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Abstract 

Implied volatility indices are becoming increasingly popular as a measure of market 

uncertainty and as a vehicle for developing derivative instruments to hedge against 

unexpected changes in volatility. Although jumps are widely considered as a salient 

feature of volatility, their implications for volatility options and futures are not yet fully 

understood. This paper provides evidence indicating that the empirical behavior of the 

VIX equity implied volatility index over a period of 10 years is well approximated by a 

square root mean reverting process with jumps. By augmenting the popular Longstaff 

and Grunbichler (1996) option pricing model, we show that incorrectly omitting jumps 

may cause considerable problems to pricing and hedging.  
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1. Introduction 

 

Volatility is undoubtedly the most important variable in finance. It appears consistently 

across a wide spectrum of theories and applications in asset pricing, portfolio theory, 

risk management, derivatives, corporate finance, investment evaluation and 

econometrics. Most of our obsession with the analysis of volatility has to do with the 

simple fact that it is not directly observable. A myriad of alternative measures and 

approaches have been developed in academia and industry in order to empirically 

measure volatility. 

 A fascinating recent development has been the treatment of volatility as a 

distinct asset which can be packaged in an index and traded using volatility swaps, 

futures and options. Volatility derivatives are considered by some to “have the potential 

to be one of the most important new financial innovations” (Grunbichler and Longstaff, 

1996). Traditionally, derivatives have allowed investors and firms to hedge against 

factors such as market volatility, interest rate volatility and foreign exchange volatility. 

Volatility derivatives provide protection against volatility risk, that is, unexpected 

changes in the volatility level itself. Such changes may arise as a response to changes in 

macroeconomic or microeconomic conditions (see, for example, Copeland et al., 2000). 

A widely cited example of the importance of volatility risk concerns the remarkable shift 

in volatility that followed the 1987 crash.  

The first volatility index, named VIX (currently termed VXO), was introduced in 

1993 by the the Chicago Board Options Exchange (CBOE). This was estimated from 

implied volatilities from at-the-money options on the SP100 index using a methodology 
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proposed by Whaley (1993). The CBOE adopted a new methodology in 2003 to calculate 

VIX as an average of out-of-money option prices across all available strikes on the S&P 

500 index. Several other implied volatility indices have been developed ever since, 

including: the VXN and VXD in the CBOE, the VDAX-NEW in Germany, the VX1 and VX6 

in France, the VSTOXX in the Eurex, the VSMI in Switzerland, the MVX in Canada, etc. 

Volatility derivatives have been traded over the counter for several years, mainly as 

volatility swaps. However, only recently, in March 2004, the Chicago Board of Exchange 

(CBOE) introduced volatility futures on the implied volatility measured by the VIX index. 

The CBOE has announced the imminent introduction of volatility futures on the implied 

volatility index VXD along with volatility options. Eurex, has launched in September 2005 

three new volatility futures on the VDAX-NEW, VSTOXX and VSMI volatility indices. 

Options and futures written on a volatility index were first suggested by Brenner 

and Galai (1989, 1993) as a response to the growing need for instruments to hedge 

volatility risk. It has been argued that volatility derivatives make the markets more 

complete since they expand the available of investment opportunities and allow direct 

hedging of volatility risk, without necessarily resorting to dynamical adjustments. 

Traditionally, volatility could be traded via at-the-money straddles, whose value 

increases with volatility. But straddles have the disadvantage of creating both market 

and volatility exposure. The market effect can be removed by rolling forward, however 

this is done at uncertain future market levels and trading costs. In contrast, volatility 

derivatives allow pure volatility exposure by design. Volatility indices are particularly 

useful in monitoring market expectations. The popular financial press, eg. CNBC, 

Barrons, Wall Street Journal, regularly quotes the VIX volatility index as an “investor fear 

gauge”. Regulatory bodies and central banks, such as the Bank of England, have used 
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the VIX to depict equity uncertainty and relate it to subsequent movements in other 

variables, such as swap spreads.1 Volatility derivatives have a wide range of important 

applications for all market participants. Investment funds employ volatility derivatives for 

vega hedging their portfolios against movements in volatility. Certain classes of 

investors, such as convertible bond arbitrage funds and structured product issuers, can 

use these derivatives to insure against their structural exposure to volatility. Investors 

can employ them to partially insure against shifts in transaction costs and tracking error 

penalties, both of which increase during periods of high uncertainty. Investment 

managers may use these derivatives to hedge against the risks of a so-called high-

correlation environment. This is because, asset correlations have been found to increase 

significantly during periods of high volatility, making active asset picking and portfolio 

diversification very difficult. As volatility is a key input for risk management and capital 

adequacy models, such as the VaR, volatility derivatives could be used by banks as a 

shield against shifts in volatility and correlation during stress market conditions. Since 

shifts in equity risk have a significant impact on risk premia, firms could employ volatility 

derivatives to protect themselves from unexpected changes in cost of capital. Although 

not available yet, bond and foreign exchange volatility indices and derivatives, would 

allow firms that are exposed to volatility in these markets to hedge against changes in 

volatility. Finally, ample liquidity in this market is provided by traders and hedge funds 

since volatility derivatives can provide the most efficient and low-cost way for 

speculating against changes in volatility.  

A number of recent empirical studies have examined the properties of implied 

volatility indices (e.g., Fleming et al., 1995; Moraux et al., 1999; Whaley, 2000; Blair, et 

                                                 
1 Bank of England, Quarterly Bulletin, Winter 2003.  
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al. 2001; Corrado and Miller, 2003; Simon, 2003, and, Giot, 2005). This research has 

demonstrated the practical importance of at-the-money implied volatility as an efficient, 

yet biased, forecast of future realized volatility. There has been also been a growing 

interest in modeling the time series dynamics of the autonomous implied volatility 

process. Bakshi et al. (2005) estimated various general specifications of diffusion 

processes with a non-linear drift and diffusion component. The author considers the 

squared implied volatility index VIX as a proxy to the unobserved instantaneous 

variance. Wagner and Szimayer (2004) investigated the presence of jumps in implied 

volatility by estimating an autonomous mean reverting jump diffusion process using data 

on the implied volatility indices VIX and VDAX. They found evidence of significant 

positive jumps in implied volatilities. However, they adopted the rather restrictive 

assumption that the volatility jump size is constant rather than being random.  Finally, 

Dotsis et al. (2005) examined the ability of alternative popular continuous-time diffusion 

and jump diffusion processes to capture the dynamics of eight major European and U.S. 

volatility indices. They found that the best model in terms of fitting was a mean 

reverting process with random upward and downward jumps. 

In response to the developments in the industry and academia, Grunbichler and 

Longstaff (1996) developed the first models for the valuation of futures and European-

style options written on instantaneous volatility. The authors assumed that the 

underlying volatility followed a mean reverting square root process, similar to that used 

earlier by Heston (1993). Detemple and Osakwe (2000) provided analytical formulas to 

price both American and European-style volatility options assuming a mean-reverting in 

log volatility model. The discrete time analogs in the limit of the volatility process used 

by these two studies are the GARCH and EGARCH process, respectively. Heston and 
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Nandi (2000a) derived analytical solutions in both discrete and continuous time for 

pricing European options written on variance. These were based on a discrete-time 

GARCH volatility process and its continuous time counterpart developed by Heston and 

Nandi (2000b). Recently, Daouk and Guo (2004), studied the valuation of volatility 

options based on a Switching Regime Asymmetric GARCH process for the underlying.  

Motivated by the increasing importance of volatility derivatives, this paper 

examines three main issues. Firstly, it extends the empirical literature on volatility 

indices using daily data on the VIX index for a period of 10 years. It confirms previous 

findings of mean reversion and heteroskedasticity and provides new evidence 

concerning stationarity, long-memory, non-normality and jump behavior. In line with 

previous research (eg., see Wagner and Szimayer, 2004; Dotsis et al., 2005) estimation 

results using the VIX data shows that the empirical fit of the popular mean reverting 

square root process proposed by Grunbichler and Longstaff (1996) can be significantly 

improved by the addition of jumps. We provide new evidence showing that if the jump 

occurring is conditioned on the level of the index, model performance is further 

enhanced. Simulation analysis suggests that the addition of jumps enables the process 

to produce highly non-normal distributions with higher moments that closely resemble 

those of the actual data. The possibility and implications of jumps has been examined by 

the literature dealing with the joint dynamics of volatility and asset returns (eg., Duffie 

et al, 2000; Eraker et al, 2003; Eraker, 2004). They have been used in order to better 

capture salient features of asset returns such as skewness and leptokurtosis. The 

implications of jumps are interesting since they constitute a source of systematic, rather 

than unsystematic, risk, and, they challenge conventional hedging strategies assuming 

smooth diffusion variations. Moreover, jumps are considered particularly important for 
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accurately pricing short-term options, since pure diffusions are not capable of producing 

realistic levels of higher moments at short horizons.  

Secondly, the paper studies closed form expressions for pricing futures and 

European options on volatility assuming a mean reverting square root process with 

jumps. It is demonstrated that when jumps are allowed to depend on the level of 

volatility, pricing is also possible via numerical analysis. The option pricing model 

proposed nests as a special case the model by Longstaff and Grunbichler (1996). It is 

based on the same volatility dynamics as those implied by the so-called “double jump” 

processes, where both the underlying asset price and the instantaneous volatility follow 

jump-diffusion processes (see, for example, Duffie et al., 2000; Bakshi and Cao, 2004; 

Broadie et al., 2004; Eraker, 2004). These models have been shown to be superior in 

terms of fitting traded index and equity options price series. From a risk management 

perspective, it makes sense to use the same model for the autonomous volatility process 

and the joint dynamics of volatility and asset returns.  

Thirdly, the paper assesses the potential implications for volatility derivative 

pricing and hedging of incorrectly omitting jumps from the diffusion process for 

volatility. It is demonstrated that prices and hedge ratios may differ substantially. The 

model without jumps in volatility (ie., the Longstaff and Grunbichler, 1996, model) 

significantly undervalues (overvalues) short (long) maturity options, on average, by 25% 

(14%), respectively. Moreover, it is far more sensitive to changes in the underlying with 

the delta hedging parameter being twice as large. As argued by Daouk and Guo (2004), 

even though empirical analysis of option mispricing is not yet possible due to the lack of 

data, it is imperative to thoroughly understand all the issues related to pricing and 

hedging derivatives on volatility, prior to their introduction to the market. This will 
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ensure the smooth and successful operation of the market and the effective use of 

volatility derivatives by investors.  

The remainder of the paper is structured as following. The next section analyses 

the empirical behavior of the VIX for a period of 10 years. Section 3, describes the 

mean-reverting square root volatility process along with two jump diffusion extensions. 

It also discusses estimation issues and presents an empirical application using the VIX 

data. Section 4, develops valuation formulae for volatility futures and European options 

when the underlying volatility follows a mean-reverting jump-diffusion process. It also 

discusses the properties of these models and explores the potential importance of jumps 

from the perspective of pricing and risk management, respectively. The final section 

concludes the paper.  

 

[INSERT FIGURE 1 HERE] 

 

2. Empirical Properties of the VIX 

 

We use data over the complete life of the VIX volatility index, from 1/2/1990 to 

9/13/2005, a total of 3,957 closing daily prices2. The VIX is traded in the CBOE and is 

constructed from out-of-the-money (OTM) puts and calls of 2 options nearest to 30 days 

expiries, covering a wide range of strikes. The construction of the VIX is independent of 

the model used to price the OTM options. It represents the implied volatility of a 

synthetic option that is at-the-money and has a “constant” maturity, 30 calendar days to 

expiry at any point in time. Figure 1 depicts the evolution of the VIX and its first 

                                                 
2 Data are drawn from the website of the CBOE. 
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differences for the period under study. The time series plots suggest a volatile mean-

reverting behavior for the levels with violent swings. First differences appear 

heteroskedastic with a number of spikes. 

The summary statistics of the series, shown in Table 1, largely confirm this 

behavior. The VIX ranges between about 9% to 45%, with an average of 19.6%. The 

higher moments suggest a leptokuyrtotic distribution skewed to the right for both levels 

and differences. The Jarque-Bera test rejects the normality assumption with a high level 

of confidence. Autocorrelations die out slowly in levels, something consistent with a 

smooth, possibly mean reverting process. Differences appear anti-persistent with small 

negative short-term autocorrelations. The highly significant squared autocorrelations 

strongly suggest heteroskedasticity.  

 

[INSERT TABLE 1 HERE] 

 

[INSERT TABLE 2 HERE] 

 

Given that simple brownian motion processes have also been employed in the 

literature to model volatility indices, we examine the stationarity of the VIX levels. The 

Augmented Dickey-Fuller (Dickey and Fuller, 1979) and Phillips-Perron (1988) tests 

reject the null hypothesis of a unit root with a high level of confidence. However, the 

null hypothesis of stationarity cannot be accepted on the basis of the Kwiatkowski-

Phillips-Schmidt-Shin (KPSS, 1992). Since the KPSS test is sensitive to long-memory 

(see, for example, Lee and Schmidt, 1996)] and motivated by relevant empirical findings 

in the literature with respect to long-memory in historical volatility (eg., Ding, Granger 
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and Engle, 1993; Baillie et al. 1996, by Breidt, et al., 1998), we examine further this 

possibility. Lo’s (1991) modified R/S test statistic for long range dependence is 

significant at the 5% level with a value of 9.4875. The Geweke and Porter-Hudak (1983) 

log-periodogram method implemented with the trimming and smoothing options 

proposed by Robinson (1995), produced an estimate of fractional unit root d equal to 

0.7236 (p = 0.0736). One must view this evidence with caution since long-memory tests 

are sensitive to a variety of factors such as structural breaks, outliers, regime switching 

and nonlinear transformations (see, for example, Diebold and Inoue, 2001; Engle and 

Smith, 1999; Dittmann and Granger, 2002). Moreover, it is possible that long-memory 

behavior is the result of aggregation in constructing the VIX. Granger (1980) pointed out 

that the summation of low-order ARMA processes will yield ARMA processes of 

increasing, and eventually infinite order which can be well approximated using an 

ARFIMA model. Notwithstanding, on the basis of the results presented, the possibility of 

long-memory characteristics in the VIX cannot be excluded.  

 

[INSERT FIGURE 2 HERE] 

 

We proceed in examining the unconditional distribution of the VIX levels and 

differences. As shown by the results contained in Figure 2, the unconditional distribution 

of the VIX closely resembles the shape of a highly skewed distribution, such as the chi-

squared. The distribution of differences is clearly leptokurtotic. Fitting a variety of 

distributions via maximum likelihood is consistent with these suggestions, the results 

given in Table 3. The distribution of VIX levels appears to be well approximated by a 

skewed t-student and a Gamma distribution, the latter nesting the chi-squared as a 
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special case. The log-normal also appears to fit relatively well the VIX levels. The 

unconditional distribution of VIX differences is well approximated by a t-student.3 The 

normal distribution offers a relatively poor fit for both levels and differences. 

 

[INSERT TABLE 3 HERE] 

 

A more detailed breakdown of the unconditional distributions is presented in 

Table 4. Given that the standard deviation of differences is around 0.0122 with a mean 

very close to zero, we can observe 20 distinct four-standard deviation events, 8 

downward and 12 upward. Under a normal distribution, which is consistent with some 

diffusion models of volatility, the variance implies that these events should occur with 

probability under 0.005% or once in about every 80 years. Here, we observe a much 

higher probability of occurrence, 100 times higher, of over 0.5%, or, once in every 164 

days. These findings are expected, given the fat-tails in the ∆VIX distribution and could 

be due also to jumps in the underlying process. One must be careful in interpreting 

large negative changes as downward jumps since they could also be the result of 

heteroskedasticity and mean reversion.4 Finally, we can also see that the likelihood of 

large upward movements in volatility seems to increase with the volatility level. For 

example, large volatility changes over 5% appear with probability 0.29% (4/1,369), 

                                                 
3 Although results are not shown here, differences remain highly non-normal even if estimated as 

logarithmic ratios.  

4 Statistically signiginant evidence of downward jumps has been reported in the literature for 

interest rates (Das, 2002) and volatility (Dotsis et al., 2002).   
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2.34% (6/256) and 6.9% (2/29) for volatility levels in the [0.2, 0.3), [0.3, 0.4) and [0.4, 

0.5) range, respectively.  

 

[INSERT TABLE 4 HERE] 

 

3. Diffusion and Jump Diffusion Processes for the VIX 

 

One of the simplest processes to model volatility is the Mean Reverting Gaussian Process 

(also called Ornstein – Uhlenbeck). It was initially proposed in order to capture the 

mean reverting empirical property of volatility (eg., Hull and White, 1987; Stein and 

Stein, 1991; Scott, 1987; Brenner, Ou and Zhang, 2001). Under this process, the implied 

volatility changes are normal, something that is clearly rejected from our empirical 

analysis of the VIX. Moreover, this process has the significant disadvantage of allowing 

negative values. Detemple and Osakwe (2000), among others, have employed the 

Mean-Reverting Logarithmic Process whereby the unconditional volatility distribution 

follows a log-normal distribution. However, our results indicate that although the VIX 

unconditional distribution resembles a lognormal, the differences are highly non-normal. 

One of the most popular alternative processes that have been developed in the 

literature is the Mean Reverting Square Root Process (SR)5:  

 

 ( )t t tdV a bV dt V dZσ= + +  (1) 

 

                                                 
5 See Hull and White (1988), Heston (1993), Ball and Roma (1994), Heynen et al. (1994), 

Grunbichler and Longstaff (1996), Bates (2000), and, Jones (2003). 
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Heston and Nandi (2000b) have shown that a degenerate case of the SR can be 

obtained as a limit of a particular GARCH-type process. This process should be able to 

capture the two basic empirical characteristics of the VIX: mean reversion and 

heteroskedasticity. Furthermore, volatility under the SR follows a non-central Chi-

squared distribution (see Cox et al., 1985), which is consistent with our analysis of the 

VIX unconditional distribution. However, since the preliminary analysis suggests also the 

possibility of upward jumps in the VIX, we consider two types of mean reverting 

processes augmented with upward jumps. One with constant probability of jump (SRJ) 

and one with the probability of jump being proportional to the level of implied volatility 

(SRPJ). Although we cannot exclude the possibility of abrupt downward movements 

also, these cannot be readily included in our model as jumps since they would allow 

negative values for the underlying, something non-admissible for option pricing 

purposes. We do not attempt to account for long-memory or more complicated 

nonlinear dynamics in the data, since these have been examined in detail by other 

studies and are outside the focus of this paper (see, for example, Bakshi et al., 2004; 

Daouk and Guo, 2004; Bollerslev and Mikkelsen, 1996).  

Under the actual probability measure P, the SRJ and SRPJ is given by: 

 

 ( )t t t t tdV k V dt V dW ydqθ σ= − + +  (2) 

 

where dWt is a standard Brownian motion tdq  is a compound Poisson process and y is 

the jump amplitude. In the SRJ process tdq  has a constant arrival parameter λ, whereas 

in the SRPJ process the arrival parameter is proportional to Vt, that is, Pr{dqt=1}= λVtdt. 
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dW and dq are assumed to be independent processes. We further assume that the jump 

size is drawn from exponential distribution: 

 

 { }0( ) 1y
yf y p e ηη −
≥=  (3) 

 

where 1/η, is the mean of the upward jump. The exponential distribution allows us to 

capture upward jumps in implied volatility and derive the characteristic function in 

closed form. The one sided exponential distribution adopted is a version of the double 

exponential distribution used by Kou (2004) in modeling the dynamics of stock and 

index prices. Duffie et al. (2000) prove that, under technical regularity conditions, the 

characteristic function for affine diffusion/jump diffusion processes has the following 

exponential affine form:  

 

 ( )( , ; ) exp ( ; ) ( ; )t tF V s A s B s Vτ τ τ= +  (4) 

 

Thus, the characteristic function of the SRJ can be derived as6 

 

 ( ) ( )( ; ) , ,A s a s z sτ τ τ= +  (5) 

 
( )2

2

1 12 2( ; )
kk i s eka s log

k

τσθτ
σ

−⎛ ⎞− −⎜ ⎟
= − × ⎜ ⎟

⎜ ⎟
⎝ ⎠

 (6) 

                                                 
6 This characteristic function has also been used for estimating purposes by Bakshi and Cao 

(2005). 
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 (7) 

and, 

 
( )2

( ; ) 1 1
2

k

k

ksieB s
k i s e

τ

τ
τ

σ

−

−
=

− −
 (8) 

 

In the case of the SRPJ, the coefficients ( ; )A sτ  and ( ; )B sτ cannot be solved in 

closed form and are found numerically (see the appendix). The SR, SRJ and SRPJ are 

estimated via Maximum Likelihood (ML).7 In addition to consistency and increased 

efficiency, ML estimation has been found able to disentangle the diffusion from the jump 

component.  

The implementation of ML estimation requires the knowledge of the transition 

density function. In general, the addition of a jump component does not permit the 

derivation of the density function in closed form. However, for the case of the SR, the 

addition of exponential jumps permits the derivation of the characteristic function in 

closed form. Duffie et al. (2000) prove that under technical regularity conditions, the 

characteristic function for affine diffusion/jump diffusion processes, such as the SRJ and 

SRPJ, has an exponential affine form, which can be derived in closed form or 

numerically. The required conditional density function can be obtained by means of 

Fourier inversion of the characteristic function. Maximizing the likelihood function via 

Fourier inversion, though computationally intensive, provides asymptotically efficient 

                                                 
7 For a description of ML estimation for such processes see also, for example, Das (2002), Ait-

Sahalia (2004) and Dotsis et al. (2005). 
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estimates of the unknown parameters (see Singleton, 2001 for a discussion and 

applications).  

Suppose that { } 1

T
t t

V
=

is a discretely sampled time series of implied volatilities. 

Assume we stand at time t, and τ denotes the sampling frequency of observations. 

Then, the Fourier inversion of the characteristic function F(V(t),τ;s) provides the 

required conditional density function [ ( ) ( )]f V t V tτ+ : 

 

 ( )

0

1[ ( ) ( )] Re[ ( ( ), ; )]isV tf V t V t e F V t s dsττ τ
π

∞ − ++ = ∫  (9) 

 

where Re  denotes the real part of complex numbers. For a sample { } 1
( ) T

t
V t

=
, the 

conditional log-likelihood function to be maximized is given by: 

 

 
{ }

( )

0
1

1max log Re[ ( ( ), ; )]
T

isV t

t

e F V t s dsτ τ
π

∞ − +

Θ
=

⎛ ⎞ℑ = ⎜ ⎟
⎝ ⎠

∑ ∫  (10) 

 

where Θ={κ, θ, σ, λ, η} is the set of parameters to be estimated. The standard errors of 

the ML estimators are retrieved from the inverse Hessian evaluated at the obtained 

estimates. 

As discussed previously, the implied volatility is distributed according to a non-

central chi-squared distribution under the SR. The transition density is given by: 

 

 ( )2 1 2( ( ) ( ), ) ( ) 2( )u v q
qf V t V t ce u v I uvτ − −+ Θ =  (11) 
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where 22 ( (1 ))kc k e τσ≡ − , ( )1 ku cV t e τ≡ − , ( )v cV t τ≡ + , 22 1q kθ σ= −  and ( )qI i  is the 

modified Bessel function of the first kind of order q. The set of parameters Θ to be 

estimated is Θ={κ, θ, σ}. 

 

 

4. Estimation Results 

 

Table 5 shows the ML estimation results using the VIX sample. For each process we 

report: the estimated parameters (annualized), the asymptotic t-statistics (within 

brackets), the Akaike Information Criterion (AIC), the Bayes Information Criterion (BIC), 

and, the log-likelihood values. The SRPJ appears to have the highest log-likelihood value 

amongst the competing models. Since the models are hierarchically nested, the 

likelihood ratio (LR) test can be employed to compare relative goodness-of-fit. We find 

that the likelihood of the SRJ is significantly higher than that of the SR, the LR test 

statistic being 318.5 (the critical value at the 1% level from a Chi-squared with two 

degrees of freedom is 9.21). Allowing the probability of jumps to be proportional to 

volatility, causes a further statistically significant improvement in likelihood (LR= 73.74). 

The information criteria also suggest that the addition of jumps in proportion to the 

volatility level improves fitting ability. 

 

[INSERT TABLE 5 HERE] 

 

The SRPJ suggests an average jump frequency (λV ) over 50 per year, assuming an 

average daily-implied volatility 19.57%V = , with an average jump magnitude (1/η) 
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equal to 1.25%. The SRJ implies a smaller frequency of jumps, 19 per year, of larger 

magnitude, 1.77%. The parameters are comparable in magnitude to those estimated by 

Dotsis et al. (2005) for the VIX of a shorter sample. In line with previous studies (eg., 

Das, 2002), we find that the addition of jumps to the SR decreases the estimated 

volatility (σ) and long-run average volatility (θ) of the underlying process, implying that 

jumps account for a substantial component of variability. Moreover, incorporating jumps, 

especially if they are conditioned on the level, increases the estimated speed of mean 

reversion (κ). One explanation for this could be that a higher mean reversion is needed 

in order to force the process after a jump to revert back to a realistic level, especially 

since volatility is lower.  

 

[INSERT TABLE 5 HERE] 

 

In order to further asses the ability of the fitted models to represent the original 

series, we undertake a simulation experiment along the lines of Pan (2002), Jones 

(2003) and Eraker (2004). More specifically, we examine if the estimated models have 

the ability to generate unconditional distribution behavior in levels and differences that is 

consistent with that of the VIX index. More specifically, we estimate the sample 

skewness and kurtosis for the VIX data using three sampling intervals: daily, weekly and 

monthly. Then, we use Monte Carlo simulation to approximate the finite sample 

distribution of the skewness and kurtosis coefficients for the estimated three processes 

estimated. The sample size and sampling interval for each simulation are selected 

accordingly to the VIX sample. Finally, the quantiles of the empirical distribution can be 
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used in an exact finite sample hypothesis test based on the null of a given diffusion 

process.  

The results, summarized in Table 6, show that a reasonable amount of unconditional 

non-normality in levels is implied by all three processes under study. However, the 

higher moments of the SR differences are unrealistically smaller than those of the actual 

VIX levels. For example, at a daily level the kurtosis of the ∆VIX is over 9, while the 

99% percentile for the SR is only 3.6. The simulated differences of the SPJ and SRPJ are 

capable of producing unconditional kurtosis coefficients that are consistent with those of 

the original data. However, the SPJ skewness term structure pattern follows closer that 

of the VIX differences, although it falls somewhat short for the daily and monthly data. 

However, we believe that the size of this inconsistency does not warrant serious 

concerns.   

  

5. Pricing of Volatility Derivatives 

 

In this section, we derive analytical formulae for pricing option and futures contracts on 

volatility when the underlying follows a mean-reverting square root process with jumps 

(SRJ). Pricing when the probability of jumps is proportional to the volatility level (SRPJ) 

is also possible numerically, but is not undertaken here in order to preserve simplicity. 

Rather, we examine some of the properties of the analytical models and investigate the 

potential implications for pricing and hedging of incorrectly omitting jumps from a SR 

process. 
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5.1. Volatility Futures 

Before proceeding to futures valuation, we must rewrite equation (2) under the risk 

neutral probability measure Q. Following Heston (1993), Grunbichler and Longstaff 

(1996) and Pan (2002), we assume that the volatility risk is proportional to the current 

level of volatility, i.e., ζVVt. A similar risk premium ζj is assumed to be associated with 

jumps.8 So, the volatility process under the risk neutral measure is given by: 

 

 ( )( )t t V t j tdV k V V dt V dz Jdqθ ζ ζ σ= − − − + +  (12) 

 

or, equivalently, 

 

 ( )t t tdV k V V dz Jdqθ σ∗ ∗= − + +  (13) 

 

where Vk k ζ∗ = +  and j

V

k
k
θ ζ

θ
ζ

∗ −
=

+
. 

 

Now denote Ft(V,T) the price of a futures contract on Vt at time t  with maturity T. 

Under the risk-adjusted equivalent martingale measure Q, Ft(V,T) is determined by the 

conditional expectation of VT at time T. This expectation is conditional on the 

information up to time t: 

                                                 
8 Our approach is similar to those of Bakshi et al (2004), Pan (2002), Eraker(2004), where they 

use similar assumptions as far as the jump risk premium is concerned in the case of stock 

returns. 
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 ( , ) ( ) ,Q
t t TF V T E V t T= <  (14) 

 

As the conditional density function is not known in closed form, the characteristic 

function can be used to derive the expectation of ( )Q
t TE V . This is done by 

differentiating the characteristic function once with respect to s and then evaluating the 

derivative at s=0.  

 

 ( ) ( ) ( ) ( ) 1(1 ) (1 )k T t k T t k T t
t T tE V V e e e

k
λθ

η
∗ ∗ ∗− − ∗ − − − −

∗= + − + −  (15) 

 

Equation (15) consists of three terms: the first and the second correspond to the 

diffusion part of the SRP, while the third term corresponds to the jump part. The 

following equation, corresponding to the Grünbichler and Longstaff (1996) volatility 

futures model, describes the expected value of volatility under the SR: 

 

 ( ) ( ) ( )(1 )k T t k T t
t T tE V V e eθ

∗ ∗− − ∗ − −= + −  (16) 

 

We can see that the only difference between equations (15) and (16) is the term 

( ) 1(1 )k T te
k
λ

η
∗− −

∗ − . This allows a direct comparison between the diffusion and the jump 

diffusion formulae. Recall that ( ) 1 0E y
η

= > , then the volatility futures price under the 

SRP will be greater than the price delivered by its diffusion counterpart, the Grünbichler 
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and Longstaff (1996) volatility futures model. The magnitude of the difference depends 

on the average size of the jumps 1/η as well as on the number of the jumps λ.  

Finally, the dynamics of the futures price are given by applying Ito’s Lemma to 

(13): 

 

[ ]

[ ]

( )

( ) ( ) ( ) ( )

( )

( 1) ( 1)

k T t
t

k T t k T t k T t k T t
t t

k T t
t

dF e E y dt

e Fe e e E y dW
k

ye dq

λ

λσ θ

∗

∗ ∗ ∗ ∗

∗

− −

− − − ∗ − −
∗

− −

= −

⎛ ⎞+ − − − −⎜ ⎟
⎝ ⎠

+

 (17) 

 

We can see that the drift, volatility and jump structures have been modified. The 

mean reversion structure has vanished while the jump structure is scaled downwards by 

an exponential term. 

The futures pricing formula (15) has the following limiting properties: 

i. ( )
0

,t T tlim E V V
τ→

=   (18) 

ii. ( ) ,t Tlim E V
kτ

λθ
η

∗
∗→+∞

= +   (19) 

iii. ( ) ( ) ( )

0

1(1 ) (1 ) .k T t k T t
t TV

lim E V e e
k
λθ

η
∗ ∗∗ − − − −

∗→
= − + −  (20) 

 

Equation (18) shows the standard convergence property of the futures price to the 

spot price at maturity. Equation (19) shows that as the time-to-maturity increases, the 

futures price tends to the constant long-run volatility mean 
k
λθ
η

∗
∗

⎛ ⎞
+⎜ ⎟

⎝ ⎠
. The latter 

means that as time-to-maturity increases, futures prices are becoming less sensitive to 

current volatility changes. This feature of volatility futures prices is in contrast to those 
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of futures prices on stocks or stock indices, where future prices move in an almost one-

to-one analogy to spot prices. Finally, equation (20) shows that as volatility tends to 

zero, futures price does not converge to zero, as in the case of futures on stocks or 

stock indices. The intuition of the above properties of futures prices are related to the 

mean reverting nature of volatility. Irrespective of the changes in the current value of V, 

there is a growing probability with time that V is going to revert to its long run mean 

prior to expiration of the contract. 

 

5.2. Volatility Options  

 

In order to obtain the valuation formula for a European volatility call, we follow the 

approach of Bakshi and Madan (2000).The price ( , ; )tC V Kτ of the call option with strike 

price K and τ time to maturity is given by: 

 

 1 1 2( , ; ) ( , ) (1 ) ( , ) ( , )r k r k r
t tC V K e e V t e e t e K t

k
τ τ τ τ τλτ τ θ τ τ

η
∗ ∗− − − − ∗ −

∗

⎛ ⎞
= Π + − + Π − Π⎜ ⎟

⎝ ⎠
 (21) 

 

The Π1 and Π2 probabilities are determined by 

 

 
0

( , ; )1 1( , ) Re
2

i K
j t

j
e g V

t d
i

φ τ φ
τ φ

π φ

−∞ ⎡ ⎤×
Π = + ⎢ ⎥

⎢ ⎥⎣ ⎦∫  (22) 

 

where  
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1
( , ; )( , ; )
( , ;0)

t
t

t

F Vg V
F Vφ

τ φ
τ φ

τ
=  and 2 ( , ; ) ( , ; )r

t tg V e F Vττ φ τ φ= . ( , ;0)tF Vφ τ  is the first derivative of 

( , ; )tF V τ φ  with respect to φ, evaluated at φ=0. 

The call pricing formula (21) has the following limiting properties: 

i. ( )
0

( , ; ) max ,0 ,t tlimC V K V K
τ

τ
→

= −   (23) 

ii. ( , ; ) 0,tlim C V K
τ

τ
→+∞

=   (24) 

iii. ( , ; ) .tV
lim C V Kτ
→+∞

= +∞   (25) 

iv. 
0

( , ; ) 0.tV
limC V Kτ
→

≠   (26) 

 

Equation (23) shows the standard convergence property of the option price to 

the option’s payoff at maturity. Equation (24) shows that for very long maturities the 

volatility call option is going to be worthless, just as it was the case in the models of 

Detemple and Osakwe (2000), and Grunbichler and Longstaff (1996). This is due to the 

mean reverting nature of volatility. In the long-run, volatility will revert to it’s long run 

mean 
k
λθ
η

∗
∗

⎛ ⎞
+⎜ ⎟

⎝ ⎠
: 

( )( )max ,0 max ,0tE lim V K K
kττ

λθ
η

∗
+ ∗→∞

⎛ ⎞⎛ ⎞⎡ ⎤− = + −⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠
since ( )tlim V

kττ

λθ
η

∗
+ ∗→∞

= +  

In addition,  

 0rlim e τ

τ

−

→∞
=  

Hence, using equation (21) we can see that the value of the volatility call tends to zero 

as τ →∞ . The latter can be visualized in Figure 3, which shows the value of the 

volatility call as a function of the time-to-maturity τ. We can see that volatility call 
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options, in contrast to standard options, are concave functions of volatility; i.e. as τ 

increases the value of the volatility call initially increases and then flattens out.  

 

[INSERT FIGURE 3 HERE] 

 

Equation (25) shows that as volatility grows to infinity, the price of the option 

tends to infinity too, just as in the case of the plain vanilla options. Finally, equation (26) 

shows that as tV  tends to zero, the volatility option price does not converge to zero. 

This is in contrast to the case of a standard European call, where its value tends to zero 

as the price of the underlying tends to zero (Merton, 1973). Once again, this can be 

attributed to the mean reverting nature of volatility. As soon as volatility becomes zero, 

it will become non-zero so as to return to its long-run mean 
k
λθ
η

∗
∗

⎛ ⎞
+⎜ ⎟

⎝ ⎠
. Therefore, as 

0tV → , volatility options retain their time value (the intrinsic value is zero). The latter, is 

in line with the results of Grunbichler and Longstaff (1996), but it contrasts the 

equivalent result of Detemple and Osakwe (2000), where a similar option does not have 

a value. This is because in the Detemple and Osakwe (2000) model, tV  has an 

absorbing barrier at zero, due to the multiplicative structure of the logarithmic process. 

The evolution of the value of the volatility call, as a function of the underlying volatility 

tV , is shown in Figure 4. We can see that for 0tV =  long-term volatility options still 

have value. In addition, volatility call options are increasing functions of volatility, but in 

contrast to standard options, the rate of growth decreases as time to maturity τ 

increases. 
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[INSERT FIGURE 4 HERE] 

 

We now turn our attention to delta, the sensitivity of the call price with respect 

to tV . The magnitude of delta is related to volatility call option hedging effectiveness. 

The highest the delta, the more sensitive to volatility changes is the volatility call. 

Figures 5 and 6 show the delta of the volatility call as a function of the volatility tV  and 

time-to-maturity τ, respectively. We can easily observe that that delta is always positive. 

The magnitude of delta depends on the level of volatility and the time-to-maturity. For 

deep ITM (OTM) calls, the delta of longest (shortest) expiry volatility call is highest. It 

can also be observed that as τ increases the value of the volatility call delta decreases 

and flattens out. This implies that the sensitivity of the volatility call option price to 

volatility decreases as time-to-maturity increases. In other words, as time to maturity 

increases, the volatility call option loses its hedging effectiveness. The important 

implication of the latter result is that long maturity volatility calls are not effective for 

hedging or trading volatility purposes9. 

 

[INSERT FIGURE 5 HERE] 

 

[INSERT FIGURE 6 HERE] 

 

Figure 7 show the value of a volatility call option as a function of volatility for three 

different levels of moneyness. Both diffusion (model of Grunbichler and Longstaff, 1996) 

                                                 
9 Grunbichler and Longstaff (1996), and Detemple and Osakwe (2000) came up with similar 

results for volatility options. 
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and jump-diffusion models are examined. We can see that for short maturities, the 

diffusion model underprices the volatility call. In contrast, for longer maturities, the 

diffusion model overprices the volatility call. The latter occurs because in the jump-

diffusion model, the volatility of the process consists of two parts: the diffusion and the 

jump part. The jump part affects the value of the volatility call mainly in the short-run, 

whilst the diffusion part affects the value of the volatility call mainly in the long-run.10 

On the other hand, the volatility of the diffusion model is driven only by the diffusion 

part. Note that although the total volatility is almost the same for both diffusion and 

jump diffusion model, σ is significantly larger in the case of the diffusion model. In this 

manner, the diffusion model underprices the volatility call for short maturities where 

jumps in volatility still affect the call value. 

 

[INSERT FIGURE 7 HERE] 

 

Figures 9 and 10 depict the delta of both diffusion and jump-diffusion models as a 

function of τ and Vt,, respectively. Interestingly, the delta of the diffusion model is 

significantly higher in all cases, except when we consider deep OTM options. The latter 

indicates that the diffusion model is more sensitive in volatility changes than the jump-

diffusion model. The explanation follows from the assumption that volatility jumps do 

not depend on the current level of volatility. On the other hand, diffusion volatility 

                                                 
10 Das and Sundaram (1999) and Pan (2002) provide similar results in the case of index options, 

where jumps improve the pricing mainly of the short terms options. The pricing of intermediate 

and long maturity options is mainly improved by the assumption that volatility of returns is 

stochastic. 
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depends on the current level of volatility through the term tV . Differentiation shows 

that the delta of the volatility calls depends mainly on σ rather than λ or η. The above 

finding has important implications in terms of hedging. Suppose that you have a long 

position in a call option and you use volatility options in order to hedge the vega risk of 

your position. Recall that diffusion model overestimates the delta of the volatility option. 

So, if you incorrectly use the diffusion model to calculate the delta, then you will use 

less volatility options for hedging than those that actually are required.  

 

[INSERT FIGURE 8 HERE] 

 

[INSERT FIGURE 9 HERE] 

 

6. Conclusions 

 

Motivated by the growing literature on volatility derivatives and their imminent 

introduction in major exchanges, this paper examined the empirical relevance and 

potential impact of volatility jumps in autonomous volatility option pricing and risk 

management.  

 In line with previous research, empirical analysis of the VIX over a period of 10 

years provided a wealth of evidence supporting the existence of some stationary, mean-

reverting process with jumps. Motivated by the preliminary analysis, we concentrated on 

the popular mean-reverting square root process, originally proposed by Grunbichler and 

Longstaff (1996), and its augmentation by an upward jump. An ML estimation scheme 

was described and applied to the VIX data. The results suggested that the addition of 
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jumps, especially if they are conditioned on the volatility level, improves significantly 

fitting ability. Moreover, simulation results suggested that the augmented model has the 

ability to produce non-normal distributions that closely resemble those of the original 

data. Closed form models for pricing futures and options were then developed assuming 

a square root mean reverting diffusion stochastic process that allows for positive jumps 

in volatility. The proposed volatility option pricing models appears to have comparable 

properties with existing models in the literature (Grunbichler and Longstaff 1996; 

Detemple and Osakwe, 2000). However, it was demonstrated that incorrectly omitting 

jumps in volatility may result in severe mispricing. In particular, in the case where there 

are upwards jumps in volatility, short (long) term volatility options are more expensive 

(cheaper) by about 25% (14%). In addition, volatility calls are far less sensitive to the 

changes of the underlying volatility by a factor of about two.  

The findings in this paper do not necessarily support criticism against the specific 

structural form assumed by existing volatility future and option pricing models. Rather, 

they attempt to demonstrate that pricing derivatives on a volatility index should carefully 

account for salient features of the data since the results obtained are particularly 

sensitive to the model used to approximate the underlying dynamics. Testing against 

actual market prices will provide more definitive evidence on the merit of alternative 

pricing models. In the case of futures this is possible since some data do exist for 

futures on volatility indices (for a relevant application, see, for example, Dotsis et al., 

2005). However, since no volatility options market data are yet available, we cannot 

fully test the empirical relevance of alternative option pricing models. However, it is 

crucial to fully understand the dynamics of the underlying and the implications of 
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competing option pricing models in order to understand the peculiarities of this asset 

class and facilitate a smooth operation of the market when it operates.  

We believe that much more research is needed on the practical usefulness of 

volatility derivatives, especially for corporate finance. Although some ideas have been 

proposed in the literature and discussed in this paper, it is not yet clear how financial 

managers can use these instruments and what the actual benefits they may expect are. 

This is not a trivial problem since the implications of volatility for a firm are so 

widespread, complicated and complex. For example, a short futures position on the VIX 

index buys insurance against changes in the volatility of the US equity market. A US firm 

assuming this position, would be affected directly and indirectly in a number of ways 

with respect to factors including: firm value, cost of equity, cost of debt, optimal finance 

mix, employee stock option value, value and effectiveness of existing hedges, value of 

investments, and investment hurdle rates. This complicates also the accounting 

treatment of the hedge relationship and effectiveness offered by volatility derivatives. 

For example, according to FAS 133, the statement issued by F.A.S.B. (Financial 

Accounting Standards Board) regarding accounting for derivative instruments and 

hedging accounting, three hedge relationships are recognized: fair value hedge, cash 

flow hedge and foreign currency hedge. The accounting treatment of derivatives 

depends on the hedge relationship they participate and the effectiveness of the hedge 

offered. In the case of volatility derivatives, the determination of the hedge relationship 

and the effectiveness is a very difficult task.  

In closing, we would like to emphasize the growing need for introducing volatility 

indices and derivatives in more markets. Brenner and Galai (1989) first argued that 

volatility indices should be developed for equity, bond and foreign exchange markets. 
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However, the recent history has shown that significant volatility risk exists also in other 

important markets, such as, for example, the market for petrol and for electricity.   
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Appendix: Derivation of the characteristic function for SRPJ process 

The conditional characteristic function ( , ; ) ( ; )tisV
t tF V s E e Vττ += Θ of the SRPJ must 

satisfy the following Kolmogorov backward differential equation  

 

 [ ]
2

2
2

1( ) ( ) ( ) 0
2t t t t t

t t

F F Fk V V V F V y F V
V V

θ σ λ
τ

∂ ∂ ∂
+ − + − + Ε + − =

∂ ∂ ∂
 (27) 

 

subject to the boundary condition  

 ( , 0; ) tisV
tF V s eτ = =  (28) 

where 1i = − . Differentiating the characteristic function given by equation (4) yields 

 

( )

2
V

VV

F BF

F B F
F F A VBτ τ τ

=

=

= +

 (29) 

where the subscripts denote the corresponding partial derivatives. 

Replacing equations (29) in equation (27) and rearranging yields 

 

 ( )2 21 1 0
2

yB
tV kB B B e k B Aτ τσ λ θ⎛ ⎞⎡ ⎤− − + + Ε − + − =⎜ ⎟⎣ ⎦⎝ ⎠

 (30) 

 

Also, 

 1 1
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1

1 1 1yyB yBe e e dyη ηη
η

+∞ −⎡ ⎤Ε − = − = −⎣ ⎦ − Β∫  
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Since 0tV ≠ , the expressions in the parentheses in equation (30) must equal zero. 

Therefore we obtain the following ordinary differential equations (ODEs) 

 

 2 2 1

1

1 1
2

kB B Bτ
ησ λ

η
⎛ ⎞

− − + + − =⎜ ⎟− Β⎝ ⎠
 (31) 

 0k B Aτθ − =  (32) 

 

The ODEs cannot be solved in closed form. They are solved numerically subject to the 

boundary conditions ( 0; ) 0A sτ = = , and ( 0; )B s isτ = = . 
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 Table 1. Descriptive Statistics  

 VIX ∆VIX 
 Mean 0.1957 -1.23E-05 

 Median 0.1856 -0.0004 
 Maximum 0.4574 0.0992 
 Minimum 0.0931 -0.0780 
 Std. Dev. 0.0639 0.0122 
 Skewness 0.9382 0.5647 
 Kurtosis 3.7411 9.1172 

 Jarque-Bera 671.14** 6,378.52** 
ρ(1) 0.981 -0.041 
ρ(2) 0.964 -0.088 
ρ(3) 0.950 -0.057 
p2(1) 0.975 0.201 
ρ2(1) 0.950 0.189 
ρ2(1) 0.932 0.204 

ρ(q) and p2(q) are autocorrelation and squared autocorrelation  
coefficients at lag q , respectively. Two (one) stars denote significance  
at the 1% (5%) level.  
 

 

Table 2. Unit Root Test results of VIX 

Test  Null Hypothesis Test Statistic 
Augmented Dickey-Fuller Unit Root -3.7892** 
Phillips-Perron Unit Root -4.9068** 
Kwiatkowski-Phillips-Schmidt-Shin Stationarity 1.4366** 
The Augmented Dickey-Fuller (Dickey and Fuller, 1979) and the Phillips-Perron (1988) test the 
null hypothesis of a unit root. The Kwiatkowski-Phillips-Schmidt-Shin (1992) tests the null 
hypothesis of stationarity. An intercept is included in all test regressions. Two (one) stars denote 
significance at the 1% (5%) level. 

 

 

Table 3. Log Likelihood of Alternative Distribution Models 
 Parameters VIX ∆VIX 
Normal 2 5,266.8 11,811.8 
Log-normal 2 5,734.4  
t-student 1 5,295.3 12,221.3 
Skewed t-student 2 5,841.5 12,225.6 
Logistic 2 5,285.3 12,123.1 
Exponential 2 5,051.4  
Gamma 3 5,763.7  
Extreme (max) 2 5,647.4  
Pareto 2 4,142.9  
Weibull 2 5,267.1  
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Table 4. Conditional tabulation of VIX vs. ∆VIX 
   VIX  
   [0, 0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) Total 

[-0.1, -0.05) 0 1 1 6 0 8 
[-0.05, 0) 2 1,244 661 114 8 2,029 
[0, 0.05) 3 1,053 703 130 19 1,908 

∆VIX 

[0.05, 0.1) 0 0 4 6 2 12 
 Total 5 2,298 1,369 256 29 3,957 

 

Table 5. Model Estimation Results  

Parameter SR SRJ SRPJ 
4.5496  7.3800  10.5004 

k 
(5.9778) (9.5121) (11.1326) 
0.1945  0.1505  0.1379 

θ 
(19.9557) (21.7557) (24.0473) 

0.4048  0.3502 0.3294 
σ 

(88.0705) (61.3238) (51.3363) 
19,4080  263.8877 

λ 
- (4.5046) (9.1391) 

0.0170 0.0125 
1/η 

- (8.2228) (4.5626) 
Log-Likelihood 12,263.12 12,422.37 12,459.24 

AIC -24,520 -24,834 -24,908 

BIC -24,501 -24,803 -24,977 
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Table 6. Unconditional Higher moments of actual and simulated distributions 

 Levels Differences 
 Daily Weekly Monthly Daily Weekly Monthly 

Actual       
Skewness 0.9382 0.9772 0.7865 0.5647 0.8939 -0.5693 
Kurtosis 3.7411 4.0192 3.0652 9.1172 8.8547 6.9027 

SR       
1% 0.0632 0.0410 0.0789 -0.1862 -0.2428 -0.2683 
5% 0.1933 0.1513 0.1823 -0.1600 -0.1888 -0.1999 
10% 0.2602 0.2457 0.2525 -0.1430 -0.1556 -0.1655 
50% 0.5063 0.5190 0.5274 -0.0884 -0.0321 -0.0378 
90% 0.8645 0.8591 0.8751 -0.0304 0.0781 0.0987 
95% 1.0098 0.9626 1.0060 -0.0151 0.1139 0.1318 

Sk
ew

ne
ss

 

99% 1.1788 1.2113 1.2683 0.0158 0.1748 0.1948 
1% 2.4033 2.4330 2.3927 3.0300 2.8109 2.7819 
5% 2.5757 2.5765 2.5718 3.0846 2.9123 2.8985 
10% 2.6517 2.6851 2.6556 3.1212 2.9656 2.9599 
50% 3.1338 3.1369 3.1466 3.2702 3.2071 3.2210 
90% 4.1161 4.1893 4.1510 3.4310 3.5461 3.5721 
95% 4.6273 4.6437 4.7423 3.4910 3.6659 3.6722 

Ku
rt

os
is

 

99% 5.7824 6.3340 6.1775 3.6029 3.9490 3.9055 
SRJ       

1% 0.1397 0.1084 0.0703 0.6726 0.1193 -0.3613 
5% 0.2286 0.2150 0.1931 0.8342 0.2329 -0.1801 
10% 0.2791 0.2706 0.2452 0.8909 0.2961 -0.1092 
50% 0.4923 0.5197 0.5082 1.1496 0.4682 0.1478 
90% 0.8005 0.7997 0.8437 1.5066 0.6995 0.4071 
95% 0.9095 0.8686 0.9429 1.6348 0.7905 0.4894 

Sk
ew

ne
ss

 

99% 1.0633 1.0462 1.2365 1.8717 0.9159 0.6995 
1% 2.5292 2.5405 2.3649 6.0200 3.1745 2.4982 
5% 2.6978 2.6783 2.5360 6.7553 3.4387 2.6733 
10% 2.7857 2.7897 2.6549 7.2171 3.5903 2.7855 
50% 3.2483 3.2480 3.1624 9.2736 4.2507 3.2473 
90% 4.2213 4.1638 4.3336 13.0505 5.4779 4.1107 
95% 4.5481 4.5619 4.8878 14.3873 5.9301 4.4890 

Ku
rt

os
is

 

99% 5.5437 5.3391 6.1345 18.9351 7.0055 5.1983 
SRPJ       

1% 0.1985 0.2048 0.1298 0.6414 0.0913 -0.3959 
5% 0.2900 0.2865 0.2459 0.7157 0.1805 -0.2150 
10% 0.3368 0.3356 0.3090 0.7573 0.2111 -0.1447 
50% 0.5797 0.5801 0.5820 0.9014 0.3549 0.1221 
90% 0.8608 0.8694 0.9180 1.1006 0.5316 0.3714 
95% 0.9686 0.9673 1.0361 1.1627 0.5869 0.4408 

Sk
ew

ne
ss

 

99% 1.2635 1.2128 1.3778 1.2834 0.7360 0.6316 
1% 2.5730 2.5458 2.3895 4.9888 3.1293 2.4830 
5% 2.7311 2.7248 2.5870 5.3320 3.2467 2.6728 
10% 2.8403 2.8269 2.6902 5.5287 3.3413 2.7698 
50% 3.3298 3.3419 3.3094 6.4981 3.7832 3.2742 
90% 4.4017 4.4068 4.5604 8.1753 4.5429 4.0679 
95% 4.7510 4.8235 5.0704 8.7837 4.7770 4.5023 

Ku
rt

os
is

 

99% 6.1520 6.0101 7.0421 9.8599 5.8960 5.3777 
 



 43

Figure 1. The VIX Index and first differences (∆VIX) 
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Figure 2. Histograms and Kernel Distributions 
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Densities were estimated with Epanechikov kernel functions over 100 points. The bandwidth was 
determined according to the method suggested by Silverman (1986). 
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Figure 3. The value of a volatility call as a function of time-to-maturity 
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Estimated for three different moneyness levels K = 12(ITM), 15(ATM), 18(OTM). The figure is 
drawn for r = 5%, and Vt =15. k, θ, σ, η, λ are given from the third column of Table 5. 
 

Figure 4. The value of a volatility call as a function of volatility 

Volatility Call Value vs Volatility Index Points

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80

Volatility Index Points

V
ol

at
ili

ty
 C

al
l V

al
ue

τ = 5 days τ = 20 days τ = 40 days
 

Estimates for three different maturities: τ = 5, 20, and 40 days. The figure is drawn for r = 5%, 
and Κ =15. k, θ, σ, η, λ are given from the third column of Table 6. 
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Figure 5. The delta of a volatility call as a function of volatility 
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Estimates for three different maturities: τ = 5, 20, and 40 days. The figure is drawn for r = 5%, 
and Κ =15. k, θ, σ, η, λ are given from the third column of Table 5. 
 

Figure 6. The delta of a volatility call as a function of time-to-maturity 
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Estimated for three different moneyness levels K = 12(ITM), 15(ATM), 18(OTM). The figure is 
drawn for r = 5%, and Vt =15. k, θ, σ, η, λ are given from the third column of Table 5. 
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 Figure 7. Value of the volatility call as a function of Time-to-Maturity 
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Estimated for three different moneyness levels K = 12(ITM), 15(ATM), 18(OTM). The solid line 
corresponds to the case where there are no jumps in the volatility process (model of Grunbichler 
and Longstaff, 1996) using the estimated k, θ, and σ (Table 5, second column). The dotted line 
corresponds to the case where there are upwards jumps in the volatility process using the 
estimated k , θ, σ , η , λ (Table 5, third column). Assume r = 5% and Vt =15. 
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Figure 8. Delta of the volatility call as a function of Time-to-Maturity τ 
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Estimated for three different moneyness levels K = 12(ITM), 15(ATM), 18(OTM). The solid line 
corresponds to the case where there are no jumps in the volatility process (model of Grunbichler 
and Longstaff, 1996) using the estimated k, θ, and σ (Table 5, second column). The dotted line 
corresponds to the case where there are upwards jumps in the volatility process using the 
estimated k , θ, σ , η , λ (Table 5, third column). Assume r = 5% and Vt =15. 
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Figure 9. Delta of the volatility call as a function of volatility Vt, 

τ = 5 days
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Estimated for three different maturities τ = 5, 20, and 40 days. The solid line corresponds to the 
case where there are no jumps in the volatility process (model of Grunbichler and Longstaff, 
1996) using the estimated k, θ, and σ (Table 5, second column). The dotted line corresponds to 
the case where there are upwards jumps in the volatility process using the estimated k , θ, σ , η , 
λ (Table 5, third column). Assume r = 5% and K =15. 

 


