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Hedging Portfolios of Financial Guarantees

Abstract

We propose a framework a la Davis et al. (1993) and Whalley and Wilmott
(1997) to study dynamic hedging strategies on portfolios of financial guarantees
in the presence of transaction costs. We contrast four dynamic hedging strategies
including a utility-based dynamic hedging strategy, in conjunction with using an
asset-based index, with the strategy of no hedging. For the proposed utility-based
strategy, the portfolio rebalancing is triggered by the tradeoff between transaction
costs and utility gains. Overall, using a Froot and Stein (1998) and Perold (2005)
type of risk-adjusted performance measurement metric, we find the utility-based
strategy to be a good compromise between the delta hedging strategy and the pas-
sive stance of doing nothing. This results is even stronger with higher transaction
costs. However, if the insured firms assets are not traded, the guarantor can use an
index-based security as hedging instrument, especially in a high transaction costs
environment.

Keywords: Financial guarantee, Credit insurance, Dynamic hedging.



1 Introduction

Enterprise risk management is nowadays a must for all institutions especially financial

institutions. In this article, we use a risk management framework a la Merton and

Perold (1993) and Froot and Stein (1998) to study hedging strategies by financial guar-

antee providers who hold invariably portfolios composed of several financial guarantee

contracts. For instance, firms in the financial services industry can diversify away the

systematic risk and/or insure (reinsure), hedge, retain (e.g., Bodie and Merton (1999)),

and undertake alternative risk transfer (e.g., Banks (2004)). However, these risk manage-

ment strategies cannot be implemented at no cost and perfectly. Further, in the domain

of managing financial guarantees, which is the focus of our study, it is widely recognized

that the portfolio credit risk cannot be completely diversified away. Therefore, financial

guarantee providers need to find strategies to enhance their risk-adjusted returns.

Following Leland (1985), there is a significant literature on hedging derivatives with

the same underlying asset and with transaction costs. Davis et al. (1993) propose a

utility-based hedging model with negative exponential utility function. Later, Whalley

and Wilmott (1997) use an asymptotic approach to hedge a call option. Alternatively,

Edirisinghe et al. (1993) propose a dynamic programming approach with binomial trees

to hedge an option with transaction costs. To overcome huge transaction costs associated

with dynamic hedging, Derman et al. (1994) and Carr et al. (1998) propose static hedg-

ing models. Unfortunately, to our knowledge, there is no studies on hedging portfolios of

financial guarantees with several underlying assets in the presence of transaction costs.1

There are limitations with the existing models. Indeed, in many real life situations,

the portfolio to be hedged contains several underlying securities, hence many sources of

risk to hedge. Moreover, the portfolio manager has to rebalance the portfolio repeatedly.

On the one hand, the dynamic hedging methodology of Hodges and Neuberger (1989),

Davis et al. (1993) and Whalley and Wilmott (1997) is less appropriate since the in-

troduction of other sources of risk makes the problem more complex and no analytical

1There is a substantial literature on dynamic hedging and replication of derivatives under transaction
costs both in discrete and continuous time, e.g. Avellaneda and Paras (1994), Boyle and Vorst (1992),
Clewlow and Hodges (1997), Zakamouline (2005) among others.
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solution can be derived. The approach of Edirisinghe et al. (1993) becomes cumbersome

since the calculation time evolves exponentially with the number of rebalancing points

and multiple risks. One the other hand, the static hedging approach of Derman et al.

(1994) and Carr et al. (1998) which requires many replicating instruments with specific

characteristics that may not be available in the market makes the hedging much less

efficient.

In this paper, we study relatively simple hedging strategies that allow for multiple

sources of risk, many rebalancing dates and non-zero transaction costs. We consider five

strategies: (i) the doing nothing strategy, (ii) the dynamic delta hedging and (iii) utility-

based hedging strategies using the underlying assets, (iv) the dynamic delta hedging and

(v) utility-based hedging strategies using a security-based index as alternative hedging

instrument.

In the spirit of Merton and Perold (1993), Froot and Stein (1998), and Perold (2005),

to compare the performance of our five strategies, we use the relatively modern per-

formance metric, the so-called risk-adjusted performance measure or RAPM, which is

defined as the ratio of the portfolio expected return over its value at risk (VAR).2 To

better apprehend the impact of the parameters on our hedging strategies, we focus our

numerical exercises on a portfolio composed of two financial guarantees. Overall, based

on our parameters values, we found the utility-based hedging with the underlying assets

to be a better compromise between the delta hedging strategy and the passive stance of

doing nothing. This result remains stronger even with higher transaction costs. How-

ever, if the insured firms assets are not traded, the guarantor can use an index-based

security as hedging instrument, especially in a high transaction costs environment.

Institutionally, managing and hedging portfolios of financial guarantees require the

guarantor to set reserves and economic capital. Setting a risk-based capital or capital at

risk allows us to capture the changes in the capital allocation associated with the hedging

decisions. By doing so, we capture the portfolio diversification feature and price the risk

2Rather than benchmarking as done in the portfolio performance measurement literature which
requires the construction of a proper benchmark portfolio, here we simply compare different strategies
using the risk-adjusted return metric. Moreover, we recognize the critics associated with the use of
VAR, however, since the objective of this paper is not the calculation of VAR per se, we believe that
our main messages will hold using other improved measures of VAR.
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associated with the tails of the distribution inherent to credit risk.3 Unlike Smith and

Stulz (1985) and Morellec and Smith (2006), the focus of our paper is to study hedging

strategies of portfolios of financial guarantees. However, the implications of our study

are consistent with their assertion that hedging can increase firm value.

The rest of the paper is structured as follows. In section 2, we present the model.

In section 3, we discuss the dynamic hedging strategies. In section 4, we present the

simulation parameters and discuss the results. Section 5 concludes.

2 General model

Before presenting the general model of the mutiple-risk sources case, we present a one

risky asset portfolio case to capture the essence of the hedging problem.

2.1 The single underlying asset portfolio case

To gain the insight of our paper, we first start by providing the model with only one

underlying asset. We present a utility-based dynamic hedging model to replicate a single

option with one underlying asset.

We consider an guaranteed risky firm which asset, St, process is described as follows:

dSt = µStdt + σtStdWt, (1)

where Wt is a standard Brownian motion. We also consider an riskless bond, Bt, with

process

dBt = rtBrdt, (2)

where rt is the risk-free rate at time t.

We define yt the quantity of risky asset and Bt the amount of risk-free asset held

by the guarantor. The transaction costs are assumed to be proportional to the value of

the asset. We use θ to designate the proportion of transaction costs. The function L

represents the value of the risky investment:

L(yt, St) =

{
(1 + θ)ytSt, if yt < 0
(1− θ)ytSt, if yt > 0.

(3)

3See “Moody’s Portfolio Risk Model for Financial Guarantors: Special Comment”, Moody’s Investors
Services, Global Credit Research, July 2000, by R. Cantor, J. Dorer, L. Levenstein and S. Qian.
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We want to maximize the utility function of the guarantor with respect to the cash-

flows he will receive or pay at the maturity T of the guarantee. Let’s assume that the

guarantor has underwrite a guarantee contract on the firm’s total debt K (equivalent

to a short put on the firm asset). Thus, we can define the net wealth function of the

guarantor as follows:

Φ(T, BT , yT , ST ) = BT + 1{ST <K}[L(yT + 1, ST )−K] + 1{ST≥K}L(yT , ST ). (4)

The indirect utility function is defined as the maximum expected utility of the guarantor

with respect to the hedging strategies

V (B) = sup
ψ∈Ω(B)

E[U(Φ(T, BT , yT , ST ))], (5)

where Ω(B) represents the set of possible strategies for a guarantor endowed with B

amount and ψ is a strategy.

The optimal hedging strategy is obtained by solving a dynamic programming problem

with the following indirect utility function

V (t, yt, Bt, St) = max
m

{
max V (t, yt + mδ,Bt − (1 + θ)mδSt, St),

max V (t, yt −mδ,Bt + (1− θ)mδSt, St),

E[V (t + ∆t, Bt exp(r∆t), Stε)]
}

(6)

where the maximum is done with respect to m with values in {0, 1, 2, . . . ,∞}, ε is the

movement coefficient of the stock price and δ represents the portion of the asset that can

be traded. The two terms of the utility function V are

V (t, yt + mδ,Bt − (1 + θ)mδSt, St) =

E {V (t + ∆t, yt + mδ, (Bt − (1 + θ)mδSt) exp(r∆t), Stε)} (7)

and

V (t, yt −mδ,Bt + (1− θ)mδSt, St) =

E {V (t + ∆t, yt −mδ, (Bt + (1− θ)mδSt) exp(r∆t), Stε)} . (8)
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As in Edirisinghe et al. (1993), using a Markov chain decomposition, we need to

compute several expectations. For each y, we need to compute the maximum value of

the utility function with respect to all the strategies available to the guarantor.

For illustrative purpose, Figure 2.1 presents three trade regions for the replication of

a put option. This figure has been obtained using a similar model as in Whalley and

Wilmott (1997) who solve analytically the problem for a European call option. They

provide asymptotic approximations of the Bellman-Jacobi equation of Davis et al. (1993)

by characterizing the optimal hedge and the trade regions. In the top region, it is optimal

to sell the underlying asset. In the bottom region, it is optimal to buy the underlying

asset. And in the middle region, it is optimal to not trade because of the transaction

costs.

2.2 The multiple-underlying assets portfolio case

Although, guarantors manage portfolios of more than two underlying assets, to address

the main focus of the paper, we study a portfolio with two underlying securities. The

simulation results obtained with two underlying assets convey the main message of the

paper without loss of insight.

We consider a riskless asset Bt with process

dBt = rBtdt, (9)

where r is the risk-free interest rate, and two risky securities S1,t and S2,t representing

the assets of two clients firms. The processes of the two firms assets are

dSi,t = µiSi,tdt + σiSi,tdWi,t, i = 1, 2, (10)

where the constants µi and σi are the instantaneous returns and returns’ volatilities of

the firms assets.

The guarantor underwrites separate guarantee contract with each client firm. Thus,

each firm holds a put option written by the guarantor with exercise price the face value

of its debt Ki. One special feature of the guarantee business is that guarantors usually

hold portfolios composed of insured firms operating in the same industrial sector or
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having some common characteristics. Therefore we assume the existence an index-based

security I which can be the index of the industry, and its process is given by

dIt = µIItdt + σIItdWI,t, (11)

where the constants µI and σI are the instantaneous return and returns’ volatility of the

industry index. We also consider a market index M with dynamics given by

dMt = µMMtdt + σMMtdWM,t, (12)

where the constants µM and σM are the instantaneous return and returns’ volatility of

the market index.

The above securities returns are correlated through their Brownian motions dWi as

follows: ρi,j = corr(dWi, dWj), where i and j designated securities i and j.

As stipulated earlier, the guarantor underwrites two put options to the client firms

with initial values P1 and P2. Hence, its portfolio value is

P = P1 + P2. (13)

Applying Ito’s lemma to this expression yields

dP = (
∂P1

∂t
+

∂P1

∂S1

S1µ1 +
1

2

∂2P1

∂S2
1

σ2
1S

2
1)dt +

∂P1

∂S1

σ1S1dW1

+(
∂P2

∂t
+

∂P2

∂S2

S2µ2 +
1

2

∂2P2

∂S2
2

σ2
2S

2
2)dt +

∂P2

∂S2

σ2S2dW2

= µP Pdt +
∂P1

∂S1

σ1S1dW1 +
∂P2

∂S2

σ2S2dW2, (14)

where µP is the drift of the portfolio returns obtained by summing the terms before the

dt and dividing the sum by P . This equation highlights explicitly the exposition of the

returns to the underlying risk sources dW1 and dW2.

The delta hedging strategy of the portfolio consists of trading
∂P1

∂S1

of S1 and
∂P2

∂S2

of S2. Abstracting from the transaction costs, this means that we need to hold delta

quantity of each asset in order to delta-hedge.4

4In incomplete markets, under stochastic volatility and/or stochastic risk-free interest rate, one may
need to use the other Greeks of the option for hedging such as the gamma-hedging, which we left for
further study.
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In some cases, either the underlying assets are not available for trade in the market

(for example non-publicly available firms where equities are not traded) or it can be too

costly to trade all the required underlying. In these situations, one may prefer to use

a sector-based index instrument for hedging. As a matter of fact, Ramaswami (1991)

and Ramaswamy (2002, 2005) among others exploit the insight that when the put is the

money, the put behaves as equity, then hedging the default risk of the bond is tantamount

to hedging equity risk. Naturally, the guarantor gains by using an index instrument for

hedging closely related to his activities or highly correlated to his portfolio. To see that,

let’s decompose the underlying risk sources as follows:

dWi = ρI,idWI +
√

1− ρ2
I,idZi, i = 1, 2, (15)

where {dZi, i = 1, 2} are two independent Brownian motions independent from dWI .

The exposure of the portfolio to the index risk dWI is given by

∂P1

∂S1

S1σ1ρI,1 +
∂P2

∂S2

S2σ2ρI,2. (16)

Comparing this expression with the dynamic of the index, the guarantor needs to trade

the following amount of the index

∂P1

∂S1
S1σ1ρI,1 + ∂P2

∂S2
S2σ2ρI,2

IσI

. (17)

Doing so, he benefits from the correlation between the portfolio and the index.

The next section presents the hedging strategies used to manage the portfolio of

guarantees.

3 Hedging strategies

We present below the replication strategies used to hedge the portfolio composed of two

put options. Hereafter, we use interchangeably replication or hedging or rebalancing to

designate the same action. We consider 24 rebalancing dates over the year, i.e. twice

per month, and the time step is denoted by ∆t. Let’s denote by ELi,t the expected loss

by firm i at time t, ULi,t its unexpected loss (set at 5% confidence level for purpose)

corresponding to the value at risk, V ARi,t.
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At the signature of the two guarantee contracts, the guarantor charges the following

premium to the client firm i

PREMi = (1 + εi)× ELi,0 + Hi × ULi,0, (18)

where εi is a loading coefficient capturing all market imperfections, Hi represents the

hurdle rate for the guarantee contract i, as suggested by Marrison (2002) who analyses

project finance guarantee portfolios. The total premium raised by the guarantor from

the firms is
∑

i

PREMi =
∑

i

((1 + εi)× ELi,0 + Hi × ULi,0), (19)

We assume that
∑

i εi × ELi,0 is used to cover the current operating expenses and

other fees related to the signature of the guarantee contracts. Thus, the εi are chosen in

order to break even these fees.

Following the practice of capital at risk, in addition to the portfolio expected loss EL0,

the guarantor has to set aside economic capital equal to the total unexpected loss of the

portfolio UL0. Therefore, the guarantor’s shareholders provide UL0 −
∑

i Hi × ULi,0 to

raise the economic capital level to UL0. In sum, the guarantor collects the two premiums

and manages its guarantee portfolio up to the maturity of the guarantees. The amount

available for investment is then EL0 + UL0.

Our set-up assumes that the guarantor invests the portfolio total expected loss

amount raised from the firm EL0 =
∑

i ELi,0 in a reserve account earning the risk-

free interest rate r to cover future expected losses. The rest of the premium, the capital

at risk UL0, is invested at the cost of capital, rG, given as follows

rGdt = rdt + βGM((µM − r)dt + σMdWM). (20)

This is the ICAPM (Intertemporal Capital Asset Pricing Model) type cost of capital and

asserts that the cost of capital is equal to the risk-free rate plus the guarantor’s beta

times the market excess return.

At each rebalancing date, the guarantor reevaluates the current value of the portfolio

expected loss ELt = EL1,t + EL2,t and replenish or reduce its reserve account balance
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accordingly. Therefore, the guarantor’s reserve account balance is set equal to the port-

folio total expected losses and is assumed to be invested in the risk-free bond. The rest

of its wealth is invested at the rate rG. This purports to reflect sound risk management

practice through the use of capital at risk to cover unexpected losses.

Next, we present the passive strategy and four hedging strategies. The passive strat-

egy of doing no hedging is the benchmark.

3.1 Strategy 0: The passive strategy of doing no hedging

The first strategy called the passive strategy consists of not hedging at all. However, both

the reserve and risky accounts are reshuffled in order to maintain the reserve account to

the level of the total expected loss.

3.2 Strategy 1: The dynamic delta hedging using the underly-
ing assets

This strategy called delta hedging consists of performing the delta replication at the

rebalancing dates using the insured firms assets. We denote by ∆i,t the delta of stock i

at time t. Here, we compute the delta of the portfolio and make the required trades on

the underlying assets with transactions costs to obtain the hedged portfolio. We assume

the transaction costs to be proportional to the trading amount, and the proportion

coefficient θ is the same when buying or selling the securities. For example, at t + ∆t,

the transaction cost on trading stock i is

θ × |∆i,t+∆t −∆i,t| × Si,t+∆t. (21)

3.3 Strategy 2: The utility-based dynamic hedging using the
underlying assets

This strategy called utility-based hedging consists of using the utility maximization to

determine the appropriate hedging dates and uses the underlying assets as hedging in-

struments. At each potential rebalancing date, in other words in this framework it is

possible to have no replication at all at some dates. The guarantor must decide to

rebalance or not it portfolio fully.
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To rebalancing decision is based on the following indirect utility function

Vt+∆t = maxEt+∆t

[
U(Φ(T, Bt+∆te

rτ , ∆1,t+∆t, S1,T , ∆2,t+∆t, S2,T , BG
t+∆te

rGτ ))
]
,(22)

where T represents the same maturity of the two individual guarantee contracts, τ =

T − t−∆t is the time to maturity and the function Φ(.) is a function of our underlying

two state variables among others. Bt+∆t is the reserve account balance at time t + ∆t

multiplied by the compound factor to obtain its time T value, ∆i,t+∆t is the number of

stock i held, Si,t+∆t is the price of stock i, and BG
t+∆t represents the amount invested

in the risky account (earning the rate of return rG) multiplied by the corresponding

compound factor.

Moreover, this is a self financing exercise because, at each rebalancing date, the total

investment in the risk-free account and the risky account are equal to the previous time

total investment value minus the total transaction costs. The reserve account at t + ∆t

is

Bt+∆t = EL1,t+∆t + EL2,t+∆t (23)

and the sum of the reserve account Bt+∆t and the risky account BG
t+∆t is

Bt+∆t + BG
t+∆t = Bte

r∆t + BG
t erG∆t

−(∆1,t+∆t −∆1,t)S1,t+∆t − |∆1,t+∆t −∆1,t|S1,t+∆tθ

−(∆2,t+∆t −∆2,t)S2,t+∆t − |∆2,t+∆t −∆2,t|S2,t+∆tθ. (24)

As stated above, the guarantor does not need to trade necessarily in the two stocks

simultaneously, the decision to trade one or both underlying assets will be based on the

indirect utility function.

Note that, in a single risky asset environment, as in Edirisinghe et al. (1993), the

indirect utility function can be computed relatively easy using binomial trees. For two

risky assets case where the assets correlation matters, it is important to look at all the

possibilities, i.e. buying and selling portions of the two assets. The computation time of

the dynamic programming approach in this case is too long and inefficient. This is why

we follow the simulation approach.
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In this utility-based hedging strategy, at each rebalancing date, the guarantor weighs

the following four possible exclusive choices using the expected utility maximization:

Choice 1 - Delta-replicate the portfolio using only stock 1, or

Choice 2 - Delta-replicate the portfolio using only stock 2, or

Choice 3 - Delta-replicate the portfolio using both stocks simultaneously, or

Choice 4 - Do not hedge the portfolio.

For Choice 1, the decision function in equation (22) is simplified as follows

Vt+∆t = maxEt+∆t

[
U

(
Φ(T, Bt+∆te

rτ , ∆1,t+∆t, S1,T , ∆2,t, S2,T , BG
t+∆te

rGτ )
)]

, (25)

and the total investment in equation (24) becomes

Bt+∆t + BG
t+∆t = Bte

r∆t + BG
t erG∆t

−(∆1,t+∆t −∆1,t)S1,t+∆t − |∆1,t+∆t −∆1,t|S1,t+∆tθ. (26)

For Choice 2, the equations are similar to the ones of Choice 1, except that stock 1 is

replaced by stock 2. For Choice 3, the decision function and the sum of the investment

accounts are given respectively by equations (22) and (24). Finally, for Choice 4 when

there is no trade, the decision function is

Vt+∆t = maxEt+∆t

[
U

(
Φ(T, Bt+∆te

rτ , ∆1,t, S1,T , ∆2,t, S2,T , BG
t+∆te

rGτ )
)]

, (27)

and the investment account value is

Bt+∆t + BG
t+∆t = Bte

r∆t + BG
t erG∆t. (28)

Comparing these four decision functions, the guarantor decides what transaction to

undertake at time t + ∆t in order to maximize his expected utility with the portfolio

held at that time.

In the above description, we have introduced two dynamic hedging strategies (Strat-

egy 1 and Strategy 2) using the portfolio underlying assets. However, sometimes it

could be too costly and/or impractical (e.g., not traded, overly illiquid, institutional

constraints, etc.) to replicate the portfolio using the underlying assets. One may then

resort to use an security-based index hedging instrument such as the sector index I. As
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indicated earlier, in the financial guarantee business, it is common to see a guarantor

specializing in particular industries. For that purpose, next, we introduce two additional

strategies using an index hedging instrument.

3.4 Strategy 3: The dynamic delta hedging using an index in-
strument

This strategy consists of using the index to replicate the portfolio. It is similar in spirit

to the hedging Strategy 1. At each rebalancing date, the industry risk is completely

eliminated by the delta replication, but the residual (if any) firms idiosyncratic risks

remain. Intuitively, this strategy can be attractive compare to Strategy 1 since less

replication costs are required to delta hedged using the sector index hedge instrument.

However, the guarantor portfolio risk may be higher since we do not hedge completely

the total risk of the portfolio unless the portfolio is perfectly correlated with the index.

3.5 Strategy 4: The utility-based dynamic hedging using an
index instrument

This strategy uses the utility-based hedging but with the index as hedging instrument.

In this strategy, there is only two possible exclusive choices:

Choice 1 - Delta-replicate the portfolio using the index, or

Choice 2 - Do not hedge the portfolio.

We then have to compare only two decision functions. For Choice 1, the decision

function is

Vt+∆t = maxEt+∆t

[
U

(
Φ(T, Bt+∆te

rτ , ∆I,t+∆t, IT , BG
t+∆te

rGτ )
)]

, (29)

where ∆I,t+∆t is the index, and the total investment is

Bt+∆t + BG
t+∆t = Bte

r∆t + BG
t erGτ − (∆I,t+∆t −∆I,t)It+∆t − |∆I,t+∆t −∆I,t|It+∆tθ. (30)

This represents the guarantor’s investment in the reserve and the risky accounts minus

the transaction costs. For Choice 2, the decision function is

Vt+∆t = maxEt+∆t

[
U(Φ(T, Bt+∆te

rτ , ∆I,t, IT , BG
t+∆erGτ ))

]
. (31)
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and the total investment is

Bt+∆t + BG
t+∆t = Bte

r∆t + BG
t erGτ . (32)

At each rebalancing date, the guarantor delta-replicates or not the portfolio based

on the decision functions values.

3.6 Computing the RAPM

We now need to compute the risk-adjusted performance measurement (RAPM) of the

guarantor. As mentioned in the introduction, rather than benchmarking as done in

the portfolio performance measurement literature which requires the construction of

a proper benchmark portfolio, here we simply compare different strategies using the

RAPM metric. To do that, we proceed as follows. The proceeds of the guarantee net of

underwriting fees is
∑

i

(ELi,0 + Hi × ULi,0). (33)

Since the guarantor is short of two puts, we have the following payoff

−
∑

i

Pi. (34)

This payoff is equal to the sum of the two expected losses: −∑
i ELi,0. Combining

equations (33) and (34) gives the net value

∑
i

Hi × ULi,0. (35)

At the maturity of the guarantee contracts, the net gain to the guarantor is given by

the total investment value (reserves and risky accounts) plus the value of the guarantee

portfolio minus the realized guarantee payments made. Since the guarantor’s sharehold-

ers initial capital contribution is UL0 −
∑

i Hi × ULi,0, we can compute the return as

follows

R =
Guarantee portfolio value + Investment value− Realized guarantee payments

UL0 −
∑

i Hi × ULi,0

.

(36)
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To obtain the risk-adjusted performance measure, RAPM, we compute the value at

risk, VAR, of the returns for each strategy and the RAPM is defined as follows:

RAPM =
R

V AR
. (37)

As discussed earlier, the numerator is the excess return and the denominator is our chosen

risk metric namely the value at risk rather the traditional standard deviation of returns.

Note that, if we use as risk metrics the standard deviation and the semi variance, we

would have obtained roughly the Sharpe ratio and the Sortino ratio.

In the next section, we run several simulations and report the returns obtained.

4 Simulations

As in Pellizzari (2005), we will run numerical simulations to obtain our results, however,

we differs from this paper since its focus is on static hedging, while we conduct dynamic

hedging.

4.1 Case 1: Positive correlations between securities

In this section, we implement the strategies described above. The baseline parameters

values used for the simulation are: σI = 0.3, σ1 = 0.2, σ2 = 0.4, and σM = 0.1 for the

securities returns volatilities, µI = 0.10, µ1 = 0.08, µ2 = 0.12 and µM = 0.10 are the

instantaneous mean returns of the securities, S1,0 = S2,0 = 100 the firms initial values,

I0 = 100 the index initial value, M0 = 100 the market initial value, βGM = 1.2 the

guarantor’s beta with the market, H1 = H2 = 0.2 the hurdle rates, K1 = K2 = 100 the

firms debt face values. We use the negative utility function for the guarantor

U(x) = −e−λx, (38)

with risk aversion coefficient λ = 1/100. This utility function exhibits the feature of

constant absolute risk aversion and is widely used for its simplicity.

We assume the following positive correlations between the securities returns: ρI,1 =

0.5, ρI,2 = 0.7, ρI,M = 0.3, ρ1,M = 0.35, ρ2,M = 0.25, ρ1,2 = 0.5. Since we are using the
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risk neutral probabilities, the drift of the securities returns will be equal to the risk free

rate r = 0.05.

Since the market is imperfect because of the presence of transaction costs, in our

framework, we assume the same transaction costs structure as in Leland (1985), therefore

Black and Scholes (1973) formula hold provided we use the modified volatility, σ∗i , of the

hedging instruments derived by Leland (1985). For long call and put positions, the

modified volatility is

σ∗i = σi

(
1−

√(
8

π∆t

)
θ

σi

)1/2

, (39)

and for short call and put positions, it is

σ∗i = σi

(
1 +

√(
8

π∆t

)
θ

σi

)1/2

. (40)

We run 10 000 simulations (including 5000 antithetic variables) using the risk neu-

tral probabilities to obtain the returns distributions of each of the following strategies

described above:

Strategy 0 - No hedging,

Strategy 1 - Dynamic delta hedging with the underlying assets,

Strategy 2 - Utility-based dynamic hedging with the underlying assets,

Strategy 3 - Dynamic delta hedging with a security-based index hedging instrument,

Strategy 4 - Utility-based dynamic hedging with a security-based index hedging instru-

ment.

Table 1 presents the expected returns, the VAR and the RAPM of the five strate-

gies. From Panel 1 of Table 1 with transaction costs proportion θ = 0.75%, comparing

Strategies 0, 1, and 2, we observe that Strategies 1 and 2 perform better than Strategy 0.

This means that the hedging strategies with the underlying assets are better than doing

nothing. In the case of the use of a security-based index hedging instrument, we observe

that the hedging strategies with the index (Strategies 3 and 4) are better than the no

hedging strategy (Strategy 0). Moreover, the utility-based hedging strategy seems to be

the better one.

From Panel 2 of Table 1, we observe changes in the strategies returns when the trans-
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action costs proportion doubles. We observe that the delta hedging strategy produces on

average lower returns with higher transaction costs. Compared to the hedging strategies

using the underlying assets, delta-replicating with the index produces higher absolute

returns, which is expected since less transaction costs incur when transacting with the

index.

In this positive correlations scenario, the utility-based hedging strategy produces

on average better results since positive correlations increase the future cash flows of the

portfolio. Thus, even with high transaction costs, replication can result in increase utility

relative to the passive strategy of doing nothing.

The graphs in Figure 2 show the distribution of the strategies returns. For all the

strategies, we observe the skewness in the portfolio distribution, with more skewness

in Strategy 0 relative to the hedging strategies. However, the skewness is less in the

delta hedging strategies than in the utility-based strategies. Intuitively, the utility-based

strategy produces the two simultaneous effects: the reduction of the portfolio risk from

hedging and the gains in return from the skewness, hence a combination of the no hedging

strategy and the delta-replication.

4.2 Case 2: Negative correlation between one of the firm and
the other firm and the index

We use the same baseline parameters values except for the securities correlations. Here,

we assume firm 1 to be negatively correlated with firm 2 and the security-based index

hedging instrument: ρI,1 = −0.4, ρI,2 = 0.5, ρI,M = 0.3, ρ1,2 = −0.3, ρ1,M = 0.35,

ρ2,M = 0.25. This can happen for example if the firms do not belong to the same

industry. As in the previous case, we run our simulation under risk neutral probabilities.

Table 2 presents the results for the five strategies. From Panel 1 of Table 2 with

transaction costs proportion θ = 0.75%, we observe that the worst RAPM are obtained

with the hedging strategies involving the index. The best strategy is the delta hedging

with the underlying assets. Although, this strategy produces the higher RAPM, its

return is the lowest. Indeed, the index being negatively correlated with the underlying

asset 1 and positively correlated with the underlying asset 2, its correlation with the
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portfolio is poor, therefore the replication using the index is far less perfect.

From Panel 2 of Table 2 with transaction costs proportion θ = 1.50%, with regard to

the distribution of returns, the same comments can be made as discussed in Table 1.

The strategies returns distributions are given by the graphs of Figure 3. We observe

the same trend as the one discussed in the case of Figure 2.

5 Conclusion

In this paper we study dynamic hedging strategies for portfolios of financial guarantees

using the utility-based dynamic hedging strategy with transaction costs. By considering

multiple-risk sources within portfolios of financial guarantees, we extend previous works

on dynamic hedging with transaction costs, e.g. Hodges and Neuberger (1989) and

Whalley and Wilmott (1997).

We examine five hedging strategies: (i) the doing nothing strategy, (ii) the dynamic

delta hedging and (iii) utility-based hedging strategies using the underlying assets, (iv)

the dynamic delta hedging and (v) utility-based hedging strategies using a security-based

index hedging instrumnent. In the spirit of Froot and Stein (1998), Merton and Perold

(1993) and Perold (2005), we compare our strategies performance using the modern

concept of risk-adjusted performance measure (RAPM) consisting of the ratio of the

expected return over the value at risk of the portfolio. Consistent with the capital at

risk practice, we use the expected losses as well as the unexpected losses or Value at Risk

in order to capture the changes of capital allocation feature with the hedging strategies.

A challenging avenue for future research will be to study the interactions between the

capital structure, the capital requirements, the hedging strategies and the institution

performance under the framework of portfolios of two guarantees and more.

To better apprehend the impact of the parameters on our hedging strategies, we focus

our numerical exercises on a portfolio composed of two financial guarantees. Based on our

parameters values, we found that the utility-based hedging strategy with the underlying

assets is a better compromise between the delta hedging strategy and the passive stance of

doing nothing. This result remains stronger even with higher transaction costs. However,

if the insured firms assets are not trade, the guarantor can use an security-based index
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as hedging instrument, especially in a high transaction costs environment.

Our numerical exercise requires substantial amount of computation time, especially

if one uses non risk neutralized probabilities when prices and deltas have to be computed

numerically. One agenda for research will be finding more efficient simulation techniques.

18



References

[1] Avellaneda, M. and Pars, A. Dynamic Hedging Portfolios for Derivative Securities

in the Presence of Large Transaction Costs. Applied Mathematical Finance, Vol. 1,

1994, 165-193.

[2] Boyle, P. P. and Vorst T. Option Replication in Discrete Time with Transaction

Costs. The Journal of Finance, Vol. 47, 1992, 271-293.

[3] Carr, P., Ellis, K. and Gupta, V. Static Hedging of Exotics Options. Journal of

Finance, Vol. 53, 1998, 1165-1190.

[4] Clewlow, L. and Hodges, S. Optimal Delta-Hedging Under Transactions Costs. Jour-

nal of Economic Dynamics and Control, Vol. 21, 1997, 1353-1376.

[5] Davis, M. H. A., Panas, V. G. and Zariphopoulou, T. European Option Pricing with

Transaction Costs. Siam Journal Control and Optimization, Vol. 31, 1993, 470-493.

[6] Derman, E., Ergener, D. and Kani, I. Static Options Replication, Goldman Sachs,

Quantitative Strategies Research Notes, 1994.

[7] Edirisinghe, C., Naik, V. and Uppal, R. Optimal Replication of Options with Trans-

actions Costs and Trading Restrictions. Journal of Financial and Quantitative Anal-

ysis, Vol 28, 1993, 117-138.

[8] Froot, K. A., and Stein, J. C. Risk Management, Capital Budgeting, and Capi-

tal Structure Policy for Financial Institutions: An Integrated Approach. Journal of

Financial Economics, Vol. 47, 1998, 55-82.

[9] Hodges, S. D. and Neuberger, A. Optimal Replication of Contingent Claims Under

Transactions Costs. Review of Futures Markets 8, 1989, 222-239.

[10] Leland, H. Option Pricing and Replication with Transaction Costs. Journal of Fi-

nance, Vol. 40, 1985, 1283-1302.

[11] Marrison, C. Risk Measurement for Project Finance Guarantees. Journal of Project

Finance, 2001, 1-11.

19



[12] Merton, R., and Perold, A. Theory of Risk Capital in Financial Firms. Journal of

Applied Corporate Finance, Vol. 6, 1993, 16-32.

[13] Morellec, E., and Smith Jr, C. Agency Conflicts and Risk Management, Forthcoming

Review of Finance, 2006.

[14] Pellizzari, P. Static Hedging of Multivariate Derivatices by Simulation. European

Journal of Operational Research, Vol. 166, 2005, 507-519.

[15] Perold, A. Capital Allocation in Financial Firms. Journal of Applied Corporate

Finance, Vol. 17, 2005, 110-118.

[16] Ramaswami, M. Hedging the Equity Risk of High-Yield Bonds. Financial Analysts

Journal, Vol. 47, 1991, 41-50.

[17] Ramaswamy, S. Managing Credit Risk in a Corporate Bond Portfolio. Journal of

Portfolio Management, 2002, 67-72.

[18] Ramaswamy, S. Simulated Credit Loss Distribution. Journal of Portfolio Manage-

ment, 2005, 91-99.

[19] Smith, C.W., and Stulz, R.M. The Determinants of Firms Hedging Policies. Journal

of Financial and Quantitative Analysis, Vol. 20, 1985, 391-405.

[20] Turnbull, S. M. Unresolved Issues in Modeling Credit-Risky Assets. Journal of Fixed

Income, Vol. 16, 2005, 68-87.

[21] Whalley, A. E. and Wilmott, P. An Asymptotic Analysis of an Optimal Hedging

Model for Option Pricing with Trnasction Costs. Mathematical Finance, Vol. 7,

1997, 307-324.

[22] Zakamouline, V. I. A Unified Approach to Portfolio Optimization with Linear Trans-

action Costs. Mathematical Methods of Operations Research, Vol. 62, 2005, 319-343.

20



Figure 1: The trading regions when hedging a put option in the presence of
transaction costs

We use the following parameters values: K = 100, T = 0.2, r = 0.05, σ = 0.2, µ = 0.07 and
θ = 0.01.
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Table 1: Strategies returns, VAR and RAPM for positive correlations between
the securities returns

These tables have been generated by simulations using the following baseline parameters values:
σI = 0.3, σ1 = 0.2, σ2 = 0.4, and σM = 0.1 for the securities returns volatilities, µI = 0.10,
µ1 = 0.08, µ2 = 0.12 and µM = 0.10 are the instantaneous mean returns of the securities,
S1,0 = S2,0 = 100 the firms initial values, I0 = 100 the index initial value, M0 = 100 the market
initial value, βGM = 1.2 the guarantor’s beta with the market, H1 = H2 = 0.2 the hurdle
rates, K1 = K2 = 100 the firms debt face values. We use the negative utility function for
the guarantor U(x) = −e−λx, with constant risk aversion coefficient λ = 1/100. The risk free
rate r = 0.05. We assume the following positive correlations between the securities returns:
ρI,1 = 0.5, ρI,2 = 0.7, ρI,M = 0.3, ρ1,M = 0.35, ρ2,M = 0.25, ρ1,2 = 0.5. The transaction costs
proportion θ = 0.75%. In Panel 1, we use the transaction costs proportion θ = 0.75% and in
Panel b, θ = 1.50%.

Panel 1: The transaction costs portion θ = 0.75%

Strategy 0 Strategy 1 Strategy 2 Strategy 3 Strategy 4
R 0.4060 0.2765 0.3684 0.3146 0.3588

VAR 1.5939 0.6993 0.9597 1.1857 1.2859
R/VAR 0.2547 0.3954 0.3839 0.2653 0.2790

Panel 2: The transaction costs portion θ = 1.5%

Strategy 0 Strategy 1 Strategy 2 Strategy 3 Strategy 4
R 0.4060 0.1676 0.3472 0.2318 0.3844

VAR 1.5939 0.7068 1.1047 1.2418 1.6076
R/VAR 0.2547 0.2371 0.3143 0.1867 0.2391
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Figure 2: Strategies returns distributions with positive correlations between
securities

These graphs have been generated by simulations using the following baseline parameters val-
ues: σI = 0.3, σ1 = 0.2, σ2 = 0.4, and σM = 0.1 for the securities returns volatilities,
µI = 0.10, µ1 = 0.08, µ2 = 0.12 and µM = 0.10 are the instantaneous mean returns of the
securities, S1,0 = S2,0 = 100 the firms initial values, I0 = 100 the index initial value, M0 = 100
the market initial value, βGM = 1.2 the guarantor’s beta with the market, H1 = H2 = 0.2 the
hurdle rates, K1 = K2 = 100 the firms debt face values. We use the negative utility function
for the guarantor U(x) = −e−λx, with constant risk aversion coefficient λ = 1/100. The risk
free rate r = 0.05. We assume the following positive correlations between the securities returns:
ρI,1 = 0.5, ρI,2 = 0.7, ρI,M = 0.3, ρ1,M = 0.35, ρ2,M = 0.25, ρ1,2 = 0.5. The transaction costs
proportion θ = 0.75%.
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Table 2: Strategies returns, VAR and RAPM when firm 1 is negatively corre-
lated with firm 2 and the security-based hedging instrument

These tables have been generated by simulations using the following baseline parameters values:
σI = 0.3, σ1 = 0.2, σ2 = 0.4, and σM = 0.1 for the securities returns volatilities, µI = 0.10,
µ1 = 0.08, µ2 = 0.12 and µM = 0.10 are the instantaneous mean returns of the securities,
S1,0 = S2,0 = 100 the firms initial values, I0 = 100 the index initial value, M0 = 100 the market
initial value, βGM = 1.2 the guarantor’s beta with the market, H1 = H2 = 0.2 the hurdle
rates, K1 = K2 = 100 the firms debt face values. We use the negative utility function for the
guarantor U(x) = −e−λx, with constant risk aversion coefficient λ = 1/100. The risk free rate
r = 0.05. We assume firm 1 to be negatively correlated with firm 2 and the security-based
index hedging instrument: ρI,1 = −0.4, ρI,2 = 0.5, ρI,M = 0.3, ρ1,2 = −0.3, ρ1,M = 0.35,
ρ2,M = 0.25. In Panel 1, we use the transaction costs proportion θ = 0.75% and in Panel b,
θ = 1.50%.

Panel 1: The transaction costs portion θ = 0.75%

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5
R 0.3989 0.2673 0.3675 0.3632 0.3871

VAR 1.1485 0.6377 0.9930 1.1687 1.1719
R/VAR 0.3473 0.4192 0.3700 0.3108 0.3303

Panel 2: The transaction costs portion θ = 1.5%

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5
R 0.3989 0.1741 0.3854 0.3080 0.3807

VAR 1.1485 0.6624 1.2016 1.1083 1.1828
R/VAR 0.3473 0.2628 0.3207 0.2779 0.3219
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Figure 3: Strategies returns distribution when firm 1 is negatively correlated
with firm 2 and the security-based hedging instrument

These graphs have been generated by simulations using the following baseline parameters val-
ues: σI = 0.3, σ1 = 0.2, σ2 = 0.4, and σM = 0.1 for the securities returns volatilities,
µI = 0.10, µ1 = 0.08, µ2 = 0.12 and µM = 0.10 are the instantaneous mean returns of the
securities, S1,0 = S2,0 = 100 the firms initial values, I0 = 100 the index initial value, M0 = 100
the market initial value, βGM = 1.2 the guarantor’s beta with the market, H1 = H2 = 0.2 the
hurdle rates, K1 = K2 = 100 the firms debt face values. We use the negative utility function for
the guarantor U(x) = −e−λx, with constant risk aversion coefficient λ = 1/100. The risk free
rate r = 0.05. We assume firm 1 to be negatively correlated with firm 2 and the security-based
index hedging instrument: ρI,1 = −0.4, ρI,2 = 0.5, ρI,M = 0.3, ρ1,2 = −0.3, ρ1,M = 0.35,
ρ2,M = 0.25. The transaction costs proportion θ = 0.75%.
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