbreviation β0 β1 β2 β3 

low down ld  0.01 0.02 0 2 
low flat lf  0.03 0 0 2 
low up lu  0.05 -0.02 0 2 

medium down md  0.03 0.02 0 2 
medium flat mf  0.05 0 0 2 
medium up mu  0.07 -0.02 0 2 
high down hd  0.05 0.02 0 2 
high flat hf  0.07 0 0 2 
high up hu  0.09 -0.02 0 2 

This table shows different parameterizations of today’s annually compounded spot rate curve Rac(0, ⋅). 

They are illustrated by Figure 2. The beta-parameters refer to the Nelson and Siegel (1987)-

parameterization: Rac(0, T) = β0 + (β1 + β2) (1 – exp(– T / β3)) / (T / β3) – β2 exp(– T / β3). 
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Table 2: Exemplary scenario 
Interest Rate Term Structure 

Today’s term structure (mf) β0 β1 β2 β3 
0.05 0 0 2 

Risk parameters     
Short rate volatility σ 0.02   

Mean reversion speed a 0.1   
    

Loans  
Maturity loan T 4   

Recovery rate δ 0   
Asset value borrowing firm(s) V(0) 10   

Asset volatility borrowing firm(s) η 0.1   
Default Point borrowing firm(s) D 8   

Instantaneous asset correlation ρ2 0.2   
Instantaneous correlation asset 

value / short rate θ 0   

    
Bank 

Value loan portfolio A(0) 100   
Face value deposits FVDP 95   

Basic deposit rate b1 0   
Deposit rate elasticity b2 1   

This table reports the exemplary set of parameters for our analysis. If not otherwise specified, later 
numerical results refer to these parameters.  
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Figures 

Figure 1: No maturity gap: densities of the value of the loan portfolio in S = 1 under 
the S-forward measure for different asset correlations and different short rate 
volatilities  
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This figure shows densities of the value of the loan portfolio in S = 1 under the S-forward measure for 
different asset correlations ρ2 and different short rate volatilities σ when the maturity gap is zero. The 
value of the loan portfolio is given by (41). The default point D of the firms is set to 9. For every 
parameter set, the face value of the loan portfolio is adjusted to yield a today’s loan portfolio value of 
100, according to (31). If not otherwise specified, input parameters are given by Table 2.  
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Figure 2: Spot rate curves 
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This figure illustrates the spot rates curves Rac(0, T) parameterized in Table 1. 
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Figure 3: Default-free loans: deposit insurance premium for different term structures 
and different deposit rate elasticities in dependence on the loans’ maturity 
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This figure shows the deposit insurance premium for different term structures and different deposit 
rate elasticities in dependence on the loans’ maturity when loans are default-free. The reference 
scenario refers to a deposit rate elasticity of b2 = 1. The abbreviations “ld” ... “hu” refer to different 
term structures specified by Table 1. The deposit insurance premium is calculated by (38) divided by 
the face value of deposits 95. For every parameter set the face value of the loan portfolio is adjusted to 
yield a today’s loan portfolio value of 100, according to (31). If not otherwise specified, input 
parameters are given by Table 2.  

T 

T 

T 

b2 = 0.7 

b2 = 0 

b2 = 0.3 



  40 

Figure 4: Default-free loans: deposit insurance premium for different term structures 
and different maturities of the loans in dependence on the short rate volatility 
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This figure shows the deposit insurance premium for different term structures and different maturities 
of the loans in dependence on the short rate volatility when loans are default-free. The reference 
scenario refers to a deposit rate elasticity of b2 = 1. The abbreviations “ld” ... “hu” refer to different 
term structures specified by Table 1. When these term structures are applied, the deposit rate elasticity 
is set to b2 = 0.3. The deposit insurance premium is calculated by (38) divided by the face value of 
deposits 95. For every parameter set, the face value of the loan portfolio is adjusted to yield a today’s 
loan portfolio value of 100, according to (31). If not otherwise specified, input parameters are given 
by Table 2.  
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Figure 5: Default-free loans: deposit insurance premium for different term structures 
and different maturities of the loans in dependence on the mean reversion speed 
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This figure shows the deposit insurance premium for different term structures and different maturities 
of the loans in dependence on the mean reversion speed when loans are default-free. The reference 
scenario refers to a deposit rate elasticity of b2 = 1. The abbreviations “ld” ... “hu” refer to different 
term structures specified by Table 1. When these term structures are applied the deposit rate elasticity 
is set to b2 = 0.3. The deposit insurance premium is calculated by (38) divided by the face value of 
deposits 95. For every parameter set, the face value of the loan portfolio is adjusted to yield a today’s 
loan portfolio value of 100, according to (31). If not otherwise specified, input parameters are given 
by Table 2.  
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 Figure 6: No maturity gap: deposit insurance premium for different asset 
correlations and different default points in dependence on the asset volatility 
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This figure shows the deposit insurance premium for different asset correlations and different default 
points in dependence on the asset volatility when the maturity gap is zero. The deposit insurance 
premium is calculated by (41) and (9) divided by the face value of deposits 95. For every parameter 
set, the face value of the loan portfolio is adjusted to yield a today’s loan portfolio value of 100, 
according to (31). If not otherwise specified, input parameters are given by Table 2.  
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Figure 7: No maturity gap: deposit insurance premium for different asset correlations 
and different default points in dependence on the recovery rate 
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This figure shows the deposit insurance premium for different asset correlations and different default 
points in dependence on the recovery rate when the maturity gap is zero. The deposit insurance 
premium is calculated by (41) and (9) divided by the face value of deposits 95. For every parameter 
set, the face value of the loan portfolio is adjusted to yield a today’s loan portfolio value of 100, 
according to (31). If not otherwise specified, input parameters are given by Table 2.  
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Figure 8: General case: value of the loan portfolio in S = 1 under the S-forward 
measure for different recovery rates in dependence on the realizations of the 
systematic variables ε1 and ε2  
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This figure shows the value of the loan portfolio in S = 1 under the S-forward measure for different 
recovery rates in dependence on the realizations of the systematic variables ε1 and ε2 in the general 
case according to (36). For every parameter set, the face value of the loan portfolio is adjusted to yield 
a today’s loan portfolio value of 100, according to (31). The asset correlation is set to ρ2 = 0. If not 
otherwise specified, input parameters are given by Table 2.  
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Figure 9: General case: value of the loan portfolio in S = 1 under the S-forward 
measure for different asset correlations in dependence on the realizations of the 
systematic variables ε1 and ε2 
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This figure shows the value of the loan portfolio in S = 1 under the S-forward measure for different 
asset correlations in dependence on the realizations of the systematic variables ε1 and ε2 in the general 
case according to (36). For every parameter set, the face value of the loan portfolio is adjusted to yield 
a today’s loan portfolio value of 100, according to (31). If not otherwise specified, input parameters 
are given by Table 2.  
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Figure 10: General case: deposit insurance premium for different asset correlations 
and maturity gaps in dependence on the short rate volatility 
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This figure shows the deposit insurance premium for different asset correlations and maturity gaps in 
dependence on the short rate volatility. Additionally, the respective value for default-free loans is 
shown. The deposit insurance premium is calculated by (37) and (38), respectively, divided by the 
face value of deposits 95. For every parameter set, the face value of the loan portfolio is adjusted to 
yield a today’s loan portfolio value of 100, according to (31). If not otherwise specified, input 
parameters are given by Table 2.  
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Figure 11: General case: deposit insurance premium for different asset correlations 
and maturity gaps in dependence on the mean reversion speed 
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This figure shows the deposit insurance premium for different asset correlations and maturity gaps in 
dependence on the mean reversion speed. Additionally, the respective value for default-free loans is 
shown. The deposit insurance premium is calculated by (37) and (38), respectively, divided by the 
face value of deposits 95. For every parameter set, the face value of the loan portfolio is adjusted to 
yield a today’s loan portfolio value of 100, according to (31). If not otherwise specified, input 
parameters are given by Table 2.  
 

ρ2

ρ2 

ρ2 

a

a

a

T = 2

T = 4

T = 7



  48 

Figure 12: General case: deposit insurance premium for different asset correlations 
and maturity gaps in dependence on the default point 
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This figure shows the deposit insurance premium for different asset correlations and maturity gaps in 
dependence on the default point. Additionally, the respective value for default-free loans is shown. 
The deposit insurance premium is calculated by (37) and (38), respectively, divided by the face value 
of deposits 95. For every parameter set, the face value of the loan portfolio is adjusted to yield a 
today’s loan portfolio value of 100, according to (31). If not otherwise specified, input parameters are 
given by Table 2.  
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Figure 13: General case: deposit insurance premium for different asset correlations 
and maturity gaps in dependence on the asset volatility 
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This figure shows the deposit insurance premium for different asset correlations and maturity gaps in 
dependence on the asset volatility. Additionally, the respective value for default-free loans is shown. 
The deposit insurance premium is calculated by (37) and (38), respectively, divided by the face value 
of deposits 95. For every parameter set, the face value of the loan portfolio is adjusted to yield a 
today’s loan portfolio value of 100, according to (31). If not otherwise specified, input parameters are 
given by Table 2.  
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