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Abstract

This paper derives and tests a five factor asset pricing model based on cross-sectional moments, in
addition to market return and the market earnings yield. The three cross-sectional factors are the
cross-sectional variance of returns; the cross-sectional variance of the dividend-to-price ratio; and
the cross-sectional covariance between returns and dividend yields. This model can be theoretically
justified as a generalization from the Intertemporal CAPM, by relaxing the representative investor
feature and assuming two types of investor heterogeneity - heterogeneous shocks in wealth, and
heterogeneous "intertemporal risks". The model is denoted as the Generalized ICAPM (GICAPM).
The empirical tests show that the Generalized ICAPM is able to price reasonably well the Fama
and French (1993) portfolios, and compares favorably with the Fama and French (1993) model.
These results are robust to additional classes of portfolios and different estimation methodologies.
Moreover, the GICAPM explains the value premium anomaly.

Keywords: Asset pricing; Cross-section of stock returns; Cross-sectional moments; Intertempo-
ral CAPM; Idiosyncratic risk; Heterogeneous investors; Value premium
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1 Introduction

Since the pioneer work of Constantinides and Duffie (1996) and Heaton and Lucas (1996) sev-
eral studies have been developing asset pricing models where the representative consumer feature
is relaxed. Common to some of these studies is the assumption that the idiosyncratic shocks in
wealth /consumption faced by investors are not fully insurable by financial markets, that is, markets
are incomplete, e.g., Constantinides and Duffie (1996), Heaton and Lucas (1996), Brav, Constan-
tinidies and Geczy (2002), Cogley (2002), and Jacobs and Wang (2004). Moreover, the focus of
this literature has been on trying to explain both the equity premium and risk free rate puzzles.
More recently, by using data on individual consumption, Jacobs and Wang (2004) have employed a
linear factor model that relies on the first two cross-sectional moments of consumption growth, to
explain the cross-section of stock returns, and in particular the Fama and French (1993) portfolios.
Nevertheless, two criticisms often applied to the tests of consumption based models with individ-
ual consumption, are the measurement error associated with that data, and the limited time-series
data available that restricts the statistical power associated with the tests.

On another line of research in asset pricing, the Merton (1973) Intertemporal CAPM (ICAPM)
postulates that state variables, which predict market returns, should act as risk factors that price
the cross-section of average returns. Among the papers that implemented empirically testable ver-
sions of the original ICAPM, are Campbell (1993, 1996), and more recently Chen (2003), Brennan,
Wang and Xia (2004), Campbell and Vuolteenaho (2004), and Maio (2005a,b). Common to these
papers in the derivation of the pricing equations analyzed in the cross section of returns, is the
assumption of a representative investor.

In alternative, this paper derives a theoretical asset pricing model that represents a general-
ization from the ICAPM, by relaxing the representative investor assumption. In particular, the
model allows for two types of investor heterogeneity. First, there are idiosyncratic shocks in wealth,
which are not fully insurable by financial markets. Second, each investor is assumed to have differ-
ent "intertemporal risks", i.e., they have different reference portfolios and different state variables

that proxy for changes in future portfolio returns. The result is a five factor model, whose factors



are the change in aggregate wealth; aggregate intertemporal risk; dispersion on investor’s wealth;
dispersion in investor’s intertemporal risk; and the comovement across investors between shocks
in wealth and in intertemporal risk. The cross-sectional factors are the novelty relative to the

standard ICAPM, and arise from the existence of investor heterogeneity. The model is denoted as

the Generalized ICAPM (GICAPM).

In the empirical implementation of the model, due to measurement issues, the cross-sectional
variance of returns is used as a proxy for the dispersion in wealth across investors. Furthermore,
the cross-sectional variance for the dividend-to-price ratio is used as proxy for the dispersion in
intertemporal risk. Finally the market return is used instead of changes in market wealth, and the

market earnings yield is the proxy used for aggregate intertemporal risk.

The empirical test of the model shows that the Generalized ICAPM is able to price reasonably
well the Fama and French (1993) portfolios, and compares favorably with the Fama and French
(1993) model. These results are robust to tests made with additional classes of portfolios - industry
portfolios and alternative characteristic portfolios sorted on the cash flow-to-price, earnings-to-price
and dividend-to-price ratios. In addition, the results are robust to different estimation methodolo-
gies, the two-stage GMM procedure with equally weighted pricing errors in the first stage, and in
alternative, the two-stage method with the Hansen and Jagannathan (1997) weighting matrix, in
the first stage. Moreover the Generalized ICAPM is able to price at least as well as the Fama and
French (1993) model, the extreme growth and value portfolios, that is, the GICAPM explains the

value premium anomaly.

The rest of the paper is organized as follows. Section 2 presents the model and discusses
the issues involved in its empirical implementation, and Section 3 presents the estimation and

evaluation results for the test in the cross-section of portfolio returns. Finally, Section 4 concludes.



2 A Generalized Intertemporal CAPM (GICAPM)

This section presents the theoretical model, and then builds on some analysis that enable the

model’s empirical implementation.

2.1 The model

In this sub-section, I derive the theoretical asset pricing model that represents a generalization
from the Merton (1973) Intertemporal CAPM (ICAPM). To save space, only the main steps in the

model derivation are presented here, while the full derivation is provided in Appendix (A).

The standard ICAPM derives from the consumption/portfolio choice problem of a represen-
tative investor, and hence there is no room for investor heterogeneity. In the following model, I
will allow for investor heterogeneity in two different ways. First, there are idiosyncratic shocks in
wealth, which are not fully insurable by financial markets, similarly to Constantinides and Duffie
(1996), Heaton and Lucas (1996), Brav, Constantinidies and Geczy (2002), Cogley (2002), Jacobs
and Wang (2004), among others. This market incompleteness causes the individual consumption
and individual portfolio choice decisions to differ across investors. Second, each investor is assumed
to have different "intertemporal risks", i.e., they have different reference portfolios and different
state variables that proxy for changes in future individual portfolio returns. While the first type of
heterogeneity is also present in consumption-based asset pricing models with idiosyncratic shocks,

the heterogeneity in "intertemporal risk" is restricted to the ICAPM case.

Consider an economy with [ investors and N financial assets. The consumer/portfolio choice

problem for investor ¢ can be represented as
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where

e J; (.) represents the value function for investor 4, in period t;

C? denotes the consumption of investor 4, in period ¢, which drives utility U (C});

w;"%t is the weight for asset n in investor i’s portfolio, at period ¢;

W} is the total wealth for investor 4, in period ¢;

R;’t .1 represents the portfolio gross return (realized at period ¢ 4 1) for investor i;

2! is the state variable that helps to forecast R;,t 1

0 denotes a time-discount factor, which is assumed to be constant across investors.

Investors are assumed to have homogenous preferences and no private information, that is they
share the public information set available at time ¢.

As shown in Appendix (A), investor i’s Euler equation is given b
g y

1 =B [My Rupn1] (2a)
i 5JW,t+1 (Wti 172;: 1) i i
My, = T (Wt:: ) = =h (Wt+17 Zt+1) ; (2b)

where

e R, .1 is the gross return on the nth asset (n =1,..., N);

e M}, stands for the stochastic discount factor (SDF) or pricing kernel associated with investor

1, at period t + 1;

e Jw. (.) represents the marginal value of wealth, in period ¢.

The pricing equation (2a) is only valid for investor ¢, and hence, in order to have pricing impli-

cations for the whole economy, we need to aggregate the Euler equations across the I individuals.
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If the SDF for investor ¢ is a valid SDF, then the average pricing kernel in the economy will also
price assets. By equally averaging across [ investors (who participate in the stock market), the

pricing equation for the economy is represented by

1 =E¢ [Mys1 Ry 1], (3a)
(5JWt+1 t+1azt+1 1 !
My, = 7 Z t+1 7 Z JWt Wt ’ Zt = ~ 7 g t+1> Zt—i—l ) (3b)

where M, represents the average SDF in the economy, at period t + 1.

The function h(W},,,2{,,) in Equation (3b) can be approximated by a second order Taylor

equation around the cross-sectional averages for wealth and the state variable,

h( ti+17 ZZ+1) = h(Wir1, 2e01) + hw (Wi, 2641) (Wti-&-l - Wt+1) + he (Wit 2041) (4}1 - Zt+1) +

1 i 2 1 7 2
thW(Wt-&-l, Zty1) (VVt+1 - Wt+1) + §hzz(Wt+17 Zty1) (Zt+1 - Zt+1) +

hw.(Wit1, 2e41) (Wti+1 - Wt+1) (ZZH - Zt+1) )
I

I
L~y Ly~
Wt+1 = 7 Wt+17 Zt+1 = 7 Zt—l—l? (4)
i=1

=1

where

e W, represents the cross sectional average for wealth;
e 2,1 denotes the cross sectional average for the state variable;

e hy,h,, hww,h.., hy. denote partial derivatives of h(.) with respect to either Wi 1 or 2.

By taking the average of (4) across the I investors, it follows that the economy’s SDF is given
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=1
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CWZi = 7 Z (Wi = Wist) (241 — 241) (8)
=1

where the first order cross-sectional moments have cancelled out. In the above expression for the

aggregate SDF, the cross-sectional moments are as follows
e VIV, represents the cross sectional variance for wealth;
e V7,1 is the cross sectional variance associated with the state variable;
o CW Z;,1 denotes the cross sectional covariance between wealth and the state variable.

The asset pricing model in equation (3a) can be represented in expected return-covariance form

as
Cov, (Rn,t—l-la Mt+1)
Bt (M)

Ei(Rnt+1) — Ry = — (9)

By taking a first-order Taylor approximation to Cov; (R, 11, M;+1) and substituting in (9), I

show in Appendix (A) that the ICAPM with heterogeneous investors is represented as

Wi
Wi

+Avzt Covi(Rp 141, V Zis1) + Aewzt Covi( Ry 141, CW Zy4q), (10)

Ei(Rni+1) — Rpip1 = At Covi( R tv1, ——) + Aot Covi( Ry 11, 2e41) + Avwe Covi(Ry 41, VIViL1)

where



o Ei(Ry,+1) — Ryi41 is the conditional expected return (at time ¢) for asset n, in excess of the

risk free rate;

W, . . . .
o A\t Covi(Rypi1, %) measures the risk associated with changes in the average or market

wealth;
o \.:Covi(R,+11,2+1) denotes the "intertemporal risk";
o \ywi Covy(Ry 11, VWii1) is the risk associated with dispersion in wealth, among investors;
o Az Covi(Ry 141,V Zii1) represents the risk for dispersion in investors’ intertemporal risk;

o Nowzt Cove(Ry 141, CW Z, 1) measures the risk associated with comovement between in-

vestors’ wealth and "hedging" risk.

The risk prices associated with the market factor; the state variable factor; the cross sectional
variance of wealth; the cross sectional variance for the state variable; and the cross sectional
covariance between wealth and the state variable; are provided in Appendix (A).

The innovation in the asset pricing model (22) relative to the standard ICAPM, is the inclusion
of the last three factors that measure the risks associated with dispersion (among investors) in
individual wealth; dispersion in individual intertemporal risk; and the comovement between changes
in individual wealth and changes in future individual portfolio returns. I will denote model (22)
as the Generalized ICAPM (GICAPM).

In the case of an homogenous investor that does not face idiosyncratic shocks in both wealth

and intertemporal risk, then we have
VW1 =V 2y =CWZi 1 =0,

and the Merton’s ICAPM arises as a special case of the Generalized I[CAPM,

w.
Ei(Rnt+1) — Rptv1 = At Covi(Ry 141, %1) + Aot Covi (R ti1, 2e41)-
f



If we assume constant risk prices and apply unconditional expectations to Equation (10), we

obtain the Generalized ICAPM in unconditional form,

%%
E(Rpt+1 — Rpv1) = Ay Cov(Ry 141, %1) + A, Cov(Ry t41, 2t41) + Avw Cov(Ry 41, VWiia)
¢
‘l‘AVZ COV(Rn,t—I—la VZH_1> + )\C’WZ COV(Rn7t+1, CWZt+1). (11)

Notice that in the above model the shocks in wealth are assumed not to be completely idio-
syncratic, in the sense that they are partially correlated across investors. This assumption seems
economically plausible, since for example in a recession, while some investors will be more strongly
affected than others, it is likely that most of them will suffer negative shocks in their respective
incomes. Furthermore, the factors VW, 1, VZ,,; and CW Z,,, although being related with in-
vestor heterogeneity, they are not by any means idiosyncratic. Instead, they reflect dispersion in
wealth and intertemporal risk (and the comovement between those two), which is not diversified

away.

2.2 Measuring the cross-sectional risks

In order to be able to empirically test the model, we need to measure the covariance terms include

in the GICAPM in equation (11), and more specifically to obtain proxies for the factors in,t L Ziit,

VW1, VZips and CW Z,41. In the following empirical analysis, the market return, R, 11, is used

as a proxy for changes in the average or aggregate wealth, W&,—tl To measure the cross-sectional

variance in wealth, VW, 1, I use the cross-sectional variance (standard deviation) associated with

individual asset returns,

N
— 1
VRt+1 = N Z (Rn,tJrl - Rn,t+1)27
n=1
1 N
Rn,t 1= 77 Rn,t 15
n= ; -



where R, ;1 denotes the cross-sectional average return. This measure seems economically intuitive,
since with heterogeneous shocks in wealth, the net demand for a given stock will diverge across
investors, thus affecting the prices and returns of that same stock. In addition, if we assume
that the net demands will diverge within stocks, this creates dispersion within the cross-section of
stock returns. For example, in response to the arising of credit constraints and negative income
shocks in economic downturns, (which affect some investors more than others), it is likely that
investors will increase their demand for certain categories of stocks (e.g., large/growth stocks) and
decrease their demand for other categories (e.g., small/value stocks). It is important to assume
that shocks in wealth are not perfectly negatively correlated across investors, otherwise they would
have no effect on the total demand and hence on stock prices, i.e., the net individual demands
would be zero, leaving prices unchanged).! In addition, some investors will be more keen to hedge
certain types of risks (e.g., recession risk), and thus will demand different classes of assets, than
the other investors. Therefore, the dispersion in wealth shocks will have an impact on actual prices
and returns for the whole cross-section of stocks, which translates into a higher dispersion among
individual stock returns. On the other hand, Goyal and Santa-Clara (2003) find that a measure
close to the cross-sectional variance of returns, is able to forecast future market returns. Thus,
in an ICAPM context, such a variable should be included as an additional factor that prices the

cross-section of returns.

Instead of using the whole cross-section of stocks, I rather compute VR based on portfolio
returns. This procedure has the advantage that one mitigates the estimation error arising from the
noise effect associated with illiquid and small stocks, very much like the usual convention that asset
pricing models are tested based on a group of portfolios rather than the complete cross-section of
individual stocks. Nevertheless, the cross-sectional variance based on portfolio returns is related
with the same measure based on individual stocks.. I use two classes of portfolios to evaluate

V' R. The first class are the 25 portfolios sorted on both size and book-to-market (BM) (hereafter,

!Notice that given the assumption of market incompleteness, the investors can not fully insure their shocks in
wealth with the available assets.



SBM?25) from Fama and French (1993), leading to

25

1
VR = %5 Z (Rn,t+1 - Rn,t+1)27 (12)

n=1

125

Rn == Rn )
= 5 R

where R, ;11 denotes the return for the nth portfolio, n = 1,...,25. As a robustness check, and to
increase the number of returns used in the calculation of the cross-sectional return variance, I use
100 portfolios also sorted on both size and BM (SBM100, hereafter), available on Kenneth French’s
website, and which represent the intersection of 10 portfolios sorted on size and 10 portfolios sorted

on BM. In this case, the measure for dispersion in returns becomes

1 & _
VR:H = 95 Z (Rn,t+1 - RZ,tH)Q; (13)

n=1

95

. 1
Rn,t+1 = 95 Z Ry i1
n=1

Due to missing observations during the period in analysis (January 1963 to December 2003),
the portfolios SBM, 3, SBM7 10, SBMos, SBMiog, SBMio,10 - where the first number indexates
the size quintile, and the second number refers to the BM quintile - are excluded from the sample,

leading to a total of 95 portfolios.

In order to measure the investor dispersion associated with intertemporal risk, I will focus on
a single state variable that constitutes a proxy for intertemporal risk - the dividend yield. The
aggregate dividend yield (or similar financial ratios like the market earnings yield or the aggregate
book-to-market ratio) represents the most widely used (and most important variable) to predict
market returns, in the predictability of returns/asset pricing literature (for a non-exaustive list,
see Fama and French (1988,1989), Campbell and Shiller (1988a), Hodrick (1992), Campbell and
Vuolteenaho (2004), Maio (2005a,b)). The predictive role of the market dividend yield can be

rationalized in the context of the following dynamic accounting identity developed by Campbell
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and Shiller (1988a),

dy — py = const. + By ZP] [Tt+1+j - Adt+1+j] ) (14)
j=0
where
e d; denotes log market dividend in period ¢;

p; is the log market price index in period t;

ri+1 stands for the log market return realized at period ¢;
e p is a linearization parameter related with the average dividend-to-price ratio.

The identity (14) is derived from the definition of market returns and by imposing a non-bubble

condition that prices can not rise forever,
lim p/py; =0,
j—00

and the main message is that, conditional on future expected aggregate dividend (or cash flow)
growth, a higher aggregate dividend yield today must be followed by higher expected market
returns in the future, due to the mean-reversion in most stock prices. Naturally, the identity (14)

is not only valid for the market as a whole, but also for each individual stock,

dypt — Pnyt = const. + Ey Z %[Tn,t+1+j — Adpt1144), (15)
=0
n=1,..,N,

where
® d, . is the log dividend for asset n, in period ¢;
® D, is the log price for asset n, in period ¢;

® 7,41 stands for the log return on asset n realized at period ¢;
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e p, is the linearization parameter for asset n.

From (15), it is clear that individual stocks’s dividend-to-price ratios should help to forecast
expected individual returns (conditional on expected dividend growth associated with the asset at
hand) - given the mean reversion in individual stock prices - similarly to the predictive role played
by the aggregate dividend yield over market returns. From this, it follows that when one wants to
forecast individual returns, the forecasting power of asset dividend yields should be greater than
the one associated with the market dividend yield. To assess this argument, I conduct the following

predictive regression for each of the SBM25 portfolios,

n T
Tottiptk = O + 0p DY, 4 4 Up 411 44k, (16)

n=1,..,25,

where

® 7,1+1.4+k 15 the continuously compounded excess return over k periods, for portfolio n;
e DY, , represents the dividend yield associated with portfolio n, measured at time t;

® Uy ii1.44+% i the k-periods ahead forecasting error for portfolio n.

To allow the comparison with the predictive ability associated with the market dividend yield,

I also compute the following regression for each portfolio,

Tnttit+k = O + 0y DYy + Up 411 14k (17)

n=1,.. 25,

where DY, denotes the market dividend yield. I use forecasting horizons of 1, 3, 12 and 24 months
ahead. To obtain the portfolio dividend yield data, I subtract the return data excluding dividends

associated with SBM25 (also available on Kenneth French’s website), from the respective total
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return data,

where ant denotes the ex-dividend return for portfolio n. Figure 1 plots the Newey and West (1987)
asymptotic t-statistics (calculated with 5 lags) associated with b} in the above two regressions, for
the SBM?25 portfolios. Panels A, B, C and D show the results for forecasting horizons of 1, 3,
12 and 24 months ahead, respectively. The main conclusion from Figure 1 is that in the cases
of portfolios where the forecasting variables are statistically significant (at the 5% level), the t-
statistics associated with the portfolio’s dividend yield are in general greater than the corresponding
ones for the market dividend yield. This is especially true for the lowest size quintiles (those in

which predictability is stronger), and it is robust across forecasting horizons.?

In the Generalized ICAPM model above, the investor heterogeneity in intertemporal risk, is
linked with the fact that each investor will have different portfolios (different weights assigned to
the N available assets), combined with the dispersion across assets in the predictability of returns.
Therefore, in accordance with V' R, the cross-section variance associated with "intertemporal risk"
consists of the dispersion of portfolio dividend yield across the classes of portfolios SBM25 and
SBM100. More specifically,

25
1 —\2
VIR = 2% E (DYn,tH - DYt+1) ) (18)
n=1
12

DYy = % DY, 141,

n=1

2For the last size quintiles, the t-statistics associated with the market and portfolio measures of the dividend
yield, are more similar and in some cases reverse in relative magnitudes, which is not surprised given that the market
dividend yield is associated with the value-weighted index and thus more tilted towards larger caps.
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and

95
* 1 o) 2
VIR = | oz > (DYar = DY) (19)
n=1

95
— 1
DY = 52 > DVars,
n=1

where DY, and DY% | denote the cross-sectional average dividend yield for SBM25 and SBM100,
respectively.

Given the measures (12-13) and (18-19), it follows that the factor associated with the investor
comovement between changes in wealth and "intertemporal risk", CW Z, can be now approximated

as

25

1 - -
CIRRi+ = 2% (Rn,t+1 — Rn,t+1) (DYn,t+1 - DK&H) ; (20)
n=1
|5 - L
CIRR;, = %5 > (Russr — By yyy) (DY — DY), (21)
n=1

respectively for SBM25 and SBM100.

Finally, the aggregate intertemporal risk is measured by the smoothed log earnings yield as-
sociated with the S&P composite index, FY 10, which is based on a 10 year moving average of
aggregate earnings.’

Figures 2-4 present the time-series for the cross-sectional risk factors, VR, VR*, VIR, VIR*,
CIRR, CIRR*, while Table 1 presents descriptive statistics for this group of variables in addition
to the excess (value-weighted) market return, RM RF', and the smoothed log market earnings
yield, £Y10. We can see in Figure 2 that the peaks in both V R and V R* are in general associated
with periods coincident (or near) to NBER economic recessions. This is especially relevant in late
90’s and the early 2000’s, when there is a large increase in stock price dispersion, which might be

related to the economic downturn occurred in 2001; the NASDAQ bubble and increased uncertainty

3The smoothed earnings yield is available from Robert Shiller’s website, and is employed by Campbell and Shiller
(1998), Campbell and Vuolteenaho (2004), and Maio (2005a), among others.
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concerning both the state of the economy and future cash flows. Figure 3 shows that both VIR and
VIR* also tend to increase in recessions, although the biggest increases occur in late 80’s (before the
recession in early 90’s). In addition, the comovement between portfolio returns and dividend yields
registers large swings (of either sign) around recessions. These findings are partially confirmed by
the following regressions containing the NBER business cycle dummy variable (CYCLE, 1 for

expansions, 0 for economic expansions), with OLS t-statistics in parenthesis,*

VR, = 0.026—0.004CYCLE,, Adj.R* = 0.010,
(16.290) (—2.471)
VIR, = 0.002—0.0005CYCLE,, Adj.R* = 0.066,
(22.147)(—5.990)
CIRR, = 0.000 —0.00001CY CLE,, Adj.R? = 0.005,

(2.263)(—1.878).

The descriptive statistics in Table 1 show that the cross-sectional factors are not highly au-
tocorrelated, and also not strongly contemporaneously correlated among themselves. The biggest
correlations are between RMRF and CIRR/CIRR* (-0.398/-0.408), and between EY10 and
VIR/VIR* (0.612/0.493)

Given the cross-sectional moments in Equations (12-13), (18-19), and (20-21), the Generalized

4In the case of VR*, VIR* and CIRR*, the regressions present similar results

VR = 0.033—0.004CYCLE,, Adj.R? = 0.009,
(20.866) (—2.362)
VIR: = 0.002—0.0005CYCLE,, Adj.R> = 0.032,
(19.757)(—4.167)
CIRR; = 0.000—0.00001CY CL Ey, Adj.R? = 0.008,

(2.793)(—2.277)
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ICAPM in Equation (11) is now given by

E(Ruit1 — Rpip1) = Ay Cov(Ry 01, RMRE, (1) + Agy Cov(Ry 141, EY10411) + Avr Cov(Ry, 41, V Rit1)
+Avir COV<Rn,t+1; V[Rt+1) + Acirr COV<Rn,t+1; CIRRt+1)7 (22)
E (Rn,t—H — Rf,t—H) = >\M COV(Rn’t_H, RMRFt+1> + >\EY COV(RTM_H, EYlOt_H) + )\VR COV(Rn,t_H, VRLA)

+)‘VIR COV(RmH_l, V]Rz+1) + )\CIRR COV(RmH_l, C]RR;:+1) (23)

3 Asset Pricing Tests

3.1 Model estimation and evaluation: Two-stage GMM

In this sub-section, the Generalized ICAPM from Equations (22-23) is estimated and evaluated,
by using the two-stage GMM framework (Hansen (1982)), where the weighting matrix used in
the first-stage is the identity matrix, and in the second stage the weighting matrix is the inverse
of the moments (spectral density) matrix. Therefore, the first-stage GMM with equally weighted
pricing errors is equivalent to an OLS cross-sectional regression of average excess returns on asset
covariances, whereas the efficient GMM - which assigns more weight to pricing errors with lower
variance - is analogous to the corresponding GLS cross-sectional regression (Cochrane (2001),
Chapter 13). The N sample moments correspond to the pricing errors for each of the N test

assets, i.e., the sample counterpart of (22),°

) 1 ZT: (Rpit1 — Rpip1) — AuRn i1 RMRF 1 — Apy R 11 EY 10444 0
gr == =Y,
TS| =AveRusa VR — MvirRu VIR — AcrrrRay 1 CTRRy 1

n=1,..., N, (24)

and similarly for model (23). The asymptotic standard errors associated with system (24) account

for measurement error in the covariances. As a robustness check, I compute standard errors that

>The factors are previously demeaned.
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don’t correct for estimation error in covariances, (i.e., threat the covariances as fixed regressors as
opposed to generated regressors), arising from the following GMM system,
1

T
T g {(Rnt+1 — Rfi41) = AOnvt — AgyOn gy — AVROWVE — AVIROn VIR — ACIRROn.cIRR} = 0,
=0

gr(A) =

n=1,..,N, (25)

where 0, py = Cov(Ry 141, RMRF 1), 055y = Cov(Ry 41, EY10441), 00 vr = Cov(Ru 41, V Rit1),
Onvir = Cov(Ry 141, VIR 1), 0ncrrr = Cov(R,, ¢41, CIRR;4 1) denote the (previously) estimated
covariances with the factors.

The standard errors for the parameter estimates 5\, associated with both first and second stage

GMM, are respectively given by

~ 1 ~
Var(A) = f(d’INd)—1d’INSINd(d’INol)—1, (26)
~ 1 ~
Var(\) = T(d’S‘ld)‘l, (27)
where Iy is a N order Identity matrix, d = a’g—j\(,j‘) represents the matrix of moments’ sensitivities

to the parameters, and S is a estimator for the spectral density matrix S. The variance-covariance

~

matrix for the pricing errors, & = gr (A), is represented by

Var(&):%(IN—d(d’INd)_l)d’IN)S(IN—INd(d’INd)_l)d’), (28)

A

Var(&):%(IN—d(d’S‘ld)l)d'S‘l)S(IN—Q‘ld(d'S‘ld)1)d’), (29)

for first-stage and second-stage GMM, respectively’. The asymptotic test that the pricing errors

are jointly zero (test of overidentifying conditions or J-test) is represented by

T&'S'éa ~ x*(N — K), (30)

0 Jagannathan and Wang (1998) point out that under some circumstances, the precision associated with non-
corrected standard errors is not necessarily overstated when compared to corrected standard errors.
"The second stage GMM estimation is associated with system 24.
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with K being the number of factors used in the model (K = 5, in the benchmark model). The
asymptotic statistic (30) enables us to formally accept or reject a given model. In alternative, we
can compute two goodness-of-fit measures to evaluate the overall pricing ability of the model - the
average pricing error (root mean square error, RMSE) and the cross-sectional OLS R?*. RMSFE

is represented by

and the cross-sectional OLS R? is

Ry g=1- =t © (32)

- QMY (5 QA
Bo= 73 (Bupir = Rpenn) = 55 > {T > (Bngsr = Rf,m)} ,
) N -1 )
N-K)’

R%, ¢ measures the proportion of cross-sectional variance in excess returns not explained by
the model, and Adj.R%; 5 stands for the adjusted cross-sectional R?, which corrects for degrees of
freedom in the model (number of factors). Both (31) and (32) represent intuitive measures, since
they give equal weight to all pricing errors (arising from first-stage GMM). The corresponding GLS
cross-sectional R? is given by

Rips=1- 3:9—_13 (33)
where R is the vector containing the (cross-sectional) demeaned average returns, and  is a
diagonal matrix containing the elements from the main diagonal of S.8 The pricing errors, é, are
from the second-stage GMM estimation. In (33) the pricing errors with higher variance are given
less weight, in accordance with the efficient estimation inherent to the second stage GMM.

Table 2 presents the estimation/evaluation results from first-stage GMM for both models

(22) and (23), with the test assets being the SBM25 portfolios. Given the correlations among

8The GLS R? is similar to the one employed in Ferson and Harvey (1999).
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factors documented in Table 1 (Panels B and C), it is convenient to orthogonalize the factors
(VR,VIR,CIRR, EY10) relative to RM RF > Table 2 also presents the results for two alternative
asset pricing models, the traditional CAPM (from Sharpe (1964) and Lintner (1965)), and the
Fama and French (1993) three factor model (FF3 hereafter), which has been empirically successful
in explaining the cross-section of stock returns. The pricing equation for the FF3 model can be

represented as

E(Ruit1 — Rpir1) = Ay Cov(Ry 01, RMRE 1) + Asvp Cov(Ry, 141, SM By yq) (34)

+ A Cov(Ry 11, HM Ly yy),

where SM B and H M L represent the size premium and value premium factors, respectively. The
CAPM arises as a special case of (34) by imposing Asyrp = Agarr, = 0. The results presented in
first row confirm many previous findings (starting in Fama and French (1992)) that the CAPM
performs poorly in pricing the SBM25 portfolios, with a monthly average pricing error of 0.311%,
and a negative cross-sectional R? (-0.598). The FF3 model (in row 4) clearly improves relative to
the CAPM, with a RMSE of 0.139% and an adjusted R? of 0.654. The results for the GICAPM
(row 2) are not too different from those associated with FF3, with a RM SE only marginally higher
(0.147%), and a cross-sectional R? of 0.575. The GIC APM* in row 3 (whose cross-sectional factors
are based on the SBM100 portfolios) provides the best overall results, with an average error of
0.122% per month and with Adj.R%; 4 being 0.704 (notice that Adj.R%; ¢ corrects for the fact that
the GICAPM /GICAPM* have two additional factors relative to FF3). Regarding the J-test, all
four models are rejected, although the levels for GICAPM /GIC AP M* are clearly lower in relation

to both FF3 and CAPM. In terms of the covariance risk prices associated with the cross-sectional

9Given a factor f;, the orthogonalized factor is computed as
Jt =g + éx,
where 1), is the intercept, and é; represents the residual from the following regression,

ft =T + ’thMRFt + Ct.
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factors, both A\yg and Acrrgr are positive, while \y gz assumes negative estimates. Furthermore,

all three risk prices are strongly statistically significant.

While the previous results represent some evidence in favor of the GICAPM, it is important
to orthogonalize the factors among themselves (and not only relative to RM RF') in order to better
interpret the individual contribution from each factor. Following Campbell (1996), Patelis (1997),
and Petkova (2006), I employ a first-order VAR,

Xip1 = AXy + €441, (35)

x; = [RMRF;,, VR, VIR,,CIRR;, EY10,]',

with A representing the coefficient VAR matrix, and RM RF being positioned first in the VAR.

The orthogonalized VAR residuals are then given by

-1
w1 = P ey,

P /
Wi = [wM,ta WEYt, WVR,t, wVIR,thIRR,t] )

with P representing a Choleski matrix. The Generalized ICAPM of Equation (22) is now given by

E (Rpit1 — Rp1) = A Cov(Ry 41, RMRE 1) + Apy Cov(Ry 141, Weyit+1) + Ave Cov( Ry t41, Wy Ri41)

+Avir Cov(Ry 141, Wyirit1) + Acrrr Cov(Ry 111, WerRRt41) (36)

and similarly for GICAPM*.

The VAR estimation results are provided in Table 3. In Panel A the factors are those associated
with the GICAPM, and in Panel B, the factors are from the GICAPM*. We can summarize
the estimation results as follows: V R/V R* are explained by their respective own lagged values,
but also by EY'10; VIR (VIR*) has a negative (positive) autocorrelation coefficient and they
are both correlated with lagged EY10; CIRR/CIRR* are both negatively correlated with lagged

market returns; FY 10 has a very persistent autocorrelation coefficient, and it is also forecasted
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by lagged market returns, which is related with some short-term momentum in stock prices; and

finally market returns are mostly negatively forecasted by CIRR/CIRR*.

The results for model (36) with SBM25 as test portfolios, are presented in Table 4. Panel
A reports the results from first stage GMM, and the efficient GMM estimation is reported in
Panel B'?. We can see that both GICAPM and GICAPM* provide similar results, with a lower
average pricing error than in Table 2 (0.104%). The Adj.R%, 4 are 0.781 and 0.783, for GIC APM
and GICAPM?*, respectively. Regarding the risk price estimates, the asymptotic standard errors
that correct for measurement error in covariances are large, although Agy, Acrrr and Ay, are
statistically significant, based on the non-corrected standard errors. The magnitudes of the risk
prices are obviously different to their counterparts in Table 2, given the different proxies used
(orthogonalized VAR innovations instead of the raw factors). In the second stage estimation, the
risk price estimates have higher precision relative to the first stage counterparts, as indicated by the
respective t-statistics, with both Ac;gr and Agy being statistically significant in either GIC AP M
or GICAPM?*, while the market risk price is no longer significant. While one can not compare
across models, the second stage RM SFE (based on second stage pricing errors) is significantly lower
for the GICAPM in comparison with FF3. The GLS adjusted R?, although being lower than the
corresponding OLS estimates, nevertheless assumes reasonable values for both GICAPM and
GICAPM* (0.685 and 0.314, respectively), whereas in the FF3 model it has a residual magnitude
(0.091). More relevant is the fact that both GICAPM and GICAPM?* are not rejected by the
J-test (p-values of 0.729 and 0.234, respectively), whereas the FF3 model is strongly rejected.
Therefore, these results reinforce the results in Table 2 that the Generalized ICAPM compares

relatively well to the FF3 model in pricing the SBM25 portfolios.

Despite the fact that the SBM25 portfolios have been the most challenging group of assets for
the CAPM, several authors have raised some concerns about asset pricing tests that rely only on

the size/BM portfolios. Lo and Mackinlay (1990) and Daniel and Titman (1997) advert for the

10T the estimation of S, no lagged moments are considered, since the conditional implications of the asset pricing
model force the moments to be serially uncorrelated. Nevertheless, the results associated with Newey and West
(1987) standard errors (calculated with one lag), are similar to those associated with White (1980) standard errors.
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problems inherent with using portfolios sorted on stock characteristics. More recently, Lewellen,
Nagel and Shanken (2006) stress that SBM25 exhibit a strong factor structure (i.e., the time-
series variation in returns is almost explained by only two factors, SM B and HM L), and hence
they argue that asset pricing models containing factors correlated with either SM B or HM L will
artificially price the SBM?25 portfolios, and therefore, one should include as test assets additional
portfolios, which are not so strongly correlated with either SM B or HM L. In response to these
concerns, I use 38 industry portfolios (/N D38) (Fama and French (1997)), 10 portfolios sorted on
the earnings-to-price ratio (£/P); 10 portfolios sorted on the cash flow-to-price ratio (CF/P) and
10 portfolios sorted on the dividend-to-price ratio (D/P) (Fama and French (1996)), as additional
groups of test assets. The results associated with SBM25 in combination with the industry
portfolios (SBM25+ I N D38) are reported in Table 5. The average pricing errors are higher than
the corresponding estimates in Table 4 - reflecting the biggest hurdle of simultaneously pricing
SBM?25 and the industry portfolios - nevertheless, both GICAPM and GICAPM* still have
lower RMSE than FF3 (0.154%/0.153% versus 0.188%). The analysis for the cross-sectional R?
confirms these findings, with GICAPM /GICAPM* having Adj.R%; s of 0.388/0.390 compared
to 0.127 for FF3. Furthermore, the Adj.R%;¢ are similar to the OLS counterparts, in the case
of GICAPM /GICAPM* (0.406/0.395), whereas FF3 has a large negative estimate (-1.374). All
three models are rejected by the asymptotic test (30), which might be related with the large
number of portfolios used in test, and the inherent problems in inverting the spectral density
matrix. Regarding the individual significance of the risk prices, with the sole exception of Ay g
(which is not significant at the 10% level), all the risk prices in the GICAPM /GICAPM* are

statistically significant at the 1% level, in both first and second stage estimation.

The results associated with all portfolios (i.e., by including the 30 additional characteristic
portfolios, SBM25 + CF/P + E/P + D/P + IND38) are presented in Table 6. Essentially, the
results confirm the findings from Table 5: (i) GICAPM /GIC APM* have a lower average pricing
error than FF3; (ii) GICAPM /GIC APM* have higher Adj.R%, o than FF3; (iii) Both Adj.R%; ¢
and Adj.R%, ¢ present similar values in the cases of GICAPM /GICAPM*; and (iv) finally FF3
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has a negative Adj.R%,q estimate. Therefore, the outperformance of the Generalized ICAPM
relative to the FF3 model is maintained when using additional classes of portfolios.
As an additional comparison between the Generalized ICAPM and FF3, I conduct the following

asymptotic difference test (Cochrane (1996), Cochrane (2001)),
T&/ 8 &, —T&. 8 an ~ X" (K*), (37)

which compares the restricted model (&, excluding the factors we want to test) against an unre-
stricted model (&), with S being associated with the unrestricted model. K* denotes the number
of restrictions (equal to K, — K., where K,, K, denote the number of factors associated with the
unrestricted and restricted models, respectively). This test is equivalent to a likelihood ratio test
and enables to evaluate whether the excluding factors are important to price assets. In our case,

the unrestricted model will be the GICAPM in combination with the SM B and H M L factors,

E(Ruit1 — Rpi1) = Ay Cov(Ry i1, RMRE (1) + Apy Cov(Ry 141, Weyier1) + Ave Cov(Ry t41, Wy Ri41)
+Avir Cov(Ryt+1, Wyirit1) + Acrrr Cov(Ry 11, Werrr+1) + Asvp Cov(Ry 111, SM Byyq)

+)\HML COV(Rn7t+1, HMLtJr]_). (38)

Thus, both GICAPM /GICAPM* and FF3 represent special cases of (38). Table 7 reports the
RMSE and cross-sectional R? associated with the unrestricted model (38), which is denoted by
GICAPM+FF3 (GICAPM*+FF3). For convenience, I replicate the corresponding estimates for
GICAPM /GICAPM* and FF3 from Tables 4-6. The results associated with SBM25, SBM25+
IND38, and SBM25 + CF/P + E/P + D/P + IND38 are reported in Panels A, B and C,
respectively. We can see that the RMSFE estimates associated with both the unrestricted model
and the Generalized ICAPM are very similar, and this pattern is robust across the three classes of
test portfolios. On the other hand, the Adj.R%; magnitudes associated with the general model
(38) are slightly lower than the corresponding estimates for GICAPM /GIC APM*. This pattern

is more accentuated in the case of Adj.R%; s, given that the FF3 model has either negligible
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(Panel A, SBM?25) or negative estimates (Panels B and C, augmented portfolios) of Adj.R%; .
Therefore, these facts suggest that both SM B and HM L don’t add explanatory power over the
cross-section, in the presence of the factors contained in the Generalized ICAPM. The levels and
respective p-values for the Difference test (37) - reported in the last two columns of Table 7 -
confirm these findings. In Panel A, we accept the null that neither group of excluded factors is
important, although the p-values associated with GICAPM /GICAPM* (as restricted models)
are significantly higher when compared to FF3 (0.866 for GICAPM* versus 0.205 for FF3). In
both Panels B and C, the test accepts the exclusion of both SMB and HML, i.e., both the
GICAPM and GICAPM™ are note rejected as restricted models. On the other hand, the test
strongly rejects the exclusion of the four factors contained in the Generalized ICAPM (VR/V R*,
VIR/VIR*, CIRR/CIRR*, EY'10,,1), with p-values significantly lower than 5%. Therefore, the

FF3 model as a special case of the general model, is rejected.

The weak performance of the FF3 model in pricing alternative classes of portfolios (e.g, industry
portfolios) is partially related with the fact that both SM B and H M L were designed to price the
SBM?25 portfolios. In response to that, I reestimate both the Generalized ICAPM and FF3, by
assigning a bigger weight to the SBM25 in comparison to the other portfolios, in the joint first
stage GMM estimation. Thus, the first stage weighting matrix assigns a weight of 2 to each of
the 25 size/BM portfolios, and a weight of 1 (as previously) to the remaining portfolios. The
estimation is conducted for SBM25+ IN D38 and SBM25+CF/P+ FE/P+ D/P+IND38. The
"reduced" RMSFE,

(39)

measures the average pricing error, within the SBM25 portfolios. In addition, the "weighted"

cross-sectional R?,
& W&

R?=1- e
R W*R

(40)

is a proxy for the model’s overall explanatory power, with the pricing errors weighted properly
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according to W*.!!' The results in Table 8 show that the estimates of RMSE* associated with
GICAPM /GICAPM* are lower than the counterparts associated with the FF3 model, for both
classes of portfolios. These results are confirmed by the adjusted weighted R2, which assumes higher
values for both GICAPM /GICAPM* in comparison with FF3 (0.531 for GIC AP M* versus 0.316
for FF3 in Panel A, and 0.570 versus 0.404 in the estimation with all test portfolios). Therefore,
by assigning more importance to the SBM25 portfolios, the Generalized ICAPM continues to do

well relative to the FF3 model.

In order to have an assessment on the individual pricing errors, Figure 5 plots the estimated
excess returns (vertical axis) against the realized excess returns associated with the SBM25 port-
folios. Panels A, B, and C are associated with GICAPM, GICAPM* and FF3 models, re-
spectively. The estimated returns are from the first stage estimation, in order to be able to
compare across models. We can confirm the better fit around the 45° line, in the case of both
GICAPM |GICAPM* compared to FF3. The biggest outlier is the extreme small-growth portfo-
lio (southern point) which is difficult to price for all three models. Figure 7, Panel A, presents the
first stage pricing errors for SBM?25. We can see that for most portfolios, the pricing errors arising
from GICAPM /GICAPM?* compare favorably with those associated with FF3. In particular,
FF3 has significantly higher pricing errors for portfolios SBMsy, SBMys, SBMs,, SBM;5s5, where
the first index denotes the size quintile and the second index measures the BM quintile. Figure 6
(Panels A, B and C) plots the estimated /realized excess returns for the industry portfolios. The
graphs show that there is also significant less dispersion around the 45° line, for the Generalized
ICAPM in comparison with FF3. The graph for the industry pricing errors (Figure 8, Panel A),
shows that for most industries, FF3 has larger pricing errors than GICAPM /GICAPM*. The
difference in error magnitudes across models is greater for Food (FO, in the graph); Tobacco (SM);

Wood (WO); Chemicals (CH); Metal (ME) and Transportation (TR).

Tn the calculation of the "weighted" cross-sectional R2, all the pricing errors are included.
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3.2 Model estimation and evaluation: The Hansen and Jagannathan

(1997) distance

In alternative to the traditional first-stage estimation with equally pricing errors, several authors
have used the weighting matrix associated with the Hansen and Jagannathan (1997) distance, in
the first stage estimation (e.g., Jagannathan and Wang (1996), Hodrick and Zhang (2001), Jacobs

and Wang (2004), among others). The HJ weighting matrix is given by

T —1
1
t=1

where R, is the vector containing asset returns at time ¢, thus assets with a larger second moment

in returns are given less weight in the estimation. The HJ distance, which is equal to

N

HJ = (&'Wya)? (42)

can be interpreted as the minimum distance between a given candidate SDF an the set of all true
SDF’s. The HJ method shares with the first stage estimation (with equally weighted errors) the
attractive feature that one can compare the results across different models, since they don’t rely on
the estimation of S (as it is the case with efficient GMM). Nevertheless, the results associated with
Wy are more difficult to interpret than the estimation with equally weighted errors. Moreover,
often the second moments matrix of returns is near singular which causes difficulties in the inversion

(Cochrane (1996)).

The results associated with the HJ method are presented in Table 9, for the case of the SBM25
portfolios. Panel A presents the first stage estimates, and Panel B reports the corresponding
efficient estimates. The average pricing error is similar across the three models, although RMSFE
is not a convenient measure in this context, since the GMM estimation does not weight portfolios
equally. More relevant is the fact that the HJ distance is lower for both GICAPM /GIC APM*

relative to FF3 (0.341/0.331 versus 0.367). Moreover, we can not reject the null that HJ is zero, for
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both GICAPM /GIC AP M* at the 5% significance level (p-values of 0.087 and 0.063, respectively).
On the other, we reject the null HJ = 0, in the case of FF3'?. By looking at Adj.R%; ¢ it happens
that FF3 has higher values than in Table 4, but still with lower estimates in comparison with both
GICAPM /GICAPM* (0.196 versus 0.432/0.285). Compared to the corresponding t-statistics
in Table 4, the first stage risk prices associated with VR (VR*) and CIRR (CIRR*) are now
statistically significant. On the other hand, the three models are rejected by the J-test at the
5% level, although the test level associated with FF3 is the double of the corresponding levels for
GICAPM |GICAPM*.

The estimation results for the augmented portfolios are reported in Tables 10 (SBM25 +
IND38) and 11 (all portfolios). We can see that in both cases, the estimates associated with H.J
are similar across the three models. Nevertheless, the FF3 model still has very low estimates for
Adj.R%; ¢ (-0.643 in the case of SBM25 + IN D38, and 0.001 in the case of all portfolios).

Figure 5 (Panels D, E and F) present the plot for the estimated/average returns associated with
the S BM25 portfolios, arising from the HJ estimation. We can see that both GICAPM /GIC APM*
have a better fit relative to FF3, although the difference is not as relevant as in the estimation
with equally-weighted errors (Panels A to C). The plot of the corresponding average pricing errors
in Figure 7 (Panel B), confirms this evidence, with the portfolio pricing errors being more similar
across models, (compared to Panel A in the same figure), with the greatest gap being with portfolio
SBMs;. In the cases of the industry portfolios, both Figures 6 (Panels D, E and F) and 8 (Panel
B) show that the pricing ability for the industry portfolios associated with FF3 is closest to both
GICAPM /GICAPM*, in comparison with the case of equally weighted errors.

3.3 The Value Premium

The value premium refers to the CAPM anomaly in which growth stocks have low average returns
and large negative pricing errors (associated with the CAPM) and value stocks have large aver-

age returns and positive pricing errors (Fama and French (1992, 1993)). We already saw in the

12The p-values associated with the test H.J = 0, are calculated as in Jagannathan and Wang (1996) and Hodrick
and Zhang (2001), with 10.000 simulations of a weighted sum of x? (1) distributions.
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previous sub-sections that the GICAPM /GIC APM* model is able to do reasonably well - and
even outperform the FF3 model - in pricing the SBM25 portfolios. This sub-section goes one step
further and seeks to assess how GICAPM /GIC APM* perform in explaining the extreme growth
and value portfolios in comparison to FF3, by assigning a larger weight to those portfolios in the
first stage estimation. The analysis done above for the SBM25 portfolios is replicated for the ex-
treme BM quintiles within each size quintile: SBMi1, SBMi5, SBMs, SBMss, SBMsz1, SBM;s,
SBMy, SBMys, SBMs5,, and SBMss. The GMM weighting matrix assigns a weight of 2 for each
of these 10 portfolios, and a weight of 1 for all remaining portfolios. In this case, the estimation
is done with the three classes of portfolios, SBM25 (Panel A), SBM25+ IN D38 (Panel B), and
all portfolios (Panel C). The "reduced" RMSFE is now given by

(43)

where the ¢&,’s denote the pricing errors associated with the 10 portfolios described above. The
"weighted" cross-sectional R? is similar to that in (40) with W* accounting for the new weights.
The results presented in Table 12 indicate that the estimates of RM S E* associated with GICAPM /GIC AP.
compare favorably with the corresponding estimates for FF3: In the case of the SBM25 portfo-
lios, RMSE* achieves 0.114%/0.134% for GICAPM and GIC APM?*, respectively, compared to
0.182% for FF3. This pattern is maintained for the other two groups of portfolios in Panels
B and C. On the other hand, the "weighted" cross-sectional R? assumes higher values for both

GICAPM /GICAPM?* in comparison to FF3 (0.799/0.779 versus 0.646, in the case of SBM25).

The previous analysis is further replicated for the separate cases of growth and value portfolios.
The growth portfolios which are given a higher weight are SBM;;, SBMy, SBMsy, SBMy,
S BMs;, whereas the extreme value portfolios are SBMi5, SBMss, SBMss, SBM,s, SBMss. The
results (not shown) largely confirm the findings in Table 12, with RM S E* achieving lower values in
both GICAPM /GIC AP M* relative to FF3 and with the "weighted" cross-sectional R? assuming
higher values for both GICAPM /GIC APM* against FF3.
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Within the class of SBM25 portfolios, the most difficult portfolio to price is the extreme
small-growth portfolio (SBMai;), as shown in Figures 5 and 7. The pricing error estimates for this
portfolio (&41) are -0.324%, -0.357% and -0.353% for GICAPM , GIC APM* and FF3, respectively.
When the first stage GMM estimation assigns a weight of 2 to SBM;; and 1 to the remaining
24 portfolios in SBM25 - i.e., more importance is given to the small-growth portfolio - then
the estimated errors are -0.235%, -0.279% and -0.288% for GICAPM, GICAPM* and FF3,

respectively.

What are the factors that drive the ability of the Generalized ICAPM to price the value pre-
mium? To address this issue, I calculate the risk premium (covariance times risk price) for each
factor, and across each BM quintile. Table 13 reports the factor risk premiums and average pricing
error across book-to-market quintiles, for both the GICAPM, GICAPM* and FF3 models'3. We
can see that in both GICAPM and GIC APM* the risk premium attached to CIRR is negative
for growth stocks (denoted by BM1) and positive for value stocks (BM5), producing a gap of -
0.475%/-0.432% across extreme quintiles, for GICAPM and GIC AP M*, respectively. In addition,
the risk premium associated with £Y 10, is almost zero for growth stocks and largely positive for
value stocks, with a resulting gap of -0.338%/-0.315% respectively for GICAPM and GICAPM*.
Thus both CIRR and EY 10 mimic the role played by HM L in the FF3 model, into explaining
the value premium. By comparing across models the average pricing errors per BM quintile, we
can see that, with the sole exception of the middle BM quintile, both GICAPM /GIC AP M* have

lower average errors than the FF3 model.

In retrospect, the results of this subsection confirm that the Generalized ICAPM is able to

price the value premium.

13The average risk premium per BM quintile is equal to the risk price times the average covariance associated
with that quintile.
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4 Conclusion

This paper derives a theoretical asset pricing model that represents a generalization from the
Intertemporal CAPM, by relaxing the representative investor assumption. There are two types of
investor heterogeneity. First, there are idiosyncratic shocks in wealth, which are not fully insurable
by financial markets. Second, each investor is assumed to have different "intertemporal risks", i.e.,
they face different state variables that proxy for changes in future portfolio returns. The result is a
five factor model, whose factors are the change in aggregate wealth; aggregate intertemporal risk;
dispersion on investor’s wealth; dispersion in investor’s intertemporal risk; and the comovement
across investors between shocks in wealth and in intertemporal risk. The cross-sectional factors are
the novelty relative to the standard ICAPM, and arise from the existence of investor heterogeneity.
The model is denoted as the Generalized ICAPM (GICAPM).

In the empirical implementation of the model, due to measurement issues, the cross-sectional
variance of returns is used as a proxy for the dispersion in wealth across investors. Furthermore,
the cross-sectional variance for the dividend-to-price ratio is used as proxy for the dispersion in
intertemporal risk. Finally the market return is used instead of changes in market wealth, and the
market earnings yield is the proxy used for aggregate intertemporal risk.

The empirical test of the model shows that the Generalized ICAPM is able to price reasonably
well the Fama and French (1993) portfolios, and compares favorably with the Fama and French
(1993) model. These results are robust to tests made with additional classes of portfolios - industry
portfolios and alternative characteristic portfolios sorted on the cash flow-to-price, earnings-to-price
and dividend-to-price ratios. In addition, the results are robust to different estimation methodolo-
gies, the two-stage GMM procedure with equally weighted pricing errors in the first stage, and in
alternative, the two-stage method with the Hansen and Jagannathan (1997) weighting matrix, in
the first stage. Moreover, the Generalized ICAPM is able to price at least as well as the Fama and
French (1993) model, the extreme growth and value portfolios, that is, the GICAPM explains the

value premium anomaly.
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A An ICAPM with cross-sectional risk

The problem for Investor ¢ is stated as

Je (Wi, )

e (YU

{CtZJrj }j:07{w’1’lvt+j}j20 Jj=0

s.t. { Wiy =Ry, (W) = CY)
R, =9(2)

Y

and can be represented in a dynamic programming framework, in the following form

Je (W 50) = max {0 (C) +0 B [ Wiy, 7))
t’wn,t
s.t. { Wti+1 - R;),tJrl(Wti._ CZ) (A.l)
R;,tJrl =9 (%)
where J; (W}, z}) denotes the value function for investor i; R}, ,,, is the gross return on investor i’s

reference portfolio; z; are the state variables that forecast R}, ,,,," and w}, , is the weight for asset
n in the portfolio of investor 7. The f.o.c. with respect to C} is equal to

v’ (Ctz) =0 [JW,tH (WtiJrl? sz) R;,HJ ’ (A.2)

where U’ (C}) stands for the first partial derivative relative to Cf, and Jy 4, is the first partial
derivative of J; (.) w.r.t W ;. By applying the envelope theorem to (A.1), Jw, (.) can be repre-
sented as

o oC"t , . . . . . .
Jwp (Wtz7 ztz) - 8thti {U, (Cz) — 0K [‘]W:HI (I/Vtzﬂv ZZ+1) R;,t—i-l] }+5 Eq [‘]W,Hl (Wtz+17 th+1) R;,HJ ’
(A.3)
and by using Equation (A.2), Equation (A.3) simplifies to
Jwar (W}, 2) = 0B [Jwers (Wi, 20) Ry 4] S (A4)
which can be rewritten, given (A.2), as follows
Jwe (W, 2) =U' (C}) . (A.5)

By updating (A.5), substituting the result in (A.2), and rearranging, we obtain the Euler
equation for investor i,

U ()

1=E WR;M—H

LLL A.6
JW7t (Wtz’ Z;) p,t+1 ( )

[(UWJH (Wiis #1)
t

For notational convenience let’s assume that there is only one state variable, i.e., 2} is a scalar.
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Given (A.6), the stochastic discount factor (SDF) for investor ¢ is equal to

5JW,t+1 (VVti+1a Z§+1)

M} L =h(Wi,,, 2. AT
Let the portfolio return for investor ¢ be represented as
R;,t—&-l = Z sz,t (Rn,t+1 - Rf,t+1) + Rf,t+17 (A~8)
n=1

with Rf;y1 denoting a benchmark return (for example, the risk-free rate).!> Therefore, the f.o.c.
with respect to w;,, is given by

E: [JW,H-I (Wti+17 ZZ) (Wti - Ctl) (Rn,t+1 - Rf,t+1)] =0,
which can be rewritten as

5JW,t+1 (Wti—&-lv fo)
JW,t (WtiJrlJ Z%)

t Rn,t-ﬁ-l

0 w41 (Wti+1a Zz)
=F . A —~ R . A9
t [ Jwit (Wtz+17 Zz%) Fet (49)

By substituting (A.8) in (A.6), and rearranging, we obtain

= . 0 w1 (Wi, 20) 0wt (Wi, 21)
1: 7;1 E ) i +17‘ t Rn —R +E t+ ‘t+17' t ’
; Wit Lt Jwe (WZH? z%) (Rnt+1 1) t T ( i z;) fi+1

and by using (A.9) leads to

5JW,t+1 (Wt+17 Zt)
Jw (Wt+1a Zt)

1=E; Ry Ryt (A.10)

0Jwit1 (Wti—i-lu Zz)
t - -
Jwi (WtZJrl? 22)

for an arbitrary return R, ;1. By averaging across I investors, the general pricing equation (A.10)
can be rewritten as

1 =E¢ [Mis1Rpi1a], (A.11)
0Jw,i1 (Wti+1, Z§+1) 1o i i
Mt+1 Z t+1 z_; JVV,t (Wtia Z;) = T 1221: h( t+1> Zt—f—l)v (A12)

where M, represents the average SDF in the economy.

The function h(W/,, z{,,) in Equation (A.12) can be approximated by a second order Taylor

15The normalization that the benchmark return is the Nth asset does not play any role in the derivation.
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equation,

Wi, zi0) = h(Wigr, ze1) 4+ hwe(Wiga, ze01) (Wi = Wisa) 4 ke (Wen, zea) (26400 — 2e01) +

1 . 2 1 . 2
Shww (Wi, 2e01) (VVt—',-l - Wt+1) + §hzz(Wt+1, Zty1) (Zt+1 - Zt+1) +

2
hw (Wi, 2e41) (Wti—&-l - Wt+1) (2’;}1 - Zt+1)

I

I
1 ; 1 ;
Wi = 7 § Wit 2 = 7 § At (A.13)
i=1

=1

with Wi, representing the cross sectional average or market wealth, and 2;,; denoting the cross
sectional average for the state variable. By taking the average across the I investors, the average
SDF in the economy is given by

My, = - E h t+17zt+1

1
h(Wt+17 Zt+1) + §hWW<Wt+17 Zt+1)VWt+1 + §hzz(Wt+17 Zt—i—l)VZt—H + th(Wt+17 Zt+1)CWZt+1>

(A.14)
1= /i 2
VW = 737 Wiy~ Wean)”, (A.15)
=1
1, 2
VZt+1 = F Z (Zt+1 — Zt+1) s <A16)
i=1
1 |
CWZt+1 = F Z ( t+1 Wt+1) (Z;+1 - Zt+1) R (A]_?)
i=1

where VW, represents the cross sectional variance for wealth; V' 7, is the cross sectional variance
associated with the state variable; and C'W Z,,; denotes the cross sectional covariance between
wealth and the state variable.
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By applying the Steins’s Lemma'® to Cov, [R,, 11, M;11], we obtain
Covy [Rn,t+17 Mt+1} =

1 1
Wy {Et [hww (Witt, ze41)] + = Be [hwww Wiga, 2e01) VW] + B Ei [heaw (Wi, 2e41) V Ziia| +

2
Wi

Et [hww: Wi, ze01) CW Zi 4]} COVt(Rn,H—h W,
t

)+

1

1
(B Vi, 2] B s (W, ) VWil 4 5 e (Wi, 20) V2] +

Et [hzaw (Wisa, 2e41) CW Zy 4]} Covi (R p41, 2e41)+

1 1
5 Et [hww (Wes1, ze41)] Covi(Ry 11, VWii1) + 5 Ei [ho:(Wiit, 2e41)] Covi(Ryit1, V Zis1)+

E: [hw:(Wit1, zi41)] Covi(Ry 41, CW Zy14). (A.18)

By further noting that the expected conditional SDF is equal to

1 1
Et (Miy1) = E¢ [h (Wit ze41)] + 3 Et [hivw (Witr, 2ze41) VWiga] + 3 Et [he: Wist, 2e01) V Zia| +

Ei [hw: (Wiga, 2e01) CW Zp 4], (A.19)
it follows that the general pricing equation,

Cov; (Rn,t—I—la Mt+1)

E Rn - R = - )
t( 7t+1) fit+1 o (Mt+1)

can be represented as,

%%
Ei(Rni41) — Rpev1 = At Covie (R 441, %) + Aot Covi (R it1, 2e41) + Avwve Covi( Ry p41, VWiiq)
t

+Avzt Covi(Rp 141, V Zis1) + Aewzi Covi( Ry 141, CW Zy1q). (A.20)

In the above asset pricing model, the risk prices associated with the market factor, the state
variable factor, the cross sectional variance of wealth, the cross sectional variance for the state
variable, and the cross sectional covariance between wealth and state variable, are equal to the
following expressions,'”

Jww (Wi, 2¢) + % E¢ [Jwwww (1) VW] + % Bt [Jwwez () VZia] + Ee [Jwww. () CW Z 4]
Jw (Wi, ) + % E: [Jwww (1) VW] + % Et [Jwe: () VZip] + Ee [Jww. () OWZpp]
(A.21)
JWz (Wt7 Zt) + % Et [JWWWZ () VWH—I] + %Et [Jszz () VZH—I] + Et [JZZWW () CWZt-l—l]
Jw (Wi, z) + % E¢ [Jwww (1) VW] + %Et [Jwze () V Zia] + Be [Jww: () CW Zyq]
(A.22)

e = =W,

)\ZtE_

16See Cochrane (2001), Chapter 10.
1"The functions with unspecified arguments (.), have arguments (Wyi1, 2¢41)-
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s Twww (We, z)

A = - ;
T T (Whz) + S B www () VWe] + 3B e () V Zea] + Ee [Jwws () CW Zy 1]
(A.23)
L we(We, )
/\VZt = _ 5 Wzz ty <t
Jw (Wi, 20) + %Et [Jwww () VW] + % Ei [Jw.: () VZia] + B [Jwws (1) OW Zyyq]
(A.24)
N _ Jww (Wi, ;)
cwzt = —

Jw W, 2¢) + 5 Ee [Jwww () VW] + 3B [Jwee () V Za] + Ee [Jww () CW Zya]
(A.25)
In the above derivations for the factor risk prices I have used equation (A.7), and the following
assumptions

( Bt [Jw (Wiga, ze01)] = Jw (We, )
Et [Jww Wigt, 2e41)] = Jww (Wi, 2¢)
= JWZ (Wta Zt)

E: [Jwww (Wi, 241 Jwww W, z)
Et [Jww: Witt, ze41 Jww sz (Wi, zt)
L Bt [Jwee Wi, 2e01)] = Jwze (We, 20)

If there are neither idiosyncratic shocks attached to wealth and to intertemporal risk (i.e., there
is no heterogeneity across investors), then we have

( )]
( )]
Bt [Jw: (Wit1, 2e41)]
( )]
( )]

VWi =VZi =CW 2y =0,

and the pricing equation (A.20) specializes to the Merton (1973) ICAPM,

W,
Et<Rn,t+1) - Rf,t+1 = A\t COVt(Rn,H—h %) + A COVt(Rn,t+17 Zt—l—l)a (A-26)
¢
with risk prices being given by
Jww (Wi, 2¢)
A = - Wy——m——- A.27
Mt t JW (Wt,Zt) ) ( )
JWz (Wt7 zt)
App = —————5, A28
T g (W) (4.28)

By comparing (A.21-A.22) with the corresponding risk prices (A.27-A.28), it is clear that the
risk prices associated with market wealth and "hedging opportunities" in the GICAPM, will not
only depend on Jy (W, z;) , Jww (Wi, z¢) and Jy, (W, z;) - as in the standard ICAPM - but also on
higher order derivatives of the value function, and hence in general, the market and intertemporal
risk prices will be different in the two models.
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Table 1: Descriptive statistics for factors
This table reports descriptive statistics for the factors used in the GICAPM model presented in Equa-
tions (22-23). The factors are the excess market return (RMRF); the log smoothed market earnings
yield (EY'10); the cross-sectional return variance (V R,V R*); the cross-sectional dividend yield variance
(VIR,VIR"); and the cross-sectional covariance between returns and dividend yields (CIRR,CIRR*).
VR,VIR,CIRR are computed based on the SBM25 portfolios, while VR*, VIR*, CIRR* are based on
the SBM100 portfolios. The sample is 1963:01-2003:12. p designates the first order autocorrelation. The
correlations between the factors are presented in Panels B and C. For further details refer to Section 2.

Panel A
Mean St. Dev.  Min. Max. p
RMRF  0.005 0.045 —0.231 0.161 0.055
EY10 —2.830 0.453 —-3.789 —1.893 0.998
VR 0.022 0.013 0.008 0.144 0.503
VIR 0.001 0.001 0.0004 0.005 0.263
CIRR  0.000 0.000 —0.0001 0.0001 0.104
VR* 0.030 0.013 0.015 0.154 0.584
VIR* 0.002 0.001 0.0006 0.009 0.383
CIRR*  0.000 0.000 —0.0001 0.0001 0.115
Panel B
RMRF FEY10 VR VIR CIRR
RMRF  1.000 —-0.012 -0.018 —-0.001 —0.398

EY10 1.000 —0.274 0.612 0.030
VR 1.000 —-0.127 —-0.118
VIR 1.000 0.041

CIRR 1.000

Panel C

RMRF FEY10 VR* VIR* CIRR*
RMRF 1000 —0.012 0.026 —0.039 —0.408

EY10 1.000 —0.313  0.493 0.033

VR* 1.000 —-0.173 —0.139
VIR* 1.000 0.096
CIRR* 1.000
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Table 3: VAR coefficient estimates
This table presents the estimated coefficients (first line of each variable) and associated Newey-
West t-statistics (calculated with 5 lags, second line) for the first-order VAR presented in Equa-
tion (35). The VAR vector is given by [RMRF;, VR, VIR, CIRR;, EY10;] in Panel A, and
[RMRF,VR;,VIR;,CIRR;}, EY10;)' in Panel B, where RM RF is the excess market return; FY 10 is the
log smoothed market earnings yield; VR(V R*) is the cross-sectional return variance; VIR(VIR*) is the
cross-sectional dividend yield variance; and CIRR(CIRR*) denotes the cross-sectional covariance between
returns and dividend yields. The usable sample is 1963:02-2003:12. Italic (bold) t-statistics denote statis-
tical significance at the 10% (5%) level. Adj.R? is the adjusted R2. For further details refer to Section 3.

Panel A
RMRF VR VIR CIRR EY10 Adj.R?
RMRF 0.011 —0.194 —4.095  —240.735 0.007 0.009
(0.233) (—1.545) (—1.261) (—2.663) (1.144)
VR —0.014 0.463 —0.562 6.654 —0.004 0.270
(—0.971) (7.172)  (—0.690) (0.217) (—2.008)
VIR 0.000 0.007 —0.185 1.594 0.001 0.399
(0.059) (4.011) (—2.738) (1.277) (14.602)
CIRR —0.0001 0.0001 0.001 0.043 —0.000 0.033
(—3.176) (1.055) (1.028) (1.050) (—0.138)
EY10 —0.453 0.172 0.766 —8.777 1.000 0.996
(—13.520) (1.621) (0.322) (—0.126) (269.684)
Panel B
RMRF VR* VIR* CIRR* EY10 Adj. R
RMRF 0.019 —0.220 —1.834  —207.158 0.004 0.005
(0.403) (—=1.631) (—1.095) (—2.100) (0.845)
V R* —0.024 0.540 —0.254 1.144 —0.004 0.361
(—1.826) (8.359) (—0.599) (0.038) (—2.719)
VIR* 0.000 0.003 0.186 1.497 0.001 0.260
(0.034) (1.090) (2.480) (0.828) (10.237)
CIRR* —0.000 0.000 0.001 0.053 0.000 0.031
(—3.276) (0.911) (1.123) (1.268) (0.034)
EY10 —0.462 0.197 0.476 —50.617 0.999 0.996

(—14.166) (1.758)  (0.390)  (—0.698) (312.500)
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Table 7: Model comparison tests
This table reports evaluation measures for the GICAPM/GICAPM* in Equation (36) and the Fama
and French (1993) model (FF3). Panels A, B, and C present the results for the estimation with
SBM?25; SBM25 + IND38; and all portfolios, respectively. GICAPM + FF3 and GICAPM* + FF3
represent the unrestricted models. RMSE refers to the square root of the average pricing error
(in %). RzoLS and Adj.RZOLS denote the original and adjusted OLS R2?, respectively. RéLS and
Adj.RéLS stand for the original and adjusted GLS R2, respectively. Dtest and p(D) denote respec-
tively the level and associated p-values for the asymptotic difference x? test. The row labeled FF3*
presents the test values for the Fama and French (1993) model as a special case of GICAPM* + FF3.

Model RMSE(%) R%,s Adj.R%, s R%,s AdjR:, s Dtest p(D)
Panel A (SBM25)
GICAPM 0.104 0.818 0.781 0.738 0.685 0.706 0.703
FF3 0.139 0.683 0.654 0.167 0.091 3.224  0.521
GICAPM + FF3 0.103 0.822  0.763 0.720 0.627
GICAPM* 0.104 0.819 0.783 0.429 0.314 0.288 0.866
FF3* 5.917 0.205

GICAPM* + FF3 0.103 0.823 0.764 0.496 0.327
Panel B (SBM25+IND38)

GICAPM 0.154 0.431 0.388 0.448 0.406 2.827 0.243
FF3 0.188 0.157 0.127 —1.291 —-1.374 12,548 0.014

GICAPM + FF3 0.153 0.434 0.367 0.123 0.020
GICAPM* 0.153 0.433 0.390 0.437 0.395 2.389 0.303
FF3* 14.758 0.005

GICAPM*+ FF3  0.153 0435 0368 0291  0.207
Panel C (SBM25+CF/P+E/P+D/P+IND38)

GICAPM 0.133 0.505 0.481 0.501 0.477 1.656  0.437
FF3 0.159 0.301 0.284 —-0.712  —-0.752  18.223 0.001
GICAPM + FF3 0.133 0.506 0.469 0.534 0.500
GICAPM* 0.134 0.497 0.473 0.468 0.442 1.933  0.380
FF3* 17.941 0.001

GICAPM* + FF3 0.134 0.498 0.461 0.340 0.291
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Table 8: Pricing the size/book-to-market portfolios
This table reports evaluation measures for the GICAPM/GICAPM* in Equation (36) and the
Fama and French (1993) model (FF3). The SBM25 portfolios receive a bigger weight in the
estimation, relative to the other portfolios. Panels A and B present the results for the esti-
mation with SBM25 4+ IND38 and all portfolios, respectively. RMSE* refers to the square
root of the average pricing error (in %), associated with the SBM25 portfolios.  R? and
Adj.R? denote the original and adjusted measures for the weighted cross-sectional R2, respectively.

Model ~ RMSE*(%) R? Adj.R?
Panel A (SBM25+IND38)
GICAPM 0.131  0.548 0.514
GICAPM* 0.121  0.564 0.531
FF3 0.154  0.340 0.316
Panel B (SBM25+CF/P+E/P+D/P+IND38)
GICAPM 0.133  0.583 0.563
GICAPM* 0.124  0.590 0.570
FF3 0.156  0.418 0.404
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Table 12: Pricing growth and value portfolios
This table reports evaluation measures for the GICAPM/GICAPM* in Equation (36) and the Fama
and French (1993) model (FF3). The extreme growth and value portfolios receive a bigger weight
in the estimation, relative to the other portfolios. Panels A, B and C present the results for the
estimation with SBM25, SBM25 + IND38 and all portfolios, respectively. RMSE* refers to the
square root of the average pricing error (in %), associated with the extreme portfolios. R2? and
Adj.R? denote the original and adjusted measures for the weighted cross-sectional R2, respectively.

Model RMSE*(%) R? Adj.R?
Panel A (SBM25)
GICAPM 0.114 0.832 0.799
GICAPM* 0.134 0.816 0.779
FF3 0.182 0.676 0.646
Panel B (SBM25+IND38)
GICAPM 0.173 0.506 0.468
GICAPM* 0.162 0.517 0.481
FF3 0.192 0.290 0.265
Panel C (SBM25+CF/P+E/P+D/P+IND38)
GICAPM 0.176 0.548 0.527
GICAPM* 0.165 0.551 0.530
FF3 0.191 0.381 0.367
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Table 13: Average risk premia and pricing errors across BM quintiles
This table reports the average risk premium (covariance times risk price) for each factor, across the
book-to-market BM) quintiles. The models are the GICAPM (Panel A), GICAPM* (Panel B), and
the Fama and French (1993) model (Panel C). E(R) denotes the average excess return for each BM
quintile, and @ represents the average pricing error per quintile, for each model. The risk price es-

timates are obtained from Table 4. For a description of the factors see Table 4. All the values are
BM1 denotes the lowest BM quintile, and Dif. denotes the differ-
ence across extreme quintiles. The sample is 1963:02-2003:12. For further details, refer to Section 3.

presented in percentage points.

Panel A (GICAPM)

E(R) RMRF VR VIR CIRR FEY10 o
BM1 0.404 0.603  0.128 0.004 —0.414 0.090 —0.007
BM?2 0.631 0.511 0.078 —0.020 —-0.172 0.247 —0.012
BM3 0.738 0.453  0.043 —-0.036 —0.045 0.313 0.010
BM4  0.875 0.422  0.048 —-0.040 0.040 0.394  0.011
BM5 0.952 0.451 0.053 —0.050 0.061 0.428 0.099
Dif. —0.548 0.152 0.075 0.065 —0.475 —0.338 —0.016

Panel B (GICAPM*)

E(R) RMRF VR VIR CIRR® EYI0 &
BM1 0.404 0.620  0.145 0.005 —0.368 0.001 0.002
BM?2 0.631 0.525  0.079 0.037 —0.145 0.152 —0.018
BM3 0.738 0.466  0.042 0.042 —-0.026 0.219 —0.004
BM4  0.875 0.434 0.045 0.036 0.051 0.291 0.017
BM5 0.952 0.464  0.049 0.048 0.064 0.316 0.011
Dif. —0.548 0.156  0.096 —0.043 —-0.432 —0.315 —0.009

Panel C (FF3)

E(R) RMRF SMB HML &
BM1 0.404 0.562  0.214 —-0.354 —0.018
BM?2 0.631 0.476  0.155  0.037 —0.037
BM3 0.738 0.422  0.115 0.204 —0.003
BM4  0.875 0.394 0.100 0.331 0.050
BMb5  0.952 0.421 0.121 0.446 —0.036
Dif. —0.548 0.141  0.093 —0.800 0.018
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Figure 2: Cross-sectional variance in returns
This figure plots time-series of the cross-sectional variance in portfolio returns. In Panel A, the cross-
sectional return variance is based on the SBM25 portfolios (VR), and in Panel B it is based on the
SBM100 portfolios (VR*). The sample is 1963:01-2003:12. Further details are presented in Section 2.
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Figure 3: Cross-sectional variance in the dividend-to-price ratio
This figure plots time-series of the cross-sectional variance in  portfolio dividend

yields. In Panel A, the cross-sectional dividend yield variance is based on the
SBM?25 portfolios (VIR), and in Panel B it is based on the SBM100 portfolios
(VIRY). The sample is 1963:01-2003:12. Further details are presented in Section 2.
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Figure 4: Cross-sectional covariance between returns and dividend-to-price ratios
This figure plots time-series of the cross-sectional covariance between portfolio re-
turns and dividend yields. In Panel A, the cross-sectional covariance is based on the
SBM25 portfolios (CIRR), and in Panel B it is based on the SBM100 portfolios
(CIRRY). The sample is 1963:01-2003:12. Further details are presented in Section 2.
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Figure 5: Model fit: Size/BM portfolios
This Figure plots the estimated excess returns (vertical axis) versus the realized excess
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Figure 6: Model fit: Industry portfolios
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Figure 7: Pricing errors: Size/BM portfolios
This figure plots the pricing errors associated with Figure 5. Panel A presents the
pricing errors associated with equally weighted estimation (Table 4), and Panel B re-
ports the estimates associated with the Hansen-Jagannathan (HJ) procedure (Ta-
ble 9). tj denotes the portfolio associated with 4th size and jth BM quintile.
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Figure 8: Pricing errors: Industry portfolios
This figure plots the pricing errors associated with Figure 6. Panel A presents the
pricing errors associated with equally weighted estimation (Table 5), and Panel B re-
ports the estimates associated with the Hansen-Jagannathan (HJ) procedure (Table 10).
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