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Introduction

Can an investor profit from predicting the market using the public information in the real world? This

interesting question has received much attention recently due to extensively documented evidence that

many economic variables such as the dividend yield and the term spread predict future stock returns over

time.1 However the answer to this question is still largely unsettled. For example, Kandel and Stambaugh

(1996) and Campbell, Chan, and Viceira (2002) evaluate the economic benefits via ex ante calibration and

find that the economic gains are significant. In contrast, studies that evaluate the ex post performance

of return predictability find mixed results. For example, Breen, Glosten, and Jagannathan (1989) and

Pesaran and Timmermann (1995) find that return predictability yields significant economic gains out of

sample. On the other hand, Cooper, Gutierrez, and Marcum (2001) and Cooper and Gulen (2001) fail to

find any economic significance. Similarly, while Jacobsen (1999) and Marquering and Verbeek (2001) find

that the economic gains of exploiting return predictability are significant in the mean-variance framework,

Handa and Tiwari (2004) find that the economic significance of return predictability is questionable.

We try to address this question from the perspective of data-generating process and model mis-

specification. We evaluate the importance of the data-generating process in two dimensions. First, does a

better specified model improve the portfolio performance of return predictability and thus generate better

economic value? In other words, do statistical gains automatically translate to economic gains? Second,

how important are the specifications of the data-generating process in determining the economic profits

of return predictability relative to other factors such as the choice of predictive variables and portfo-

lio constraints? Ultimately, we are interested in how investors can improve the out-of-sample portfolio

performance or economic profits when they try to profit from predicting the market with the predictive

variables?

One problem in the study of return predictability is that the predictive model can be misspecified.

The literature has been focused on the choice of predictive variables (see, e.g. Pesaran and Timmermann,

1995; Bossaerts and Hillion, 1999; Avramov, 2002; Cremers, 2002; Roskelley, 2004), which is certainly

1See, e.g., Fama and Schwert (1977), Keim and Stambaugh (1986),Campbell (1987), French, Schwert, and Stambaugh
(1987), Campbell and Shiller (1988a), Campbell and Shiller (1988b), Fama and French (1988), Fama and French (1989),
Ferson (1989) Harvey (1989), Schwert (1989), Jegadeesh (1990), Harvey (1991), Ferson and Harvey (1991), Cochrane
(1991), Hodrick (1992), Bekaert and Hodrick (1992), Lamont (1998), Lewellen (1999), Lettau and Ludvigson (2001),
Shanken and Tamayo (2001), Santos and Veronesi (2001), Cremers (2002), Avramov (2002), and Goyal and Welch (2003).

1



very important, but little attention has been paid to the specification of the underlying data-generating

process. In most studies, the predictive model is simply specified as a first-order vector autoregression

(VAR) or a further simplified predictive linear regression, which is subject to estimation bias as discussed

by Ferson, Sarkissian, and Simin (1999) and Stambaugh (1999). Nevertheless, this simple model is the

most likely misspecified. For example, the specification of a constant variance for stock returns is firmly

rejected by the extensive empirical evidence that stock volatilities are time-varying. To extend the VAR

model to incorporate time-varying volatility, we add a GARCH feature to the model, which we refer to

as the VAR-GARCH model. To our best knowledge, our analysis seems to be the first application of the

VAR-GARCH model to the area of return predictability although it has been applied to other areas such

as dynamics of interest rates and exchange rates where the focus is on the GARCH effect.2 This extension

also incorporates another important source of predictability not present in the VAR model, that is, the

predictability of the conditional second moments of stock returns. Therefore, the VAR-GARCH model

allows us to consider the combined effect of predicting both expected return and volatility and to obtain

more accurate estimation of the conditional distributions of returns, which a priori may result in better

portfolio decisions.

Nevertheless, both the VAR and VAR-GARCH models are restricted by two assumptions. The first

is that both models assume the (conditional) distributions of returns are normally distributed.3 As a

result, only the mean (VAR) and variance (VAR-GARCH) need to be modeled. This assumption is also

inconsistent with the data and empirical tests. The second assumption is that stock returns are linear

functions of predictive variables. However, it is likely that the true relation between stock returns and

predictive variables is nonlinear, and hence the estimated conditional distributions of returns are likely

biased. To overcome these limitations, we consider the seminonparametric (SNP) model proposed by

Gallant and Tauchen (1989), which relies on Hermite polynomial expansions to approximate the underlying

data-generating process and thus is capable of capturing many features of the data. In addition, the SNP

model nests the VAR and VAR-GARCH models as special cases, thus facilitating model comparison and

selection. As in Bossaerts and Hillion (1999), to further guard again possible model mis-specification, we

use statistical model selection criteria to choose the best specification for each type of models.

2Recently Tang (2003) uses the VAR-GARCH model as the true data-generating process to evaluate the performance of
Bayesian model averaging methodology introduced to the literature by Avramov (2002) and Cremers (2002).

3The error terms in GARCH models are often assumed to be normally distributed, even tough GARCH models can
incorporate non-normal error terms.
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Based on the above proposed predictive models, we conduct portfolio analysis for three different types

of risk averse investors, whose preferences are represented by the power utility, who allocate funds to the

market portfolio (S&P 500 index) and the 1-month Treasury bill to maximize their expected utilities. The

first investor believes that asset returns are predictable by the economic variables and forms her optimal

portfolios based on the proposed predictive models. As a benchmark, the second investor believes that

asset returns can only be described as random walks and chooses her optimal portfolio weights according

to a simple normal I.I.D model. However, because of estimation errors, we do allow the IID benchmark

investor to update the estimates of the mean and variance recursively. As another benchmark, the third

investor believes that market returns have certain dynamics but cannot be predicted by other economic

variables. Therefore, this market-dynamics investor will estimate certain dynamic models using the market

returns but will not use any predictive variables. We also consider the passive buy-and-hold strategy as

an additional benchmark. The portfolio analysis is conducted both in sample and out of sample with

the focus on the latter, and we consider two cases: 1) no restriction on the portfolio weights; 2) no-

short-sale constraint which restricts the portfolio weights between 0 and 1. The portfolio performance is

measured ex post by various performance measures including the Sharpe ratio, a measure proposed by

Graham and Harvey (1997), and the certainty equivalent rate of return (CER).

We consider a number of variations of predictive variables, although incorporating model uncertainty

in the aspect of choosing predictive variables is beyond the scope of this study. Among the numerous em-

pirically identified predictive variables, the most popular one is the dividend yield; many studies including

Aı̈t-Sahalia and Brandt (2001), Barberis (2000), and Balduzzi and Lynch (1999), use the dividend yield as

the predictor. Other variables we choose are 3-month T-bill yield, term spread (yield difference between a

10-year Treasury Bond and a 1-year Treasury Bill), and default spread (yield difference between Moody’s

AAA-rated and BAA-rated corporate bonds).4

We find several interesting results. First, the VAR model is clearly misspecified, adding the GARCH

feature substantially improves the goodness-of-fit of the model, and the SNP model tends to be the best

overall statistical model. For example, with the T-bill yield as the predictor, the Bayesian information

criterion (BIC, smaller is better) for the VAR, VAR-GARCH, SNP, and an overfitted SNP that incorporates

4The potential drawback is the problem of data snooping as the same data used to identify the predictive variables is used
to test the predictive power of the predictive variables. This problem is mitigated to some extent by conducting out-of-sample
testing, but would not be completely solved unless a substantially long period of new data become available.
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more nonlinearity is 0.92, 0.29, 0.27, and 0.35, respectively. Clearly, the reduction of BIC is the most when

the GARCH feature is added. Therefore, conditional heteroscedasticity is an indispensable feature of

the data. Modeling nonlinearity or higher moments also helps, but the additional improvement is not as

dramatic as modeling the second moment. Despite the significant statistical improvement over the VAR,

however, VAR-GARCH and SNP predictive models do not consistently perform better than the VAR

measured by various portfolio performance measures, either in sample or out of sample. For example,

with the T-bill yield as the predictor, the four predictive models yield in-sample Sharpe ratios of 0.55,

0.56, 0.53, and 0.51 and out-of-sample Sharpe ratios of 0.49, 0.49, 0.48, 0.47, respectively under the no-

short-sale constraint. In particular, incorporating GARCH feature, although resulting in much statistical

improvement, does not always yield superior portfolio performance. Our results are in sharp contrast

to the findings of Carlson, Chapman, Kaniel, and Yan (2004) who examine the utility cost of ignoring

volatility dynamics through calibration analysis and find that volatility related specification errors are

economically significant. Among others, the biggest difference is that Carlson, Chapman, Kaniel, and Yan

(2004) employ ex ante simulation studies, and thus the relevance to the real world performance is unclear,

whereas we evaluate the ex post portfolio performance. On the other hand, the misspecified VAR model

often performs well and sometimes the best, whereas the best statistical model many times performs the

worst. These results suggest that even though the VAR model is misspecified, it may be the preferred

model to use when studying the portfolio performance of return predictability due to its simplicity and

good out-of-sample performance. However, it should be noted that the specifications of the best VAR

model often differ from the one normally assumed in the literature, i.e., the order of the best VAR model

is often higher than the first order.

The result that the better specified predictive models will not necessarily yield better portfolio per-

formance than a simple VAR model is a bit striking. Two possible explanations may account for the

lack of performance improvement for the better specified models. First, portfolio performance seems

fairly insensitive to the underlying data-generating process. In other words, strategies based on two

very different data-generating processes may nevertheless yield very similar performance. For example,

Pástor and Stambaugh (2000) and Tu and Zhou (2003) both show that similar portfolio performance may

be obtained from different data-generating processes. Among others, this study differs from those two

in two important aspects. First, we examine predictive models whereas Pástor and Stambaugh (2000)
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compare different pricing models and Tu and Zhou (2003) examine the impact of data-generating process

uncertainty. Second, we evaluate ex post portfolio performance, whereas both studies evaluate ex ante

performance. The second explanation, as argued by Aı̈t-Sahalia and Brandt (2001), is that different objec-

tive functions may place different emphases on the various features of the conditional return distribution.

Therefore the ranking by statistical criteria may not be the same as the ranking by financial criteria. This

highlights the importance of choosing the right criteria for different problems.

Second, we find strong in-sample evidence that the predictability investor would do much better than the

IID investor and the market-dynamics investor. More specifically, portfolios based on the predictive models

significantly outperform the benchmark portfolios based on a fixed-weight strategy, a passive buy-and-hold

strategy and dynamic strategies based on modeling the market returns alone. This is true for all variations

of predictive variables considered except the dividend yield alone and to a less extent default spread alone.

However, evidence of superior out-of-sample performance is very limited. Indeed, no portfolio based on

any predictive model with any variation of predictive variables outperforms the benchmark portfolios when

the portfolio weights are not constrained. Superior performance is possible only when the no-short-sale

constraint is imposed. For example, under the no-short-sale constraint, the VAR-GARCH model of the

T-bill yield has a Sharpe ratio of 0.56 and a risk-adjusted abnormal return of 2.59% per annum, compared

to 0.43 and 0.74% respectively for the passive buy-and-hold strategy, whereas the same model produces

a Sharpe ratio of 0.08 and a risk-adjusted abnormal return of -4.67% without the constraint. Even with

the no-short-sale constraint, however, not all variations of predictive variables outperform the benchmarks.

The T-bill yield alone generates superior portfolio performance, whereas the default spread, term spread,

and in particular the dividend yield, do not seem to possess any predictive power alone measured by

portfolio performance. On the other hand, the default spread and term spread seem to complement the

T-bill yield in that combining each with the T-bill yield produces stronger portfolio performance than

the T-bill yield alone, which suggests that these two variables may provide additional useful information

beyond what the T-bill yield provides. For example, the VAR-GARCH model of the T-bill yield and default

spread combination produces a Sharpe ratio of 0.62 and a risk-adjusted return of 3.63% per annum, both

of which are higher than those produced by the T-bill yield alone (see above). It is worth noting that the

dividend yield, however, has no predictive power either in sample or out of sample, which suggests that
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future research should avoid using the dividend yield as the predictive variable.5 Finally, the out-of-sample

results are very robust. We obtain similar results when we vary the number of years between re-estimation

in the recursive estimation, the investment horizon, the degree of risk aversion, and the utility function.

For example, when we assume instead mean-variance preference, the results are similar.

The apparently large performance gap between the unconstrained portfolios and no-short-sale con-

strained portfolios in the out-of-sample analysis may not come as a surprise since the unconstrained port-

folios often have very large long or short positions, presumably due to estimation errors. However, when

we examine the portfolio performance under other constraints, in particular Regulation T of the Federal

Reserve Board, we find that the predictive models still underperform the benchmarks even though the

weights are much less variable. A close examination of the weights under the no-short-sale constraint re-

veals that about 70% times, the weights are either 0 or 1, which leads us to examine the switching strategy

that switches between the market portfolio and the 1-month T-bill depending on whether the forecasted

expected excess returns are positive or negative. The switching portfolios indeed produce even stronger

performance than the no-short-sale constrained portfolios. For example, the switching portfolio based on

the VAR model of the T-bill yield and default spread combination produces a risk-adjusted abnormal return

of 5.31% per annum, which is 1.24% higher than that produced under the no-short-sale constraint, and a

Sharpe ratio of 0.74 higher than that of 0.65 under the constraint. These results suggest that investors are

better off predicting the sign not the magnitude of the market expected excess returns. In other words,

the predictive variables may provide useful information about the sign of the market expected excess re-

turns but fail to provide any useful information about the magnitude due to large estimation errors. A

possible explanation is related to the fact that, as pointed out by Merton (1980), there is too much noise

in the observed returns to accurately estimate the expected returns even if the predictive relation holds.

Indeed, Torous and Valkanov (2000) argue that even if returns are predictable, the noise in the predictive

regression may overwhelm the signal of the conditional variables. Alternatively, it is likely that models

considered here are misspecified despite our effort to minimize specification error by using the flexible

seminonparametric specification.

Another possible explanation is that the predictive relationship is unstable and changes over time,

5Ang and Bekaert (2006) find that the short rate is the only one having the statistically significant coefficient in a predictive
regression with dividend yield and earning yield. Both Ang and Bekaert (2006) and Goyal and Welch (2003) find that dividend
yield has no predictability in statistical tests.
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which causes large estimation errors. We find some evidence supporting this. For example, we find

that the correlations between the market excess returns and predictive variables are unstable and the

optimal specifications of the predictive models change in different periods. Further evidence comes from

the subperiod performance analysis. We find that in the 25 years from 1979 to 2003, the predictive models

always outperform the benchmarks measured by accumulative performance, but the level of outperformance

decreases gradually. This is due to the poor performance of the predictive models in some periods, for

example, the last ten years from 1994 to 2003, and in particular the last recession period around 2001.

Additional evidence is provided by previous studies. For example, Pesaran and Timmermann (1995) find

better predictive performance in the volatile period of 1970’s, and Handa and Tiwari (2004) find poor

predictive performance in the most recent period after 1989 whereas favorable results during the periods of

1959–1973 and 1974–1988. Abhyankar and Davies (2002) find that the predictive ability of T-bill yield is

low prior to the 1951 Treasury Accord Act period, high during the period of 1950-1975, and has disappeared

in the last two decades.

Our findings may explain the mixed results obtained by previous studies. For example, the reason that

Breen, Glosten, and Jagannathan (1989), Pesaran and Timmermann (1995), and Abhyankar and Davies

(2002) find out-of-sample economic significance is because all the three studies use the switching strategy.

Marquering and Verbeek (2001) find significant economic gains from predicting market returns because the

short-selling on the market portfolio is prohibited, whereas Handa and Tiwari (2004) find no consistently

significant superior performance because (limited) short-selling is allowed in their study. On the other hand,

none of the studies examine the portfolio performance of the two cases simultaneously - by comparing the

performance of the unconstrained and no-short-sale constrained portfolios side by side, we are able to show

that predictive variables such as the T-bill yield can only predict the direction of market movements but

not the magnitude, which is a very interesting and new result.

The remainder of this article is organized as follows. Section 1 discusses the group of predictive

models that incorporate return predictability. Section 2 describes the predictive variables and discusses the

estimation results of the predictive models. Section 3 discusses investor’s optimal portfolio choice problem.

Section 4 conducts in-sample as well as out-of-sample portfolio analysis to examine the performance of the

various predictive models. Section 5 concludes.
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1 Specification of the Predictive Models

The first order vector autoregressive (VAR) model has been extensively used in the literature to model

return predictability of the market portfolio. It captures the basic notion that the market return is a

(linear) function of the predictive variables. However, the choice of the first order is arbitrary and for

convenience. In this paper, we will use statistical model selection criteria to choose the best order. The

general specification of the VAR model is given as follows.

yt = Φ0 +

Lµ∑
i=1

Φiyt−i + ǫt, (1)

where yt is the state vector including the excess returns on the market portfolio and predictors at time

t, ǫt is a vector of normally distributed disturbances with a zero vector of means and variance-covariance

matrix Σ, and Lµ denotes the order of autoregression. As pointed out earlier, Lµ is always set to one in

the empirical studies. Furthermore, many studies often use a further simplified predictive linear regression

model, which only considers the return equation in the VAR model. However this regression model is

subject to estimation bias discussed by Ferson, Sarkissian, and Simin (1999) and Stambaugh (1999).

The VAR model assumes the disturbances ǫt are independently identically distributed. Stock returns,

however, exhibit prominent conditional heteroscedasticity (see, e.g., French, Schwert, and Stambaugh,

1987; Engle, 1982). Therefore, a natural extension of the VAR model to deal with conditional heteroscedas-

ticity is to incorporate GARCH features. The extended VAR-GARCH model captures predictability in

both the first and the second moments of stock returns. It should be noted that the predictive variables

also display conditional heteroscedasticity. For example, the variance of T-bill yield is known to vary with

the level of the yield. The VAR-GARCH model not only captures the conditional heteroscedasticity in the

market returns but also those in the predictive variables. We believe our paper presents a novel application

of the VAR-GARCH model, even though it has been used in other areas.

However, both VAR and VAR-GARCH models assume (conditional) normality for the distributions, an

assumption firmly rejected by the data, and a linear relation between returns and predictive variables, an

assumption unlikely to be true. To further relax these two restrictions, we consider the seminonparametric

(SNP) model proposed by Gallant and Tauchen (1989). The SNP model relies on the Hermite polynomial
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expansions to approximate the conditional density of the underlying data-generating process. Because of

polynomial expansions the conditional distribution is no longer normal, and the moments are nonlinear

functions of the predictors. Another relevant advantage of the SNP nonlinear model is that it nests both the

VAR and VAR-GARCH models as degenerated cases, which makes it easy to compare and select different

models. To facilitate estimation and model comparison, all models including the VAR and VAR-GARCH

models are estimated using the procedure proposed by Gallant and Tauchen (1997).

The SNP model is specified as follows. Let f(y|x, θ) denote the conditional density of the state vector

y conditioned on the lagged values of y, denoted by x. Then

f(y|x, θ) ∝ [P (z)]2φ(y|µx,Σx), (2)

where

z = R−1
x (y − µx), µx = b0 +Bx, Σx = RxR

′
x,

V ec(Rx) = ρ0 +

Lr∑
i

ρi|y − µx| +

Lg∑
j

Diag(Gj)V ec(Rj),

and P (z) is the multivariate Hermite polynomials with degree Kz. The GARCH specification used in

the SNP model is more akin to the one suggested by Nelson (1991). Note that because of the rich

parameterizations in multivariate GARCH, we restrict the GARCH to a diagonal specification. It is easy

to see that when Kz is zero, the Hermite polynomial degenerates to a constant, and thus the SNP model

degenerates to the VAR-GARCH model; when Σx is constant, the SNP model further degenerates to the

Gaussian VAR model. For financial data, it may be necessary to consider a more general model where

the coefficients of the polynomial P (z) are a polynomial of degree Kx in x because of the extraordinary

heteroscedasticity. This model is fully nonlinear and nonparametric. Collectively, the parameters Lµ, Lg,

Lr, Kz, and Kx uniquely identify the SNP model,6 and hence we use “[LµLgLrKzKx]” to denote the

specification of a predictive model. For example, [10000] denotes VAR(1), while [11100] denotes VAR(1)-

GARCH(1,1).

One advantage of our framework is that we can systematically select the best model specification for

6There are two additional parameters, Iz and Ix, used to reduce the cross-interaction terms in the polynomials when y is
multivariate. The highest order for cross-interaction terms is Kz − Iz and Kx − Ix respectively.
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each type of the models (VAR, VAR-GARCH, SNP, and the generalized SNP) using statistical criteria.

Another advantage is that the models are nested, which allows us to compare and select the best overall

model specification across the different types of models. This systematical approach is far superior to the

ad hoc assumption that the data follows certain process such as VAR(1). To this end, we use Schwartz’s

Bayesian Information Criterion (BIC), defined as

BIC =
−2Lk + k log n

n
, (3)

where Lk is the log likelihood function with k parameters, and n is the number of observations. Since

the BIC tends to be conservative, additional statistical criteria are also considered including Akaike’s

Information Criterion (AIC) and Hannan and Quinn Criterion (HQ) defined as

AIC =
−2Lk + 2k

n
,

HQ =
−2Lk + k log log n

n
. (4)

Because all the model selection criteria are negatively related to the log likelihood functions, smaller

numbers indicate better model specifications. However, different model selection criteria balance differently

the tradeoff between complexity of the model and overfitting. It is easy to see that BIC has the most

severe penalty for rich parameterization, whereas AIC has the least severe penalty, and HQ is in between.

It turns out that the fully nonlinear and nonparametric model is always rejected by the BIC due to its rich

parameterization but sometimes is favored by the AIC. In the sequel we denote the best SNP model as

OPT and the fully nonlinear and nonparametric model as NLNP. On this note, both Bossaerts and Hillion

(1999) and Pesaran and Timmermann (1995) emphasize using statistic criteria to choose the best predictive

models. Among others, the key difference between those two studies and this study is that they restrict

to linear regression models, whereas we consider a more broad class of models including both linear and

nonlinear ones.
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2 Estimation of the Predictive Models

2.1 Data Description

In recent years, empirical literature has identified many economic variables that have predictive power over

stock and bond returns. These variables include term spread, dividend yield, Treasury-bill yield, default

spread, consumption to wealth ratio (Lettau and Ludvigson, 2001), investment to capital ratio (Cochrane,

1991), dividend to earnings ratio (Lamont, 1998), debt to equity ratio (Schwert, 1989), and lagged returns,

just to name a few. Among these predictive variables, the dividend yield is the most popular one partly

because of theoretic support, and the T-bill yield, term spread and default spread are also widely used. In

our empirical analysis, we use these four predictive variables as examples to illustrate our analysis, but the

same analysis can be easily carried out with other predictive variables.

We use the S&P 500 composite index as the proxy for the market portfolio. Monthly returns on

the S&P 500 index and 30-day Treasury bill are obtained from the CRSP and converted to continuously

compounded (log) returns. Excess returns in percentage are used to fit various predictive models and

converted to decimal returns for portfolio optimization. The dividend yield (DVYD) defined as the sum

of the dividends paid on the S&P 500 index over the past 12 months divided by the current level of the

index, the 3-month Treasury-bill yield (TBYD), the term spread (TRSD) defined as the difference in yields

between the ten-year Treasury bond and one-year Treasury-bill, and the default spread (DFSD) defined as

the difference in yields between Moody’s AAA bonds and BAA bonds, are obtained from the DRI. Monthly

data from January 1947 to December 1998 spanning 624 months are collected except for the term spread,

which is only available from April 1953, a total of 549 observations.

Panel A in Table 1 reports the mean, standard deviation, and other statistics about the market ex-

cess returns (EXRN), the returns on the 30-day Treasury bill (RFT1M), and the predictive variables. As

expected, the excess returns exhibit negative skewness and excess kurtosis; Jarque-Bera statistics also indi-

cate that the excess returns, riskfree rates, and the predictive variables are far from normally distributed.

Also reported are the autocorrelation coefficients up to lag 12. The excess returns have very little auto-

correlations, whereas the predictive variables are highly autocorrelated, with the 1st order autocorrelation

coefficients as high as 0.989.
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Panel A also reports statistics of the market excess returns for two subperiods 1947:1–1978:12 and

1979:1–1998:12. These two subperiods are quite different - the market excess returns are much higher on

average, more volatile and skewed in the second subperiod than in the first sub-period. In the out-of-sample

analysis, the first subperiod serves as the base period for estimating the predictive models, and the second

subperiod serves as the testing period.

Panel B in Table 1 reports the correlation matrices of the market excess returns and the predictive

variables in the whole sample period and the two subperiods.7 One interesting result in Panel B is that

the correlations are not stable over time. For example, the correlation between the excess return and

dividend yield is about -0.03 for the whole period but is positive (0.045) in the first subperiod and negative

(-0.115) in the second subperiod. For the default spread and term spread, the correlations are much

weaker in the second sub-period. On the other hand, the correlation between the excess return and T-bill

yield is relatively stable and remains considerable. These differences in correlations are consistent with

our portfolio performance results that T-bill yield is the strongest predictor, followed by term spread and

default spread, and dividend yield does not seem to have any predictive power at all. Interestingly, the

correlations of the dividend yield with T-bill yield and default spread increase from negative in the first

subperiod to positive in the second subperiod, whereas the correlation between default spread and term

spread decreases to negative in the second subperiod. Other correlations also change considerably over the

two subperiods.

Figure 1 shows the correlations between the market returns and the four predictive variables. Panel A

plots the yearly correlations from 1947 (or 1953 for the term spread) to 1998. It is easy to see that the

correlations vary widely from year to year. Panel B plots the accumulative correlations, which are much

smoother. Three observations can be made. First, all the correlations are trending lower. Second, the

correlations are more volatile before year 1980 than after 1980. Finally, the dividend yield and default

spread have almost zero correlations after 1960’s. As we will see later these observations have direct

implications on the portfolio performance.

7To include the term spread, the whole sample period starts from April, 1953. With other predictive variables, the whole
sample period starts from January, 1947.
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2.2 Specification Search and Model Estimation

The empirical literature on return predictability has been using the VAR(1) model or a further simplified

predictive regression model as the data-generating process. However, little attention has been paid to

investigate whether the assumed model is appropriate. In this subsection, we examine various types of

predictive models and try to identify the best model according to an array of statistical criteria.

We use the monthly time series of excess returns and predictive variables to search for the best specifi-

cation for each of the following models: VAR, VAR-GARCH, SNP, and generalized SNP. We also consider

various combinations of the four predictive variables. The best specification for each predictive model

and each combination of predictive variables is selected according to the Bayesian Information Criterion

(BIC). However, because the BIC tends to be conservative, we also consider other statistic criteria such as

Akaike’s Information Criterion (AIC) and Hannan-Quinn Criterion (HQ).

Table 2 reports the best specifications for the whole sample period (Panel A: Full Sample Period)

and the first subperiod (Panel B: Estimation Period).8 Several interesting results emerge. First, the

predominantly used VAR model is clearly misspecified. Adding the GARCH specification substantially

improves the goodness-of-fit over the VAR model, as demonstrated by the much smaller values for all the

criteria. For example, incorporating conditional heteroscedasticity in the whole sample period reduces the

BIC from 0.92 to 0.29 for the T-bill yield, from 1.36 to 0.93 for the default spread, and from 0.75 to -0.14

for the T-bill yield and default spread combination. Adding the SNP specification also improves the fit,

but the improvement is not nearly as drastically as adding the GARCH feature. For example, the BIC is

reduced from 0.29 to 0.27 for the T-bill yield, from 0.93 to 0.89 for the default spread, and from -0.14 to

-0.20 for the combination of the T-bill yield and default spread.

Second, the first order VAR model is not even the best VAR specification for most combinations of

predictive variables whereas the second order VAR model often is. For example, in the full sample period, all

combinations of predictive variables but the dividend yield have the VAR(2) as the best VAR specification.

This observation suggests that it seems inadequate to use the VAR(1) model as the data-generating process

for the excess returns and predictive variables.

8We do not show the combination of dividend yield with any other predictive variables because dividend yield, as we will
show later, does not have any predictive power.
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Third, a polynomial of degree 4 is often the best choice for the SNP model, which is also the best

specification overall because it yields the smallest BIC and often the smallest HQ as well. As expected,

the overfitted SNP model (NLNP) often has higher BIC value than the OPT model but the smallest AIC

value.

Fourth, two or more predictors provide better fit than any single one of them does. While the improve-

ment is small for T-bill yield, it is considerable for the term spread and default spread. For example, T-bill

yield and term spread combined yield a BIC value of 0.16 for the OPT model, whereas T-bill alone yields

0.27 and term spread alone 1.29, respectively.

Finally, comparing Panel A and B, we find that in some cases the best specifications are different in

the two periods. For example, the best GARCH specification for T-bill yield and default spread combina-

tion in the whole sample period is GARCH(1,1), whereas in the estimation period (1947:1–1978:12) it is

GARCH(2,1). Even when the specifications remain the same, the parameter estimates are often different.

This result suggests that the relationships between the market returns and predictive variables may change

over time.

3 Portfolio Choice under the Predictive Models

Assume a risk-averse investor has a preference over wealth represented by a utility function u(W ), where W

is her wealth. The investor chooses her asset allocation policy between a risky asset (the market portfolio)

and a riskless asset (30-day Treasury Bill), to maximize her expected utility given her estimate of the

conditional distributions of future stock returns.

Specifically, the investor solves the following one-period optimization problem at time t:

max
ωt

E[u(Wt+1)|Ft] = max
ωt

∫
u(Wt+1)π(rt+1|Ft)drt+1, (5)

s.t.

Wt+1 = Wt[ωte
rt+1+rf,t+1 + (1 − ωt)e

rf,t+1 ],

where rt+1 and ωt are the future excess return and portfolio weight on the market portfolio, respectively,
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and rf,t+1 is the return on the riskless asset.

The integration in eq. (5) can be evaluated numerically via Monte Carlo simulation. Thus the opti-

mization problem can be written as

max
ωt

1

N

N∑
i=1

u(Wt[ωte
r
(i)
t+1|t

+rf,t+1 + (1 − ωt)e
rf,t+1 ]), (6)

where r
(i)
t+1|t are the sample draws from the forecasted one-step-ahead future conditional distribution of

stock returns, generated from the underlying predictive models, and N is the number of simulations. If we

assume that the investor’s preference over wealth is determined by the constant relative risk averse power

utility, then the optimization problem is

max
ωt

1

N

N∑
i=1

W 1−γ
t [ωte

r
(i)
t+1|t

+rf,t+1 + (1 − ωt)e
rf,t+1 ](1−γ)

1 − γ
, (7)

where γ is the investor’s relative risk aversion coefficient. The optimization is solved numerically by Brent

method with analytic derivatives.

In the presence of transaction costs, the investor will choose the optimal portfolio weights taking into

consideration the costs associated with rebalancing the weights. Assume the proportional transaction cost

is τ for the market portfolio, and there is no transaction cost in trading the riskless asset. The investor’s

wealth is given by

Wt+1 = Wt(1 − ft)[ωte
rt+1+rf,t+1 + (1 − ωt)e

rf,t+1 ], (8)

where the transaction cost at time t, ft, is given by

ft = τ |ωt − ω̂t|, (9)

and ω̂t is the inherited portfolio weight from the previous period,

ω̂t =
ωt−1e

rt+rf,t

ωt−1e
rt+rf,t + (1 − ωt−1)e

rf,t
. (10)

In addition to the one-period problem, we also examine portfolio performance at longer investment
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horizons, for example, 3 months or 6 months. In general, if the investor has an investment horizon of T̂

periods, then the forecast of the one-period-ahead excess return rt+1|t is replaced by the forecast of the

cumulative excess return over the T̂ periods, R
t+T̂ |t,

R
t+T̂ |t = rt+1|t + rt+2|t + · · · + r

t+T̂ |t, (11)

and the investor’s problem is to solve

max
ωt

1

N

N∑
i=1

W 1−γ
t [ωte

Ri

t+T̂ |t
+r

f,T̂ + (1 − ωt)e
r
f,T̂ ](1−γ)

1 − γ
. (12)

4 Ex Post Portfolio Performance of the Predictive Models

Having determined the best specifications for the predictive models, the predictability investor forecasts

and generates sample draws from the one-step-ahead conditional return distributions, conditioning on the

previous realized returns and predictors, and then uses the sample draws to find the optimal portfolio

weights as described in Section 3. To measure the performance of the portfolios formed in this manner, we

use several performance measures including the Sharpe ratio, certainty equivalent rate of return (CER), and

a measure proposed by Graham and Harvey (1997) (henceforth GH2). Note that we compute and compare

ex post CERs or sample CERs instead of ex ante CERs used in studies such as Kandel and Stambaugh

(1996), Pástor (2000), and Pástor and Stambaugh (2000). The sample CERs are calculated by taking the

average of the realized utilities over the period considered;

µ(W0(1 + rce)) =
1

T

T∑
t=1

µ(W0(1 + rp,t)), (13)

where rce is the sample CER, rp,t is the realized portfolio return at time t, and µ(·) is the utility function.

GH2 is a measure of risk-adjusted abnormal returns, which is suitable for diversified portfolios only. In a

nutshell, GH2 is the abnormal return that the measured portfolio would have earned if it had the same

risk (volatility) as the market portfolio. More specifically, we first lever up or down the measured portfolio

with the 1-month T-bill (riskfree asset) so that the levered portfolio has the same risk (volatility) as the

market portfolio. We then compare the average return of the levered portfolio with that of the market
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portfolio. It amounts to find the weight ω to solve the following problem:

Vm = Var(ωrpt + (1 − ω)rft) = ω2Vp + (1 − ω)2Vf + 2ω(1 − ω)Cov(rpt, rft), (14)

where Vm, Vp, and Vf are the variances of the market returns, managed portfolio returns, and riskfree

rates, respectively. GH2 is then given as

GH2 = ωr̄p + (1 − ω)r̄f − r̄m, (15)

where r̄p, r̄f , and r̄m are the average returns on the managed portfolio, 1-month T-bill, and the market

portfolio respectively. GH2 is related to the Sharpe ratio9 but unlike the Sharpe ratio, it also quantifies the

outperformance. Note that when the average return is lower than the riskfree rate, however, the Sharpe

ratio will be negative and can no longer be used to rank performance, and GH2 will overestimate the

outperformance.

4.1 In-Sample Portfolio Performance Analysis

The first step in our empirical portfolio analysis is to conduct the in-sample tests. If the predictive models

cannot outperform the benchmarks in the in-sample tests, then there is no need to conduct further out-of-

sample tests. The in-sample tests are conducted using the whole sample period from 1947:1 (or 1953:4 when

the term spread is involved) to 1998:12 as the estimation period as well as the testing period. Table 3

reports the in-sample performance results. Results are reported for both cases where no constraint is

imposed on the portfolio weights and where no short sale is allowed. The benchmark strategies are the

fixed-weight strategy where the returns are perceived IID and therefore the weight is always rebalanced to

keep constant, and the passive buy-and-hold strategy where the weight is determined at the beginning of

the period and no rebalance of the portfolio is required thereafter. In addition, we consider two dynamic

strategies from the market-dynamics investor, which are based on the VAR and VAR-GARCH of the

market returns, respectively.

9
GH2 is similar to the well-known M2 measure except that GH2 does not assume that the riskfree rate is constant over

time. M2 is directly related to the Sharpe ratio as M2 = σm(SRp −SRm), whereas there is no direct mathematical relation
between GH2 and the Sharpe ratio.
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The most prominent result from Table 3 is that the predictive models outperform the benchmarks across

the board. T-bill yield, default spread, term spread, and various combinations of the three variables all

yield superior performance with every predictive model except the OPT and NLNP models of the default

spread where the performance is close to that of the benchmarks. In addition, imposing the no-short-

sale constraint often reduces the portfolio performance. For example, the VAR model of the T-bill yield

produces a Sharpe ratio of 0.58, a risk-adjusted abnormal return of 4.40% per annum and a CER of 10.29%

per annum, in comparison with 0.29, 0.48%, and 6.14%, respectively, of the fixed-weight strategy, or 0.32,

0.79%, and 6.43%, respectively, of the market VAR model. Imposing the no-short-sale constraint reduces

the performance to 0.55, 4.07%, and 8.85%, respectively. However, the dividend yield is an exception - it

fails to outperform the benchmarks except in its VAR model. This is in sharp contrast to other predictive

variables and suggests that dividend yield does not seem to have any predictive power over the market

returns. This result is consistent with the weak correlation between the dividend yield and the market

returns. Note that the default spread alone also has somewhat weak performance, which is consistent with

its low overall correlation with the market returns. On the other hand, T-bill yield seems to yield the best

performance and thus to be the most powerful predictor, followed by term spread and then default spread.

In addition, term spread and default spread seem to complement the T-bill yield as the combination of

each one with the T-bill yield produces even stronger performance.10 For example, with the VAR model,

T-bill yield and default spread combined yield a Sharpe ratio of 0.69, a risk-adjusted abnormal return of

5.98%, and a CER of 13.04% per annum, all of which are higher than the performance numbers of the

T-bill yield cited above.

The second interesting result is that the performance differences among the four predictive models are

generally small, and no consistent pattern can be found. This striking result is unexpected because the four

models are statistically very different. In particular, even though the VAR model is clearly misspecified,

the portfolio performance of the VAR model is on par with other better specified models. On the other

hand, the OPT model - the best overall statistical model - does not perform quite as well as others and

often the worst. In addition, the VAR-GARCH model often performs behind the VAR model despite

the significant statistical improvement of the GARCH feature. Finally, the in-sample performance is very

robust to different performance measures.

10Unlike the default spread, combining the dividend yield with T-bill yield does not produce stronger performance, and thus
the results are not reported.
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4.2 Out-of-Sample Portfolio Performance Analysis

Although it is encouraging that the in-sample tests report strong outperformance for the predictive models,

these results are subject to look-ahead bias and other estimation problems as the estimation period is also

used as the testing period, and thus the results may not be relevant to the real-world performance. To

evaluate the real-world performance of the predictive models, we shall assume that the investors only have

historical records of the market excess returns and predictive variables.

To perform the out-of-sample tests, we use the last 20 years in the sample period as the testing period,

i.e. from 1979:1 to 1998:12, and the period before 1979:1 as the estimation period. The period from

1979 to 1998 is an interesting period as it contains some recession periods (1980:1–1980:7, 1981:7–1982:11,

and 1990:7–1991:3) and the longest boom period in the 1990’s. We conduct two types of out-of-sample

tests. In the first test, the estimation period is fixed and the investor does not update the estimates of the

models, whereas in the second test, the estimation is repeated every five years with an expanding window

of periods - recursive estimation. For example, the predictability investor initially uses the data from the

estimation period (e.g. from 1947:1 to 1978:12) to search for the best specifications, generates sample

draws from the forecasted one-period-ahead return distributions, and forms the optimal portfolios. After

five years, however, the investor repeats the search for the best specification using data from the estimation

period plus the most recent five years (expanding window), and uses the new specification and parameter

estimates to choose the optimal portfolio weights. The investor repeats the same procedure every five years.

This test is motivated by results in Table 1 and Table 2, which show that the relationships between the

market returns and predictive variables are unstable over time, and the best specifications may change over

different periods. Accordingly, we replace the fixed-weight strategy with the expanding-window strategy

as the benchmark. We also include the dynamic strategies based on modeling the market returns alone.

The results of these two tests are similar, with the recursive estimation results being slightly better

in general but worse in a few cases. In the sequel, we focus on the recursive estimation. Table 4 reports

the performance results of the recursive estimation. In sharp contrast to the in-sample results, when

no portfolio constraint is imposed, no predictive models yield performance superior to the benchmarks

regardless of the combinations of predictive variables present. Indeed, every predictive model with each

combination of predictive variables significantly underperforms the benchmarks with negative measures
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of the CER and GH2. For example, the VAR-GARCH model of the default spread yields a Sharpe ratio

of 0.23, a GH2 of -2.29% per annum, and a CER of -5.11% per annum versus 0.45, 0.95%, and 9.40%,

respectively, of the expanding-window strategy. Oddly enough, the most powerful predictor in the in-

sample analysis, the T-bill yield, produces the worst performance - e.g. a Sharpe ratio of 0.08, a GH2 of

-4.67%, and a CER of -35.30% in the VAR-GARCH model. A close examination of the table suggests that

the main reason for the failure is the tremendously high volatility of the dynamic portfolios, even though

the average returns are often higher than those of the benchmarks. For example, the VAR-GARCH model

of the T-bill yield mentioned above has an average return of 9.88%, which is comparable to the benchmark

portfolios, but the standard deviation is 38.67%, about six times higher than those of the benchmarks.

On the other hand, perhaps the most interesting result in Table 4 is that imposing the no-short-sale

constraint substantially improves the portfolio performance of the predictive models. This is also in sharp

contrast to the in-sample results where imposing the constraint reduces the performance. For example,

the same VAR-GARCH model of the T-bill yield mentioned above produces a Sharpe ratio of 0.56, a

risk-adjusted abnormal return (GH2) of 2.59% per annum, and a CER of 9.70% per annum under the no-

short-sale constraint, which are higher than those of the expanding-window benchmark (0.45, 0.95%, and

9.40%) and of the passive buy-and-hold strategy (0.43, 0.74%, and 9.32%). However, even with the help of

the constraint, only a few combinations of predictive variables manage to outperform the benchmarks, such

as TBYD, TBYD and DFSD combination, and TBYD and TRSD combination. Again, the combinations

of T-bill yield with other predictive variables produce stronger performance than any of the variables alone.

For example, when both the T-bill yield and default spread are present, the VAR-GARCH model yields a

Sharpe ratio of 0.62, a risk-adjusted abnormal return of 3.63% per annum, and a CER of 10.72% per annum,

higher than those of the T-bill yield alone cited above. It is clear that imposing no-short-sale constraint

drastically lowers the volatilities of the dynamic portfolios without severely reducing the average returns,

which seems to account for the much improved performance. For example, the VAR-GARCH model of the

T-bill yield has a standard deviation of only 5.94%, lower than those of the benchmarks and much lower

than what the model has when no constraint is imposed (38.67%).

Focusing on the constrained portfolio performance, there seems to be little consistent differences among

the four types of predictive models, a result similar to that in the in-sample analysis. Similarly, the best

statistical SNP model (OPT) often performs the worst, whereas the misspecified VAR model performs quite
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well. Adding the GARCH feature to the VAR model improves performance in some cases but not consis-

tently. This result is very different from the finding of Carlson, Chapman, Kaniel, and Yan (2004), who

show that the utility loss of ignoring volatility dynamics is economically significant. However, their finding

is based on simulation study and the relevance to the real world performance is unclear. The lack of per-

formance difference among different predictive models is similar to the findings of Pástor and Stambaugh

(2000) and Tu and Zhou (2003). Both show that different data-generating processes may unnecessarily

yield different portfolio performance. Among others, this study differs from those two in two important

aspects. First, we examine predictive models whereas Pástor and Stambaugh (2000) compare different pric-

ing models and Tu and Zhou (2003) examine the impact of data-generating process uncertainty. Second,

we evaluate ex post portfolio performance, whereas both studies evaluate ex ante performance.

4.3 Further Investigation of the Out-of-Sample Performance

The large performance difference between the constrained portfolios and unconstrained portfolios in the

out-of-sample analysis warrants further investigation. We first examine the robustness of the out-of-sample

results in several dimensions, and then we examine the performance of other types of constraints.

For robustness, we first change the number of years between re-estimation in the recursive estimation

analysis from five years to two years. Second, we increase the investment horizon from one month to three

months or six months. Third, we change the relative risk aversion coefficient from four to ten. In all three

cases, the results (not reported) are qualitatively similar. We further consider three levels of transaction

costs: 0.25%, 0.50%, and 1.00%, representing low, medium, and high transaction costs. Results reported

in Table 5 show that with the low level of transaction cost, there is virtually no impact on the performance.

This is not surprising given that the investor incorporates transaction costs into her objective function and

optimally chooses the portfolio weights. Similar results are obtained for the medium level of transaction

cost, although it starts to show the negative impact. For the high level of transaction cost, however, the

negative effect is apparent. For example, the performance of the combination of T-bill yield and default

spread becomes worse than the benchmarks when transaction costs are high.

Finally, we change the investor’s preference from power utility to mean-variance utility. Table 6 reports

the portfolio performance under this new preference. Interestingly, the results are similar to those of the
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power utility. For example, with the portfolio weights restricted, T-bill yield and the combination of T-bill

yield and default spread outperform the benchmarks in every predictive model. However, the performance

measures are slightly lower. For example, under the mean-variance preference, T-bill yield generates Sharpe

ratios around 0.49 and GH2 ranging from 1.22 to 1.67% per annum, whereas under the power utility, T-bill

yield generates Sharpe ratios from 0.51 to 0.56 and GH2 from 1.89 to 2.59% per annum. On the other

hand, the performance of the unconstrained portfolios is stronger under the mean-variance preference than

under the power utility. For example, the VAR model of the term spread and the combination of T-bill

yield and default spread outperforms the benchmarks, but in most other cases, the predictive models still

underperform the benchmarks.

A close examination of the weights of the unconstrained portfolios shows that the weights vary widely.

For example, the VAR-GARCH model of the TBYD and DFSD combination has a maximal weight of 2.63

and a minimal weight of -7.57, while the VAR model of this combination has a maximal weight of 8.11

and a minimal weight of -9.35. These wide variations are likely due to estimation errors. Therefore it

may be of no surprise that imposing no-short-sale constraint improves the performance. In fact, one would

assert that any constraint should work as long as it restricts the portfolio weights to a reasonable range.

In Table 7 we further compare the portfolio performance under some other constraints. In particular, we

impose constraints that are based on Regulation T, which requires 50% margin for purchasing and 150%

for short selling. Assuming the interest rates for borrowing and lending are the same, then Regulation T

imposes the following restriction, |w| < 100/ψ, where ψ% is the 50% margin requirement. We also consider

100% and 200% margins. Another constraint considered here allows borrowing up to 100%, but excludes

short selling. As shown in Table 7, imposing various constraints indeed improves the performance over the

unconstrained portfolios, but Regulation T based constraints fail to outperform the benchmarks for the

most part. On the other hand, allowing limited borrowing but no short selling yields superior performance

to the benchmarks. For example, the combination of T-bill yield and default spread outperforms the

benchmarks in every predictive model. Nevertheless, the performance of this constraint is still not as good

as that of the no-short-sale constraint in Table 4. For example, the combination of the T-bill yield and

default spread has Sharpe ratios of 0.65, 0.62, 0.51, and 0.73 under the no-short-sale constraint, vis-à-vis

0.56, 0.51, 0.43, and 0.68 under the limited borrowing constraint (0 ≤ w ≤ 2).
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4.4 Market Timing - Switching Strategy

Because the no-short-sale constraint yields the best portfolio performance so far, we further examine the

portfolio weights under this constraint. It is of interest to note that at least 70% of the weights are either 0

or 1, which means that more often than not, the optimal weights obtained based on the predictive models

may not be correct, and better performance is achieved if the portfolio weights are restricted to either

pure cash position or pure equity position. The evidence suggests that it is necessary to make a finer

distinction about the predictive ability of the predictive variables: ability to predict the magnitude of the

market expected excess return and the ability to predict the sign of the market expected excess return. No

predictive variables seem to have the ability to predict the magnitude of the market expected excess return

out of sample due to estimate errors and other problems, but a few variables such as the T-bill yield appear

to have the ability to predict the sign or direction of changes. In other words, T-bill yield may be used to

predict whether the market will go up or down, but it can not tell investors by how much the market will

move up or down. To further support this conjecture, we examine the performance of switching portfolios.

By construction, switching portfolios switch from the all-equity position to the pure-cash position or vice

versa depending on wether the forecasted expected excess returns are positive or negative. Therefore,

switching portfolios only time the direction of the market movement - Henrikssson and Merton’s (1981)

type of market timing.

Table 8 reports the performance of the switching portfolios. Interestingly, all combinations except div-

idend yield and default spread generate superior performance to the benchmarks in at least one predictive

model, and many outperform the benchmarks in all predictive models. In addition to the benchmarks used

in the previous tables, we add a random switching portfolio as another benchmark. The random switching

portfolio invests similarly to the switching portfolios considered here, but the weights are determined by

the toss of a coin. we repeat the experiment 5000 times, and the means of the Sharpe ratios and GH2 are

reported. On average, the random switching portfolios underperform the other benchmarks significantly,

with an average Sharpe ratio of 0.28 and negative risk-adjusted abnormal return (-1.65%). The 90th per-

centile of the Sharpe ratio is 0.51 and of the GH2 is 1.96%. Again, the performance of the four predictive

models is close, and no model consistently outperforms the others.

Furthermore, the performance of the switching portfolios is stronger than that of the not-short-sale
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constrained portfolios. For example, the VAR model of the T-bill yield has a Sharpe ratio of 0.63 and a

risk-adjusted abnormal return of 3.72% per annum for the switching portfolio, vis-à-vis 0.55 and 2.45%

per annum for the no-short-sale constrained portfolio. There is a 1.28% increase in risk-adjusted abnor-

mal return moving from the no-short-sale constraint to the switching strategy, which is reported in the

second to the last column (labeled ∆GH2). Most models show a positive improvement in the risk-adjusted

abnormal return. The last column (labeled Z) measures how frequently the switching portfolios beat the

corresponding no-short-sale constrained portfolios. In most cases, this ratio is larger than one, indicating

more frequently the switching portfolios have higher returns. The largest improvement is with the term

spread, whose portfolio performance changes from underperforming to outperforming. Results in this table

indeed suggest that the investor will be better off not predicting the magnitude of the market movement

at all but focusing on the direction of the movement.

In Table 9, we compare the market timing performance of the unconstrained, no-short-sale con-

strained, and switching portfolios under various predictive models and predictive variables. Specifically,

we examine the coefficient of the squared market excess returns in the quadratic regression proposed by

Treynor and Mazuy (1966),

rt = α+ β1rmt + β2r
2
mt + ǫt, ǫt ∼ N (0, σ2). (16)

A significantly positive estimate of β2 indicates successful market timing. Furthermore, under the condi-

tions provided by Admati, Bhattacharya, Pfleiderer, and Ross (1986), β2var(rmt) measures the abnormal

return of market timing. The three benchmark portfolios, expanding window IID, market AR model, and

market GARCH model, all have significant and positive β2 coefficient, but the abnormal timing perfor-

mance is small and close to zero. The third column in Table 9 reports the correlations between the market

returns and the weights of the measured portfolios, which are essentially zeros for the three benchmark

portfolios. However, some interesting observations emerge when T-bill yield is the predictor. On the

one hand, the unconstrained portfolios do not possess any market timing ability even though the portfolio

weights are positively correlated with the market returns. On the other hand, the no-short-sale constrained

portfolios have significantly positive coefficient β2 and positive abnormal returns. Furthermore, the switch-

ing portfolios have even higher abnormal returns of market timing. For example, the switching portfolio

of VAR-GARCH model has an abnormal return of 1.39 % versus 1.22 % of the constrained portfolio of
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the same model. Stronger market-timing results are obtained when both T-bill yield and default spread

are present. For example, the coefficient, abnormal return, and correlation are 1.76, 4.01 %, and 0.4,

respectively for the constrained portfolio of the VAR model, and 2.08, 4.75 %, and 0.17, respectively for

the switching portfolio of the same model. However, other variations of predictive variables do not seem

to have strong market timing ability even with the switching portfolios.

4.5 Subperiod Performance of the Switching Portfolios

Since Table 1 and Table 2 suggest that the relationships between the market returns and predictive variables

are unstable over time, one needs to be careful about interpreting the results. For example, the results may

be specific to the testing period we consider. Therefore, we conduct subperiod performance analysis to

examine 1) if the results are specific to the period we choose, and 2) if there are any interesting dynamics

of the switching portfolios. Table 10 reports the results of the switching portfolios for three variations of

predictive variables that have shown to outperform the benchmarks: T-bill yield and the combination of

T-bill yield with default spread and term spread, respectively. We also extend the sampling period from

1998 to 2003 to include the latest recession period. This 5-year period is truly out of sample as most

studies focus on periods before 2000. Two different sets of subperiod results are shown. Panel A shows the

period-by-period performance, while Panel B shows the accumulative performance from January 1979 (the

start of the testing period). In Panel A, the top rows report the performance of the expanding-window

benchmark portfolio. In the first five years (1979–1983), the performance of the benchmark is very poor

with a Sharpe ratio of 0.05 because of recessions in this period (1980 and 1982). The performance improves

in the second and third 5-year periods, reaches the highest in the fourth 5-year period (1994–1998) with

a Sharpe ratio of 1.10, and then sharply drops to -0.27 in the last five years (1999–2003). On the other

hand, the performance of the switching portfolios of the predictive variables is very strong in the first

5-year period and remains strong in the rest periods until the last 5-year period when the performance

deteriorates considerably. It is especially intriguing that the performance of the switching portfolios of the

TBYD and DFSD combination remains rather stable over the first four 5-year periods, which is remarkable

considering how low the Sharpe ratio of the benchmark is in the first 5-year period. For example, with

the VAR model the Sharpe ratios are 0.86, 0.74, 0.72 and 0.74 for the first four periods. As a result,

the switching portfolios outperform the benchmark portfolio in the first three periods but underperform
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the benchmark in the fourth and fifth periods, as shown by the last column that reports the difference

in GH2 between the switching portfolios and the benchmark portfolio. The difference is the highest in

the first period, decreases over time, and becomes negative in the last two 5-year periods. Similarly, for

the other two variations of predictive variables, there is at least one period when the switching portfolios

underperform the benchmarks. It should be pointed out that in the last recession period, the Sharpe

ratios are negative and thus the performance measures can no longer be used to compare the performance,

otherwise, we would make incorrect inference. But simply comparing the mean and standard deviation

shows that the switching portfolios underperform the benchmark.

On the other hand, the accumulative performance of the switching portfolios is superior to that of

the benchmark portfolio in every period including the booming period of late 90s and the most recent

recession, which demonstrates the robustness of the outperformance to different time periods. However,

the outperformance is not stable but decreases over time. For example, during the first 5-year period from

1979 to 1983, the NLNP model of the TBYD and DFSD combination has a risk-adjusted abnormal return

of 14.73% over the benchmark, but it only yields 3.01% risk-adjusted abnormal return during the 25-year

period from 1979 to 2003.

As a robustness check, we also repeat the analysis with an extended period. Specifically, we use the first

fourteen years from 1947 to 1958 as the initial estimation period, and then we recursively estimate all the

predictive models every five years in the next 45 years (1959–2003) and form optimal portfolios accordingly.

Table 11 reports the accumulative performance of the switching strategies of TBYD and the combination

of TBYD and DFSD. If an investor starts to invest from 1959 and follows the switching strategy, she

may underperform the expanding-window benchmark for the first five and ten years, but if she holds the

switching portfolios longer, she will outperform the benchmark significantly. For example, if she estimates

a NLNP model of TBYD and DFSD, follows the switching strategy, and holds the switching portfolio for

45 years, she will have an average return of 9.05% per annum, a Sharpe ratio of 0.39, and a risk-adjusted

abnormal return of 4.62% per annum, whereas the IID benchmark investor will have an average return

of 5.81%, a Sharpe ratio of 0.03, and a risk-adjusted abnormal return of -0.53%. The difference in the

risk-adjusted abnormal return is 5.40% per annum. Put it differently, if the initial investment is $10,000,

then an IID benchmark investor will have accumulated $136,340 at the end of year 2003, whereas the

investor who follows the switching strategy will have accumulated $266,110 at the end of year 2003.
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5 Conclusion

Can an investor profit from predicting the market using the public information in real world? This in-

teresting question has attracted much attention recently. However, the answer to this question is still

largely unsettled. One potential problem is that the predictive model, which is specified as a first-order

vector autoregression (VAR) or a further simplified predictive linear regression, can be misspecified. In

this paper, we address the following two questions. First, does a better specified model improve the out-

of-sample portfolio performance of return predictability? Second, how important are the specifications of

the data-generating process in determining the economic profits of return predictability relative to other

factors such as the choice of predictive variables?

We propose using the VAR-GARCH model to incorporate conditional heteroscedasticity and pre-

dictability of the second conditional moment, and SNP model to allow non-normally distributed shocks

and nonlinearity in the relationship between the market returns and predictive variables. We use statistical

model selection criteria to choose the best specification for each of the four types of predictive models -

VAR, VAR-GARCH, SNP and a generalized SNP model and compare their goodness of fit. We then con-

duct extensive in-sample and out-of-sample analysis to evaluate the portfolio performance of the predictive

models, using the widely documented predictive variables such as the dividend yield, T-bill yield, term

spread, and default spread.

We find first that the VAR model is clearly misspecified and allowing conditional heteroscedasticity

substantially improves the goodness of fit. Allowing non-normality and nonlinearity further improves the

goodness of fit, but not nearly as drastic as adding the GARCH feature. However, the portfolio analysis

reveals that there are no clear advantages for the better specified predictive models - indeed not a single

model consistently outperforms the others. On the other hand, the misspecified VAR model often performs

on par with the others, whereas the best overall statistical model (OPT) many times performs the worst.

These results suggest that it is important to choose the right model selection criterion; for the purpose

of asset allocation, one should use an appropriate financial criterion. Our results also suggest that even

though the VAR model is misspecified, it may be the preferred model to use when studying the portfolio

performance of return predictability due to its simplicity and comparable out-of-sample performance.

However, it should be noted that the specifications of the best VAR model often differ from the one
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normally assumed in the literature, i.e., the order of the best VAR model is often higher than the first

order.

Second, while we find strong in-sample performance supporting predictability, the evidence of out-of-

sample predictability is fairly weak. In particular, we only find evidence of superior portfolio performance

when no short-selling is imposed. In addition, only certain predictive variables such as the T-bill yield

is capable of producing superior performance. A close examination of the portfolio weights under the

no-short-sale constraint leads us to consider Henrikssson and Merton’s (1981) type of market timing where

a switching strategy is used. The switching portfolios produce even stronger performance than the no-

short-sale constrained portfolios, which suggests that investors are better off predicting the sign not the

magnitude of the market expected excess returns. In other words, the predictive variables may provide

useful information to signal either a buy or sell but nothing more. Possible explanations are large estimation

errors, model mis-specification, and time-varying predictive relationships.

Our analysis can be extended in a number of interesting directions. First, we do not consider dynamic

hedging demands. A dynamic strategy that hedges future changes in the investment opportunity set may

perform quite differently. Second, we assume perfect foresight and ignore estimation risk. We suspect

that taking into account parameter uncertainty may reduce the performance, and therefore it remains to

see that if the outperformance is robust to this uncertainty. Third, we examine four economic variables

that are believed to be powerful predictors, but there are other potentially powerful predictive variables

that may be worth investigating. Fourth, we consider predictability at monthly level, it may be of interest

considering predictability at quarterly and even annual levels. For example, Lettau and Ludvigson (2001)

find that the consumption-wealth ratio is a very powerful predictive variable, which is only available

at quarterly and annual level. Fifth, since different predictive models perform differently in different

periods, it may be beneficial for investors to use a model averaging approach. Unlike Avramov (2002)

and Cremers (2002) who average over a set of predictors, a set of data-generating processes such as the

ones considered here would be averaged. Finally, our results suggest that the predictive relations seem

unstable, and we employ a strategy that re-estimates the model periodically. But an alternative strategy

is to explicitly model time-varying parameters or structural breaks. It is well known that regime shift

happens with T-bill yield. Rapach and Wohar (2004) find significant evidence of structural breaks in seven

of eight predictive regressions of S&P 500 returns and three of eight in CRSP equal-weighted returns.
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Pesaran and Timmermann (2002) find that a linear predictive model that incorporates structural breaks

has improved out-of-sample statistical forecasting power.
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Table 1: Descriptive Statistics of Data
Panel A of this table shows the descriptive statistics for the continuously compounded excess return (an-
nualized in percentage) on the S&P 500 composite index (EXRN), continuously compounded return on
1-month T-bill (riskfree return), dividend yield (DVYD), and 3-month Treasury bill yield (TBYD), default
spread (DFSD), and term spread (TRSD). For all the variables except the term spread, the data is sam-
pled monthly from January 1947 through December 1998, with a total of 624 observations. For TRSD, the
data is only available from April, 1953. The whole sample period is divided into two subperiods: the first
subperiod is from 1947:1 to 1978:12 (or 1953:4 - 1978:12 for TRSD); the second subperiod is from 1979:1 to
1998:12. Panel B shows the correlations of the predictive variables and excess return for the whole sample
period and the two subperiods.

Panel A: Descriptive Statistics

Autocorrelations
Mean Std Dev Skewness Kurtosis Jarque Bera ρ1 ρ3 ρ6 ρ12

EXRN 3.654 14.267 −0.640 5.747 238.9 0.022 0.012 −0.059 0.042
RFT1M 4.782 0.869 1.045 4.527 174.2 0.955 0.922 0.877 0.808
DVYD 3.950 1.211 0.460 2.585 26.6 0.989 0.962 0.919 0.835
TBYD 4.954 2.998 0.973 4.208 136.5 0.988 0.952 0.909 0.847
DFSD 0.908 0.426 1.532 5.345 387.4 0.976 0.918 0.850 0.720
TRSD 0.718 0.990 −0.137 3.463 6.6 0.960 0.841 0.710 0.517

EXRN(47:1–78:12) 2.296 13.638 −0.261 3.725 127.7 0.034 0.072 −0.075 0.085
EXRN(79:1–98:12) 5.825 15.228 −1.099 4.828 284.6 0.004 −0.061 −0.041 −0.037

Panel B: Correlations

EXRN DVYD TBYD DFSD TRSD EXRN DVYD TBYD DFSD

1953:4–1998:12 1947:1–1998:12
1.000 -0.069 -0.153 0.053 0.165 1.000 -0.030 -0.140 0.043

1.000 0.409 0.497 -0.191 1.000 0.011 0.228
1.000 0.643 -0.408 1.000 0.664

1.000 0.105 1.000
1.000

1953:4–1978:12 1947:1–1978:12
1.000 -0.005 -0.266 0.095 0.280 1.000 0.045 -0.225 0.074

1.000 -0.025 0.150 0.111 1.000 -0.425 -0.077
1.000 0.343 -0.508 1.000 0.399

1.000 0.386 1.000
1.000

1979:1–1998:12
1.000 -0.115 -0.167 -0.005 0.080

1.000 0.807 0.801 -0.328
1.000 0.681 -0.703

1.000 -0.179
1.000
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Table 2: Optimal Predictive Models
This table reports for each combination of predictive variables the best predictive model and the various model selection criteria used
in each category. Panel A reports the in-sample predictive models, while Panel B reports the out-of-sample predictive models. Obj is
the value of the objective function and is defined as Obj = −( 1

n

∑n
t=1 log[f(yt|xt−1, θ)], and BIC, AIC, and HQ are the Shwarz Bayesian

Information Criterion, the Akaike Information criterion, and the Hannan-Quinn criterion, respectively. We use the following notation
to denote the various models, ”[m1m2m3m4m5]”, where m1 denotes the order of vector autoregression, m2 and m3 denote the order of
GARCH (GARCH(m2,m3)), m4 denotes the order of the Hermite polynomial expansion, and m5 is the order of polynomial in x for the
coefficients in the Hermite polynomial.

Optimal Predictive Models and Model Selection Criteria

Model Obj BIC AIC HQ Model Obj BIC AIC HQ Model Obj BIC AIC HQ Model Obj BIC AIC HQ

Panel A: Full Sample Period

DVYD TBYD DFSD TBYD & DFSD
VAR [10000] 0.40 0.45 0.41 0.43 [20000] 0.85 0.92 0.87 0.89 [20000] 1.29 1.36 1.31 1.33 [20000] 0.61 0.75 0.65 0.69

GARCH [22100] 0.19 0.28 0.22 0.24 [22100] 0.20 0.29 0.23 0.25 [21100] 0.85 0.93 0.88 0.90 [21100] -0.30 -0.14 -0.25 -0.21
OPT [22140] 0.06 0.20 0.10 0.14 [22140] 0.13 0.27 0.17 0.21 [21140] 0.76 0.89 0.80 0.83 [21140] -0.42 -0.20 -0.35 -0.29

NLNP [22141] -0.02 0.25 0.06 0.14 [22141] 0.11 0.35 0.18 0.25 [21141] 0.73 0.95 0.80 0.86 [21141] -0.50 -0.07 -0.36 -0.25
TRSD TBYD & TRSD TRSD & DFSD TBYD & TRSD & DFSD

VAR [20000] 1.50 1.58 1.53 1.55 [20000] 0.42 0.57 0.47 0.51 [20000] 1.34 1.50 1.39 1.43 [20000] 0.18 0.45 0.27 0.34
GARCH [21100] 1.21 1.30 1.24 1.26 [21100] 0.03 0.21 0.09 0.14 [21100] 0.68 0.87 0.74 0.79 [21100] -0.50 -0.21 -0.41 -0.33

OPT [21140] 1.15 1.29 1.19 1.23 [21140] -0.11 0.16 -0.02 0.05 [21140] 0.57 0.82 0.65 0.72 [21140] -0.69 -0.26 -0.55 -0.44

NLNP [21141] 1.09 1.33 1.17 1.23 [21141] -0.23 0.32 -0.05 0.09 [21141] 0.47 0.95 0.62 0.75 [21141] -0.85 0.12 -0.54 -0.28

Panel B: Estimation Period

DVYD TBYD DFSD TBYD & DFSD
VAR [10000] 0.47 0.54 0.49 0.51 [20000] 0.76 0.86 0.79 0.82 [20000] 1.25 1.35 1.28 1.31 [20000] 0.53 0.75 0.61 0.66

GARCH [11100] 0.27 0.36 0.30 0.32 [22100] 0.31 0.45 0.36 0.39 [21100] 0.96 1.09 1.01 1.04 [22100] -0.02 0.24 0.07 0.13
OPT [11140] 0.16 0.32 0.22 0.26 [22140] 0.24 0.45 0.31 0.37 [21140] 0.90 1.09 0.96 1.01 [22140] -0.22 0.15 -0.10 0.00

NLNP [11141] 0.09 0.39 0.20 0.27 [22141] 0.19 0.56 0.32 0.41 [21141] 0.89 1.10 0.96 1.02 [22141] -0.37 0.38 -0.12 0.08
TRSD TBYD & TRSD TRSD & DFSD TBYD & TRSD & DFSD

VAR [20000] 1.54 1.66 1.58 1.61 [20000] 0.52 0.78 0.61 0.68 [10000] 1.40 1.57 1.46 1.50 [10000] 0.39 0.68 0.49 0.57
GARCH [21100] 1.39 1.54 1.44 1.48 [21100] 0.36 0.66 0.47 0.54 [11100] 0.96 1.17 1.03 1.09 [11100] -0.04 0.29 0.08 0.16

OPT [21140] 1.32 1.55 1.40 1.46 [21140] 0.24 0.66 0.39 0.49 [11140] 0.84 1.17 0.96 1.04 [11140] -0.22 0.27 -0.05 0.08

NLNP [21141] 1.27 1.67 1.41 1.52 [21141] 0.10 0.88 0.37 0.58 [11141] 0.71 1.40 0.95 1.13 [11141] -0.46 0.67 -0.07 0.23
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Table 3: In-Sample Portfolio Performance of the Predictive Models
Predictive sample draws ỹt+1|t are generated at each month t from the one-step-ahead conditional distributions of the predictive models,
conditioned on the observed data yt. The predictive sample draws of the excess returns are then used to solve the portfolio optimization
problem at each month t. The realized portfolio returns rpt are calculated from the observed excess returns rt and the riskfree rates. The
average returns, standard deviations, and three performance measures, Sharpe ratio (SR), Graham-Harvey measure (GH2), and CER
(rce), are reported for each predictive variable and model combination. The number of sample draws at each period t is 50000.

In-Sample Portfolio Performance Tests

rp(%) σp(%) SR GH2 rce rp(%) σp(%) SR GH2 rce rp(%) σp(%) SR GH2 rce rp(%) σp(%) SR GH2 rce
Benchmarks

Market 8.44 14.17 0.26 5.35
Fixed 7.03 7.69 0.29 0.48 6.14

Passive 7.50 10.59 0.25 -0.03 5.78
AR 7.38 7.92 0.32 0.79 6.43

GARCH 7.36 9.75 0.26 -0.08 5.91

DVYD TBYD DFSD TBYD & DFSD
No Constraint No Constraint No Constraint No Constraint

VAR 7.78 8.46 0.34 1.18 6.71 15.54 18.65 0.58 4.40 10.29 8.73 11.05 0.35 1.26 6.92 20.67 23.09 0.69 5.98 13.04
GARCH 8.33 15.52 0.22 -0.55 4.72 14.86 17.71 0.57 4.29 10.10 8.71 12.95 0.30 0.50 6.18 19.11 20.09 0.71 6.34 13.28

OPT 7.42 15.04 0.17 -1.30 4.00 13.90 16.98 0.53 3.83 9.47 8.28 14.22 0.24 -0.30 5.16 18.39 19.37 0.70 6.18 13.11
NLNP 7.52 10.61 0.25 -0.16 5.86 13.27 15.50 0.54 3.99 9.60 7.88 11.11 0.27 0.15 6.04 19.28 20.26 0.71 6.38 13.34

No-Short-Sale No-Short-Sale No-Short-Sale No-Short-Sale
VAR 7.65 8.21 0.34 1.10 6.64 10.36 10.03 0.55 4.07 8.85 8.09 9.03 0.36 1.37 6.88 11.26 9.82 0.65 5.55 9.83

GARCH 7.52 10.11 0.26 0.02 5.99 9.91 9.42 0.53 3.90 8.57 8.33 10.92 0.32 0.79 6.52 11.31 9.95 0.65 5.49 9.83
OPT 7.42 10.21 0.25 -0.17 5.85 9.92 9.95 0.51 3.51 8.42 7.53 10.45 0.26 -0.09 5.84 11.00 10.02 0.61 4.99 9.50
NLNP 7.13 8.39 0.27 0.12 6.08 9.77 9.75 0.50 3.43 8.33 7.56 9.72 0.28 0.22 6.12 10.73 9.46 0.62 5.09 9.39

TRSD TBYD & TRSD TRSD & DFSD TBYD & TRSD & DFSD
No Constraint No Constraint No Constraint No Constraint

VAR 13.13 14.13 0.55 4.62 10.07 19.49 21.24 0.67 6.26 13.06 14.86 17.33 0.55 4.58 10.25 23.67 25.35 0.73 7.07 14.82
GARCH 11.24 11.52 0.51 4.06 9.21 17.98 20.36 0.62 5.62 11.90 13.26 15.49 0.51 4.04 9.56 21.32 22.57 0.71 6.86 14.15

OPT 10.03 11.19 0.42 2.72 8.05 16.30 18.49 0.59 5.21 11.18 10.83 15.36 0.36 1.83 7.05 19.55 19.99 0.71 6.90 13.98
NLNP 13.19 15.05 0.52 4.20 9.41 19.71 18.36 0.78 7.96 14.84 16.56 18.31 0.61 5.51 11.04 22.57 20.95 0.82 8.52 16.26

No-Short-Sale No-Short-Sale No-Short-Sale No-Short-Sale
VAR 9.89 9.11 0.50 3.88 8.59 12.39 9.78 0.72 7.07 10.98 9.76 9.60 0.46 3.31 8.33 12.05 9.56 0.70 6.79 10.70

GARCH 9.70 9.01 0.48 3.66 8.43 11.18 10.10 0.58 5.01 9.66 10.16 10.27 0.47 3.44 8.53 11.56 9.88 0.63 5.75 10.12
OPT 8.76 8.96 0.38 2.17 7.49 10.51 10.41 0.49 3.83 8.88 8.72 9.55 0.35 1.78 7.30 11.39 9.56 0.63 5.80 10.04
NLNP 10.61 9.96 0.53 4.30 9.07 11.60 9.74 0.64 5.93 10.18 11.26 10.37 0.57 4.90 9.60 11.89 9.60 0.68 6.50 10.51

37



Table 4: Out-Of-Sample Expanding-Window Performance of the Predictive Models
Predictive sample draws of the excess returns r̃t+1|t are generated at each month t from the one-step-ahead conditional distributions of
the predictive models, conditioned on the observed out-of-sample data yt. The predictive models are re-estimated every 5 years. The
realized portfolio returns rpt are calculated from the observed excess returns rt and the riskfree rates. The average returns (rp), standard
deviations (σp), and three performance measures, Sharpe ratio (SR), Graham-Harvey measure (GH2), and CER (rce), are reported for
each predictive variable and model combination. Bold face indicates measures higher than those of the benchmarks. The number of
sample draws at each period t is 50000.

Out-Of-Sample 5-year Expanding-Window Portfolio Performance Tests

rp(%) σp(%) SR GH2 rce rp(%) σp(%) SR GH2 rce rp(%) σp(%) SR GH2 rce rp(%) σp(%) SR GH2 rce
Benchmarks

Market 12.74 15.10 0.38 9.18
Passive 10.18 7.47 0.43 0.74 9.32
Expand 9.96 6.06 0.45 0.95 9.40

AR 9.63 6.27 0.43 0.68 9.04
GARCH 9.90 9.33 0.32 -1.01 8.58

DVYD TBYD DFSD TBYD & DFSD
No Constraint No Constraint No Constraint No Constraint

VAR 5.25 12.33 -0.14 -7.87 3.04 13.78 46.63 0.15 -3.62 -75.30 7.65 15.40 0.05 -5.11 4.02 18.15 41.86 0.27 -1.80 -15.53
GARCH 7.54 12.66 0.05 -5.09 5.14 9.88 38.67 0.08 -4.67 -35.30 10.29 14.41 0.23 -2.29 7.10 14.33 29.76 0.25 -2.08 -0.58

OPT 4.54 16.22 -0.15 -8.04 0.63 -21.45 133.5 -0.21 -9.04 -3804 10.27 15.57 0.21 -2.57 6.39 9.76 36.62 0.08 -4.66 -13.61
NLNP 0.62 16.57 -0.38 -11.56 -3.45 10.60 23.69 0.16 -3.48 1.41 10.78 11.44 0.34 -0.74 8.86 9.05 39.59 0.05 -5.02 -38.06

No-Short-Sale No-Short-Sale No-Short-Sale No-Short-Sale
VAR 7.78 7.44 0.11 -4.09 6.95 10.38 6.31 0.55 2.45 9.78 7.85 10.31 0.09 -4.47 6.21 11.89 7.60 0.65 4.07 11.05

GARCH 8.69 8.95 0.20 -2.84 7.50 10.23 5.94 0.56 2.59 9.70 11.00 11.05 0.37 -0.26 9.15 11.52 7.35 0.62 3.63 10.72

OPT 7.64 8.05 0.09 -4.48 6.68 10.21 6.24 0.53 2.16 9.62 9.54 11.39 0.23 -2.36 7.46 10.16 6.35 0.51 1.89 9.58

NLNP 8.09 6.39 0.18 -3.06 7.49 9.80 5.65 0.51 1.89 9.32 9.91 8.71 0.34 -0.65 8.77 11.84 6.73 0.73 5.21 11.17

TRSD TBYD & TRSD TRSD & DFSD TBYD & TRSD & DFSD
No Constraint No Constraint No Constraint No Constraint

VAR 16.90 37.62 0.27 -1.84 -9.57 18.26 58.81 0.19 -2.93 -187.73 13.66 34.33 0.20 -2.87 -11.63 15.35 35.95 0.24 -2.31 -3.34
GARCH 15.33 33.69 0.25 -2.07 -10.37 17.93 37.15 0.30 -1.37 -7.07 13.39 37.87 0.17 -3.25 -22.99 11.93 35.19 0.14 -3.69 -9.57

OPT 11.39 40.83 0.11 -4.18 -39.89 11.65 55.24 0.09 -4.54 -153.5 10.75 36.00 0.11 -4.22 -34.87 10.75 40.86 0.09 -4.42 -18.48
NLNP 12.39 45.71 0.12 -4.03 -82.39 20.51 32.84 0.42 0.40 3.18 8.59 35.60 0.05 -5.12 -39.26 9.12 36.03 0.06 -4.91 -11.65

No-Short-Sale No-Short-Sale No-Short-Sale No-Short-Sale
VAR 11.46 11.49 0.39 0.14 9.36 12.98 9.85 0.61 3.46 11.51 10.73 11.02 0.35 -0.60 8.78 10.89 6.90 0.57 2.87 10.19

GARCH 11.73 11.67 0.41 0.40 9.56 12.40 9.84 0.55 2.58 10.92 10.84 10.93 0.36 -0.40 8.92 10.38 8.08 0.43 0.64 9.39
OPT 10.89 10.89 0.36 -0.32 8.97 11.07 10.90 0.38 -0.08 9.15 10.27 10.98 0.30 -1.22 8.33 10.24 9.53 0.35 -0.55 8.75
NLNP 11.52 11.60 0.40 0.17 9.37 13.58 8.75 0.76 5.66 12.44 11.37 11.89 0.37 -0.18 9.13 9.02 8.49 0.25 -2.07 7.80
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Table 5: Out-Of-Sample Expanding-Window Performance with Transaction Costs
The predictive sample draws are generated from the 5-year expanding-window estimation. The optimal portfolio weights are calculated
from maximizing the expected power utility in the presence of transaction costs. The transaction costs are 25bps, 50bps, and 100bps. The
realized portfolio returns rpt are calculated from the observed excess returns rt and the riskfree rates. The average returns and standard
deviations of the realized portfolio returns, and three performance measures, Sharpe ratio (SR), Graham-Harvey measure (GH2), and
CER (rce), are reported. For brevity, results for only two combinations - T-bill yield and default spread, and T-bill yield and term spread
- are reported.

Out-Of-Sample 5-year Expanding-Window Portfolio Performance Tests with Transaction Costs

rp(%) σp(%) SR GH2 rce(%) rp(%) σp(%) SR GH2 rce(%) rp(%) σp(%) SR GH2 rce(%) rp(%) σp(%) SR GH2 rce(%)
Benchmarks

Market 5.82 15.23 0.38 9.18
Passive 10.18 7.47 0.43 0.74 9.32

TBYD & DFSD τ = 0.25% τ = 0.50% τ = 1.00%
No Constraint No Constraint No Constraint No Constraint

VAR 18.15 41.86 0.27 -1.80 -15.53 17.47 40.35 0.26 -1.90 -12.37 17.27 38.86 0.27 -1.83 -8.95 17.19 37.33 0.28 -1.69 -4.38
GARCH 14.33 29.76 0.25 -2.08 -0.58 13.15 28.57 0.22 -2.55 -0.26 11.64 27.26 0.17 -3.22 -0.22 11.72 23.98 0.20 -2.81 2.99

OPT 9.76 36.62 0.08 -4.66 -13.61 9.40 34.35 0.07 -4.74 -10.60 8.84 32.90 0.06 -4.95 -8.81 5.11 31.58 -0.06 -6.68 -10.10
NLNP 9.05 39.59 0.05 -5.02 -38.06 8.67 35.56 0.05 -5.09 -20.81 7.69 32.00 0.02 -5.46 -12.55 8.29 25.76 0.05 -5.03 -2.20

No-Short-Sale No-Short-Sale No-Short-Sale No-Short-Sale
VAR 11.89 7.60 0.65 4.07 11.05 11.85 7.36 0.67 4.31 11.06 11.21 6.62 0.65 3.99 10.57 9.01 7.04 0.30 -1.31 8.25

GARCH 11.52 7.35 0.62 3.63 10.72 11.32 7.17 0.61 3.46 10.56 10.03 6.99 0.44 0.90 9.29 7.69 7.15 0.11 -4.19 6.84
OPT 10.16 6.35 0.51 1.89 9.58 9.88 5.98 0.49 1.66 9.35 9.29 5.80 0.41 0.34 8.79 7.56 6.21 0.10 -4.27 6.93
NLNP 11.84 6.73 0.73 5.21 11.17 11.47 6.26 0.72 5.16 10.89 10.52 5.87 0.61 3.47 10.02 9.18 5.26 0.43 0.70 8.78

TBYD & TRSD τ = 0.25% τ = 0.50% τ = 1.00%
No Constraint No Constraint No Constraint No Constraint

VAR 18.26 58.81 0.19 -2.93 -187.7 19.63 57.86 0.22 -2.52 -156.9 19.37 55.58 0.22 -2.46 -128.9 18.62 52.02 0.23 -2.44 -80.34
GARCH 17.93 37.15 0.30 -1.37 -7.07 17.63 36.60 0.29 -1.42 -6.20 17.36 35.80 0.29 -1.44 -5.08 18.45 35.62 0.32 -0.96 -3.43

OPT 11.65 55.24 0.09 -4.54 -153.5 4.98 81.43 -0.02 -6.18 -1501 2.61 84.21 -0.05 -6.60 -1766 14.88 51.52 0.15 -3.50 -80.12
NLNP 20.51 32.84 0.42 0.40 3.18 19.79 31.67 0.41 0.29 3.24 20.66 31.95 0.43 0.64 3.75 17.75 30.64 0.35 -0.50 2.03

No-Short-Sale No-Short-Sale No-Short-Sale No-Short-Sale
VAR 12.98 9.85 0.61 3.46 11.51 12.31 10.71 0.50 1.78 10.52 12.39 10.88 0.50 1.77 10.56 13.14 11.49 0.54 2.35 11.01

GARCH 12.40 9.84 0.55 2.58 10.92 11.91 11.05 0.45 0.99 9.94 12.18 10.76 0.49 1.56 10.36 12.91 11.07 0.54 2.34 10.91
OPT 11.07 10.90 0.38 -0.08 9.15 11.73 10.97 0.44 0.79 9.78 11.20 11.10 0.38 0.00 9.21 12.59 11.76 0.48 1.46 10.39
NLNP 13.58 8.75 0.76 5.66 12.44 13.68 9.03 0.74 5.47 12.47 13.52 9.16 0.72 5.05 12.27 12.74 10.00 0.58 2.96 11.20
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Table 6: Out-Of-Sample Mean-Variance Performance
The predictive sample draws are generated from the 5-year expanding estimation. The optimal portfolio weights are calculated from
maximizing the expected quadratic utility with a risk aversion coefficient of 4. The realized portfolio returns rpt are calculated from the
observed excess returns rt and the riskfree rates. The average returns (rp), standard deviations (σp), and two performance measures,
Sharpe ratio (SR)and Graham-Harvey measure (GH2), are reported for each predictive variable and model combination. The measures
are in bold face when they are higher than those of the benchmarks. The number of sample draws at each period t is 50000.

Out-Of-Sample Mean-Variance Portfolio Performance Tests

rp(%) σp(%) SR GH2 rp(%) σp(%) SR GH2 rp(%) σp(%) SR GH2 rp(%) σp(%) SR GH2
Benchmarks

Market 12.74 15.10 0.38
Passive 8.93 5.27 0.38 -0.08
Expand 8.60 4.36 0.38 -0.02

AR 7.10 5.58 0.16 -1.04
GARCH 7.37 7.60 0.15 -1.18

DVYD TBYD DFSD TBYD & DFSD
No Constraint No Constraint No Constraint No Constraint

VAR 5.29 12.90 -0.13 -7.73 27.10 52.52 0.39 -0.09 28.91 49.22 0.45 0.85

GARCH 7.10 11.82 0.02 -5.59 18.50 39.08 0.30 -1.39 9.67 12.87 0.21 -2.61 19.31 32.60 0.38 -0.13
OPT 5.16 17.30 -0.10 -7.36 21.17 43.08 0.33 -0.88 9.92 14.49 0.21 -2.70 18.03 38.40 0.29 -1.49
NLNP 1.59 17.98 -0.30 -10.30 13.06 24.04 0.26 -1.99 10.18 10.56 0.31 -1.15 18.57 38.42 0.30 -1.28

No-Short-Sale No-Short-Sale No-Short-Sale No-Short-Sale
VAR 7.48 7.07 0.08 -4.63 9.77 5.78 0.49 1.61 11.55 7.45 0.62 3.57

GARCH 8.35 8.52 0.17 -3.30 9.50 5.23 0.49 1.67 10.26 9.98 0.33 -0.78 11.02 7.02 0.58 3.00

OPT 7.49 7.82 0.07 -4.72 9.62 5.59 0.48 1.50 9.09 10.76 0.20 -2.77 9.99 6.04 0.51 1.88

NLNP 7.96 5.81 0.18 -3.11 9.18 4.88 0.47 1.22 9.36 7.68 0.31 -1.04 11.48 6.49 0.70 4.78

TRSD TBYD & TRSD TRSD & DFSD TBYD & TRSD & DFSD
No Constraint No Constraint No Constraint No Constraint

VAR 21.98 37.79 0.40 0.16 36.10 63.48 0.46 1.04 18.13 33.92 0.33 -0.86 22.57 42.84 0.37 -0.36
GARCH 19.36 32.89 0.38 -0.14 25.90 42.20 0.45 0.91 17.51 35.27 0.30 -1.32 19.58 39.55 0.32 -1.03

OPT 17.72 39.02 0.28 -1.67 28.99 59.96 0.37 -0.33 15.25 34.34 0.24 -2.18 21.71 46.42 0.32 -1.06
NLNP 17.91 45.73 0.24 -2.22 22.59 30.06 0.52 2.01 10.19 32.18 0.10 -4.29 16.32 37.62 0.25 -2.09

No-Short-Sale No-Short-Sale No-Short-Sale No-Short-Sale
VAR 11.12 11.29 0.37 -0.20 12.75 9.37 0.62 3.56 10.45 10.90 0.32 -0.93 10.61 6.54 0.56 2.72

GARCH 11.24 11.47 0.38 -0.13 11.91 9.22 0.54 2.35 10.16 10.74 0.30 -1.27 10.02 7.48 0.41 0.44

OPT 10.21 10.55 0.31 -1.10 10.46 10.69 0.33 -0.83 9.82 10.67 0.27 -1.71 9.79 9.38 0.31 -1.19
NLNP 11.17 11.40 0.37 -0.19 13.11 8.54 0.72 5.12 11.00 11.71 0.35 -0.56 8.42 8.08 0.19 -3.01
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Table 7: Out-of-Sample Portfolio Performance under Different Constraints
The predictive sample draws are generated from the recursive estimation with 5-year expanding windows. The portfolios are constructed
under the corresponding constraint. The ex post portfolio returns rpt are calculated from the observed excess returns rt and the riskfree
rates. The average returns (rp), standard deviations (σp), and three performance measures, Sharpe ratio (SR), Graham-Harvey measure
(GH2), and CER (rce), are reported for each predictive variable and model combination. Bold face indicates measures higher than those
of the benchmarks.

Out-of-Sample Portfolio Performance under Different Constraints

rp(%) σp SR GH2 rce rp σp SR GH2 rce rp σp SR GH2 rce rp σp SR GH2 rce
Benchmarks

Market 12.74 15.10 0.38 9.18
Passive 10.18 7.47 0.43 0.74 9.32
Expand 9.96 6.06 0.45 0.95 9.40
VAR 9.63 6.27 0.43 0.68 9.04

GARCH 9.90 9.33 0.32 -1.01 8.58

TBYD
|w| ≤ 2 |w| ≤ 1 |w| ≤ 0.5 0 ≤ w ≤ 2

VAR 11.19 17.24 0.25 -2.08 6.73 10.33 11.19 0.31 -1.21 8.47 9.37 6.54 0.38 -0.11 8.74 10.91 8.46 0.47 1.29 9.85

GARCH 10.25 17.88 0.19 -3.01 5.24 10.61 11.03 0.34 -0.76 8.79 9.48 6.72 0.39 -0.01 8.81 10.38 6.68 0.52 2.00 9.71

OPT 9.62 18.28 0.15 -3.59 4.39 10.18 11.22 0.29 -1.42 8.30 9.06 6.84 0.32 -1.05 8.36 10.71 6.93 0.55 2.45 9.99

NLNP 9.03 17.38 0.12 -3.99 4.35 9.42 11.09 0.23 -2.41 7.58 8.64 6.81 0.26 -1.97 7.95 9.64 6.28 0.43 0.72 9.04

TBYD & DFSD
|w| ≤ 2 |w| ≤ 1 |w| ≤ 0.5 0 ≤ w ≤ 2

VAR 13.96 20.45 0.35 -0.63 7.72 11.57 12.66 0.37 -0.27 9.20 9.59 6.83 0.40 0.16 8.90 13.93 12.56 0.56 2.61 11.61

GARCH 12.75 18.91 0.31 -1.17 7.31 11.32 11.72 0.38 -0.15 9.26 9.82 6.66 0.44 0.83 9.16 12.38 10.72 0.51 1.87 10.65

OPT 10.01 19.87 0.16 -3.48 4.13 9.12 12.14 0.18 -3.08 6.95 7.91 6.63 0.15 -3.53 7.26 10.97 9.48 0.43 0.62 9.64

NLNP 11.96 22.59 0.22 -2.47 4.37 11.12 13.50 0.31 -1.12 8.45 9.79 7.36 0.40 0.12 8.99 14.25 10.72 0.68 4.49 12.57

TBYD & TRSD
|w| ≤ 2 |w| ≤ 1 |w| ≤ 0.5 0 ≤ w ≤ 2

VAR 16.47 20.12 0.48 1.34 10.41 13.34 12.04 0.53 2.24 11.15 10.43 6.88 0.51 1.93 9.71 15.54 15.53 0.55 2.56 11.90

GARCH 15.07 19.69 0.41 0.42 9.17 12.49 12.31 0.45 1.02 10.19 10.11 7.13 0.45 0.98 9.34 14.69 14.13 0.55 2.48 11.69

OPT 11.94 21.71 0.23 -2.34 4.40 10.95 13.34 0.30 -1.26 8.13 9.80 6.94 0.42 0.49 9.07 11.90 16.86 0.29 -1.36 7.11
NLNP 16.56 21.13 0.46 1.05 9.73 13.63 12.07 0.56 2.59 11.44 11.11 6.60 0.64 3.85 10.46 15.86 15.49 0.58 2.89 12.23
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Table 8: Out-Of-Sample Switching Portfolio Performance
The predictive sample draws are generated from the 5-year rolling estimation. At each month, the portfolio
either invests in the market portfolio or 30-day T-bill depending on wether the forecasted expected returns
are higher or lower than the riskfree rates. The realized portfolio returns rpt are calculated from the
observed excess returns rt and the riskfree rates. The average returns (rp), standard deviations (σp), and
two performance measures, Sharpe ratio (SR) and Graham-Harvey measure (GH2), are reported for each
predictive variable and model combination. SR and GH2 are in bold face when they are higher than those
of the benchmarks. Also reported are ∆GH2, which measures the difference in Graham-Harvey measure
between switching portfolios and the corresponding no-short-sale constrained portfolios in the recursive
estimation (Table 4), and Z, which measures the ratio between the frequency of the switching portfolios
beating the corresponding constrained portfolios and that of the constrained portfolio beating the switching
portfolios. Bold face indicates measures higher than those of the benchmarks. The number of sample draws
at each period t is 50000.

Out-Of-Sample Switching Portfolio Performance Tests

rp(%) σp(%) SR GH2 ∆GH2 Z rp(%) σp(%) SR GH2 ∆GH2 Z
Benchmarks

Market 12.74 15.10 0.38
Expand 9.96 6.06 0.45 0.95

AR 11.58 14.36 0.32 -0.93
GARCH 12.77 14.77 0.39 0.15
Random 9.83 10.66 0.28 -1.65

DVYD TRSD
VAR 8.91 8.89 0.22 -2.45 1.64 1.03 12.92 12.28 0.49 1.56 1.42 1.06

GARCH 10.39 11.87 0.29 -1.42 1.42 1.44 13.71 12.85 0.53 2.16 1.76 1.18
OPT 7.82 9.31 0.10 -4.37 0.11 0.62 12.78 12.73 0.46 1.13 1.45 1.24
NLNP 8.48 9.56 0.16 -3.36 -0.30 0.93 13.28 12.50 0.51 1.85 1.68 0.83

TBYD TBYD & TRSD
VAR 12.66 9.06 0.63 3.72 1.28 1.25 13.26 11.88 0.53 2.23 -1.22 1.02

GARCH 12.58 9.00 0.63 3.66 1.07 1.38 13.53 12.51 0.53 2.16 -0.42 1.26
OPT 12.35 8.95 0.60 3.33 1.17 1.02 12.58 11.95 0.47 1.32 1.40 1.11
NLNP 11.96 8.90 0.56 2.72 0.83 1.16 14.39 9.52 0.78 6.01 0.35 0.93

DFSD TRSD & DFSD
VAR 11.22 14.23 0.30 -1.27 3.20 1.08 11.83 12.26 0.40 0.23 0.83 1.07

GARCH 13.04 14.79 0.41 0.42 0.68 1.39 13.54 12.41 0.53 2.23 2.63 2.13
OPT 10.59 14.16 0.26 -1.91 0.45 1.06 11.70 12.28 0.39 0.05 1.27 1.34
NLNP 12.12 14.15 0.36 -0.28 0.38 1.11 12.90 13.18 0.45 1.02 1.20 1.19

TBYD & DFSD TBYD & TRSD & DFSD
VAR 13.35 8.73 0.74 5.31 1.25 0.80 10.93 9.88 0.41 0.31 -2.55 1.03

GARCH 12.43 8.62 0.64 3.83 0.20 1.18 10.95 10.13 0.40 0.19 -0.46 1.26
OPT 11.05 7.34 0.56 2.67 0.78 0.60 11.87 10.33 0.48 1.42 1.97 0.97
NLNP 12.86 7.89 0.75 5.55 0.34 0.61 11.20 10.30 0.41 0.45 2.52 0.98
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Table 9: Market Timing Performance
β2 is the coefficient of the squared market excess returns in the following regression

rt = α+ β1rmt + β2r
2
mt + ǫt,

where rt is the excess return on the measured portfolio and rmt is the market excess return. The timing
performance measure TM is defined as T M = β2var(rmt). Corr., defined as Cov(w, rmt), measures the
correlation between the portfolio weights and the market excess returns. ⋆ denotes positive significance,
whereas ∗ denotes negative significance. Three, two, and one star denote 1%, 5%, and 10% significance,
respectively.

β2 TM Corr β2 TM Corr β2 T M Corr
Expand 0.13⋆⋆⋆ 0.30 0.07

AR 0.39⋆⋆⋆ 0.90−0.00
GARCH 0.43⋆⋆⋆ 0.98−0.08

TBYD DFSD TRSD
No Constraint:

VAR −1.65 −3.77 0.18 1.55⋆⋆⋆ 3.55−0.04 −3.96∗∗ −9.03 0.09
GARCH −3.30∗∗ −7.54 0.12 9.88 22.55 0.03 −4.89∗∗∗−11.16 0.07

OPT −17.57∗∗∗−40.07 0.12 6.81 15.53 0.05 −9.37∗∗∗−21.38 0.08
NLNP −1.50∗ −3.42 0.14 −16.89∗∗−38.54 0.04 −11.23∗∗∗−25.62 0.05

No-Short-Sale:
VAR 0.66⋆⋆⋆ 1.50 0.10 0.80⋆⋆⋆ 1.83−0.04 −0.31 −0.70 0.04

GARCH 0.53⋆⋆⋆ 1.22 0.09 0.94⋆⋆⋆ 2.15 0.07 −0.25 −0.58 0.04
OPT 0.38⋆ 0.87 0.09 −0.57∗∗∗−1.31 0.01 −0.77∗∗∗ −1.75 0.02
NLNP 0.37⋆ 0.85 0.08 0.04 0.09 0.05 −0.47∗ −1.07 0.03

Switching:

VAR 0.61⋆⋆ 1.38 0.13 −0.71 −1.61−0.04 −0.15 −0.33 0.08
GARCH 0.61⋆⋆ 1.39 0.12 −0.01 −0.03 0.09 0.12 0.27 0.11

OPT 0.57⋆ 1.30 0.12 −0.30 −0.68 0.00 −0.09 −0.22 0.07
NLNP 0.56⋆ 1.28 0.11 −0.97 −2.22 0.02 −0.14 −0.33 0.09

TBYD & DFSD TBYD & TRSD TRSD & DFSD
No Constraint:

VAR 1.98 4.51 0.16 −1.75 −3.99 0.16 −4.92∗∗∗−11.22 0.07
GARCH 1.40 3.19 0.16 −1.43 −3.26 0.14 −7.54∗∗∗−17.2 0.07

OPT 0.41 0.93 0.14 −4.83∗∗−11.02 0.12 −8.65∗∗∗−19.73 0.05
NLNP 1.39 3.18 0.12 1.04 2.38 0.13 −7.01∗∗∗−15.98−0.02

No-Short-Sale:
VAR 1.76⋆⋆⋆ 4.01 0.14 0.39 0.89 0.12 −0.55∗ −1.26 0.02

GARCH 1.73⋆⋆⋆ 3.94 0.12 0.04 0.10 0.10 −0.71∗∗ −1.62 0.02
OPT 1.45⋆⋆⋆ 3.31 0.10 −0.70∗∗ −1.60 0.04 −0.59∗∗ −1.35 0.00
NLNP 1.74⋆⋆⋆ 3.97 0.12 1.62⋆⋆⋆ 3.69 0.14 −0.12 −0.28 0.02

Switching:

VAR 2.08⋆⋆⋆ 4.75 0.17 −0.22 −0.50 0.11 −0.22 −0.50 0.04
GARCH 1.97⋆⋆⋆ 4.51 0.16 −0.71∗∗ −1.62 0.12 −0.25 −0.57 0.10

OPT 1.82⋆⋆⋆ 4.15 0.11 −0.54∗ −1.23 0.08 −0.25 −0.57 0.03
NLNP 1.92⋆⋆⋆ 4.39 0.12 1.84⋆⋆⋆ 4.20 0.16 0.17 0.38 0.06
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Table 10: Out-Of-Sample 5-year Subperiod Switching Portfolio Performance
The predictive sample draws are generated from the 5-year expanding estimation and switching portfolios
are formed as described in the text. The testing period is divided into four 5-year periods coincident with
the re-estimation. Panel A reports the period-by-period performance for each period, whereas Panel B
reports the accumulative performance for each period. The average returns (rp), standard deviations (σp),
and three performance measures, Sharpe ratio (SR), Graham-Harvey measure (GH2), and CER (rce),
are reported. The last column reports the performance difference between the predictive models and the
benchmark (∆GH2), and bold face indicates positive numbers.

Out-Of-Sample 5-Year Subperiod Switching Portfolio Performance
Panel A: Period-by-Period Panel B: Accumulative

rp(%) σp(%) SR GH2 ∆GH2 rp(%) σp(%) SR GH2 ∆GH2

Expanding Window Benchmark
1979 - 1983 9.74 6.92 0.05 0.61 1979 - 1983 9.74 6.92 0.05 0.61
1984 - 1988 11.45 6.98 0.26 1.18 1979 - 1988 10.59 6.93 0.15 0.72
1989 - 1993 8.96 4.77 0.43 0.53 1979 - 1993 10.05 6.28 0.22 0.55
1994 - 1998 10.13 6.52 1.09 0.80 1979 - 1998 10.07 6.33 0.44 0.94
1999 - 2003 1.32 10.45 -0.27 0.55 1979 - 2003 8.32 7.39 0.23 -0.02

TBYD & DFSD
VAR VAR

1979 - 1983 16.88 7.01 0.86 12.77 12.14 1979 - 1983 16.88 7.01 0.86 12.77 12.14

1984 - 1988 16.10 12.45 0.74 10.17 9.01 1979 - 1988 16.49 10.06 0.76 10.92 10.14

1989 - 1993 11.13 8.00 0.72 4.19 3.68 1979 - 1993 14.70 9.43 0.75 8.67 8.05

1994 - 1998 9.31 6.11 0.74 -4.22 -5.06 1979 - 1998 13.35 8.73 0.74 5.31 4.55

1999 - 2003 -2.17 15.63 -0.35 -0.71 -1.26 1979 - 2003 10.25 10.60 0.38 2.39 2.51

GARCH GARCH
1979 - 1983 13.65 3.03 0.92 13.76 13.14 1979 - 1983 13.65 3.03 0.92 13.76 13.14

1984 - 1988 17.07 13.30 0.77 10.62 9.46 1979 - 1988 15.36 9.62 0.68 9.54 8.77

1989 - 1993 9.40 8.59 0.47 0.98 0.47 1979 - 1993 13.37 9.30 0.61 6.62 6.00

1994 - 1998 9.60 6.13 0.79 -3.58 -4.42 1979 - 1998 12.43 8.62 0.64 3.83 3.07

1999 - 2003 0.57 16.36 -0.17 0.49 -0.06 1979 - 2003 10.06 10.68 0.36 2.06 2.18

OPT OPT
1979 - 1983 13.08 2.83 0.80 11.93 11.30 1979 - 1983 13.08 2.83 0.80 11.93 11.30

1984 - 1988 12.12 11.29 0.47 5.07 3.91 1979 - 1988 12.60 8.20 0.47 5.94 5.17

1989 - 1993 9.62 6.62 0.64 3.17 2.66 1979 - 1993 11.61 7.70 0.51 5.06 4.45

1994 - 1998 9.36 6.14 0.75 -4.15 -5.00 1979 - 1998 11.05 7.34 0.56 2.67 1.91

1999 - 2003 -0.48 16.37 -0.23 0.40 -0.15 1979 - 2003 8.74 9.88 0.26 0.44 0.55

NLNP NLNP
1979 - 1983 17.80 6.68 1.03 15.36 14.73 1979 - 1983 17.80 6.68 1.03 15.36 14.73

1984 - 1988 13.62 10.31 0.65 8.54 7.38 1979 - 1988 15.71 8.67 0.79 11.43 10.66

1989 - 1993 10.98 7.49 0.75 4.56 4.05 1979 - 1993 14.13 8.30 0.78 9.17 8.55

1994 - 1998 9.05 6.45 0.66 -5.31 -6.15 1979 - 1998 12.86 7.89 0.75 5.55 4.79

1999 - 2003 -0.04 15.10 -0.22 0.44 -0.11 1979 - 2003 10.28 9.85 0.42 2.90 3.01
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TBYD
VAR VAR

1979 - 1983 11.53 3.20 0.25 3.67 3.07 1979 - 1983 11.53 3.20 0.25 3.67 3.07

1984 - 1988 11.96 8.95 0.57 6.99 5.81 1979 - 1988 11.74 6.69 0.44 5.55 4.82

1989 - 1993 8.36 8.54 0.35 -0.55 -1.07 1979 - 1993 10.61 7.35 0.40 3.36 2.81

1994 - 1998 18.78 12.83 1.09 0.69 -0.11 1979 - 1998 12.66 9.06 0.63 3.72 2.79

1999 - 2003 -1.09 16.43 -0.27 0.71 0.16 1979 - 2003 9.91 11.02 0.34 1.67 1.69

GARCH GARCH
1979 - 1983 11.11 1.11 0.45 6.56 5.95 1979 - 1983 11.11 1.11 0.45 6.56 5.95

1984 - 1988 12.34 9.44 0.58 7.19 6.01 1979 - 1988 11.73 6.69 0.44 5.51 4.79

1989 - 1993 9.00 8.07 0.45 0.74 0.21 1979 - 1993 10.82 7.17 0.44 3.96 3.41

1994 - 1998 17.85 12.99 1.01 -0.50 -1.30 1979 - 1998 12.58 9.00 0.63 3.66 2.73

1999 - 2003 -0.55 16.40 -0.23 1.27 0.72 1979 - 2003 9.95 10.96 0.34 1.76 1.78

OPT OPT
1979 - 1983 11.11 1.11 0.45 6.56 5.95 1979 - 1983 11.11 1.11 0.45 6.56 5.95

1984 - 1988 11.58 8.96 0.53 6.23 5.05 1979 - 1988 11.35 6.35 0.41 4.94 4.21

1989 - 1993 8.18 8.54 0.33 -0.80 -1.33 1979 - 1993 10.29 7.15 0.37 2.86 2.31

1994 - 1998 18.52 12.86 1.07 0.36 -0.44 1979 - 1998 12.35 8.95 0.60 3.33 2.39

1999 - 2003 -0.31 16.62 -0.22 1.57 1.02 1979 - 2003 9.82 10.99 0.33 1.56 1.58

NLNP NLNP
1979 - 1983 11.11 1.11 0.45 6.56 5.95 1979 - 1983 11.11 1.11 0.45 6.56 5.95

1984 - 1988 10.75 8.80 0.45 4.66 3.48 1979 - 1988 10.93 6.24 0.35 3.95 3.23

1989 - 1993 7.83 8.51 0.29 -1.32 -1.84 1979 - 1993 9.90 7.07 0.32 2.06 1.51

1994 - 1998 18.15 12.86 1.04 -0.03 -0.83 1979 - 1998 11.96 8.90 0.56 2.72 1.79

1999 - 2003 -0.67 16.34 -0.24 1.13 0.58 1979 - 2003 9.43 10.87 0.30 1.06 1.08

TBYD & TRSD
VAR VAR

1979 - 1983 13.72 5.32 0.55 8.12 7.52 1979 - 1983 13.72 5.32 0.55 8.12 7.52

1984 - 1988 10.03 18.46 0.17 -0.39 -1.57 1979 - 1988 11.87 13.54 0.23 1.98 1.26

1989 - 1993 11.13 8.41 0.68 3.73 3.20 1979 - 1993 11.62 12.05 0.33 2.21 1.66

1994 - 1998 18.17 11.33 1.18 1.97 1.17 1979 - 1998 13.26 11.88 0.53 2.23 1.30

1999 - 2003 0.89 15.42 -0.16 2.62 2.07 1979 - 2003 10.79 12.72 0.36 2.04 2.06

GARCH GARCH
1979 - 1983 14.30 4.97 0.70 10.38 9.77 1979 - 1983 14.30 4.97 0.70 10.38 9.77

1984 - 1988 10.69 18.47 0.21 0.27 -0.91 1979 - 1988 12.49 13.48 0.28 2.76 2.04

1989 - 1993 12.78 9.05 0.82 5.46 4.93 1979 - 1993 12.59 12.15 0.41 3.39 2.84

1994 - 1998 16.36 13.58 0.86 -2.65 -3.45 1979 - 1998 13.53 12.51 0.53 2.16 1.23

1999 - 2003 0.23 15.27 -0.20 1.86 1.31 1979 - 2003 10.87 13.17 0.36 1.95 1.97

OPT OPT
1979 - 1983 12.32 2.63 0.59 8.76 8.15 1979 - 1983 12.32 2.63 0.59 8.76 8.15

1984 - 1988 10.03 18.46 0.17 -0.39 -1.57 1979 - 1988 11.17 13.13 0.18 1.21 0.48

1989 - 1993 10.63 10.11 0.52 1.64 1.11 1979 - 1993 10.99 12.18 0.27 1.36 0.81

1994 - 1998 17.32 11.20 1.12 1.10 0.30 1979 - 1998 12.58 11.95 0.47 1.32 0.39

1999 - 2003 -0.14 15.43 -0.22 1.48 0.93 1979 - 2003 10.03 12.77 0.30 1.10 1.11

NLNP NLNP
1979 - 1983 12.27 2.64 0.57 8.49 7.88 1979 - 1983 12.27 2.64 0.57 8.49 7.88

1984 - 1988 14.42 13.18 0.57 7.03 5.85 1979 - 1988 13.34 9.47 0.48 6.18 5.46

1989 - 1993 10.61 8.24 0.64 3.12 2.59 1979 - 1993 12.43 9.06 0.53 5.26 4.71

1994 - 1998 20.28 10.69 1.46 5.74 4.94 1979 - 1998 14.39 9.52 0.78 6.01 5.07

1999 - 2003 -0.40 15.86 -0.23 1.29 0.74 1979 - 2003 11.43 11.18 0.47 3.72 3.74
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Table 11: Accumulative Switching Portfolio Performance over Extended Periods
The predictive sample draws are generated from the 5-year expanding estimation and switching portfolios are formed as described in the
text. The testing period is extended to 1959 and divided into nine 5-year periods coincident with the re-estimation. The average returns
(rp), standard deviations (σp), Sharpe ratio (SR), Graham-Harvey measure (GH2), CER (rce), and ∆GH2 are reported.

Out-Of-Sample 5-Year Subperiod Switching Portfolio Accumulative Performance Over 1959 - 2003
rp(%) σp(%) SR GH2 ∆GH2 rp(%) σp(%) SR GH2 ∆GH2 rp(%) σp(%) SR GH2 ∆GH2 rp(%) σp(%) SR GH2 ∆GH2

Expanding
1959 - 1963 7.28 19.31 0.24 -0.46
1959 - 1968 7.12 16.63 0.22 -0.31
1959 - 1973 3.82 16.79 -0.02 0.10
1959 - 1978 3.35 15.75 -0.08 0.72
1959 - 1983 4.88 14.40 -0.07 0.52
1959 - 1988 5.51 13.44 -0.04 0.07
1959 - 1993 5.78 12.58 -0.01 -0.34
1959 - 1998 6.45 11.95 0.06 -1.16
1959 - 2003 5.81 11.71 0.03 -0.78

TBYD
VAR GARCH OPT NLNP

1959 - 1963 4.38 8.91 0.19 -1.01 -0.55 1.89 7.53 -0.10 -4.77 -4.31 3.17 6.94 0.07 -2.53 -2.07 4.49 9.75 0.19 -1.08 -0.62
1959 - 1968 4.31 6.28 0.14 -1.28 -0.96 3.06 5.31 -0.07 -3.71 -3.40 3.70 4.89 0.05 -2.26 -1.95 4.36 6.86 0.13 -1.32 -1.00
1959 - 1973 5.86 5.77 0.30 4.13 4.03 5.11 5.10 0.19 2.76 2.66 5.20 4.69 0.23 3.23 3.12 5.63 6.11 0.25 3.43 3.33
1959 - 1978 5.56 5.17 0.18 4.38 3.66 5.36 4.42 0.17 4.18 3.46 5.34 4.09 0.18 4.30 3.58 5.75 5.29 0.21 4.82 4.10
1959 - 1983 6.75 4.89 0.19 4.13 3.60 6.51 4.04 0.17 3.85 3.33 6.49 3.75 0.18 3.98 3.46 6.82 4.80 0.21 4.38 3.86
1959 - 1988 7.62 5.78 0.28 4.82 4.75 7.48 5.35 0.28 4.78 4.71 7.34 5.02 0.27 4.65 4.58 7.48 5.66 0.26 4.53 4.46
1959 - 1993 7.73 6.23 0.29 4.08 4.42 7.70 5.81 0.31 4.34 4.68 7.46 5.64 0.28 3.86 4.20 7.53 6.14 0.26 3.68 4.02
1959 - 1998 9.11 7.44 0.45 4.56 5.73 8.97 7.16 0.45 4.55 5.71 8.84 7.03 0.44 4.41 5.57 8.29 6.37 0.40 3.79 4.96
1959 - 2003 7.97 8.92 0.28 2.97 3.76 7.91 8.70 0.28 2.97 3.75 7.83 8.65 0.27 2.85 3.63 7.29 8.12 0.22 2.13 2.91

TBYD & DFSD
VAR GARCH OPT NLNP

1959 - 1963 0.80 7.74 -0.24 -6.53 -6.07 7.34 9.98 0.47 2.51 2.97 0.07 7.82 -0.33 -7.69 -7.22 5.57 10.59 0.27 0.03 0.49
1959 - 1968 2.52 5.48 -0.17 -4.85 -4.54 5.79 7.04 0.33 1.00 1.31 2.72 5.71 -0.13 -4.36 -4.05 4.90 7.46 0.19 -0.60 -0.29
1959 - 1973 3.52 7.48 -0.08 -0.68 -0.78 5.26 8.10 0.14 2.08 1.98 3.41 7.27 -0.10 -0.90 -1.00 5.38 6.70 0.19 2.69 2.59
1959 - 1978 3.35 7.58 -0.17 -0.49 -1.21 6.79 8.71 0.25 5.31 4.59 4.61 7.14 0.00 1.84 1.12 6.80 7.67 0.28 5.82 5.10
1959 - 1983 6.05 7.62 0.03 1.87 1.34 8.16 7.94 0.29 5.60 5.07 6.31 6.58 0.07 2.48 1.95 9.00 7.58 0.42 7.38 6.86
1959 - 1988 7.73 8.66 0.20 3.60 3.54 9.64 9.08 0.40 6.61 6.54 7.90 7.81 0.24 4.26 4.20 10.08 8.51 0.48 7.79 7.72
1959 - 1993 8.22 8.57 0.27 3.76 4.10 9.61 9.01 0.41 5.82 6.16 8.31 7.84 0.31 4.30 4.64 10.32 8.37 0.53 7.53 7.87
1959 - 1998 8.35 8.29 0.31 2.57 3.73 9.61 8.69 0.44 4.46 5.62 8.47 7.64 0.36 3.19 4.35 10.19 8.12 0.55 5.98 7.14
1959 - 2003 7.18 9.42 0.18 1.50 2.28 8.60 9.86 0.32 3.53 4.31 7.48 9.05 0.22 2.10 2.88 9.05 9.19 0.39 4.62 5.40
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Panel A

Panel B

Figure 1: Correlations between the Market Return and Predictive Variables. Panel A: yearly

correlations; Panel B: accumulative correlations.
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