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I. Introduction

This paper develops a structural continuous-time model of the yield curve with stochastically

correlated risk factors. Our approach extends the standard affine class of term structure models,1

as it grants a new element of flexibility in the modeling of the first and second moments of yields.

Consequently, we are able to explain, all at a time, the violations of the expectations hypothesis (e.g.,

the Campbell-Shiller slope coefficients), the persistence in the conditional volatility of yields, the hump-

shaped forward rate volatility curve, and the time-varying correlations among different segments of the

term structure.

A vast literature has explored the ability of term structure models to account for the time-series

and cross-sectional properties of bond yields and interest rate derivatives. The search has focused

on analytically tractable models that allow for a general equilibrium interpretation in terms of investor

preferences, and ensure economically meaningful (e.g. positive) yields. This set of requirements poses

a significant challenge and has turned out difficult to put in unison with the available modeling tools.

In affine term structure models (ATSMs), for instance, the tractability in pricing and estimation—

their key advantage—comes at the price of restrictive assumptions that guarantee admissibility of the

underlying state processes and their econometric identification. Dai and Singleton (2000) emphasize

that under the risk-neutral measure admissibility implies a trade off between factors’ dependence and

their stochastic volatilities. Moreover, Grasselli and Tebaldi (2004) show that continuous factor paths

require the positive factors to be mutually independent for the closed-form solution for bond prices to

exist.2 In order to have both correlations and time-varying volatilities, positive square-root processes

need to be melded together with the conditionally Gaussian ones. The inclusion of Gaussian dynamics

allows for an unconstrained sign of factor correlations, yet at the expense of a loss in the ability to explain

stochastic volatilities, and with a possibility to generate negative realizations of the short interest rate.

The empirical literature has highlighted at least five regularities that characterize the dynamics of the US

Treasury yields.3 First, yields are highly autocorrelated, and the extent of their persistence may differ

in subsamples. Second, excess returns on bonds are on average close to zero, but vary systematically

with the term structure. Accordingly, they can be predicted with several yield curve variables such

as the slope, or the spot-forward spread (Fama and Bliss, 1987; Duffee, 2002; Cochrane and Piazzesi,

2005). As a corollary to this fact, one can also forecast the future changes of yields with the current

slope of the yield curve (Campbell and Shiller, 1991). Third, in some periods the term structure of

1By “standard affine” we denote the state space D = R
m
+ × R

n−m of a regular affine n-dimensional process (see Duffie,
Filipović, and Schachermayer, 2003).

2Dai and Singleton (2000) (p. 1945) note, however, that the standard assumption of independent risk factors in the
CIR-style models is not necessary either for admissibility of these models or for zero-coupon prices to be known in
(essentially) closed-form.

3For a thorough review of the empirical features of yields see e.g., Piazzesi (2003); Dai and Singleton (2003); Singleton
(2006).
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unconditional volatilities peaks for maturities of 2–3 years, and is moderately downward sloping for

longer yields (Piazzesi, 2001). Fourth, conditional volatilities of yields are time-varying and positively

correlated with the yield level. Finally, although correlations among yields of different maturity are on

average very high, they can change broadly over time.

In order to match the physical dynamics of the yield curve, reduced-form models have exploited rich

specifications of the market price of risk. The early “completely affine” literature focussed on defining

the market price of risk as a constant multiple of factor volatility.4 Summarizing the empirical failure

of this literature, Duffee (2002) proposed an “essentially affine” extension, in which the market prices

of risk of unrestricted (conditionally Gaussian) factors are inversely proportional to factor volatility

and have a switching sign, but they preserve the completely affine formulation for the square-root

(volatility) factors. More recently, Cheridito, Filipović, and Kimmel (2005) suggested a new “extended

affine” generalization, in which the market price of risk of all factors—both Gaussian and square-root—

is inversely proportional to their volatility. Thus, it permits to further relax the link between the market

price of risk and the factor volatility.

The levers obtained by augmenting the market price of risk are twofold. First, by incorporating

Gaussian factors, the market price of risk can switch sign. Second, unconditional correlations between

(some) factors can take both positive and negative values. This gain in flexibility appears crucial for

matching the behavior of yields over time. Duffee (2002) and Dai and Singleton (2002) highlight the

key role of correlated factors for the model’s ability to forecast yield changes and excess bond returns.

Notwithstanding a good fit to some features of the data, the structural limitations of the essentially5

affine models—manifest in the trade-off between stochastic volatilities and correlations—allow to match

the first or the second moments of yields, but not both at the same time (see e.g., Brandt and Chapman

(2002); Dai and Singleton (2003)). Moreover, the extensions of the market price of risk are not innocuous

from an economic perspective. In a general equilibrium setting, the market price of risk reflects investor

risk attitudes. More complex formulations are therefore equivalent to increasingly complex investor

preferences. Indeed, models with extended or essentially affine market price of risk may be difficult to

justify with general equilibrium arguments.6

This paper takes a different approach. While we start with a representative agent economy in the

tradition of Cox, Ingersoll, and Ross (1985a) (CIR), we diverge from the literature in making a non-

4Examples of completely affine models are Vasicek (1977), or Cox, Ingersoll, and Ross (1985b). The models have been
systematically characterized by Dai and Singleton (2000).

5In the lack of extensive studies on the fit of extended affine models, we are restricted to discuss only the results available
for the essentially affine specifications.

6Some equilibrium motivation for the essentially affine form of the market price of risk can be found in the term
structure models with habit formation, like in Buraschi and Jiltsov (2006), and Dai (2003). The extended affine family
of Cheridito, Filipović, and Kimmel (2005), instead, seems more difficult to reconcile with the standard expected
utility maximization, because it entails that agents become more concerned about risk precisely when it goes away.
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standard assumption about the production technology. In particular, the fundamental risk factors in our

economy evolve as a continuous-time process of positive definite matrices, whose transition probability

is Wishart, and by construction can be stochastically correlated. With the aim of exploring the yield

curve implications of this assumption, we deliberately assign very simple log-preferences to the agent.

We demonstrate that our setting grants a remarkable flexibility along several dimensions.

First, the market price of risk involves elements that take both positive and negative values, and hence

it translates into excess bond returns that can switch sign. We document that the variation in the

model-implied term premia is consistent in size and direction with the historical deviations from the

expectations hypothesis.

Second, we are not bound to give up stochastic volatility of factors for their correlations, both of

which are truly stochastic in our setting. By construction, the model accommodates conditional and

unconditional as well as positive and negative correlations among state variables. The rich dependence

of factors is preserved not only under the physical but also under the risk-neutral measure and, contrary

to the previous affine literature, does not need to be induced through more complex preferences. We

show that the model-generated yields bear the degree of mutual co-movement and volatility persistence

which is compatible with the historical evidence.

Third, the model is solved in closed-form for zero-coupon bond prices, and in semi closed-form (Fourier

inversion) for the prices of interest rate derivatives. Its tractability is especially noteworthy in light of

the admissible factor correlations and their stochastic volatility. Furthermore, while the short rate and

yields are linear combinations of the elements of the state matrix, some of which have unrestricted sign,

their positivity is ensured with a straightforward restriction. This provides a contrast to the standard

affine Am(N) case with m < N , in which the presence of correlated factors entails a probability of

negative interest rates.

Fourth, and as a consequence of the properties just discussed, our setup promises good results for the

pricing of interest rate derivatives. For one, we show that the model produces a hump-shaped term

structure of forward interest rate volatilities, which is crucial for the pricing of caps. Moreover, since

stochastic correlations arise by the definition of the state dynamics, there is no need to force them into

the model with an additional independent state variable, as is typically done in the literature (see the

related literature below). This feature shall have a bearing on the consistent pricing of caps (portfolios

of options) relative to swaptions (options on a portfolio).

Finally, the calibration of our model reveals that the regularities found in the data can be successfully

reproduced with the most parsimonious three-factor specification, which implies fewer parameters even

than the completely affine three-factor CIR model.
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Our findings contribute not only to the theoretical yield curve literature, but they also provide a response

to the practical concerns of the financial industry. Consider a fairly typical problem of a trader or market

maker who wants to hedge a $10Ml long position in a 10-year zero bond with a position in a 2-year

bond, say. If the yield curve were to move in a parallel fashion, i.e. the correlation between different

yields to maturity were equal to one, the hedging position would be simply proportional to the ratio

of the present values of a basis point (PVBP) of the two bonds, PV BP10

PV BP2
. If the correlation is less

than perfect, traders often follow the textbook suggestion to adjust the hedge ratio with the predictive

regression coefficient between the yields, i.e. PV BP10

PV BP2
β. The lower the sensitivity of the 10-year yield

to changes in the 2-year rate, the lower the hedge ratio. In practice, however, this strategy is far from

perfect. For instance, in January 2000 a trader using ten years of data would compute a β equal to 0.83.

Accordingly, he would short $24.1Ml face value of the 2-year bond.7 Unfortunately, this adjustment

factor fluctuates broadly over time: Since β = σ10

σ2
ρ10,2, the variation is due both to the variation in the

correlation coefficient and in the ratio of their volatilities (see Figure 1). In the last week of January

2000, the conditional value of β is equal to 1.08, as estimated with the exponential moving average. The

market maker who assumes a constant value of β = 0.83 would suffer major losses in a matter of just

one week. Clearly, the effectiveness of the hedge depends crucially on the predictive power of the risk

weight implied by a yield curve model. The purely Gaussian models are at odds with the observed time

variation in the hedge ratio, as they entail constant conditional correlations and volatilities of yields.

Similarly, an investor who follows the recommendation of a three-factor CIR model with independent

factors would not be able to appropriately adjust the position, because the model-generated variation

in the hedge ratio is only about a third of the historical number.8 This paper addresses the issue of the

stochastic volatilities and correlations of yields in a structural general equilibrium setting.

7Let PV BPiY denote the change in the dollar value of a i-maturity bond given one basis point decrease in the yield.
PV BP is quoted per 100 face value of the bond. Let FiY be the face value of the position in the i-year bond, and β
be the predictive slope coefficient of a regression on yield changes. The change in the portfolio value induced by one
basis point increase in the 2-year yield can be computed as

∆Vp = −F10
PV BP10 × β

100
− F2

PV BP2

100
,

Thus, the optimal hedging position in the 2-year bond is:

F2 = −F10
PV BP10 × β

PV BP2
= −10Ml × 0.83 × 0.050814

0.017569
= −24.1Ml.

8This conclusion is born out by the simulation of the three-factor CIR model at parameters estimated by Dai and
Singleton (2002) for the Treasury yields and Jagannathan, Kaplin, and Sun (2003) for the swap rates. The conditional
correlation of yield changes, and more so, the ratio of their conditional volatilities implied by the three-factor CIR
model show a too low variation. As a result, the risk weight σ10

σ2
ρ10,2 has a very low volatility; its standard deviation

is only about a third of the historical figure at both sets of parameter estimates.
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Related literature

Apart from affine yield curve models, our work is related to the pricing and hedging of interest rate

derivatives. Two features of the interest rate derivatives data have spurred extensive research. First,

the observed term structure of implied cap volatilities is on average hump-shaped (e.g., De Jong,

Driessen, and Pessler, 2004). This requires a model that generates a hump in the volatility curve

of forward interest rates (e.g., Brigo and Mercurio, 2006). Second, prices of swaptions and caps are

mutually inconsistent (Longstaff, Santa-Clara, and Schwartz, 2001). The cap-implied volatilities are

typically higher and more volatile than those extracted from swaptions (Collin-Dufresne and Goldstein,

2001). Simple affine models such as the three-factor CIR fail to explain this feature. In consequence,

Jagannathan, Kaplin, and Sun (2003) find the CIR factors backed out from swap and LIBOR rates

to be negatively correlated, which contradicts the model itself. Taken together, these findings suggest

that in order to successfully price interest rate derivatives, a model needs to accommodate time-varying

correlations and volatilities, both driven by factors unrelated to bond prices themselves. In this vein,

Collin-Dufresne and Goldstein (2001) and Han (2005) develop models that aim to bypass the trade-off

between stochastic volatilities and correlations that pertains to the affine class. Their key insight lies in

the notion of “unspanned” factors and boils down to untangling state variables that move yields from

the ones that move their stochastic volatilities and correlations. The immediate presence of stochastic

correlations in the Wishart factor model sets us apart from the approaches just mentioned. With this

property, our framework opens up a new perspective on the discussion of unspanned risk factors, as we

can investigate the relative importance of stochastic volatility versus correlation.

Our work draws upon earlier results on the properties of the Wishart process. The Wishart process

has been introduced by Bru (1991), and incorporated into the finance domain by Gourieroux, Jasiak,

and Sufana (2004) and Gourieroux and Sufana (2003, 2004). Recently, it has found applications to

the solution of an intertemporal portfolio choice problem with a correlation hedging demand (Buraschi,

Porchia, and Trojani, 2006), and to multivariate option pricing (da Fonseca, Grasselli, and Tebaldi,

2005, 2006). In the yield curve context, Gourieroux and Sufana (2003) have suggested the Wishart

process as a convenient way of representing the yield factors, and thus of extending the state space

of the standard affine processes, as characterized by Duffie and Kan (1996), to the space of positive

definite matrices.9 Their focus is on a statistical representation of the yield curve in a discrete-time

model with an exogenous specification of the pricing kernel. We, by contrast, propose a continuous-time

equilibrium framework, which enables us to investigate the economic properties of the term structure.

We demonstrate that the model goes a long way toward resolving the empirical “puzzles” of the yield

9See the discussion in Gourieroux and Sufana (2003), Section 4.
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curve. Moreover, to our knowledge, we are the first to study the interest rate derivatives in the Wishart

factor setting.

The plan of the paper is as follows. Section II defines the economy and derives the equilibrium interest

rate. Section III provides the solution for the term structure and discusses its asset pricing implications.

Section IV investigates the properties of factors based on the model calibrated to the US Treasury

yields. In Section V, the model is scrutinized for its consistency with the stylized facts of the yield

curve literature. Section VI concludes. All proofs and figures are in Appendices.

II. The economy

We study a continuous time Cox, Ingersoll, and Ross (1985a) production economy with a utility

maximizing representative agent. While our representative agent is endowed with simple preferences, we

depart from the literature in the specification of the available real investment opportunities. Specifically,

the fundamental risk factors in this economy are non-standard, and evolve as a continuous time process

of symmetric positive definite matrices.

Assumption 1 (Preferences). The representative agent maximizes an infinite horizon utility function

Et

[∫ ∞

t

e−ρs ln(Cs)ds

]

, (1)

where Et(·) is the conditional expectations operator, ρ is the time discounting factor, and Ct is the

consumption at time t.

Investor’s objective is to select the optimal level of consumption C, and the optimal fractions of wealth

to invest in the available assets. The opportunity set comprises: a locally riskless bond in zero net

supply with return r, a technology Y producing a single physical good that can be either consumed or

reinvested, and a vector of financial assets, with prices F , in zero net supply.

Assumption 2 (Production technology). The return to the production technology evolves as

dYt

Yt

= Tr (DΣt) dt+ Tr
(

√

ΣtdBt

)

, (2)

where dBt is a n× n matrix of independent standard Brownian motions; Σt (as well as its square root)

is a n×n symmetric positive definite matrix of state variables; D is a symmetric matrix of deterministic

coefficients. Tr indicates the trace operator.

While the dynamics of returns to production Y are specified exogenously, the risk premia on F are an

output of equilibrium. The agent chooses the level of consumption C, and the fractions of wealth to

6



be invested in the production technology (real asset), vY , and in the financial assets, vF . The agent’s

wealth evolves according to

dWt

Wt

= vY

dYt

Yt

+ v′F I
−1
Ft
dFt + (1 − vY − v′F 1)rtdt− vCdt,

where vC = C/W is the fraction of wealth, which is consumed, 1 is a vector of ones having the same

dimension as Ft, and IFt
= diag(Ft).

Assumption 3 (Risk factors). The physical dynamics of the risk factors is governed by the Wishart

process Σt, given by the matrix diffusion system

dΣt = (ΩΩ′ +MΣt + ΣtM
′) dt+

√

ΣtdBtQ+Q′dB′
t

√

Σt, (3)

where Ω,M,Q, Ω invertible, are square n× n matrices. Throughout, we assume that ΩΩ′ = kQQ′ with

degrees of freedom k > n.

The specification of the risk factors represents the key idiosyncracy of our—otherwise standard—

economy. It also motivates the assumption of log-preferences: As we are primarily interested in exploring

the term structure implications of the posited state dynamics, to be able to disentangle them from other

effects, we select the simplest possible form of preferences, despite limitations this choice entails (e.g.,

myopic portfolio choice).

Before we move on to defining the equilibrium, we discuss the properties of the factor dynamics. The

Wishart process is a multivariate extension of the well-known square-root (CIR) process. In a special

case when k is an integer, it can be interpreted as a sum of several outer products of multidimensional

Ornstein-Uhlenbeck (OU) processes. A number of qualities make the process particularly suitable for the

modeling of multivariate sources of risk in finance (Gourieroux, Jasiak, and Sufana, 2004; Gourieroux,

2006).

First, the restriction ΩΩ′ ≫ QQ′ guarantees that Σt is positive definite, and hence can be used to

represent a variance-covariance matrix. Thus, the diagonal elements of Σt (and
√

Σt) are always

positive, but the out-of-diagonal elements can take negative values. Moreover, if ΩΩ′ = kQQ′ for

some k > 1, then Σt follows the Wishart distribution.

Second, the Wishart process admits time and portfolio aggregation, implying that the integrals as well

as the weighted sums of the Wishart process are again Wishart. This property is in general not true

for multivariate GARCH processes, which are not invariant under linear aggregation.

Third, the process is affine Markov in the sense that its first and second moments are affine in Σt.

It follows that the conditional Laplace transform both of the Wishart process and of the integrated
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Wishart process is an exponential affine function of Σt.
10 This gives rise to convenient closed-form

solutions to prices of bonds or equity options, and facilitates the econometric inference based on the

model.

Fourth, the coefficients of the dynamics (3) admit intuitive interpretation: The M matrix is responsible

for the mean reversion of factors, and the Q matrix—for their conditional dependence. Typically, in

order to ensure non-explosive features of the process, M is assumed negative definite.

Finally, the different elements of the Wishart matrix of factors provide for rich interdependencies, and

their conditional and unconditional correlations are unrestricted in sign (see Section IV and Result 11 in

Appendix A.1 for details). Thus, besides the convenient statistical properties, the dynamics (3) carries

a deeper economic sense. Even though we do not attach names to the factors in this economy, we treat

them as a dynamic system of dependent sources of risk.

II.A. The equilibrium short interest rate

The investor’s objective is to select the optimal level of consumption C∗, and the optimal fractions of

wealth invested in the production technology v∗Y , and in the financial assets v∗F . The maximization

problem is given by the following value function

J(W,Σ, t) = max
vY ,vF ,vC

Et

[∫ ∞

t

e−ρs ln(Cs)ds

]

. (4)

The definition of equilibrium is analogous to Cox, Ingersoll, and Ross (1985a).11

Definition 4 (Equilibrium). The equilibrium is represented as the set of processes (C∗
t , rt, Ft) for the

optimal consumption, the equilibrium interest rate and the prices of the financial assets, such that

– The maximization problem in equation (4) is solved;

– The optimal consumption is financed by a trading strategy according to which all wealth is invested

in the technology Y (v∗Y = 1, v∗F = 0).

The market clearing condition at equilibrium implies that the representative investor selects the optimal

consumption (C∗ = ρW ), and reinvests all unconsumed wealth in the production technology (v∗Y = 1).

10The conditional Laplace transform of the integrated Wishart process is of exponentially affine form

ϕt,τ (Γ) = Et[exp Tr(Γ

Z t+τ

t

Σsds)] = exp [Tr [A(τ, Γ)Σt] + B(τ, Γ)] ,

where coefficients A(τ,Γ) and B(τ, Γ) solve an appropriate (matrix) ordinary differential equation (see e.g., Gourieroux
(2006), p. 19).

11See the definition in Cox, Ingersoll, and Ross (1985a), p. 371.
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Financial assets are in zero net supply (v∗F = 0). From the first order conditions of the log-investor it is

straightforward to obtain the short interest rate and the market price of risk supported in equilibrium.

By applying the Feynman-Kač argument to (4), J solves the Bellman equation of the form

max
vY ,vF ,vC

[LW,ΣJ + U ] +
∂J

∂t
− ρJ = 0, (5)

where LW,Σ is the infinitesimal generator of the couple (W,Σ); U(Ct) = e−ρt lnCt represents the felicity

function, and ∂J/∂t is the first derivative of J with respect to time. Since risk factors are represented

by a matrix-valued process, the infinitesimal generator LW,Σ is non-standard, and has the following

form12

LW,Σ = µW

∂

∂W
+

1

2
σ2

W

∂2

∂W 2
+ Tr [(ΩΩ′ +MΣ + ΣM ′)R + 2ΣR(Q′QR)] + 2Tr [ΣQR]

∂

∂W
, (6)

where by R we denote the matrix differential operator defined as13

R :=

(

∂

∂Σij

)

n×n

for 1 ≤ i, j ≤ n. (7)

The generator LW,Σ comprises three components: (i) the standard infinitesimal generator for the wealth

process LW (first two terms), (ii) the generator for the Wishart process LΣ (third term), and (iii) the

cross generator involving the covariation terms between wealth and the Wishart process (fourth term).

While the standard interpretation of the generator is preserved,14 its novelty comes from the notation

in terms of matrices.

The drift of the wealth process is given by

µW = [vY [Tr(DΣ) − r] + v′F (µF − r1) + (r − vC)]W, (8)

where µF is the drift vector with i-th element defined as µF,i := 1
dt
E
(

dFi

Fi

)

. We note that the quadratic

variation of the technology in equation (2) is a linear combination of the diagonal elements of the state

matrix, and can be written as Tr(Σt).
15 The quadratic variation of the wealth process follows as

12See Section 2 in Bru (1991), and Propositions 1 and 2 in da Fonseca, Grasselli, and Tebaldi (2005).
13Note that in our case R is symmetric, since Σt is symmetric.
14Indeed, the n × n dimensional process Σt can be viewed as a vector of

n(n+1)
2

different factors.
15Note that Tr(

√
ΣtdBt) = vec(

√
Σt)′vec(dBt), where vec denotes stacking elements of a matrix in a vector. The

quadratic variation is

〈Tr(
√

ΣdB)〉t = vec(
√

Σ)′vec(dB)vec(
√

Σ)′vec(dB) = vec(
√

Σ)′vec(dB)vec(dB)′vec(
√

Σ)

= vec(
√

Σ)′vec(
√

Σ)dt = Tr(Σ)dt.
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σ2
W =

[

v2
Y Tr(Σ) + 2vY v

′
FσY F + v′FσFF vF

]

W 2, (9)

where σY F is the vector of covariances with i-th element σY Fi
:= 1

dt
Cov

(

dY
Y
, dFi

Fi

)

, and σFF is a

covariance matrix with ij-th element σFF,ij := 1
dt
Cov

(

dFi

Fi
,

dFj

Fj

)

.

We now specialize the general expressions in (5) and (6) to the log-utility case. By the standard result

of Merton (1971), for the log-utility investor the value function in equation (4) is separable and can be

written as

J(W,Σ, t) =
1

ρ
e−ρt ln(W ) +G(Σ, t). (10)

The log-utility assumption considerably simplifies the solution, as the investor’s maximization problem

reduces to

ψ = max
vY ,vF ,vC

[

µWJW +
1

2
σ2

WJWW + U

]

,

where expressions for µW and σ2
W are provided in equations (8) and (9). At equilibrium (v∗Y = 1,

v∗F = 0), the interest rate r follows directly from the first order condition ψY = 0. The next proposition

states the result.

Proposition 5 (The equilibrium interest rate and the market price of risk). Under Assumptions 1–3,

the equilibrium interest rate is given by

rt = Tr [(D − In)Σt] . (11)

The market price of risk equals the square root of the matrix of Wishart factors

Λt =
√

Σt. (12)

Proof: Appendix A.2. �

The instantaneous variance Vt of the changes in the equilibrium interest rate is obtained by applying

Ito’s Lemma to equation (11), and computing the quadratic variation of the process dr, i.e. Vt = 〈dr〉t.
Similarly, the instantaneous covariance CVt between the changes in the interest rate and their variance

can be obtained as the quadratic co-variation of dr and dV , i.e. CVt = 〈dr, dV 〉t. The instantaneous

variance of the interest rate changes is given by

1

dt
Vt = 4Tr [Σt(D − In)Q′Q(D − In)] . (13)

The covariance between the changes in level and the changes in volatility of the interest rate reads

10



1

dt
CVt = 4Tr [Σt(D − In)Q′Q(D − In)Q′Q(D − In)] . (14)

Expressions (13) and (14) show that both quantities preserve the affine property in the elements of Σt.

Appendix A.3 provides the derivation.

II.B. Discussion

The short interest rate. In the conventional (non-trace) notation, the equilibrium short interest rate in

(11) can be written as

rt =

n
∑

i=1

n
∑

j=1

dijΣij,t,

where dij denotes the ij-th element of matrix D − In. Thus, the short rate is a linear combination

of the Wishart factors, which are conditionally and unconditionally dependent, with their correlations

being unrestricted in sign. The short rate comprises both positive factors on the diagonal of Σt and

out-of-diagonal factors that can take both signs.

As soon as we abstract from the real economy, the positivity of the short rate becomes a concern.

Notably, in our setup the positivity is imposed with a straightforward restriction requiring the D − In

matrix to be positive definite (see Result 12 in Appendix A.1). The simplicity of this condition is

striking in the context of the traditional affine models, in which the coexistence of a positive short rate

is at odds with unrestricted and correlated factors. According to the classification of Dai and Singleton

(2000), AN (N) is the only subfamily of ATSMs that guarantees the positivity of the short rate. In

AN (N) models, all three state variables determine the volatility structure of factors, and thus remain

conditionally uncorrelated. At the same time, the restrictions imposed on the mean reversion matrix

require the unconditional correlations among state variables to be non-negative.

Remark 6 (Link to the Longstaff and Schwartz (1992) model). By restricting D in equation (2) to be

a diagonal 2× 2 matrix, our expression for the equilibrium interest rate resembles the two-factor model

of Longstaff and Schwartz (1992). Indeed, in this case the drift of the production technology and the

interest rate become linear combinations of two positive processes Σ11,Σ22—the diagonal elements of

Σt. Even in this special case, however, our model has a richer structure than in Longstaff and Schwartz

(1992), as the variance of the changes in the interest rate is driven by all three factors (Σ11,Σ12,Σ22),

which are correlated.

The market price of risk. In our setting, the market price of risk Λt is derived by the same equilibrium

argument that underlies the completely affine models (Cox, Ingersoll, and Ross, 1985b). A well-

recognized critique of this family is its inability to match the empirical properties of yields due to

(i) sign restriction (positivity) on the market price of risk, and (ii) its one-to-one link with the volatility
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of factors. We emphasize that despite analogous derivation, the market price of risk in our model is

very distinct from the standard completely affine specification, as it reflects not only volatilities but

also co-volatilities of factors, and thus involves elements that can change sign. Positive factors on the

diagonal of matrix Σ are endowed with a positive market price of risk, while the market price of risk

of the remaining out-of-diagonal factors is unrestricted. It may occur that our specification shares

some analogy to the essentially affine formulation of Duffee (2002). However, as we show in Section

V, the theoretical and empirical consequences of our specification are very different from those of the

essentially affine class.

Alternative representations of the model. It is sometimes useful to re-express the latent risk factors in Σt

in terms of variables with an economic interpretation. The linearity in Wishart factors is a convenient

feature for deriving alternative representations of the model. For instance, assuming a 2×2 dimension of

Σt, the expressions (11), (13) and (14) imply a linear mapping between the equilibrium interest rate r,

the variance V and the covariance CV , and the distinct elements Σ11,Σ12, and Σ22 of the state matrix.

Thus, to retrieve the dynamics of the risk factors in Σ we can use the change of variable implied by

this mapping. Similar technique is routinely exploited in the standard affine models to move away from

latent factors to variables with an economic meaning (Longstaff and Schwartz, 1992; Dai and Singleton,

2000).

III. The term structure of interest rates

Given expression (11) for the equilibrium interest rate, the price at time t of a zero-coupon bond

maturing at time T is

P (t, T ) = E∗
t

(

e−
R

T

t
rsds

)

= E∗
t

(

e−Tr[(D−In)
R

T

t
Σsds]

)

, (15)

where E∗
t (·) denotes the conditional expectation under the risk neutral measure. To move from the

physical dynamics of the Wishart state in equation (3) to the risk neutral dynamics, we can apply the

standard change of drift technique. Because of the separability of the value function, the risk neutral

drift adjustment ΦΣ is simple to compute as

ΦΣ = −JWW

JW

Covt(dW, dΣ) = ΣQ+Q′Σ, (16)

where Covt(dW, dΣ) denotes the instantaneous covariance between changes in wealth W and changes in

the state Σ, and is given as a symmetric matrix of dimension n× n (see Appendix A.4 for details). As

in the scalar case, ΦΣ can be interpreted as the expected excess return on a set of securities constructed

so that it perfectly reflects the risk embedded in the elements of the state matrix Σ.
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The partial differential equation (PDE) for pricing contingent claims follows from the application of

the discounted Feynman-Kač formula to expectation in (15), where the change of drift of Σt from the

physical to the risk-neutral dynamics is motivated by the equilibrium argument provided in equation

(16).

Proposition 7 (The pricing PDE). Under Assumptions 1–3, the price at time t of a contingent claim

F maturing at time T > t, whose value is independent of wealth, satisfies the partial differential equation

Tr [(ΩΩ′ +MΣ + ΣM ′ − ΦΣ)RF ] + 2Tr [ΣR(Q′QRF )] +
∂F

∂t
− rF = 0, (17)

with the boundary condition

F (Σ, T, T ) = Ψ(Σ, T ), (18)

where r is the equilibrium interest rate, the risk neutral change of drift for the Wishart process is given

by ΦΣ = ΣQ+Q′Σ, and the matrix differential operator is defined in equation (7).

Proof: See Appendix A.4. �

In expression (15), we recognize the Laplace transform of the integrated Wishart process. By the affine

property of the process, the solution to the PDE in equation (17) is an exponentially affine function in

the risk factors. The next proposition states this result in terms of prices of zero-coupon bonds.

Proposition 8 (Bond prices). At time t, the price of a zero-coupon bond P with maturity T > t, under

the model dynamics (2)–(3), is of the exponentially affine form

P (Σ, t, T ) = eb(t,T )+Tr[A(t,T )Σ], (19)

for state independent scalar b(t, T ), and a symmetric matrix A(t, T ) solving the system of matrix Riccati

equations16

− db

dt
= Tr (ΩΩ′A) (20)

−dA
dt

= A(M −Q′) + (M ′ −Q)A+ 2AQ′QA− (D − In), (21)

with terminal conditions A(T, T ) = 0 and b(T, T ) = 0. The closed-form solution to this system is

provided in Appendix A.5. �

16Equivalently, we can express the coefficients A(t, T ) and B(t, T ) as functions of the time to maturity τ = T − t. Under
the change of variable t → τ the left hand side of the above ODE has to be multiplied by factor −1.
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Under the assumed factor dynamics, bond prices are given in closed form. In particular, the solution

for the coefficient matrix A(t, T ) does not entail any numerical integration, which typically arises in

ATSMs except for the purely Gaussian and the multiple independent factor CIR models.

Yields. From equation (19), we obtain the yield of a zero-bond maturing in τ = T − t periods

yτ
t = −1

τ
[b(τ) + Tr (A(τ)Σt)] . (22)

Note that to ensure the positivity of yields, the matrix A(τ) needs to be negative definite (see Appendix,

Result 12). Like in the case of the short interest rate, this restriction is satisfied if D − In is positive

definite.

The modeling of covariances between yields is a nontrivial issue in applications such as the bond portfolio

selection. Therefore, it is important to understand their properties arising in the Wishart setting. The

instantaneous covariance of the changes in yields with different (but fixed) time to maturity (τ1, τ2)

becomes17

1

dt
Covt [dyτ1

t , dy
τ2

t ] =
4

τ1τ2
Tr [A(τ1)ΣtA(τ2)Q

′Q] .

Our model implies that yields of different maturities co-vary in a non-deterministic way, evident in the

presence of Σt in the above equation. Moreover, given the indefiniteness of matrix A(τ1)Q
′QA(τ2), the

correlations of yields can stochastically change sign over time. We investigate the empirical consequences

of this fact in Section V.C.

III.A. Excess bond returns

The price dynamics of a zero-coupon bond follow from the application of Ito’s Lemma to P (Σt, τ):

dP (Σt, τ)

P (Σt, τ)
= (rt + eτ

t )dt+ Tr
[(

√

ΣtdBtQ+Q′dB′
t

√

Σt

)

A(τ)
]

, (23)

where eτ
t is the term premium (instantaneous expected excess return) to holding a τ -period bond (see

Appendix A.6). The functional form of the expected excess return can be inferred from the fundamental

pricing PDE (17), and is represented by a linear combination of the Wishart factors

eτ
t = Tr [(A(τ)Q′ +QA(τ)) Σt] . (24)

17Note that in this expression we do not let bond maturity decrease as time passes, which is equivalent to looking at yields
with a constant time to maturity, and is consistent with the way the yield data are actually quoted. Alternatively,
as time goes on, one could let the time to maturity decrease. This would correspond to observing the evolution of a
yield on one particular bond.
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The instantaneous variance of bond returns can be written as

vτ
t = 4Tr [A(τ)ΣtA(τ)Q′Q] . (25)

A stylized empirical observation is that excess returns on bonds are on average close to zero, but vary

broadly taking both positive and negative values.18 This means that the ratio
eτ

t√
vτ

t

is low for all

maturities τ . The essentially and extended affine models of Duffee (2002) and Cheridito, Filipović,

and Kimmel (2005) are able to replicate this empirical regularity by assigning to non-volatility factors

a market price of risk that can change sign. Can our model fare equally well? The answer is “Yes”:

We can generate excess returns that have a switching sign if the symmetric matrix A(τ)Q′ + QA(τ)

premultiplying Σ in equation (24) is indefinite, i.e. has at least one positive and one negative eigenvalue.

The set of matrices (and model parameters) satisfying this condition is large, giving us the latitude to

capture the combination of low excess returns on bonds with their high volatilities. Using calibration

results, in Sections V.A and V.B we study the properties of model-implied excess bond returns, and

explore whether they coincide with the model’s ability to fit the observed shapes of the yield curve.

III.B. Forward interest rate

Let f(t, T ) be the instantaneous forward interest rate at time t for a contract beginning at time T = t+τ .

The instantaneous forward rate is defined as f(t, T ) := −∂ ln P (t,T )
∂T

. Taking the derivative of the log-

bond price in equation (19), we have

f(t, T ) = − ∂b

∂τ
− Tr

(

∂A

∂τ
Σt

)

,

where ∂A/∂τ denotes the derivative with respect to the elements of matrix A given in equation (21).

The dynamics of the forward rate are given by (see Appendix A.7)

df(t, T ) = −∂f(t, T )

∂τ
dt− Tr

(

∂A

∂τ
dΣt

)

. (26)

De Jong, Driessen, and Pessler (2004), for instance, argue that a humped shape in the volatility term

structure of the instantaneous forward rate leads to possibly large humps in the implied volatility curves

of caplets and caps that are typically observed in the market. We examine the magnitude and sources

of the hump in the model-implied volatility of the calibrated forward interest rate in Section V.D.

18See e.g. Figure 5 in Piazzesi (2003).
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III.C. Pricing of interest rate derivatives

Our framework allows to derive convenient expressions for the prices of simple interest rate derivatives.

The price of a call option with strike K and maturity S written on a zero bond maturing at T ≥ S is:

ZBC(t,Σt;S, T,K) = E∗
t

[

e−
R

S

t
rudu(P (S, T ) −K)+

]

= P (t, T )PrT
t {P (S, T ) > K} −KP (t, S)PrS

t {P (S, T ) > K},

where PrT
t {X} denotes the conditional probability of the event X (exercise of the option) based on the

forward measure related to the T -maturity bond. We can take the logarithm to obtain

PrT
t {P (S, T ) > K} = PrT

t {b(S, T ) + Tr (A(S, T )ΣS) > lnK}.

To solve for the option price, we need to determine the conditional distribution of the log-bond price

under the S- and T -forward measures. In our framework, the characteristic function of log-bond prices—

due to the affine property in Σ—is available in closed form. Thus, the pricing of the option amounts

to performing two one-dimensional Fourier inversions under the two forward measures. The next

proposition provides the pricing formula for a call option on a zero bond.

Proposition 9 (Zero-coupon bond call option price). Under Assumptions 1–3, the time-t price of an

option with strike K, expiring at time S, written on a zero-bond with maturity T ≥ S can be computed

by Fourier inversion according to

ZBC(t, S, T ) = P (t, T )

{

1

2
+

1

π

∫ ∞

0

Re
e−iz[log K−b(S,T )]ΨT

t (iz)

iz
dz

}

−KP (t, S)

{

1

2
+

1

π

∫ ∞

0

Re
e−iz[log K−b(S,T )]ΨS

t (iz)

iz
dz

}

,

where Ψj
t (iz), j = S, T , is the characteristic function of Tr [A(S, T )ΣS ] under the S- and T -forward

measure, respectively. Details and closed-form expressions for the characteristic function are provided

in Appendix A.8. �

With this result at hand, we can price interest rate caps and floors, which effectively are portfolios of

put and call options on zero-bonds.19

19The pricing of caps and floors involves the put-call parity relation for the zero-bond option. At time t, the prices of
a put and a call option with maturity S, strike K, written on a zero-bond maturing at T > S, satisfy the following
put-call parity relation

ZBP(t, S, T, K) = ZBC(t, S, T, K) − P (t, T ) + KP (t, S).

16



IV. The model mechanics

In the current and the following sections, we are guided by the criteria laid down by Dai and Singleton

(2003) and study the correspondence between our theory and the historical behavior of the yield curve.

The model is scrutinized for its ability to match: (i) the predictability of yields, (ii) the persistence of

conditional volatilities of yields, (iii) the correlations between different segments of the yield curve, and

(iv) the behavior of forward rates.

Taken together, these criteria present a challenge for any yield curve model. Essentially affine mod-

els that perform well on one front, by construction fail on another. The top performing models

in forecasting—the conditionally Gaussian A0(3) subfamily—fail completely in generating the time

variation in the volatility of yields, while the models that capture the stochastic volatility of yields—

the A1(3) and A2(3) subfamily—disappoint in terms of prediction (Dai and Singleton, 2002). The

success of ATSMs either in forecasting or in fitting the volatility crucially depends on the essentially

affine specification of the market price of risk. With the completely affine formulation, instead, the

superiority of either subfamily is less clear (e.g., Singleton, 2006). The recent specification of Cheridito,

Filipović, and Kimmel (2005) is a potential step towards reconciling the forecasting of yields with their

time-varying volatility, as the extended affine market price of risk improves the time-series properties

especially in models with multiple restricted state variables, i.e. A2(3) and A3(3) subfamilies. However,

relative to the essentially affine models, this improvement is achieved by adding several new parameters,

and is typically accompanied by a deterioration in the cross-sectional fit to the shapes of the yield curve.

To illustrate the ability of our model to match the criteria (i)–(iv), we choose the most parsimonious

framework, in which the technology is driven by a 2×2 matrix of factors, and the market price of risk is

derived from equilibrium with log-investors. Effectively, we place ourselves in a three-factor setting, with

two positive factors Σ11, Σ22, and one factor Σ12 that can change sign. We assume ΩΩ′ = kQQ′, k = 3,

thus ensuring the positive definiteness of the process. The realistic values of parameter matrices M,Q

and D are obtained by calibrating the model to the unconditional moments of yields.

In this way, we put our model to a rigorous test along two dimensions: First, using merely the

unconditional information in yields, we require the model to simultaneously match both their conditional

and unconditional properties. This allows us to assess the richness of the structure implicit in the

Wishart framework. Second, due to the choice of a low dimension for the state matrix, the model

is equipped with only 11 parameters to perform tasks (i)–(iv) mentioned above. This low number is

hard to match by any (unrestricted) model in the affine class, in which already the completely affine

CIR with three independent factors requires 12 parameters. The tight parametrization of the Wishart

setting becomes even more salient in the context of essentially affine and extended affine models. For

instance, the essentially affine Gaussian A0(3) model studied in Duffee (2002) involves the estimation
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of 21 parameters in the preferred—i.e., restricted—version, and 28 parameters in the unrestricted

version, whereas the respective numbers for the essentially affine A1(3) model are 22 (preferred) and

29 (unrestricted). The extended affine specification introduced by Cheridito, Filipović, and Kimmel

(2005) for the restricted A1(3) model requires 24 parameters. It is worth remarking that the number

of parameters in the three-factor essentially and extended affine models is comparable to the 3 × 3

specification of the Wishart factor model, which implies six factors and 24 parameters (given the

restriction ΩΩ′ = kQQ′ with fixed degrees of freedom k). In what follows, we show that 11 parameters

in our model are already enough to explain several puzzling features of the term structure data.

IV.A. The Calibration

We use monthly data on zero-coupon US Treasury bonds for the period from January 1952 through

June 2005. The sample includes the following maturities: 3 and 6 months, 1, 2, 3, 5, 7 and 10 years. The

yields for the period from January 1952 through December 1969 are from McCulloch and Kwon data

set; the yields from January 1970 through December 1999 are from the Fama and Bliss CRSP tapes;

finally for the last period from January 2000 thorough June 2005 we use the US Treasury constant

maturity yields provided by Datastream.20

To obtain realistic values of parameters, the model is calibrated to the unconditional moments of yields

with maturities 6 months, 2 years, and 10 years. The moments that provide a “static” description of

the term structure comprise means, standard deviations and correlations of yields. The “intertemporal”

information is introduced by augmenting the set of moment conditions with the Campbell-Shiller

regression coefficients for the 2- and 10-year yields.21 At this point the stationarity of yields in our

sample is not a concern: We assume that the respective moments exist, and that the model is stationary.

In order to reach the stationary distribution, we simulate a large number of yields, and sample them at

monthly frequency. Additionally, we set a warm-up period of 500 months before the actual simulated

sample starts. This procedure leaves us with 36000 monthly realizations of yields from our model. The

calibration is based on minimizing the squared distances between the empirical and the model-implied

moments. The parameter matrices D,M and Q, and the details on the calibration are provided in

Appendix B.

Our model implies two restrictions on the parameter matrices: (i) the positive definiteness of matrix

D − In, which ensures a positive short rate and well-defined yields,22 and (ii) negative definiteness

of matrix M , which guarantees the stationarity of factors. Apart from requiring the D matrix to be

20The sample is an extension of the one used in Duffee (2002). The properties of yields from Datastream are consistent
with the Fama-Bliss data set for the overlapping part of both samples.

21For the computation of the Campbell-Shiller coefficients, see the discussion in Section V.B.
22The positivity of the short rate is important here, as we work with nominal yields.

18



symmetric, we do not impose any constraints on the parameters. Nevertheless, both above restrictions

are fulfilled in the calibration itself. This result can be viewed as an ad hoc check of the meaningfulness

of the yield curve dynamics arising in our model.

In the remaining part of the paper, we use the calibrated parameters to study the properties of the

model. If not stated otherwise, the simulation evidence is based on 36000 realizations from the model.

We emphasize that results provided below are based on the single set of parameters. This fact is

important for understanding the ability of the model to explain joint properties of the term structure

of interest rates.

By the positive definiteness of D− In in equation (11), the short rate is guaranteed to remain positive.

In terms of the level and the slowly decaying autocorrelations, the simulated short rate is consistent

with the 3-month yield in the US data set. For instance, in the simulated 54 years of its monthly

realizations (equal to the length of the US Treasury yield sample), the autocorrelation at the 1-month

lag is 0.985, declines to 0.920 at the 5-month lag, and further down to 0.859 at the 10-month lag, while

in the data the respective numbers are 0.984, 0.910, and 0.841.

IV.B. Properties of the risk factors

We argue thoroughout that the Wishart process gives much freedom in the modeling of the conditional

dependence between positive factors, while allowing for their stochastic volatility. Thus, contrary to

the classical affine models, we need not trade off one feature for another. Our calibration substantiates

this claim.

Factor correlations. In the simulated sample, the unconditional correlations of factors are

Corr(Σ11 ,Σ12,Σ22) =











1 −0.75 0.47

· 1 −0.86

· · 1











,

where Σij is the ij-th element of matrix Σ. To demonstrate how the time variation in correlations arises

in our setting, we consider an example of the instantaneous covariance between the positive elements

of a 2 × 2 matrix of factors:

Corrt(Σ11,Σ22) =
〈Σ11,Σ22〉t

√

〈Σ11〉t
√

〈Σ22〉t
. (27)

Instantaneous variances and covariance of the elements Σ11 and Σ22 are straightforward to compute

(see Result 11 in Appendix A.1):
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d〈Σ11〉t = 4Σ11(Q
2
11 +Q2

21)dt,

d〈Σ22〉t = 4Σ22(Q
2
12 +Q2

22)dt,

d〈Σ11,Σ22〉t = 4Σ12(Q11Q12 +Q21Q22)dt, (28)

where Qij is the ij-th element of matrix Q.

The conditional second moments are linear in the elements of the factor matrix. The covariance between

positive factors is determined by the out-of-diagonal element Σ12, which can take both signs. As a result,

the instantaneous correlation of Σ11 and Σ22 is time-varying, unrestricted in sign, and depends on the

elements of Σ in a non-linear way.23

In Figure 2, panels a through c, we display instantaneous correlations among all factors. The calibrated

parameters allow positive factors to be conditionally negatively correlated. To exclude the possibility

that this pattern is just an instantaneous phenomenon, we use a window of 650 months (equal to the

length of the US Treasury sample), and compute the rolling correlation between Σ11 and Σ22 (Figure

2, panel d). The result is preserved. The negative model-implied conditional correlation of positive

factors is a peculiarity in the context of ATSMs, in which positive (volatility) factors can be at best

unconditionally positively correlated. These are the negative correlations, instead, that seem to matter

in fitting the observed yields. For instance, Dai and Singleton (2000) report that in a CIR setting with

two independent factors, studied earlier in Duffie and Singleton (1997), the correlation between the

state variables backed out from yields is approximately −0.5, instead of zero. Their estimation results

for the completely affine A1(3) subfamily give further support to the importance of negative conditional

correlations among (conditionally Gaussian) factors.24

Factor volatilities. The rich dependence of factors in our model does not handicap their stochastic

volatilities. It is clear from the dynamics of the Wishart process in equation (3) that all three state

variables feature stochastic volatility. This is also manifest in highly significant GARCH coefficient

computed for the simulated sample of factors.25 Ahn, Dittman, and Gallant (2002) note that the

goodness-of-fit of the standard ATSMs may be weakened precisely in settings, in which state variables

have pronounced conditional volatility and are simultaneously strongly negatively correlated. We are

able to fully accommodate such situations. The ease at which correlations and stochastic volatilities

coexist in our model is one of its most powerful characteristics, as we prove in Section V.

23When the elements of the Wishart matrix admit an interpretation as a variance-covariance matrix of multiple assets,
Buraschi, Porchia, and Trojani (2006) show that the correlation diffusion process of ρ = Σ12/

√
Σ11Σ22 is non-linear,

with the instantaneous drift and the conditional variance being quadratic and cubic in ρ, respectively. The non-linearity
of the correlation process arises despite the affine structure of the covariance process itself.

24See Dai and Singleton (2000), Table II and III.
25For the sake of brevity, we do not report the coefficients here, but just remark that for all state variables the GARCH(1,1)

coefficient is above 0.85.
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Am(N)-type interpretation of factors. It is informative to look at our setting from the perspective of

the Am(N) taxonomy developed by Dai and Singleton (2000). This, however, requires an additional

qualifier. For instance, the 2 × 2 Wishart factor model is similar to: (i) the essentially affine A2(3)

specification in terms of the number of unrestricted versus positive factors; (ii) the completely affine

A3(3) specification in terms of the number of stochastic volatility factors; (iii) the A0(3) specification

in terms of the unrestricted (positive and negative) correlations among factors; and it does not have

a counterpart within the Am(3) family in terms of conditional (stochastic) correlations among factors.

We find the out-of-diagonal element of the Wishart matrix, Σ12, to be negative in more than 80 percent

of the simulated sample. This result conforms with the affine literature, which evidences the superior

performance of the Am<N (N) class, with some factors having unrestricted signs, over the multifactor

CIR models.

IV.C. Factors manifest in yields

In order to verify the plausibility of the assumed state dynamics in our model, we study what yields

can tell us about factors.

Shapes of the term structure. The flexibility of our setting is evident in the variety of shapes that the

yield curve can accommodate for just one set of calibrated parameters, and the simplest 2×2 formulation

of the state matrix. The term structure can be normal, inverted, humped up- or downwards, or flat (see

Figure 3). The typical shapes occur in a way that is roughly consistent with the data. For instance, we

observe that the simulated term structure can be (i) on average upward sloping when the short yield is

low (up to around 4 percent), (ii) normal, inverted or flat when the short yield is in intermediate range

(from 4 to 11 percent), or (iii) humped and downward sloping when the short yield is high (above 11

percent). Due to its parsimony, the model seems to have difficulties in generating sufficient concavity

in the short segment of the yield curve, and in producing the right behavior of the term structure for

extreme levels of yields. For an extremely high short yield (of above 15 percent), the term structure

that prevails in the historical sample is downward sloping, possibly with a hump. While the model

is able to generate both negative slopes and humps for this range of yields, even more frequently it

displays an upward sloping term structure. This result may seem counterintuitive. However, it should

be recognized that in sample—unlike in our simulation—extreme levels of interest rates are rare events,

and may not be representative of the true tail distribution of yields.

Yield responses to factors. To get more insight into how the shapes of the term structure arise and change

with the underlying factors, we examine the coefficients in the yield equation (22). The scaled elements

of the A(τ) matrix, −A11(τ)/τ , −2A12(τ)/τ , and −A22(τ)/τ , represent the loadings on Σ11,Σ12 and

Σ22, respectively. The constant term b(τ) contributes to the on average positive slope of the yield curve,
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Table I: Correlation of factors with the yield curve variables

a. Correlation in changes
∆Σ11 ∆Σ22 ∆Σ12

∆ȳt 0.83 0.10 -0.45
∆slope 0.10 -0.71 0.41
∆y1

t 0.89 0.22 -0.56
∆y5

t 0.78 0.00 -0.36
∆y10

t 0.78 0.01 -0.37

b. Correlation in levels
Σ11 Σ22 Σ12

ȳt 0.51 0.04 0.03
slope 0.02 -0.85 0.47
y1

t 0.49 0.18 -0.04
y5

t 0.49 -0.06 0.09
y10

t 0.53 -0.10 0.08

Note: The table shows correlations between latent factors and several term structure variables obtained in simulation. In
panel a the correlations are for first differences, in panel b—for levels. yt is computed by taking average of yields across
maturities at time t. Slope is the difference between the longest and the shortest yield in our simulation. y1

t , y5
t and y10

t

denote yields with one, 5 and 10 years to maturity, respectively.

but its overall impact is small. Figure 4 plots the respective coefficients. Judging by the form of the

loadings as a function of maturity, our factors lend themselves to the classical interpretation in terms

of the level, slope and curvature. Most clearly, the variation in Σ22 induces the changes in the slope of

the yield curve, while the variation in Σ11 impacts upon the changes in the level of yields. Even though

the loading on Σ12 is reminiscent of a curvature factor, its highly negative correlation with both other

factors begs caution in this interpretation.

We gain more understanding about the roles of factors by looking at how they correlate with the term

structure variables such as the average level of yields across maturities, or the slope of the yield curve.

Table I displays the relevant correlation coefficients computed for the simulated sample. Our earlier

intuition for the level and the slope factor is confirmed: The correlation of ∆Σ11 with the level changes

is high, while the correlation of ∆Σ11 with the slope changes is low; the pattern reverts for ∆Σ22 (see

panel a in Table I). Specifically, we expect the rise of Σ11 to shift the entire yield curve upwards, and

the rise of Σ22 to reduce the slope. Qualitatively similar results arise when we consider correlations in

levels of variables, though Σ11 seems to impact more changes in level of yields than the yield level itself

(see panel b in Table I).

While our “level” and “slope” labels attached to Σ11 and Σ22 seem warranted, the picture for Σ12

is more complex. From Figure 2, it follows that most of the time Σ12 is negatively correlated with

positive factors. Accordingly, ∆Σ12 has opposite effect on the level and the slope of the term structure

than ∆Σ11 and ∆Σ22 do. By comparing the results in panels a and b of Table I, we deduce that Σ12

22



Table II: Yield variation explained by j-th principal component

j 1 2 3 4 5

US data 97.29 2.51 0.18 0.02 0.00
Model 97.09 2.82 0.09 0.00 0.00

Note: The table displays the percentages of variation in yield levels explained by the j-th principal component. We use
monthly US yields for eight maturities: 3, 6 months, 1, 2, 3, 5, 7, 10 years, and the sample period 1952:01–2005:06. The
principal components implied by our model are computed from simulated monthly yields with the same maturities as the
empirical ones. The length of the simulation is 36000 observations.

influences both the curvature and the level of the term structure. This double role of Σ12 is interesting

for the interpretation of the number of factors driving the yield curve, and is studied below.

Factors in disguise of principal components. To verify if the historical yields could have been generated

by the assumed factor dynamics, we apply the standard principal component analysis to the data and

to the yields simulated from the model. It is well-documented that three principal components explain

over 99 percent of the total variation in yields (Litterman and Scheinkman, 1991; Piazzesi, 2003). Since

we use a 2×2 specification of the state matrix, the simulated yields are spanned by at most three factors.

Table II shows that the portions of yield variation explained by the first two principal components in

our model largely coincide with the empirical evidence. Moreover, the traditional factor labels are

evident in Figure 5. While weights on the first and second principal components virtually overlap with

those computed from the data, the discrepancy is somewhat larger for the third one. Indeed, the term

structure produced by the model slightly understates the real curvature of the yield curve.

Shifting number of factors. Although the three-factor structure of the US yields seems robust across

different data frequencies and types of interest rates, recent research points to a time variation in the

number of common factors underlying the bond market. Pérignon and Villa (2006) reject the hypothesis

that the covariance matrix of US yields is constant over time, and document that both factor weights and

the percentage of variance explained by each factor change concurrently with switches in the monetary

policy under subsequent FED chairmen.

The behavior of instantaneous correlations between Wishart factors in Figure 2 leads us to investigate

whether a similar phenomenon is present in our simulated economy. We find that the model is in fact able

to adopt the changing factor structure. To this end, we sort yields according to the level of instantaneous

correlations between state variables, and for each group we obtain the principal components. A facts

that stands out from this exercise is that the percentage of yield variation explained by the consecutive

principal components changes considerably and in a systematic way across different correlation bins.
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In Figure 6 we plot, as a function of instantaneous factor correlation, the portions of yield variation

explained by each principal component.26 The results for sorts based on Corrt(Σ11,Σ22) show that

even when Σ11 and Σ22 are highly positively correlated (bin 1 in the plots), three clearly distinguishable

factors may be still at work in explaining the variance of yields. The key to understanding this lies

in the role of Σ12. Recall from Table I that Σ11 and Σ22 have distinct impacts on the level and the

slope of the term structure, while the impact of Σ12 is ambiguous. We observe that in periods when

Corrt(Σ12,Σ22) is high and positive, which happens to coincide with strongly negative Corrt(Σ11,Σ22),

Σ12 influences both the level and the slope of the term structure right in the same way as Σ11 and Σ22

do. In such phases the number of state variables is seemingly reduced.27 This provides a useful intuition

for the role of Σ12, which can be summarized as follows: For one, Σ12 co-determines the yield curve

as a stand-alone factor. For the other, it effectively diminishes the dimension of the state matrix by

mimicking the impact of other factors. Σ12 is thus the variable that induces the changes in the factor

structure of our model. This interpretation of the intuitive role of Σ12 is consistent with expression

(28) for the instantaneous covariance between the positive factors, being just a scaling of Σ12. This

evidence suggest that conditionally our model is a three-factor one, but unconditionally the stochastic

correlation among state variables may work as an additional factor.

V. Yield curve puzzles revisited

In what follows we assess the model in terms of the goodness-of-fit criteria advertised in the introduction

to Section IV. The analysis indicates that our simple framework is able to provide a consistent answer

across several dimensions of the bond market.

V.A. Excess returns on bonds

The key implication of essentially affine models proposed by Duffee (2002) is that excess bond returns

have unrestricted sign. This feature is crucial for matching their empirical properties. Owing to the

properties of the Wishart process, our model “by default” grants the degree of flexibility that is (at

least) comparable with the essentially affine class. To substantiate this claim, Figures 7 and 8 present

excess bond returns obtained from the simulation at the calibrated parameters. The plots confirm the

consistency of the model with the empirical evidence in several respects. First, we observe the switching

26Since the correlation between Σ11 and Σ22 is high precisely when the correlation between Σ12 and Σ22 is low, it is not
surprising that plots in Figure 6 are mirror reflections of each other. We use instantaneous correlations both between
Σ11 and Σ22, and between Σ22 and Σ12 as conditioning information according to which yields are grouped. We do
not present the results for instantaneous correlation between Σ11 and Σ12, since due to its high persistence results for
only some of the bins are available.

27Detailed results, not reported here, show that in periods of high Corrt(Σ22, Σ12), Σ12 correlates strongly and positively
(correlation of about 0.9) with the average level of the term structure, and negatively with the slope of the term
structure (correlation of about −0.5). Thus, it works in the same direction as Σ11 and Σ22.
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sign of the risk premia, both instantaneous (Figure 7) and those computed from discrete realizations

of the bond price process (Figure 8). Second, excess returns are highly volatile, with the ratio eτ
t /

√
vτ

t

being below 1. Third, the above properties hold true across bonds with different maturities.

Although we only use the unconditional moments of yields to calibrate the model, simulated data

match the magnitudes and the distributional properties of the US bond return dynamics. Empirically,

the expected excess returns on long bonds are on average higher and more volatile than on short bonds.

Consistent with this evidence,28 the model produces expected excess returns and volatilities that rise

as a function of maturity. In the simulated sample, the expected excess return (the volatility of excess

returns) increases from 0.025 percent (1 percent) for a 3-month bond to 5.7 percent (25 percent) for a

10-year bond. These features shall play an important role in the model’s ability to replicate the failure

of the expectations hypothesis, which we discuss next.

V.B. The failure of the expectations hypothesis

The expectation hypothesis states that yields are a constant plus expected values of the current and

average future short rates. Thus, bond returns are unpredictable.

Campbell-Shiller regressions. This implication can be tested in a linear projection of the change in yields

onto the (weighted) slope of the yield curve, known as the Campbell and Shiller (1991) regression:

yn−m
t+m − yn

t = β0 + β1
n

n−m
(yn

t − ym
t ) + εt, (29)

where yn
t is the yield at time t of a bond maturing in n periods, and n,m are given in months. While the

expectations hypothesis implies the β1 coefficient of unity for all maturities n,29 a number of empirical

studies point to its rejection. Moreover, there is a clear pattern to the way the expectations hypothesis

is violated: In the data, β1 is found to be negative and increasing in absolute value with maturity. This

means that an increase in the slope of the term structure is associated with a decrease in the long term

yields; or paraphrased in terms of returns, the expected excess returns on bonds are high when the

slope of the yield curve is steeper than usual.

The findings of Section V.A attest the ability of our model to produce the time variation in expected

returns. To study if expected returns vary in the “right” way with the term structure, we estimate

the model-implied population30 coefficients of Campbell-Shiller regressions, and compare them with

their empirical counterparts (see panel a in Table III and in Figure 9). For the sake of comparison,

28See e.g. Table I in Duffee (2002).
29See Campbell and Shiller (1991) or Dai and Singleton (2002) for the derivation.
30In computing the population coefficients, we follow Dai and Singleton (2002) who claim that matching the population

coefficients to the historical estimates is a much more demanding task than matching the fitted yields from an ATSM.
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Table III: Regressions of the yield changes onto the slope of the term structure

a. Wishart factor model
Maturity 12 24 36 60 84 120

Data β1 (1952–2005) -0.174 -0.615 -0.852 -1.250 -1.660 -2.244
t-stat -0.4 -1.1 -1.4 -1.8 -2.1 -2.4

Model β1 -0.349 -0.618 -0.895 -1.454 -1.940 -2.254
t-stat -6.4 -9.2 -10.8 -12.2 -12.5 -11.5

b. ATSMs
Maturity 12 24 36 60 84 120

Data β1 (1952–1994) -0.392 -0.696 -0.890 -1.291 -1.738 -2.451
t-stat -0.8 -1.2 -1.4 -1.7 -2.0 -2.3

A0(3) (essentially) -0.037 -0.401 -0.597 -0.986 -1.462 -2.248
t-stat -0.8 -7.0 -9.0 -12.3 -15.4 -18.8

A1(3) (essentially) 0.522 0.445 0.545 0.653 0.620 0.472
t-stat 7.1 4.6 4.8 4.6 3.5 2.0

A2(3) (completely) 1.354 1.416 1.454 1.369 1.226 1.007
t-stat 18.6 14.2 12.6 10.3 8.3 5.6

Note: The table displays the parameters of the Campbell-Shiller regression in equation (29). The maturities n are quoted
in months. The value of m is taken to be six months, for all n. Panel a, the first row presents historical coefficients
based on US yields in the period 1952:01–2005:06. The third row shows the model-implied population coefficients. The
underline indicates the coefficients used as moment conditions in our calibration. Panel b shows analogous results for
the preferred affine specifications of Duffee (2002) at his parameter estimates. The historical coefficients for the period
1952:01–1994:12 concur with the sample used in estimation. All model-implied t-statistics are computed using Newey-
West adjustment of the covariance matrix and represent the population values. Due to unobservability of yields with a
half-year spacing of maturity, we follow Campbell and Shiller (1991) (their Table I, p. 502), and approximate yn−m

t+m by
yn

t+m. This approximation is used consistently for the simulated and historical data.

we perform an analogous exercise for three preferred affine specifications of Duffee (2002), i.e. ones in

which the insignificant parameters have been pruned (see panel b in Table III and in Figure 9). This

gives rise to two essentially affine models A0(3) and A1(3) and one completely affine model A2(3).

The results indicate that our model can accommodate the predictability of the yield changes by the

term structure slope. The failure of the expectations hypothesis in our setting is evident from the sheer

time variation of expected returns. Recall, however, that in the calibration we virtually induce the

model to violate the expectations hypothesis by including two Campbell-Shiller coefficients as moment

conditions. Otherwise, the information content of the remaining unconditional moments of yields is

insufficient to generate the “right” direction of this violation.31 While the two coefficients used in the

calibration are by construction matched almost perfectly (see the underline in Table III, panel a), the

model turns out to do a good job also in fitting other parameters, not used in the calibration. Panel

a of Figure 9 visualizes this match by showing that all model-implied coefficients lie within the 80

percent confidence bounds computed from the historical sample. At the same time, the results for

31In fact, it is already enough to include one Campbell-Shiller coefficient to obtain the predictability of yields consistent
with the empirical evidence.
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the ATSMs concur with the previous literature. The essentially affine Gaussian model A0(3) conforms

with the empirical evidence, whereas both A1(3)—notwithstanding its essentially affine market price of

risk—and A2(3) models have counterfactual predictability implications.

To corroborate the predictability of yields present in our framework, we consider two additional regres-

sions, which are detached from the calibration procedure, but reflect the same reasons for the failure of

the expectations hypothesis as the Campbell-Shiller regressions.32

Prediction from the 5Y–3M spread. Following Duffee (2002), we first report the coefficients obtained

from projecting the monthly excess bond returns onto the lagged slope of the term structure:

Rτ
t+1 −R3M

t+1 = γ0 + γ1

(

y5Y
t − y3M

t

)

+ εt, (30)

where Rτ
t+1 = ln

(

P τ
t+1/P

τ
t

)

is a monthly return on a bond with constant maturity τ . The excess return

on the τ -maturity bond is obtained by subtracting the return on a 3-month bond; the slope is defined

as the difference between the 5-year and 3-month yield. Even though this regression merely restates the

information conveyed by Campbell-Shiller coefficients, it provides a robustness check to the previous

results, as neither of the yields which construct the slope is directly used in calibrating the model.

Moreover, the frequency of returns is now monthly, and thus it is free from the overlapping samples

problem. Panel a in Table IV summarizes the regression output based on the simulated and historical

yields. The predictability is confirmed: A steep slope of the term structure in our model forecasts high

excess returns to bonds during the next month. Due to the noisiness of the historical estimates, we

refrain from assessing the proximity between the model and the data.33 We note, however, that the

implications of our setting are much in line with the evidence collected in Duffee (2002). In both the

model and the data the forecasting power of the term structure slope is most pronounced at the long

end of the yield curve.

Predictability from the forward–spot spread. As a second check, in panel b of Table IV we report the

model-implied coefficients of regressions proposed by Fama and Bliss (1987), who project the excess

one-year holding period bond return onto the spot-forward spread:

hprτ→τ−1
t+1 − y1Y

t = δ0 + δ1
(

f τ−1→τ
t − y1Y

t

)

+ εt, (31)

where hprτ→τ−1
t+1 is the return from holding the τ -maturity bond for one year, from t to t+1, hprτ→τ−1

t+1 =

ln(P τ−1
t+1 /P

τ
t ). f τ−1→τ

t is the one-year forward rate at time t, f τ−1→τ
t = ln(P τ−1

t /P τ
t ). y1Y

t is the one-

year yield. The basic intuition from Campbell-Shiller regressions carries over also to this equation.

32See Dai and Singleton (2002) for a discussion of relations between the different predictability regressions.
33For all maturities the coefficients from the model lie within the 80 percent confidence interval.
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Table IV: Predictability regressions

a. Duffee (2002) regression
Maturity 1 2 3 5 7 10

Data γ1 (1952–2005) -0.007 0.021 0.060 0.153 0.248 0.386
t-stat -0.30 0.45 0.93 1.65 2.15 2.64

Model γ1 0.015 0.038 0.064 0.118 0.167 0.222
t-stat 9.40 10.47 10.85 10.85 10.61 10.27

b. Fama and Bliss (1987) regression

hprτ→τ−1
t 2→1 3→2 4→3 5→4

CP δ1 (2005)∗ 0.99 1.35 1.61 1.27
t-stat 3.00 3.29 3.35 1.98
R2 0.16 0.17 0.18 0.09

Model δ1 1.30 1.53 1.78 2.04
t-stat 42.28 37.72 33.50 30.07
R2 0.37 0.31 0.26 0.21

Note: The table displays two predictability regressions. Panel a presents regression of the monthly excess return of
a constant maturity bond onto the term structure slope, studied by Duffee (2002); see equation (30). We report the
historical estimates and the model-implied population coefficients. Panel b shows regressions of holding period returns
onto the forward-spot spread studied by Fama and Bliss (1987); see equation (31). The column header 2 → 1 indicates
the return from holding a today’s 2-year bond over the next year. t-statistics use the Newey-West adjustment of the
covariance matrix; model-implied t-test is the population value.
∗) The empirical coefficients, t-statistics and R2’s in the first three rows of panel b are from Cochrane and Piazzesi (2005),
who compute them for the 1964:01–2003:12 sample of US monthly yields (see their Table 2, p. 145).

However, by looking at the holding period returns we abstract from the concept of constant maturity

bond returns used earlier.

High R2 values of these regressions is what became a stylized fact in the yield curve literature. Since our

historical sample does not allow to compute all one-year forward rates, we benchmark the population

estimates from the model against those of Cochrane and Piazzesi (2005), who update the results of

Fama and Bliss (1987) to include more recent data. Table IV, panel b, and the scatter plots in Figure

10 confirm the correct qualitative behavior of the model. Indeed, the slope of the forward yield curve

is a predictor of the holding period returns to bonds. While R2 values are high, they tend to decline

with maturity. It should be noted that high R2’s are unique only to Fama-Bliss regressions, both in the

historical sample and in the model. In Campbell-Shiller regressions the maximal R2 is 2.6 percent for

the model and 3.8 percent for the data. The respective numbers for Duffee’s regressions are even lower.

The above discussion provides further insight into the relevance of the factor structure imposed by

the Wishart process. Within the essentially affine Am(3) family, these are the Gaussian models that

dominate other subfamilies in terms of prediction, to the extent that they allow for correlated factors

as well as the changing sign of the market price of risk (Dai and Singleton, 2002). This fact appears

to convey the intuition behind the success of our model, which by construction is equipped with both
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correlated factors and a flexible market price of risk. Moreover, and in contrast to affine Gaussian

models, to achieve an acceptable forecasting performance in our setting, it is not necessary to sacrifice

the stochastic volatilities. This is the aspect we address next.

V.C. Second moments of yields

Two issues that occupy the term structure research agenda are (i) the time variation and persistence

of the conditional second moments of yields, (ii) the humped term structure of unconditional yield

volatilities. A less studied feature concerns the dynamic structure of correlations between yields of

different maturities.

Conditional volatility of yields. In our model, stochastic volatilities of factors are an immediate

consequence of the definition of the Wishart process. We now explore how they translate into the

conditional second moments of yields. Is the degree of the time variation and of the persistence in the

yield volatility commensurate with the historical evidence? To answer this question, we follow Dai and

Singleton (2003), and estimate a GARCH(1,1) model for the 5-year yield (see Table V). The choice of

the 5-year yield is motivated by the fact that this maturity is not involved in our calibration. Therefore,

its conditional and unconditional properties can be traced back to the intrinsic structure of the model.

In panel a of Table V, we report the coefficients for our model and compare them with the historical

estimates. To be able to infer the relative significance of the two sets of parameters, we compute the

median GARCH estimate based on 1000 simulated samples with 54 years of monthly observations each.

We take the same approach to assess the volatility implications of the preferred A1(3) and A2(3) models

of Duffee (2002) (see Table V, panel b). Due to its constant volatility assumption, the A0(3) model is

not considered here. Figure 11 contrasts the finite sample GARCH coefficients implied by the ATSMs

and by our model.

The results confirm that the degree of the volatility persistence implied by the Wishart factor model

is well aligned with the historical figures. For instance, the median model-implied GARCH coefficient

is 0.829 against 0.820 found empirically. Furthermore, our model is able to reproduce the dynamic

link between yield levels and their conditional volatilities: We find the correlation between the level

of the 5-year yield and its GARCH(1,1) conditional volatility to be 0.72 in the simulated sample. In

combination with the discussion of Section V.B, these results lend support to our claim that the model

can solve at the same time the predictability and the volatility puzzle.

The volatility persistence in the affine models, instead, shows a larger discrepancy with the data, and

is typically too low. Similar to Dai and Singleton (2003), we document that the essentially affine A1(3)

specification exhibits conditional volatility that is roughly in line with the historical evidence. Still, as

29



Table V: GARCH(1,1) parameters for the simulated and historical 5-year yield

a. Wishart factor model
α β σ̄

Data (1952–2005) 0.180 0.820 0.000
t-stat 7.6 39.0 3.3

Model (popul.)∗ 0.098 0.894 0.000
Model (648 obs.)† 0.141 0.829 0.000
t-stat 4.7 26.1 2.7

b. ATSMs
α β σ̄

Data (1952–1994) 0.243 0.757 0.003
t-stat 6.8 23.3 3.7

A1(3) (popul.)∗ 0.257 0.670 0.000
A1(3) (516 obs.)† 0.153 0.707 0.000
t-stat 3.0 8.5 2.7

A2(3) (popul.)∗ 0.409 0.590 0.000
A2(3) (516 obs.)† 0.370 0.547 0.000
t-stat 5.2 9.7 4.4

Note: The table displays the estimates of a GARCH(1,1) model: σ2
t = σ̄ + αε2

t−1 + βσ2
t−1, where εt is the innovation

from the AR(1) representation of the level of the 5-year yield. Panel a shows the ML estimates for the Wishart factor
model, and compares them to the historical coefficients based on the sample period 1952:01–2005:06. Panel b displays
estimates for the preferred affine models of Duffee (2002): the essentially affine A1(3) and the completely affine A2(3) and
compares them to the historical coefficients. Accordingly, the simulation of the ATSMs uses the estimates from Duffee
(2002) for the sample period 1952:01–1994:12.
∗) The simulated sample comprises 36000 observations.
†) The coefficients and t-statistics are the median of 1000 estimates based on the simulated sample of 648 and 516 months,
respectively. The simulated path reflects the length of the sample used to calibrate/estimate the different models.

shown is Section V.B, it also largely fails at explaining the conditional first moments of yields. Although

the A2(3) specification allows for two CIR-type factors, the volatility persistence it implies is even lower

than in the A1(3) case. Recall, however, that the preferred A2(3) model of Duffee (2002) is equivalent

to the completely affine formulation, because the essentially affine market price of risk parameters turn

out insignificant in estimation. This outcome reinforces the claim of Dai and Singleton (2003) that the

essentially affine market price of risk is the key to modeling the persistence in the conditional second

moments of yields. Finally, Figure 11 conveys useful intuition about the proximity between the different

models and the true process driving the volatility of yields. Out of the three models considered, the

median GARCH coefficient in the Wishart factor setting is not only the closest to the historical number,

but it is also the least dispersed one.

Humped term structure of unconditional volatilities. The term structure of unconditional volatilities of

yields (and yield changes) is another recurring aspect in the yield curve debate. Its shape varies across

different subsamples, and it has aroused increased interest with the appearance of a hump at around

2-year maturity during the Greenspan era (1987–2006). In this period, the volatility curve is high for
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very short maturities (up to 3 months), declines quickly afterwards only to hump at maturities of 2–3

years, and finally it stabilizes for longer yields. Piazzesi (2001) calls this behavior a “volatility snake.”

In the model calibration, we notice an interplay between matching the unconditional second moments,

and predicting yields by the term structure slope. In particular, the inclusion of the Campbell-Shiller

coefficients in the set of moment conditions tends to worsen the model’s fit to the term structure

of unconditional volatilities. The largest calibration error of 14 percent occurs for the unconditional

volatility of the 5-year yield. In spite of this tension, our model leads to the changing shape of the

volatility curve, and in some simulated subsamples is able to produce the snake-like pattern in the

volatility curve of yields and yield changes. Figure 12 presents two possible term structures of the

volatilities of yield changes.

Dai and Singleton (2000) examine the volatility curves that arise in different affine models. They

conclude that the key to modeling the hump lies either in correlations between the state variables or

in the respective factor loadings in the yield equation. In contrast to Am(3),m = 1, 2, subfamilies,

models with independent factors such as multifactor CIR cannot induce a hump. To discern the

mechanism that leads to the non-monotonicity in the volatility curve in our model, we decompose

the unconditional variance of yields into contributions of factor variances and covariances scaled by the

respective loadings (not reported). The decomposition reveals that the hump in the volatility curve

is driven by the (weighted) unconditional variances of Σ11 and Σ12 and their covariance. This result

fits nicely within the interpretation of Dai and Singleton (2000), as Σ12 also determines the correlation

between the positive factors.

Correlation structure of yields. Finally, we provide a brief account of the dependence structure among

yields in our model. Although correlations between yields of different maturities are on average very

high, they may also change quite noticeably over time, and even become negative. Modeling directly

the stochastic correlations allows us to match high correlations of yields, as well as their considerable

time-variability. The maximum calibration error for unconditional correlations between the yield levels

across all maturities is 0.73 percent.34 Furthermore, the model-implied correlations between different

segments of the yield curve have different characteristics. For instance, the unconditional correlation

between the 3Y–1Y yield spread and 5Y–3Y yield spread is 0.90 in the simulated sample, and 0.85

in the data, while correlation between the 6M–3M spread and 10Y–7Y spread is −0.29 in simulation,

and −0.16 in the data. In Figure 13, we are able to mimic the empirical time variation of conditional

correlations between the yield levels. Even though the variation of the model-implied correlations of

yield changes (not reported in any figure) is well pronounced, its extent is somewhat smaller than in

the data.

34The calibration error is understood as the difference between the model-implied and the historical moment per unit of
the historical moment.
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V.D. Second moments of forward rates

Forward interest rate volatility is the second element, besides stochastic correlations, shown to play

an important role in derivative pricing. Similar to unconditional second moments of yields, the term

structure of forward rate volatilities tends to be hump-shaped for shorter maturities, as evidenced in

e.g. Amin and Morton (1994) and Moraleda and Vorst (1997). This pattern, in turn, translates into

the hump-shaped Black (1976) implied volatility of caps and caplets, by which these instruments are

typically quoted in the market. The “transmission” mechanism from forward rates to caplets can be

understood by noticing that the volatility of a caplet is the integrated instantaneous volatility of the

forward rate (see e.g. Brigo and Mercurio, 2006). It follows that models which can display a hump in

the instantaneous volatility of the forward rate should also perform well in the pricing of caplets.

In our model, the instantaneous forward rate is given in closed form in expression (26). We can

readily obtain the whole term structure of the instantaneous forward rate volatilities. Figure 14

plots instantaneous volatility curves for several dates in our simulation. Since the hump is also an

unconditional feature of the data, we compute the standard deviation of the one-year forward rates

in our simulated sample, and plot them against maturities in Figure 15. Additionally, we put the

results into perspective with the three affine models used before. At the calibrated parameters, both

the instantaneous and the unconditional term structure of forward rate volatilities in our model exhibit

a pronounced hump. The decomposition of the unconditional forward rate variance reveals that the

non-monotonicity is introduced by three elements: the two variances and the covariance of Σ12 and Σ11,

scaled by the respective products of the elements of matrix A(τ).35 Thus, we identify that the source

of a hump in volatility curves is the same both for yields and for forward rates. Figure 15 shows that,

in contrast to the Wishart factor setting, the hump is absent from the standard affine specifications. In

the A0(3) model, the forward volatility curve is monotonically decreasing; the mixed models A1(3) and

A2(3), on the other hand, imply its increase for longer maturities—an implication which is not valid

empirically.

The research into the pricing of caps and swaptions points to a link between correlations of different

yields/forward rates and the humped term structure of their volatilities (Collin-Dufresne and Goldstein,

2001; Han, 2005). Our discussion of the sources of the volatility hump indicates that this link can be

retrieved in the Wishart setting from the role played by the factor Σ12. For one, Σ12 determines the

stochastic dependence structure between different elements of the state matrix, and thus between yields.

For the other, it introduces the non-monotonicity of the volatility curves. We can therefore state that

the shape of volatility curves in our model is just a different manifestation of the same underlying force:

the stochastic relationship between factors.

35The decomposition refers to the variance of the forward rate f(t; S, T ), where f(t; S, T ) = ln P (t, S) − ln P (t, T ) =
b(t, S) − b(t, T ) + Tr [(A(t, S) − A(t, T ))Σt].
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Bond portfolio management and interest rate derivative pricing are two obvious examples, in which the

modeling of stochastic relations between factors and yields is essential for successful applications. In the

context of interest rate derivatives, the restrictions on the correlation structure imposed by the affine

class have turned out to be a major obstacle in reliable and consistent pricing of caps and swaptions

(see e.g. Jagannathan, Kaplin, and Sun (2003)). Since recent research highlights the need for stochastic

correlations among the interest rates, our model provides a simple and tractable framework to price

interest rate derivatives. Moreover, by increasing the dimension of the Wishart state matrix (e.g. to a

3× 3 case), we can imagine incorporating additional factors that are detached from the spot yields, but

are able to span the derivative market.

VI. Conclusions

In this article, we have explored the theoretical and empirical implications of a term structure model,

in which the risk factors are stochastically correlated. Our contribution is twofold. First, we propose

a general equilibrium continuous time economy, in which the production technology is driven by a

matrix-valued process of dependent factors. We solve the model in closed form for the bond prices and

in semi-closed form for the prices of interest rate derivatives. Second, we systematically investigate

the empirical implications of the proposed setting, and document that it helps explain several term

structure puzzles at the same time.

Our model is endowed with three important characteristics: (i) the market price of risk can take both

positive and negative values, (ii) the correlation structure of factors is stochastic and unrestricted in

sign, and (iii) all factors display stochastic volatility. While the first feature is shared with some other

essentially and extended affine models, the latter two in combination with each other represent the

peculiarity of our approach. With these levers, we provide answers to the following issues:

First, we replicate the distributional properties and the dynamic behavior of expected bond returns.

The predictability of returns in our calibrated economy violates the expectations hypothesis in line

with the historical evidence. The model-implied population coefficients in Campbell and Shiller (1991)

regressions are negative and increase in absolute value with the time to maturity. Similarly, a steeper

slope of the term structure and a larger spot-forward spread forecast higher excess bond returns in the

future.

Second, the extent of persistence of the model-implied conditional yield volatilities matches what is

found in the data by estimating a GARCH model. Moreover, the model is able to accommodate the

changes in the term structure of unconditional yield volatilities across different subsamples.
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Third, the model generates correlations between levels of different yields and between different yield

spreads that change broadly but persistently over time, and can switch signs. We observe that the

pattern and the extent of this time variation is largely consistent with the data.

Fourth, we find that the term structure of the forward rate volatilities implied by the model is marked

by a hump around the 2-year maturity. The result is preserved both instantaneously, and for the

unconditional volatilities of discrete observations simulated from the model. Since there is a functional

relationship between the caplet and the forward rate volatilities, we expect our model to explain the

prices of caplets observed in the market. Preempting our future research, we tentatively claim that

since the model is able to produce the humped forward rate volatility and stochastic correlations of

factors, it has also the latitude to price caps and swaptions in a consistent way.

Several facts strengthen the findings just described. First, to illustrate its explanatory power, we use

the most parsimonious formulation of the model. The choice of the 2×2 state matrix puts us in a three-

factor framework, with two positive and one unrestricted factor, while the assumption of log-investors

leads us to the simplest possible market price of risk. In this form, the model is endowed with only 11

parameters to successfully perform all tasks listed above, while many of the best performing three-factor

essentially or extended affine parameterizations comprise at least twice this number.

Second, using just a single set of calibrated parameters, we are largely able to reconcile the first and

second moments of model-implied yields with their historical counterparts. Even though the calibration

is performed with the unconditional moments of yields, the intrinsic structure of the model permits to

reproduce the conditional features of the data.

Third, to appreciate the full extent of our framework, it is important to recognize its analogies with the

standard ATSMs. For an arbitrary dimension of the Wishart state matrix, we maintain a tractability

which is comparable with the multifactor CIR model. Likewise, the equilibrium argument we apply to

derive the market price of risk, is closest to the one that stands behind the completely affine class. In

spite of the apparent similarities, the explanatory content together with the parsimony of our framework

make the model very attractive.

Finally, the generality of the presented approach allows for easy extensions into higher dimensions of

the state matrix. One conceivable enlargement of the model lies in incorporating additional factors that

drive prices of interest rate derivatives, but at the same time are detached from the spot interest rates.

With the increased dimension of the state space to the 3 × 3 case, the model has six factors, three of

which are unrestricted, and only 24 parameters. The additional factors enhance the flexibility of the

model without impairing its analytical tractability. Measuring by the number of parameters, the 3× 3
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setting is comparable to the essentially or extended affine three-factor specifications, and therefore it

shall be readily available for empirical applications.

35



References

Ahn, D.-H., R. F. Dittman, and A. R. Gallant (2002): “Quadratic Term Structure Models: Theory and
Evidence,” Review of Financial Studies, 15, 243–288.

Ait-Sahalia, Y. (1996): “Testing Continuous-Time Models of the Spot Interest Rate,” Review of Financial

Studies, 9, 385–426.

Amin, K. I., and A. J. Morton (1994): “Implied Volatility Functions in Arbitrage-free Term Structure
Models,” Journal of Financial Economics, 35, 141–180.

Ang, A., and M. Piazzesi (2003): “A No-Arbitrage Vector Autoregression of Term Structure with
Macroeconomic and Latent Variables,” Journal of Monetary Economics, 50, 745–787.

Audrino, F., G. Barone-Adesi, and A. Mira (2005): “The Stability of Factor Models of Interest Rates,”
Journal of Financial Econometrics, 3, 422–441.

Black, F. (1976): “The Pricing of Commodity Contracts,” Journal of Financial Economics, 3, 167–179.

Brandt, M. W., and D. A. Chapman (2002): “Comparing Multifactor Models of the Term Structure,”
Working paper, University of Pennsylvania and University of Texas.

Brigo, D., and F. Mercurio (2006): Interest Rate Models: Theory and Practice. Springer, Berlin, Heidelberg.

Brown, S. J., and P. H. Dybvig (1986): “The Empirical Implications of the Cox, Ingersoll, Ross Theory of
the Term Structure of Interest Rates,” Journal of Finance, 41, 617–630.

Bru, M.-F. (1991): “Wishart Processes,” Journal of Theoretical Probability, 4, 725–751.

Buraschi, A., and A. Jiltsov (2006): “Term Structure of Interest Rates Implications of Habit Persistence,”
Journal of Finance, forthcoming.

Buraschi, A., P. Porchia, and F. Trojani (2006): “Correlation Hedging,” Working Paper, Imperial College,
London and University of St. Gallen.

Campbell, J. Y., and R. J. Shiller (1991): “Yield Spreads and Interest Rate Movements: A Bird’s Eye
View,” Review of Economic Studies, 58, 495–514.

Carr, P., and D. B. Madan (1999): “Option Valuation Using the Fast Fourier Transform,” Journal of

Computational Finance, 2, 61–73.
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A. Proofs

A.1. Useful results for the Wishart process

Result 10. The following result facilitates the computation of the second order moments of (quadratic
forms of) the Wishart process (see Gourieroux (2006)):

Covt (α′dΣtα, β
′dΣtβ)

= Covt

[

α′
(

√

ΣtdBtQ+Q′dB′
t

√

Σt

)

α, β′
(

√

ΣtdBtQ+Q′dB′
t

√

Σt

)

β
]

= Et

[(

α′
√

ΣtdBtQα+ α′Q′dB′
t

√

Σtα
)(

β′
√

ΣtdBtQβ + β′Q′dB′
t

√

Σtβ
)]

= 4 (α′Σtβα
′Q′Qβ) dt,

where we use the fact that for any n-dimensional vectors u and v it holds

Et (dBtuv
′dBt) = Et (dB′

tuv
′dB′

t) = vu′dt

Et (dBtuv
′dB′

t) = Et (dB′
tuv

′dBt) = v′uIndt

Result 11 (Covariances between quadratic forms associated with the Wishart matrix). Given n × n
Wishart matrix dΣ and arbitrary n-dimensional vectors a, b, c, f it follows

Covt [a′dΣtb, c
′dΣtf ] = [a′Q′Qfb′Σtc+ a′Q′Qcb′Σtf + b′Q′Qfa′Σtc+ b′Q′Qca′Σtf ] dt

Covariances between arbitrary quadratic forms of dΣ are linear combinations of quadratic forms of Σ.
In particular, both drift and instantaneous covariances of the single components of the matrix process
Σ are affine functions of Σ itself. Using this formula, it is straightforward to compute

d〈Σ11〉t = 4Σ11

(

Q2
11 +Q2

21

)

dt

d〈Σ22〉t = 4Σ22

(

Q2
22 +Q2
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)

dt

d〈Σ12〉t =
[
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(

Q2
12 +Q2
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)

+ Σ22

(

Q2
11 +Q2

21

)

+ 2Σ12 (Q11Q12 +Q21Q22)
]

dt

d〈Σ11,Σ22〉t = 4Σ12 (Q11Q12 +Q21Q22) dt
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2Σ11 (Q11Q12 +Q21Q22) + 2Σ12
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)]

dt

d〈Σ22,Σ12〉t =
[

2Σ22 (Q11Q12 +Q21Q22) + 2Σ12

(

Q2
22 +Q2
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)]

dt,

where Σij and Qij denote the ij-th element of matrix Σ and Q, respectively.

Result 12. If Σt is a Wishart process and C is a positive definite matrix, then the scalar process
Tr(CΣt) is positive (see Gourieroux (2006)).

By the singular value decomposition, a symmetric (positive or negative) definite matrix D can be written
as D =

∑n
j=1 λjmjm

′
j, where λj and mj are the eigenvalues and eigenvectors of D, respectively. Let

D be positive definite, and we get:

Tr(DΣ) = Tr





n
∑

j=1

λjmjm
′
jΣ



 =

n
∑

j=1

λjTr(mjm
′
jΣ)

=

n
∑

j=1

λjTr(m
′
jΣmj) =

n
∑

j=1

λjm
′
jΣmj > 0,

where we use the facts that: (i) we can commute within the trace operator, (ii) λj > 0 for all j, and
(iii) Σ is positive definite. Note that for a positive definite matrix D =

∑n
j=1 aja

′
j, where aj =

√

λjmj.

Result 13. For any symmetric square matrices A and C, it follows
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Covt [Tr(AdΣt), T r(CdΣt)] = 4Tr[AΣtCQ
′Q].

To derive the result we can directly consider the product of the two traces

Covt [Tr(AdΣt), T r(CdΣt)] =

Tr
(

A
√

ΣtdBtQ+AQ′dB′
t

√

Σt

)

Tr
(

C
√

ΣtdBtQ+ CQ′dB′
t

√

Σt

)

.

Apply several times the fact that

Tr
(

QA
√

ΣtdBt

)

= vec(
√

ΣtAQ
′)′vec(dBt)

and note that
vec(dBt)vec(dBt)

′ = In2dt,

where vec denotes the operation of stacking elements of a matrix in a vector.

A.2. Proof of Proposition 5: Equilibrium interest rate and market price of risk

Let ψ ≡ U +LW,ΣJ , where J is given in (10), and U is the logarithmic utility function. The log-utility

simplifies the investor’s maximization problem since due to separability of the value function the mixed

partial derivatives (with respect to wealth and the state) are zero and ψ becomes

ψ = U + [vY (Tr(DΣ) − r) + v′F (µF − r1) + (r − vC)]WJW

+
1

2

[

v2
Y Tr(Σ) + 2vY v

′
FσY F + v′FσFF vF

]

W 2JWW

+Tr [(ΩΩ′ +MΣ + ΣM ′)RJ + 2ΣR(QQ′RJ)] ,

where the µF is the vector of drifts with i-th element µFi
= 1

dt
E
(

dFi

Fi

)

, σY F is the vector of covariances

between the returns to production and financial assets with i-th element σY Fi
= 1

dt
Cov

(

dY
Y
, dFi

Fi

)

, and

σFF is the covariance of returns to financial assets with ij-th element σFF,ij = 1
dt
Cov

(

dFi

Fi
,

dFj

Fj

)

.

The first order conditions for maximization are

ψC = UC − JW = 0, (32)

ψY = [Tr(DΣ) − r]WJW + vY Tr(Σt)W
2JWW = 0, (33)

ψFi
= (µFi

− r)WJW + (vY σY Fi
+ vFi

σFF,ii)W
2JWW = 0. (34)

The standard envelope condition in (32) implies the optimal consumption: C∗ = ρW . In equilibrium,

the agent is fully invested in the production technology Y , thus v∗Y = 1 and v∗F = 0. From (33), we

obtain the equilibrium interest rate

r = Tr(DΣ) −
(

−WJWW

JW

Tr(Σ)

)

,

which for the case of log-utility investor has a particularly simple form
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rt = Tr [(D − In)Σt] .

From the definition of the market price of risk, we have

µY − r = σ′
Y λ, (35)

where µY := Tr(DΣ), σY := vec(
√

Σ), and λ := vec(Λ).

µY − r = vec(
√

Σ)′vec(Λ) = Tr(
√

ΣΛ) (by definition)

= Tr(Σ) (from equilibrium).

It thus follows Λt =
√

Σt. �

A.3. Second moments of the equilibrium short interest rate

Let D − In = C, a symmetric matrix. We assume the matrix C to be positive definite. Therefore, it

can be written as C =
∑n

i=1 cic
′
i. In a first step, we derive the expression for the instantaneous variance

of the interest rate. Applying Ito’s Lemma to the interest rate, and using Result 12 in Appendix A.1

we have

dr = Tr (CdΣ) =
n
∑

i=1

c′idΣci.

By Result 10, we obtain the expression (13):
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= 4Tr (CΣCQ′Q) dt

= 4Tr [(D − In)Σ(D − In)Q′Q]dt

= 4Tr [Σ(D − In)QQ′(D − In)] dt.

By similar arguments the expression for the covariance between the changes in the level and the variance

of interest rate follows. Let (D− In)Q′Q(D− In) = P , a symmetric matrix, and apply Ito’s Lemma to

Vt.
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Covt (dr, dV ) = Covt [Tr (CdΣ) , T r (PdΣ)]
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Note that the multiplier of Σ, i.e. H = (D − In)Q′Q (D − In)Q′Q (D − Idn), is again a symmetric

matrix. �

A.4. Proof of Proposition 7: Pricing PDE

The only term that requires clarification is the drift adjustment ΦΣ. By Theorem 2 in CIR (1985a, p.

374), the risk adjustment (excess return) for the factor Σkl is given by

ΦΣkl
=

−JWW

JW

Covt(dW, dΣkl) +

n
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i=1

n
∑
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)

.

For the separable log-utility case, the drift adjustment has a particularly simple form since all cross

derivatives are zero, and it can be comfortably written in a matrix form as

ΦΣ =
−JWW

JW

Covt(dW, dΣ) =
1

W
d〈W,Σ〉, (36)

where the covariance is represented by a n× n symmetric matrix with a typical element d〈W,Σij〉, e.g.

in the 2 × 2 case
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Therefore, it is enough to show that for an arbitrary dimension n×n of matrices Σ, Q and dB, it holds:
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Let us define σki, 1 ≤ k, i ≤ n as a typical element
√

Σ. First, we note that

Tr
(√

ΣdB
)

=

n
∑

k=1

n
∑

i=1

σkidBik, (37)
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and that the element (l,m) of the matrix
√

ΣdB is

(
√

ΣdB)l,m =

n
∑

w=1

σlwdBwm =

n
∑

w=1

σwldBwm.

Thus, we obtain the following covariance

1

dt
〈Tr(

√
ΣdB), (

√
ΣdB)l,m〉 =

1

dt

n
∑

k=1

n
∑

i=1

σkidBik

n
∑

w=1

σlwdBwm

=
n
∑

i=1

σmiσli = Σml = Σlm

The covariation matrix follows as

1

dt
〈Tr(

√
ΣdB),

√
ΣdBQ〉 = ΣQ.

In the similar manner, we obtain the second summand Q′Σ in (37).

Note that we arrive at the same drift adjustment by using the Girsanov’s theorem, where the Girsanov’s

kernel is −Λt, and Λt is the market price of risk Λt =
√

Σt. Define the Radon-Nikodym derivative for

the transformation from the physical measure Q̃ to the risk neutral measure Q∗:

dQ∗

dQ̃
|Ft

:= eTr[−
R

t

0
Λ′

udBu−
1
2

R
t

0
Λ′

uΛudu]. (38)

Under the risk neutral measure Q∗ the process B∗
t defined by

B∗
t = Bt +

∫ t

0

Λudu (39)

is a n× n matrix of standard Brownian motions. The risk neutral dynamics of the Wishart process is

given by:

dΣt = (ΩΩ′ + (M −Q′)Σt + Σt(M
′ −Q)) dt+

√

ΣtdB
∗
tQ+Q′dB∗

t
′
√

Σt. (40)

�

A.5. Proof of Proposition 8: Solution to the matrix Riccati equation

The coefficients A(t, T ) and b(t, T ) in the bond price expression are identified by inserting function (19)

into the pricing PDE (17) and solving the resulting matrix Riccati equation. Note that RP = A(t, T )P ,

and
∂P

∂t
= P

[

d

dt
b(t, T ) + Tr

(

d

dt
A(t, T )Σ

)]

, (41)

where for brevity with P we denote the time t price of a bond maturing at time T .

The fundamental PDE. The pricing PDE (17) can be expressed as
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Tr [(ΩΩ′ + (M −Q′)Σ + Σ(M ′ −Q))A+ 2ΣAQ′QA] +
db

dt
+ Tr

(

dA

dt
Σ

)

− Tr [(D − In)Σ] = 0.

Matrix Riccati equation. The above equation holds for all t, T and Σ. After identifying coefficients of

Σ, we get a system of matrix Riccati equations in A and b

− db

dt
= Tr (ΩΩ′A) (42)

−dA
dt

= A(M −Q′) + (M ′ −Q)A+ 2AQ′QA− (D − In). (43)

with the respective terminal conditions b(T, T ) = 0 and A(T, T ) = 0. For convenience, we consider A(·)
and b(·) as parametrized by the time to maturity τ = T − t. Clearly, this reparametrization merely

requires the LHS of the above system to be multiplied by −1

db

dτ
= Tr (ΩΩ′A) (44)

dA

dτ
= A(M −Q′) + (M ′ −Q)A+ 2AQ′QA− (D − In), (45)

with boundary conditions A(0) = 0 and b(0) = 0. We remark that the instantaneous interest rate is

rt = lim
τ→0

−1

τ
logP (t, τ) = −db(0)

dτ
− Tr

(

dA(0)

dτ
Σt

)

= Tr [(D − In)Σt] .

Matrix Riccati linearization. To solve the equation (45), we use the matrix Riccati linearization proposed

in da Fonseca, Grasselli, and Tebaldi (2005). We express A(τ) as

A(τ) = H(τ)−1G(τ), (46)

for H(τ) invertible and G(τ) being a square matrix. Differentiating (46), we have

d

dτ
[H(τ)A(τ)] =

dG(τ)

dτ
d

dτ
[H(τ)A(τ)] =

dH(τ)

dτ
A(τ) +H(τ)

dA(dτ)

dτ
.

Premultiplying (45) by H(τ) gives

H
dA

dτ
= HA(M −Q′) +H(M ′ −Q)A+ 2HAQ′QA−H(D − In).

This is equivalent to

dG

dτ
− dH

dτ
A = G(M −Q′) +H(M ′ −Q)A+ 2GQ′QA−H(D − In),

where for brevity we suppress the argument τ of A(·), H(·) and G(·). After collecting coefficients of A

in the last equation, we obtain the following matricial system of ODEs
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dG(τ)

dτ
= G(M −Q′) −H(D − In)

dH(τ)

dτ
= −2GQ′Q−H(M ′ −Q),

or written compactly

d

dτ

(

G(τ) H(τ)
)

=
(

G(τ) H(τ)
)





M −Q′ −2Q′Q

−(D − In) −(M ′ −Q)



 .

The solution to the above ODE is obtained by exponentiation

(

G(τ) H(τ)
)

=
(

G(0) H(0)
)

exp



τ





M −Q′ −2Q′Q

−(D − In) −(M ′ −Q)









=
(

A(0) In

)

exp



τ





M −Q′ −2Q′Q

−(D − In) −(M ′ −Q)









=
(

A(0)C11(τ) + C21(τ) A(0)C12(τ) + C22(τ)
)

=
(

C21(τ) C22(τ)
)

,

where we use the fact that A(0) = 0, and





C11(τ) C12(τ)

C21(τ) C22(τ)



 := exp



τ





M −Q′ −2Q′Q

−(D − In) −(M ′ −Q)







 .

From equation (46), the closed-form solution to (45) is given by

A(τ) = C22(τ)
−1C21(τ).

Given the solution for A, the coefficient b is obtained directly by integration

b(τ) = Tr

(

ΩΩ′

∫ τ

0

A(s)

)

ds.

�

A.6. Bond returns

By Ito’s Lemma, for a smooth function φ(Σ, t) we have

dφ =

(

∂φ

∂t
+ LΣφ

)

dt+ Tr
[

(
√

ΣdBQ+Q′dB′
√

Σ)Rφ
]

, (47)

where LΣ denotes the infinitesimal generator of the Wishart process. Using this result, the drift of the

bond price P (Σ, t, T ) can be written as:
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1

dt
Et (dP ) =

∂P

∂t
+ LΣP

=
∂P

∂t
+ Tr [(ΩΩ′ +MΣ + Σ′M)RP + 2ΣR(Q′QRP )] .

From the fundamental PDE (17), we note that at equilibrium the drift must satisfy

1

dt
Et (dP ) − Tr(ΦΣRP ) = rP.

By taking derivatives of the bond price with respect to the Wishart matrix, RP = A(τ)P , it follows

that the expected excess bond return (over the short rate) is given by

eτ
t = Tr [(A(τ)Q′ +QA(τ))Σt] . (48)

For completeness, we also provide the expression for the instantaneous variance of the bond return. From

equation (47), the diffusion part of the bond dynamics dP is given by Tr
[(√

ΣdBQ+Q′dB′
√

Σ
)

A(τ)P
]

.

Since A(τ) is a symmetric negative definite matrix, we can write

Tr(AdΣ) =

n
∑

i=1

Tr (λiaia
′
idΣ) =

n
∑

i=1

λia
′
idΣai,

where λi is the i-th eigenvalue of A(τ) and ai is its i-th eigenvector. Using Result 10, the instantaneous

variance of the bond returns is

V art

(

dP

P

)

= V art

[

Tr
((√

ΣdBQ+Q′dB′
√

Σ
)

A
)]

= 4

n
∑

i=1

n
∑

j=1

λiλja
′
iΣaja

′
iQ

′Qajdt

= 4
n
∑

i=1

n
∑

j=1

λiλja
′
jΣaia

′
iQ

′Qajdt

= 4

n
∑

j=1

λja
′
jΣAQ

′Qajdt

= 4Tr (AΣAQ′Q) dt.

�

A.7. Dynamics of the forward rate

The dynamics of the instantaneous forward rate is

df(t, τ) = −∂d logP (t, τ)

∂τ
.

By Ito’s Lemma, we first obtain the dynamics of the logarithm of the bond price in (19):
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d logP =

[

∂b

∂t
+ Tr

(

∂A

∂t
Σ

)

+ Tr [(ΩΩ′ +MΣ + ΣM ′)A]

]

dt+ Tr
[

(
√

ΣdBQ+Q′dB′
√

Σ)A
]

.

By noting that f(t, T ) = ∂b
∂t

+ Tr
(

∂A
∂t

Σt

)

, we arrive at the instantaneous forward rate dynamics

df(t, τ) = −
(

∂f

∂τ
+ Tr

[

(ΩΩ′ +MΣ + ΣM ′)
∂A

∂τ

])

dt− Tr

[

(√
ΣdBQ+Q′dB′

√
Σ
) ∂A

∂τ

]

. �

A.8. Pricing of zero-bond options

A.8.1. Change of drift for the Wishart factors

Let ZBC(t,Σt;S, T,K) denote the price of a European option with expiry date S and exercise price K,

written on a zero-bond maturing at time T ≥ S

ZBC(t,Σt;S, T,K) = P (t, T )PrT
t {P (S, T ) > K} −KP (t, S)PrS

t {P (S, T ) > K}.

To evaluate the two probabilities PrT
t and PrS

t in this expression, we need to obtain the dynamics of

the Wishart process under the two forward measures associated with bonds maturing at time S and T ,

respectively. The risk-neutral dynamics of a S-maturity zero-bond P (t, S) are

dP (t, S)

P (t, S)
= rtdt+ Tr(Θ′(t, S)dB∗

t ) + Tr(Θ(t, S)dB∗
t
′), (49)

where Θ(t, S) =
√

ΣtA(t, S)Q′, A(t, S) and
√

Σt symmetric, and A(t, S) solves the matrix Riccati

equation (43). The transformation from the risk neutral measure Q∗ to the forward measure QS is

given by

dQS

dQ∗
|FS

= eTr[
R

S

0
Θ′(u,S)dB∗

u−
1
2

R
S

0
Θ′(u,S)Θ(u,S)du],

where we use the fact that Tr(Θ′(t, S)dB∗
t ) = vec(Θ(t, S))′vec(dB∗

t ). By Girsanov’s theorem it follows

dB∗
t = dBS

t +
√

ΣtA(t, S)Q′dt, (50)

where dBS
t is a n×n matrix of standard Brownian motions under QS . By a similar argument, we have

dB∗
t = dBT

t +
√

ΣtA(t, T )Q′dt, (51)

where dBT
t is a n× n matrix of standard Brownian motions under QT .

Remark 14. The measure transformations presented here are standard, but for the matrix-trace nota-
tion. Equivalently, we could use the vector notation for the T -maturity bond dynamics

dPt

Pt

= rtdt+ vec(Θ)′vec(dB∗
t ) + vec(Θ′)′vec(dB∗

t
′) (52)

Then,

vec(dB∗
t ) = vec(Θ)dt+ vec(dBT

t ) = vec(Θdt+ dBT
t ).
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By operation reverse to vectorizing, we obtain

dB∗
t = dBT

t + Θdt.

Recall that the risk-neutral dynamics of the Wishart process is given by

dΣt = (ΩΩ′ + (M −Q′)Σt + Σt(M
′ −Q)) dt+

√

ΣtdB
∗
tQ+Q′dB∗

t
′
√

Σt. (53)

We are now ready to express the dynamics of the process under the S-forward measure

dΣt = {ΩΩ′ + [M −Q′(In −QA)]Σt + Σt[M
′ − (In −AQ′)]Q}dt+

√

ΣtdB
S
t Q+Q′dBS

t

′√

Σt,

where for brevity we write A for A(t, S). The dynamics under the T -forward measure QT differ only in

A standing for A(t, T ).

A.8.2. Pricing of zero-bond option by Fourier inversion

Due to the affine property of the Wishart process, the conditional characteristic function of log-bond

prices is available in closed form. Thus, the pricing of bond options amounts to performing two one-

dimensional Fourier inversions under the two forward measures (see e.g., Duffie, Pan, and Singleton

(2000)). We note that

Prj
t {P (S, T ) > K} = Prj

t {b(S, T ) + Tr [A(S, T )ΣS ] > lnK}, where j = {S, T }.

To evaluate this probability by Fourier inversion, we find the characteristic function of the random

variable Tr[A(S, T )ΣS ] under the S- and T -forward measures. Let τ = S − t, then the conditional

characteristic function is

ΨS
t (iz) = ES

t

(

eizTr[A(t+τ,T )Σt+τ ]
)

, (54)

where ES
t denotes the conditional expectation under the S-forward measure, i =

√
−1, and z ∈ R. In the

sequel, we show the argument for the S-forward measure, the argument for the T -forward measure being

analogous. By the affine property of Σt, the relevant characteristic function is itself of the exponentially

affine form in Σt

ΨS
t (iz) = eTr[Â(τ)Σt]+b̂(τ), (55)

where Â(τ) and b̂(τ) are, respectively, a symmetric matrix and a scalar with possibly complex co-

efficients, which solve the system of matrix Riccati equations (57)–(58) detailed below. With the

characteristic functions of Tr[A(S, T )ΣS] for the S- and T -forward measure at hand, we can express

the bond option price by the Fourier inversion as
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ZBC(t, S, T ) = P (t, T )

{

1

2
+

1

π

∫ ∞

0

Re
e−iz[log K−b(S,T )]ΨT

t (iz)

iz
dz

}

−KP (t, S)

{

1

2
+

1

π

∫ ∞

0

Re
e−iz[log K−b(S,T )]ΨS

t (iz)

iz
dz

}

,

in which the integral can be evaluated by numerical methods.

The coefficients Â(τ) and b̂(τ) in (55) are derived by the same logic as in Appendix A.5. By the

Feynman-Kač argument applied to (54), ΨS
t solves the following PDE

∂ΨS
t

∂τ
= LΣΨS

t . (56)

Then, plugging for ΨS
t the expression (55), and collecting terms, gives the system of ordinary differential

equations

∂b̂(τ)

∂τ
= Tr[ΩΩ′Â(τ)] (57)

∂Â(τ)

∂τ
= Â(τ)MS +MS ′

Â(τ) + 2Â(τ)Q′QÂ(τ), (58)

where MS = M −Q′[In−QA(t, S)] results from the drift adjustment under the S-forward measure (see

Appendix A.8.1). The boundary conditions at τ = 0 are

b̂(0) = 0

Â(0) = ziA(S, T ).

By matrix Riccati linearization, the solution for Â(τ) reads

Â(τ) = (ziA(S, T )Ĉ12 + Ĉ22)
−1(ziA(S, T )Ĉ11 + Ĉ21), (59)

with




Ĉ11(τ) Ĉ12(τ)

Ĉ21(τ) Ĉ22(τ)



 := exp



τ





MS −2Q′Q

0 −MS ′







 .

The coefficient b̂(τ) is obtained by integration

b̂(τ) =

∫ τ

0

Tr[ΩΩ′Â(u)]du. (60)

�
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B. Details on the calibration

Table VI summarizes the calibration errors for the respective moment conditions and yields used in

calibration.

Table VI: Calibration errors

6M 2Y 10Y

Means 7 -22 7
(1.3) (-3.8) (1.1)

Volatilities -12 12 14
(-4.1) (4.3) (5.2)

Correlations∗ 17 -9 14
(0.2) (-0.1) (0.1)

CS coeff.∗∗ n.a. 0 0
n.a. (0.0) (0.0)

Note: The table displays absolute calibration errors for the moments of the 6-month, 2-year and 10-year yields. The
percentage calibration errors are given in parentheses. The absolute error is computed as the difference between the
model-implied and the empirical value of a given moment, scaled by 10000; thus errors for means and volatilities are in
basis points. The percentage error is the absolute error per unit of the empirical value of the respective moment.
∗) The columns are Corr(y6M , y2Y ), Corr(y6M , y10Y ) and Corr(y2Y , y10Y ).
∗∗) CS coeff. denotes the Campbell-Shiller regression coefficients. Both the 2- and 10-year value of the coefficient is
computed using the 6-month yield as the shorter maturity; see Section V.B, expression (29) for the relevant regression
equation.

The calibrated parameters are:

D =





1.3844 0.5426

0.5426 2.0704



 ,

M =





−0.1173 0.0625

0.0444 −0.0256



 ,

Q =





0.0338 −0.1147

−0.0183 0.0499



 .
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C. Figures
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Figure 1: Time-variation in the hedge ratio. Panel a shows the “optimal” hedge ratio β = σ10

σ2
ρ10,2

for hedging a 10-year zero bond with a 2-year bond. Panel b displays the ratio of the volatilities
of the 10-year and the 2-year yield changes. Panel c plots the correlation of the yield changes.
The sample comprises weekly changes in the Treasury constant maturity rates from FRED
in the period 1976:06–2006:11. All plots are obtained with the exponential moving average
(EMA) estimator of the covariance matrix of the yield changes: Vt = (1−λ)ut−1u

′
t−1 +λVt−1,

where ut is the 2 × 1 vector of demeaned yield changes, and λ is assumed to equal 0.94.

51



0 1000 2000 3000 4000 5000
−1

−0.5

0

0.5

1

a. Corr
t
(Σ

11
,Σ

22
)

0 1000 2000 3000 4000 5000
−1

−0.5

0

0.5

1

b. Corr
t
(Σ

11
,Σ

12
)

0 1000 2000 3000 4000 5000
−1

−0.5

0

0.5

1

c. Corr
t
(Σ

22
,Σ

12
)

0 1 2 3

x 10
4

−1

−0.5

0

0.5

1

d. Rolling correlation Σ
11

, Σ
22

window = 650 obs.

Figure 2: Factor correlation. Panels a–c show instantaneous correlations of factors. For readability,
we only show the first 5000 realizations. Panel d displays the rolling correlation between the
positive factors Σ11,Σ22 for the whole simulated sample. The rolling window is 650 months,
which is the length of our US yield sample.
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Figure 3: Possible model-implied shapes of the term structure. The figure displays a variety of
shapes of the term structure arising at different dates of the simulated sample. The maturities
are given in years.
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Figure 4: Factor loadings. The figure displays the scaled elements of the A(τ) matrix in equation
(22), −A11(τ)/τ , −2A12(τ)/τ , and −A22(τ)/τ , which represent the loadings on Σ11,Σ12 and
Σ22, respectively; b(τ) is a constant term.
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Figure 5: Loadings of yields on principal components: model versus data. The covariance
matrix of yields is decomposed as UΛU ′, where U is the matrix of eigenvectors normalized to
have unit lengths, and Λ is the diagonal matrix of associated eigenvalues. The figure shows
columns (factor loadings) of U associated with the three largest eigenvalues. Thicker lines
indicate loadings of yields obtained from the model; finer lines are loadings obtained from the
sample of US yields, 1952:01–2005:06.
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Figure 6: Variance explained by principal components, conditional on factor correlation.
The figure shows the portions of yield variance explained by each principal component. The
principal components are computed for yields grouped by the level of instantaneous correlation
of factors. We form eight correlation bins, and number them from 1 to 8. The bins are in
descending order: (1, .9), (.9, .8), (.8, .5), (.5, 0), (0,−.5), (−.5,−.8), (−.8,−.9), (−.9,−1).
Two sort criteria are used: circles denote sorts by the level of Corrt(Σ11,Σ22), triangles
indicate sorts by the level of Corrt(Σ22,Σ12).
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Figure 7: Properties of expected excess bond returns. Panels a and b display the instantaneous
excess returns on a one-year and 5-year bond, respectively. The excess returns are computed as
eτ

t = Tr [(A(τ)Q′ +QA(τ)) Σt]. Panel c plots kernel density of the ratio of the instantaneous
expected excess returns to their volatility, eτ/

√
vτ . For readability, we only present the initial

5000 realizations from the simulation. The kernel densities are obtained using the whole
simulated sample of 36000 observations.
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Figure 8: Properties of realized excess bond returns. Panel a displays 650 realized monthly excess
returns on a 10-year bond in a subsample of simulated data. Panel b displays the realized
monthly excess returns on the 10-year US Treasury bond. In both panels, the realized excess
return is computed as the return on the 10-year bond over the 3-month bond.
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Figure 9: Campbell-Shiller regression coefficients. The figure plots as a function of maturity the
parameters of Campbell and Shiller (1991) regression in equation (29). Panel a displays
the coefficients obtained from the US yields in the sample period 1952:01–2005:06 and the
population coefficient implied by the Wishart factor model. Panel b performs the same exercise
for the preferred affine models estimated by Duffee (2002), and compares them to the empirical
coefficients for the relevant sample period 1952:01–1994:12. The dashed lines plot the 80
percent confidence bounds for the historical estimates based on the Newey-West covariance
matrix. Further remarks from Table III apply.
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Figure 10: Predictability of excess bond returns. The figure presents scatter plots of excess bond
returns against the spot-forward spread; see regression equation (31). The forward-spot
spread in panel a is (f2→1

t − y1Y
t ) × 100, and in panel b: (f5→4

t − y1Y
t ) × 100. The plots use

2000 data points simulated from the model.
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Figure 11: GARCH(1,1) coefficients. The figure displays box plots of 1000 GARCH coefficients for
the 5-year yield. The yield is simulated from three term structure models: the Wishart factor
model (WTSM), and the affine A1(3) and A2(3) models. The simulation of ATSMs is based
on the estimates from Duffee (2002). The dotted lines are the median estimates; the dashed
lines are the historical GARCH estimates in two different sample periods: 1952:01–2005:06
for the Wishart factor model, and 1952:01–1994:12 for the affine models. The letter sample
period coincides with the sample used by Duffee (2002) for estimation. Consequently, the
length of each simulated path is 54 and 43 years of monthly observations respectively for the
Wishart factor model and both ATSMs.
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Figure 12: Unconditional second moments of yields. The figure plots the term structure of
unconditional standard deviations of yield changes computed in two simulated subsamples,
including 650 realizations each.
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Figure 13: Correlations of yields. The figure displays the rolling window correlations between the
levels of yields with different maturity. We use the rolling window of 48 monthly observations,
and present three correlation pairs. Panel a presents the values from the calibrated model;
panel b depicts the behavior of the data.
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Figure 14: Forward interest rate volatilities in the Wishart factor model. The figure presents
the term structure of the instantaneous volatility of the (instantaneous) forward rate given in

equation (26). The instantaneous volatility is computed as vf (t, τ) = 4Tr[dA(τ)
dτ

Σt
dA(τ)

dτ
Q′Q],

where dA(τ)
dτ

is given in closed form in equation (21).
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Figure 15: Comparison of forward interest rate volatilities implied by the Wishart factor
model and ATSMs. The figure shows the unconditional volatility of the one-year forward
rate obtained from the simulated sample of 36000 monthly observations. The models
considered are the Wishart factor model (WTSM), and three preferred affine models of
Duffee (2002): A0(3), A1(3) and A2(3). The maturity indicates the expiry of the forward
contract, e.g. at maturity τ the forward rate is f τ→τ+1

t .
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