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Abstract

This paper derives and tests a �ve factor asset pricing model based on cross-sectional moments, in

addition to market return and the market earnings yield. The three cross-sectional factors are the

cross-sectional variance of returns; the cross-sectional variance of the dividend-to-price ratio; and

the cross-sectional covariance between returns and dividend yields. This model can be theoretically

justi�ed as a generalization from the Intertemporal CAPM, by relaxing the representative investor

feature and assuming two types of investor heterogeneity - heterogeneous shocks in wealth, and

heterogeneous "intertemporal risks". The model is denoted as the Generalized ICAPM (GICAPM).

The empirical tests show that the Generalized ICAPM is able to price reasonably well the Fama

and French (1993) portfolios, and compares favorably with the Fama and French (1993) model.

These results are robust to additional classes of portfolios and di¤erent estimation methodologies.

Moreover, the GICAPM explains the value premium anomaly.

Keywords: Asset pricing; Cross-section of stock returns; Cross-sectional moments; Intertempo-

ral CAPM; Idiosyncratic risk; Heterogeneous investors; Value premium

JEL classi�cation: G11;G12; G14; E44



1 Introduction

Since the pioneer work of Constantinides and Du¢ e (1996) and Heaton and Lucas (1996) sev-

eral studies have been developing asset pricing models where the representative consumer feature

is relaxed. Common to some of these studies is the assumption that the idiosyncratic shocks in

wealth/consumption faced by investors are not fully insurable by �nancial markets, that is, markets

are incomplete, e.g., Constantinides and Du¢ e (1996), Heaton and Lucas (1996), Brav, Constan-

tinidies and Geczy (2002), Cogley (2002), and Jacobs and Wang (2004). Moreover, the focus of

this literature has been on trying to explain both the equity premium and risk free rate puzzles.

More recently, by using data on individual consumption, Jacobs and Wang (2004) have employed a

linear factor model that relies on the �rst two cross-sectional moments of consumption growth, to

explain the cross-section of stock returns, and in particular the Fama and French (1993) portfolios.

Nevertheless, two criticisms often applied to the tests of consumption based models with individ-

ual consumption, are the measurement error associated with that data, and the limited time-series

data available that restricts the statistical power associated with the tests.

On another line of research in asset pricing, the Merton (1973) Intertemporal CAPM (ICAPM)

postulates that state variables, which predict market returns, should act as risk factors that price

the cross-section of average returns. Among the papers that implemented empirically testable ver-

sions of the original ICAPM, are Campbell (1993, 1996), and more recently Chen (2003), Brennan,

Wang and Xia (2004), Campbell and Vuolteenaho (2004), and Maio (2005a,b). Common to these

papers in the derivation of the pricing equations analyzed in the cross section of returns, is the

assumption of a representative investor.

In alternative, this paper derives a theoretical asset pricing model that represents a general-

ization from the ICAPM, by relaxing the representative investor assumption. In particular, the

model allows for two types of investor heterogeneity. First, there are idiosyncratic shocks in wealth,

which are not fully insurable by �nancial markets. Second, each investor is assumed to have di¤er-

ent "intertemporal risks", i.e., they have di¤erent reference portfolios and di¤erent state variables

that proxy for changes in future portfolio returns. The result is a �ve factor model, whose factors
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are the change in aggregate wealth; aggregate intertemporal risk; dispersion on investor�s wealth;

dispersion in investor�s intertemporal risk; and the comovement across investors between shocks

in wealth and in intertemporal risk. The cross-sectional factors are the novelty relative to the

standard ICAPM, and arise from the existence of investor heterogeneity. The model is denoted as

the Generalized ICAPM (GICAPM).

In the empirical implementation of the model, due to measurement issues, the cross-sectional

variance of returns is used as a proxy for the dispersion in wealth across investors. Furthermore,

the cross-sectional variance for the dividend-to-price ratio is used as proxy for the dispersion in

intertemporal risk. Finally the market return is used instead of changes in market wealth, and the

market earnings yield is the proxy used for aggregate intertemporal risk.

The empirical test of the model shows that the Generalized ICAPM is able to price reasonably

well the Fama and French (1993) portfolios, and compares favorably with the Fama and French

(1993) model. These results are robust to tests made with additional classes of portfolios - industry

portfolios and alternative characteristic portfolios sorted on the cash �ow-to-price, earnings-to-price

and dividend-to-price ratios. In addition, the results are robust to di¤erent estimation methodolo-

gies, the two-stage GMM procedure with equally weighted pricing errors in the �rst stage, and in

alternative, the two-stage method with the Hansen and Jagannathan (1997) weighting matrix, in

the �rst stage. Moreover the Generalized ICAPM is able to price at least as well as the Fama and

French (1993) model, the extreme growth and value portfolios, that is, the GICAPM explains the

value premium anomaly.

The rest of the paper is organized as follows. Section 2 presents the model and discusses

the issues involved in its empirical implementation, and Section 3 presents the estimation and

evaluation results for the test in the cross-section of portfolio returns. Finally, Section 4 concludes.

2



2 A Generalized Intertemporal CAPM (GICAPM)

This section presents the theoretical model, and then builds on some analysis that enable the

model�s empirical implementation.

2.1 The model

In this sub-section, I derive the theoretical asset pricing model that represents a generalization

from the Merton (1973) Intertemporal CAPM (ICAPM). To save space, only the main steps in the

model derivation are presented here, while the full derivation is provided in Appendix (A).

The standard ICAPM derives from the consumption/portfolio choice problem of a represen-

tative investor, and hence there is no room for investor heterogeneity. In the following model, I

will allow for investor heterogeneity in two di¤erent ways. First, there are idiosyncratic shocks in

wealth, which are not fully insurable by �nancial markets, similarly to Constantinides and Du¢ e

(1996), Heaton and Lucas (1996), Brav, Constantinidies and Geczy (2002), Cogley (2002), Jacobs

and Wang (2004), among others. This market incompleteness causes the individual consumption

and individual portfolio choice decisions to di¤er across investors. Second, each investor is assumed

to have di¤erent "intertemporal risks", i.e., they have di¤erent reference portfolios and di¤erent

state variables that proxy for changes in future individual portfolio returns. While the �rst type of

heterogeneity is also present in consumption-based asset pricing models with idiosyncratic shocks,

the heterogeneity in "intertemporal risk" is restricted to the ICAPM case.

Consider an economy with I investors and N �nancial assets. The consumer/portfolio choice

problem for investor i can be represented as

Jt
�
W i
t ; z

i
t

�
� max
fCit+jg1j=0;f!in;t+jg

1
j=0

Et

" 1X
j=0

�jU
�
Cit+j

�#

s:t:

8><>: W i
t+1 = R

i
p;t+1(W

i
t � Cit)

Rip;t+1 = g (z
i
t)

; (1)
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where

� Jt (:) represents the value function for investor i, in period t;

� Cit denotes the consumption of investor i, in period t, which drives utility U (Cit);

� !in;t is the weight for asset n in investor i�s portfolio, at period t;

� W i
t is the total wealth for investor i, in period t;

� Rip;t+1 represents the portfolio gross return (realized at period t+ 1) for investor i;

� zit is the state variable that helps to forecast Rip;t+1;

� � denotes a time-discount factor, which is assumed to be constant across investors.

Investors are assumed to have homogenous preferences and no private information, that is they

share the public information set available at time t.

As shown in Appendix (A), investor i�s Euler equation is given by

1 = Et
�
M i
t+1Rn;t+1

�
; (2a)

M i
t+1 =

�JW;t+1
�
W i
t+1; z

i
t+1

�
JW;t (W i

t ; z
i
t)

� h
�
W i
t+1; z

i
t+1

�
; (2b)

where

� Rn;t+1 is the gross return on the nth asset (n = 1; :::; N);

� M i
t+1 stands for the stochastic discount factor (SDF) or pricing kernel associated with investor

i, at period t+ 1;

� JW;t (:) represents the marginal value of wealth, in period t.

The pricing equation (2a) is only valid for investor i, and hence, in order to have pricing impli-

cations for the whole economy, we need to aggregate the Euler equations across the I individuals.
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If the SDF for investor i is a valid SDF, then the average pricing kernel in the economy will also

price assets. By equally averaging across I investors (who participate in the stock market), the

pricing equation for the economy is represented by

1 = Et [Mt+1Rn;t+1] ; (3a)

Mt+1 =
1

I

IX
i=1

M i
t+1 =

1

I

IX
i=1

�JW;t+1
�
W i
t+1; z

i
t+1

�
JW;t (W i

t ; z
i
t)

=
1

I

IX
i=1

h(W i
t+1; z

i
t+1); (3b)

where Mt+1 represents the average SDF in the economy, at period t+ 1.

The function h(W i
t+1; z

i
t+1) in Equation (3b) can be approximated by a second order Taylor

equation around the cross-sectional averages for wealth and the state variable,

h(W i
t+1; z

i
t+1) = h(Wt+1; zt+1) + hW (Wt+1; zt+1)

�
W i
t+1 �Wt+1

�
+ hz(Wt+1; zt+1)

�
zit+1 � zt+1

�
+

1

2
hWW (Wt+1; zt+1)

�
W i
t+1 �Wt+1

�2
+
1

2
hzz(Wt+1; zt+1)

�
zit+1 � zt+1

�2
+

hWz(Wt+1; zt+1)
�
W i
t+1 �Wt+1

� �
zit+1 � zt+1

�
;

Wt+1 =
1

I

IX
i=1

W i
t+1; zt+1 =

1

I

IX
i=1

zit+1; (4)

where

� Wt+1 represents the cross sectional average for wealth;

� zt+1 denotes the cross sectional average for the state variable;

� hW ; hz; hWW ; hzz; hWz denote partial derivatives of h(:) with respect to either Wt+1 or zt+1.

By taking the average of (4) across the I investors, it follows that the economy�s SDF is given
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by

Mt+1 �
1

I

IX
i=1

h(W i
t+1; z

i
t+1) =

h(Wt+1; zt+1) +
1

2
hWW (Wt+1; zt+1)VWt+1 +

1

2
hzz(Wt+1; zt+1)V Zt+1 + hWz(Wt+1; zt+1)CWZt+1;

(5)

VWt+1 �
1

I

IX
i=1

�
W i
t+1 �Wt+1

�2
; (6)

V Zt+1 �
1

I

IX
i=1

�
zit+1 � zt+1

�2
; (7)

CWZt+1 �
1

I

IX
i=1

�
W i
t+1 �Wt+1

� �
zit+1 � zt+1

�
; (8)

where the �rst order cross-sectional moments have cancelled out. In the above expression for the

aggregate SDF, the cross-sectional moments are as follows

� VWt+1 represents the cross sectional variance for wealth;

� V Zt+1 is the cross sectional variance associated with the state variable;

� CWZt+1 denotes the cross sectional covariance between wealth and the state variable.

The asset pricing model in equation (3a) can be represented in expected return-covariance form

as

Et(Rn;t+1)�Rf;t+1 = �
Covt (Rn;t+1;Mt+1)

Et (Mt+1)
: (9)

By taking a �rst-order Taylor approximation to Covt (Rn;t+1;Mt+1) and substituting in (9), I

show in Appendix (A) that the ICAPM with heterogeneous investors is represented as

Et(Rn;t+1)�Rf;t+1 = �MtCovt(Rn;t+1;
Wt+1

Wt

) + �ztCovt(Rn;t+1; zt+1) + �VWtCovt(Rn;t+1; V Wt+1)

+�V ZtCovt(Rn;t+1; V Zt+1) + �CWZtCovt(Rn;t+1; CWZt+1); (10)

where
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� Et(Rn;t+1)�Rf;t+1 is the conditional expected return (at time t) for asset n, in excess of the

risk free rate;

� �MtCovt(Rn;t+1;
Wt+1

Wt
) measures the risk associated with changes in the average or market

wealth;

� �ztCovt(Rn;t+1; zt+1) denotes the "intertemporal risk";

� �VWtCovt(Rn;t+1; V Wt+1) is the risk associated with dispersion in wealth, among investors;

� �V ZtCovt(Rn;t+1; V Zt+1) represents the risk for dispersion in investors�intertemporal risk;

� �CWZtCovt(Rn;t+1; CWZt+1) measures the risk associated with comovement between in-

vestors�wealth and "hedging" risk.

The risk prices associated with the market factor; the state variable factor; the cross sectional

variance of wealth; the cross sectional variance for the state variable; and the cross sectional

covariance between wealth and the state variable; are provided in Appendix (A).

The innovation in the asset pricing model (22) relative to the standard ICAPM, is the inclusion

of the last three factors that measure the risks associated with dispersion (among investors) in

individual wealth; dispersion in individual intertemporal risk; and the comovement between changes

in individual wealth and changes in future individual portfolio returns. I will denote model (22)

as the Generalized ICAPM (GICAPM).

In the case of an homogenous investor that does not face idiosyncratic shocks in both wealth

and intertemporal risk, then we have

VWt+1 = V Zt+1 = CWZt+1 = 0;

and the Merton�s ICAPM arises as a special case of the Generalized ICAPM,

Et(Rn;t+1)�Rf;t+1 = �MtCovt(Rn;t+1;
Wt+1

Wt

) + �ztCovt(Rn;t+1; zt+1):
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If we assume constant risk prices and apply unconditional expectations to Equation (10), we

obtain the Generalized ICAPM in unconditional form,

E (Rn;t+1 �Rf;t+1) = �M Cov(Rn;t+1;
Wt+1

Wt

) + �z Cov(Rn;t+1; zt+1) + �VW Cov(Rn;t+1; V Wt+1)

+�V Z Cov(Rn;t+1; V Zt+1) + �CWZ Cov(Rn;t+1; CWZt+1): (11)

Notice that in the above model the shocks in wealth are assumed not to be completely idio-

syncratic, in the sense that they are partially correlated across investors. This assumption seems

economically plausible, since for example in a recession, while some investors will be more strongly

a¤ected than others, it is likely that most of them will su¤er negative shocks in their respective

incomes. Furthermore, the factors VWt+1, V Zt+1 and CWZt+1, although being related with in-

vestor heterogeneity, they are not by any means idiosyncratic. Instead, they re�ect dispersion in

wealth and intertemporal risk (and the comovement between those two), which is not diversi�ed

away.

2.2 Measuring the cross-sectional risks

In order to be able to empirically test the model, we need to measure the covariance terms include

in the GICAPM in equation (11), and more speci�cally to obtain proxies for the factors Wt+1

Wt
, zt+1,

VWt+1, V Zt+1 and CWZt+1. In the following empirical analysis, the market return, Rm;t+1, is used

as a proxy for changes in the average or aggregate wealth, Wt+1

Wt
. To measure the cross-sectional

variance in wealth, VWt+1, I use the cross-sectional variance (standard deviation) associated with

individual asset returns,

dV Rt+1 �
vuut 1

N

NX
n=1

�
Rn;t+1 �Rn;t+1

�2
;

Rn;t+1 =
1

N

NX
n=1

Rn;t+1;
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where Rn;t+1 denotes the cross-sectional average return. This measure seems economically intuitive,

since with heterogeneous shocks in wealth, the net demand for a given stock will diverge across

investors, thus a¤ecting the prices and returns of that same stock. In addition, if we assume

that the net demands will diverge within stocks, this creates dispersion within the cross-section of

stock returns. For example, in response to the arising of credit constraints and negative income

shocks in economic downturns, (which a¤ect some investors more than others), it is likely that

investors will increase their demand for certain categories of stocks (e.g., large/growth stocks) and

decrease their demand for other categories (e.g., small/value stocks). It is important to assume

that shocks in wealth are not perfectly negatively correlated across investors, otherwise they would

have no e¤ect on the total demand and hence on stock prices, i.e., the net individual demands

would be zero, leaving prices unchanged).1 In addition, some investors will be more keen to hedge

certain types of risks (e.g., recession risk), and thus will demand di¤erent classes of assets, than

the other investors. Therefore, the dispersion in wealth shocks will have an impact on actual prices

and returns for the whole cross-section of stocks, which translates into a higher dispersion among

individual stock returns. On the other hand, Goyal and Santa-Clara (2003) �nd that a measure

close to the cross-sectional variance of returns, is able to forecast future market returns. Thus,

in an ICAPM context, such a variable should be included as an additional factor that prices the

cross-section of returns.

Instead of using the whole cross-section of stocks, I rather compute V R based on portfolio

returns. This procedure has the advantage that one mitigates the estimation error arising from the

noise e¤ect associated with illiquid and small stocks, very much like the usual convention that asset

pricing models are tested based on a group of portfolios rather than the complete cross-section of

individual stocks. Nevertheless, the cross-sectional variance based on portfolio returns is related

with the same measure based on individual stocks.. I use two classes of portfolios to evaluate

V R. The �rst class are the 25 portfolios sorted on both size and book-to-market (BM) (hereafter,

1Notice that given the assumption of market incompleteness, the investors can not fully insure their shocks in
wealth with the available assets.
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SBM25) from Fama and French (1993), leading to

V Rt+1 �

vuut 1

25

25X
n=1

�
Rn;t+1 �Rn;t+1

�2
; (12)

Rn;t+1 �
1

25

25X
n=1

Rn;t+1;

where Rn;t+1 denotes the return for the nth portfolio, n = 1; :::; 25. As a robustness check, and to

increase the number of returns used in the calculation of the cross-sectional return variance, I use

100 portfolios also sorted on both size and BM (SBM100, hereafter), available on Kenneth French�s

website, and which represent the intersection of 10 portfolios sorted on size and 10 portfolios sorted

on BM. In this case, the measure for dispersion in returns becomes

V R�t+1 �

vuut 1

95

95X
n=1

�
Rn;t+1 �R�n;t+1

�2
; (13)

R�n;t+1 �
1

95

95X
n=1

Rn;t+1:

Due to missing observations during the period in analysis (January 1963 to December 2003),

the portfolios SBM1;3, SBM7;10, SBM10;8, SBM10;9, SBM10;10 - where the �rst number indexates

the size quintile, and the second number refers to the BM quintile - are excluded from the sample,

leading to a total of 95 portfolios.

In order to measure the investor dispersion associated with intertemporal risk, I will focus on

a single state variable that constitutes a proxy for intertemporal risk - the dividend yield. The

aggregate dividend yield (or similar �nancial ratios like the market earnings yield or the aggregate

book-to-market ratio) represents the most widely used (and most important variable) to predict

market returns, in the predictability of returns/asset pricing literature (for a non-exaustive list,

see Fama and French (1988,1989), Campbell and Shiller (1988a), Hodrick (1992), Campbell and

Vuolteenaho (2004), Maio (2005a,b)). The predictive role of the market dividend yield can be

rationalized in the context of the following dynamic accounting identity developed by Campbell
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and Shiller (1988a),

dt � pt = const:+ Et
1X
j=0

�j [rt+1+j ��dt+1+j] ; (14)

where

� dt denotes log market dividend in period t;

� pt is the log market price index in period t;

� rt+1 stands for the log market return realized at period t;

� � is a linearization parameter related with the average dividend-to-price ratio.

The identity (14) is derived from the de�nition of market returns and by imposing a non-bubble

condition that prices can not rise forever,

lim
j!1

�jpt+j = 0;

and the main message is that, conditional on future expected aggregate dividend (or cash �ow)

growth, a higher aggregate dividend yield today must be followed by higher expected market

returns in the future, due to the mean-reversion in most stock prices. Naturally, the identity (14)

is not only valid for the market as a whole, but also for each individual stock,

dn;t � pn;t = const:+ Et
1X
j=0

�jn[rn;t+1+j ��dn;t+1+j]; (15)

n = 1; :::; N;

where

� dn;t is the log dividend for asset n, in period t;

� pn;t is the log price for asset n, in period t;

� rn;t+1 stands for the log return on asset n realized at period t;
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� �n is the linearization parameter for asset n.

From (15), it is clear that individual stocks�s dividend-to-price ratios should help to forecast

expected individual returns (conditional on expected dividend growth associated with the asset at

hand) - given the mean reversion in individual stock prices - similarly to the predictive role played

by the aggregate dividend yield over market returns. From this, it follows that when one wants to

forecast individual returns, the forecasting power of asset dividend yields should be greater than

the one associated with the market dividend yield. To assess this argument, I conduct the following

predictive regression for each of the SBM25 portfolios,

rn;t+1;t+k = a
n
k + b

n
kDYn;t + un;t+1;t+k; (16)

n = 1; :::; 25;

where

� rn;t+1;t+k is the continuously compounded excess return over k periods, for portfolio n;

� DYn;t represents the dividend yield associated with portfolio n, measured at time t;

� un;t+1;t+k is the k-periods ahead forecasting error for portfolio n.

To allow the comparison with the predictive ability associated with the market dividend yield,

I also compute the following regression for each portfolio,

rn;t+1;t+k = a
n
k + b

n
kDYt + un;t+1;t+k; (17)

n = 1; :::; 25;

where DYt denotes the market dividend yield. I use forecasting horizons of 1, 3, 12 and 24 months

ahead. To obtain the portfolio dividend yield data, I subtract the return data excluding dividends

associated with SBM25 (also available on Kenneth French�s website), from the respective total
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return data,

DYn;t �
Dn;t

Pn;t�1
= Rn;t � R̂n;t;

n = 1; :::; 25;

where R̂n;t denotes the ex-dividend return for portfolio n. Figure 1 plots the Newey andWest (1987)

asymptotic t-statistics (calculated with 5 lags) associated with bnk in the above two regressions, for

the SBM25 portfolios. Panels A, B, C and D show the results for forecasting horizons of 1, 3,

12 and 24 months ahead, respectively. The main conclusion from Figure 1 is that in the cases

of portfolios where the forecasting variables are statistically signi�cant (at the 5% level), the t-

statistics associated with the portfolio�s dividend yield are in general greater than the corresponding

ones for the market dividend yield. This is especially true for the lowest size quintiles (those in

which predictability is stronger), and it is robust across forecasting horizons.2

In the Generalized ICAPM model above, the investor heterogeneity in intertemporal risk, is

linked with the fact that each investor will have di¤erent portfolios (di¤erent weights assigned to

the N available assets), combined with the dispersion across assets in the predictability of returns.

Therefore, in accordance with V R, the cross-section variance associated with "intertemporal risk"

consists of the dispersion of portfolio dividend yield across the classes of portfolios SBM25 and

SBM100. More speci�cally,

V IRt+1 �

vuut 1

25

25X
n=1

�
DYn;t+1 �DYt+1

�2
; (18)

DYt+1 �
1

25

25X
n=1

DYn;t+1;

2For the last size quintiles, the t-statistics associated with the market and portfolio measures of the dividend
yield, are more similar and in some cases reverse in relative magnitudes, which is not surprised given that the market
dividend yield is associated with the value-weighted index and thus more tilted towards larger caps.
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and

V IR�t+1 �

vuut 1

95

95X
n=1

�
DYn;t+1 �DY �t+1

�2
; (19)

DY �t+1 �
1

95

95X
n=1

DYn;t+1;

whereDYt+1 andDY �t+1 denote the cross-sectional average dividend yield for SBM25 and SBM100,

respectively.

Given the measures (12-13) and (18-19), it follows that the factor associated with the investor

comovement between changes in wealth and "intertemporal risk", CWZ, can be now approximated

as

CIRRt+1 �
1

25

25X
n=1

�
Rn;t+1 �Rn;t+1

� �
DYn;t+1 �DYt+1

�
; (20)

CIRR�t+1 �
1

95

95X
n=1

�
Rn;t+1 �R�n;t+1

� �
DYn;t+1 �DY �t+1

�
; (21)

respectively for SBM25 and SBM100.

Finally, the aggregate intertemporal risk is measured by the smoothed log earnings yield as-

sociated with the S&P composite index, EY 10, which is based on a 10 year moving average of

aggregate earnings.3

Figures 2-4 present the time-series for the cross-sectional risk factors, V R, V R�, V IR, V IR�,

CIRR, CIRR�, while Table 1 presents descriptive statistics for this group of variables in addition

to the excess (value-weighted) market return, RMRF , and the smoothed log market earnings

yield, EY 10. We can see in Figure 2 that the peaks in both V R and V R� are in general associated

with periods coincident (or near) to NBER economic recessions. This is especially relevant in late

90�s and the early 2000�s, when there is a large increase in stock price dispersion, which might be

related to the economic downturn occurred in 2001; the NASDAQ bubble and increased uncertainty

3The smoothed earnings yield is available from Robert Shiller�s website, and is employed by Campbell and Shiller
(1998), Campbell and Vuolteenaho (2004), and Maio (2005a), among others.
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concerning both the state of the economy and future cash �ows. Figure 3 shows that both V IR and

V IR� also tend to increase in recessions, although the biggest increases occur in late 80�s (before the

recession in early 90�s). In addition, the comovement between portfolio returns and dividend yields

registers large swings (of either sign) around recessions. These �ndings are partially con�rmed by

the following regressions containing the NBER business cycle dummy variable (CY CLE, 1 for

expansions, 0 for economic expansions), with OLS t-statistics in parenthesis,4

V Rt = 0:026� 0:004CY CLEt; Adj:R2 = 0:010;

(16:290) (�2:471)

V IRt = 0:002� 0:0005CY CLEt; Adj:R2 = 0:066;

(22:147)(�5:990)

CIRRt = 0:000� 0:00001CY CLEt; Adj:R2 = 0:005;

(2:263)(�1:878):

The descriptive statistics in Table 1 show that the cross-sectional factors are not highly au-

tocorrelated, and also not strongly contemporaneously correlated among themselves. The biggest

correlations are between RMRF and CIRR/CIRR� (-0.398/-0.408), and between EY 10 and

V IR/V IR� (0.612/0.493)

Given the cross-sectional moments in Equations (12-13), (18-19), and (20-21), the Generalized

4In the case of V R�, V IR� and CIRR�, the regressions present similar results

V R�t = 0:033� 0:004CY CLEt; Adj:R2 = 0:009;
(20:866) (�2:362)

V IR�t = 0:002� 0:0005CY CLEt; Adj:R2 = 0:032;
(19:757)(�4:167)

CIRR�t = 0:000� 0:00001CY CLEt; Adj:R2 = 0:008;
(2:793)(�2:277)
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ICAPM in Equation (11) is now given by

E (Rn;t+1 �Rf;t+1) = �M Cov(Rn;t+1; RMRFt+1) + �EY Cov(Rn;t+1; EY 10t+1) + �V R Cov(Rn;t+1; V Rt+1)

+�V IR Cov(Rn;t+1; V IRt+1) + �CIRR Cov(Rn;t+1; CIRRt+1); (22)

E (Rn;t+1 �Rf;t+1) = �M Cov(Rn;t+1; RMRFt+1) + �EY Cov(Rn;t+1; EY 10t+1) + �V R Cov(Rn;t+1; V R�t+1)

+�V IR Cov(Rn;t+1; V IR
�
t+1) + �CIRR Cov(Rn;t+1; CIRR

�
t+1): (23)

3 Asset Pricing Tests

3.1 Model estimation and evaluation: Two-stage GMM

In this sub-section, the Generalized ICAPM from Equations (22-23) is estimated and evaluated,

by using the two-stage GMM framework (Hansen (1982)), where the weighting matrix used in

the �rst-stage is the identity matrix, and in the second stage the weighting matrix is the inverse

of the moments (spectral density) matrix. Therefore, the �rst-stage GMM with equally weighted

pricing errors is equivalent to an OLS cross-sectional regression of average excess returns on asset

covariances, whereas the e¢ cient GMM - which assigns more weight to pricing errors with lower

variance - is analogous to the corresponding GLS cross-sectional regression (Cochrane (2001),

Chapter 13). The N sample moments correspond to the pricing errors for each of the N test

assets, i.e., the sample counterpart of (22),5

gT (�) �
1

T

TX
t=0

8><>: (Rn;t+1 �Rf;t+1)� �MRn;t+1RMRFt+1 � �EYRn;t+1EY 10t+1

��V RRn;t+1V Rt+1 � �V IRRn;t+1V IRt+1 � �CIRRRn;t+1CIRRt+1

9>=>; = 0;

n = 1; :::; N; (24)

and similarly for model (23). The asymptotic standard errors associated with system (24) account

for measurement error in the covariances. As a robustness check, I compute standard errors that

5The factors are previously demeaned.
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don�t correct for estimation error in covariances, (i.e., threat the covariances as �xed regressors as

opposed to generated regressors), arising from the following GMM system,

gT (�) �
1

T

TX
t=0

f(Rn;t+1 �Rf;t+1)� �M�n;M � �EY �n;EY � �V R�n;V R � �V IR�n;V IR � �CIRR�n;CIRRg = 0;

n = 1; :::; N; (25)

where �n;M � Cov(Rn;t+1; RMRFt+1), �n;EY � Cov(Rn;t+1; EY 10t+1), �n;V R � Cov(Rn;t+1; V Rt+1),

�n;V IR � Cov(Rn;t+1; V IRt+1), �n;CIRR � Cov(Rn;t+1; CIRRt+1) denote the (previously) estimated

covariances with the factors.6

The standard errors for the parameter estimates �̂, associated with both �rst and second stage

GMM, are respectively given by

Var(�̂) =
1

T
(d0INd)

�1d0IN ŜINd(d
0INd)

�1; (26)

Var(�̂) =
1

T
(d0Ŝ�1d)�1; (27)

where IN is a N order Identity matrix, d � @gT (�̂)

@�̂
0 represents the matrix of moments�sensitivities

to the parameters, and Ŝ is a estimator for the spectral density matrix S. The variance-covariance

matrix for the pricing errors, �̂ � gT
�
�̂
�
, is represented by

Var(�̂)=
1

T
(IN�d(d0INd)�1)d0IN)Ŝ(IN�INd(d0INd)�1)d0); (28)

Var(�̂)=
1

T
(IN�d(d0Ŝ�1d)�1)d0Ŝ�1)Ŝ(IN�Ŝ�1d(d

0
Ŝ�1d)�1)d0); (29)

for �rst-stage and second-stage GMM, respectively7. The asymptotic test that the pricing errors

are jointly zero (test of overidentifying conditions or J-test) is represented by

T �̂0Ŝ�1�̂ � �2(N �K); (30)

6Jagannathan and Wang (1998) point out that under some circumstances, the precision associated with non-
corrected standard errors is not necessarily overstated when compared to corrected standard errors.

7The second stage GMM estimation is associated with system 24.
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with K being the number of factors used in the model (K = 5, in the benchmark model). The

asymptotic statistic (30) enables us to formally accept or reject a given model. In alternative, we

can compute two goodness-of-�t measures to evaluate the overall pricing ability of the model - the

average pricing error (root mean square error, RMSE) and the cross-sectional OLS R2. RMSE

is represented by

RMSE =

vuut 1

N

NX
n=1

�̂2n; (31)

and the cross-sectional OLS R2 is

R2OLS = 1�

XN

n=1
�̂2nXN

n=1
R
2

n

; (32)

Rn =
1

T

TX
t=0

(Rn;t+1 �Rf;t+1)�
1

N

NX
n=1

(
1

T

TX
t=0

(Rn;t+1 �Rf;t+1)
)
;

Adj:R2OLS = 1�
�
1�R2

�� N � 1
N �K

�
:

R2OLS measures the proportion of cross-sectional variance in excess returns not explained by

the model, and Adj:R2OLS stands for the adjusted cross-sectional R
2, which corrects for degrees of

freedom in the model (number of factors). Both (31) and (32) represent intuitive measures, since

they give equal weight to all pricing errors (arising from �rst-stage GMM). The corresponding GLS

cross-sectional R2 is given by

R2GLS = 1�
�̂0
�1�̂

R
0

�1R

; (33)

where R is the vector containing the (cross-sectional) demeaned average returns, and 
 is a

diagonal matrix containing the elements from the main diagonal of Ŝ.8 The pricing errors, �̂, are

from the second-stage GMM estimation. In (33) the pricing errors with higher variance are given

less weight, in accordance with the e¢ cient estimation inherent to the second stage GMM.

Table 2 presents the estimation/evaluation results from �rst-stage GMM for both models

(22) and (23), with the test assets being the SBM25 portfolios. Given the correlations among

8The GLS R2 is similar to the one employed in Ferson and Harvey (1999).
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factors documented in Table 1 (Panels B and C), it is convenient to orthogonalize the factors

(V R; V IR;CIRR;EY 10) relative to RMRF .9Table 2 also presents the results for two alternative

asset pricing models, the traditional CAPM (from Sharpe (1964) and Lintner (1965)), and the

Fama and French (1993) three factor model (FF3 hereafter), which has been empirically successful

in explaining the cross-section of stock returns. The pricing equation for the FF3 model can be

represented as

E (Rn;t+1 �Rf;t+1) = �M Cov(Rn;t+1; RMRFt+1) + �SMB Cov(Rn;t+1; SMBt+1) (34)

+�HMLCov(Rn;t+1; HMLt+1);

where SMB and HML represent the size premium and value premium factors, respectively. The

CAPM arises as a special case of (34) by imposing �SMB = �HML = 0. The results presented in

�rst row con�rm many previous �ndings (starting in Fama and French (1992)) that the CAPM

performs poorly in pricing the SBM25 portfolios, with a monthly average pricing error of 0.311%,

and a negative cross-sectional R2 (-0.598). The FF3 model (in row 4) clearly improves relative to

the CAPM, with a RMSE of 0.139% and an adjusted R2 of 0.654. The results for the GICAPM

(row 2) are not too di¤erent from those associated with FF3, with a RMSE only marginally higher

(0.147%), and a cross-sectional R2 of 0.575. The GICAPM� in row 3 (whose cross-sectional factors

are based on the SBM100 portfolios) provides the best overall results, with an average error of

0.122% per month and with Adj:R2OLS being 0.704 (notice that Adj:R
2
OLS corrects for the fact that

the GICAPM/GICAPM� have two additional factors relative to FF3). Regarding the J-test, all

four models are rejected, although the levels forGICAPM/GICAPM� are clearly lower in relation

to both FF3 and CAPM. In terms of the covariance risk prices associated with the cross-sectional

9Given a factor ft, the orthogonalized factor is computed as

f̂t = �̂0 + êt;

where �̂0 is the intercept, and êt represents the residual from the following regression,

ft = �0 + �1RMRFt + et:
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factors, both �V R and �CIRR are positive, while �V IR assumes negative estimates. Furthermore,

all three risk prices are strongly statistically signi�cant.

While the previous results represent some evidence in favor of the GICAPM , it is important

to orthogonalize the factors among themselves (and not only relative to RMRF ) in order to better

interpret the individual contribution from each factor. Following Campbell (1996), Patelis (1997),

and Petkova (2006), I employ a �rst-order VAR,

xt+1 = Axt + "t+1; (35)

xt � [RMRFt; V Rt; V IRt; CIRRt; EY 10t]0 ;

with A representing the coe¢ cient VAR matrix, and RMRF being positioned �rst in the VAR.

The orthogonalized VAR residuals are then given by

wt+1 = P
�1"t+1;

wt � [wM;t; wEY;t; wV R;t; wV IR;t; wCIRR;t]0 ;

with P representing a Choleski matrix. The Generalized ICAPM of Equation (22) is now given by

E (Rn;t+1 �Rf;t+1) = �M Cov(Rn;t+1; RMRFt+1) + �EY Cov(Rn;t+1; wEY;t+1) + �V R Cov(Rn;t+1; wV R;t+1)

+�V IR Cov(Rn;t+1; wV IR;t+1) + �CIRR Cov(Rn;t+1; wCIRR;t+1); (36)

and similarly for GICAPM�.

The VAR estimation results are provided in Table 3. In Panel A the factors are those associated

with the GICAPM , and in Panel B, the factors are from the GICAPM�. We can summarize

the estimation results as follows: V R/V R� are explained by their respective own lagged values,

but also by EY 10; V IR (V IR�) has a negative (positive) autocorrelation coe¢ cient and they

are both correlated with lagged EY 10; CIRR/CIRR� are both negatively correlated with lagged

market returns; EY 10 has a very persistent autocorrelation coe¢ cient, and it is also forecasted
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by lagged market returns, which is related with some short-term momentum in stock prices; and

�nally market returns are mostly negatively forecasted by CIRR/CIRR�.

The results for model (36) with SBM25 as test portfolios, are presented in Table 4. Panel

A reports the results from �rst stage GMM, and the e¢ cient GMM estimation is reported in

Panel B10. We can see that both GICAPM and GICAPM� provide similar results, with a lower

average pricing error than in Table 2 (0.104%). The Adj:R2OLS are 0.781 and 0.783, for GICAPM

and GICAPM�, respectively. Regarding the risk price estimates, the asymptotic standard errors

that correct for measurement error in covariances are large, although �EY , �CIRR and �M are

statistically signi�cant, based on the non-corrected standard errors. The magnitudes of the risk

prices are obviously di¤erent to their counterparts in Table 2, given the di¤erent proxies used

(orthogonalized VAR innovations instead of the raw factors). In the second stage estimation, the

risk price estimates have higher precision relative to the �rst stage counterparts, as indicated by the

respective t-statistics, with both �CIRR and �EY being statistically signi�cant in either GICAPM

or GICAPM�, while the market risk price is no longer signi�cant. While one can not compare

across models, the second stage RMSE (based on second stage pricing errors) is signi�cantly lower

for the GICAPM in comparison with FF3. The GLS adjusted R2, although being lower than the

corresponding OLS estimates, nevertheless assumes reasonable values for both GICAPM and

GICAPM� (0.685 and 0.314, respectively), whereas in the FF3 model it has a residual magnitude

(0.091). More relevant is the fact that both GICAPM and GICAPM� are not rejected by the

J-test (p-values of 0.729 and 0.234, respectively), whereas the FF3 model is strongly rejected.

Therefore, these results reinforce the results in Table 2 that the Generalized ICAPM compares

relatively well to the FF3 model in pricing the SBM25 portfolios.

Despite the fact that the SBM25 portfolios have been the most challenging group of assets for

the CAPM, several authors have raised some concerns about asset pricing tests that rely only on

the size/BM portfolios. Lo and Mackinlay (1990) and Daniel and Titman (1997) advert for the

10In the estimation of S, no lagged moments are considered, since the conditional implications of the asset pricing
model force the moments to be serially uncorrelated. Nevertheless, the results associated with Newey and West
(1987) standard errors (calculated with one lag), are similar to those associated with White (1980) standard errors.
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problems inherent with using portfolios sorted on stock characteristics. More recently, Lewellen,

Nagel and Shanken (2006) stress that SBM25 exhibit a strong factor structure (i.e., the time-

series variation in returns is almost explained by only two factors, SMB and HML), and hence

they argue that asset pricing models containing factors correlated with either SMB or HML will

arti�cially price the SBM25 portfolios, and therefore, one should include as test assets additional

portfolios, which are not so strongly correlated with either SMB or HML. In response to these

concerns, I use 38 industry portfolios (IND38) (Fama and French (1997)), 10 portfolios sorted on

the earnings-to-price ratio (E=P ); 10 portfolios sorted on the cash �ow-to-price ratio (CF=P ) and

10 portfolios sorted on the dividend-to-price ratio (D=P ) (Fama and French (1996)), as additional

groups of test assets. The results associated with SBM25 in combination with the industry

portfolios (SBM25+ IND38) are reported in Table 5. The average pricing errors are higher than

the corresponding estimates in Table 4 - re�ecting the biggest hurdle of simultaneously pricing

SBM25 and the industry portfolios - nevertheless, both GICAPM and GICAPM� still have

lower RMSE than FF3 (0.154%/0.153% versus 0.188%). The analysis for the cross-sectional R2

con�rms these �ndings, with GICAPM/GICAPM� having Adj:R2OLS of 0.388/0.390 compared

to 0.127 for FF3. Furthermore, the Adj:R2GLS are similar to the OLS counterparts, in the case

of GICAPM/GICAPM� (0.406/0.395), whereas FF3 has a large negative estimate (-1.374). All

three models are rejected by the asymptotic test (30), which might be related with the large

number of portfolios used in test, and the inherent problems in inverting the spectral density

matrix. Regarding the individual signi�cance of the risk prices, with the sole exception of �V IR

(which is not signi�cant at the 10% level), all the risk prices in the GICAPM/GICAPM� are

statistically signi�cant at the 1% level, in both �rst and second stage estimation.

The results associated with all portfolios (i.e., by including the 30 additional characteristic

portfolios, SBM25 + CF=P + E=P + D=P + IND38) are presented in Table 6. Essentially, the

results con�rm the �ndings from Table 5: (i) GICAPM/GICAPM� have a lower average pricing

error than FF3; (ii) GICAPM/GICAPM� have higher Adj:R2OLS than FF3; (iii) Both Adj:R
2
OLS

and Adj:R2GLS present similar values in the cases of GICAPM/GICAPM
�; and (iv) �nally FF3
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has a negative Adj:R2GLS estimate. Therefore, the outperformance of the Generalized ICAPM

relative to the FF3 model is maintained when using additional classes of portfolios.

As an additional comparison between the Generalized ICAPM and FF3, I conduct the following

asymptotic di¤erence test (Cochrane (1996), Cochrane (2001)),

T �̂0rŜ
�1�̂r�T �̂0uŜ�1�̂u � �

2
(K�) ; (37)

which compares the restricted model (�̂r, excluding the factors we want to test) against an unre-

stricted model (�̂0u), with Ŝ being associated with the unrestricted model. K
� denotes the number

of restrictions (equal to Ku �Kr, where Ku, Kr denote the number of factors associated with the

unrestricted and restricted models, respectively). This test is equivalent to a likelihood ratio test

and enables to evaluate whether the excluding factors are important to price assets. In our case,

the unrestricted model will be the GICAPM in combination with the SMB and HML factors,

E (Rn;t+1 �Rf;t+1) = �M Cov(Rn;t+1; RMRFt+1) + �EY Cov(Rn;t+1; wEY;t+1) + �V R Cov(Rn;t+1; wV R;t+1)

+�V IR Cov(Rn;t+1; wV IR;t+1) + �CIRR Cov(Rn;t+1; wCIRR;t+1) + �SMB Cov(Rn;t+1; SMBt+1)

+�HMLCov(Rn;t+1; HMLt+1): (38)

Thus, both GICAPM/GICAPM� and FF3 represent special cases of (38). Table 7 reports the

RMSE and cross-sectional R2 associated with the unrestricted model (38), which is denoted by

GICAPM+FF3 (GICAPM�+FF3). For convenience, I replicate the corresponding estimates for

GICAPM/GICAPM� and FF3 from Tables 4-6. The results associated with SBM25, SBM25+

IND38, and SBM25 + CF=P + E=P + D=P + IND38 are reported in Panels A, B and C,

respectively. We can see that the RMSE estimates associated with both the unrestricted model

and the Generalized ICAPM are very similar, and this pattern is robust across the three classes of

test portfolios. On the other hand, the Adj:R2OLS magnitudes associated with the general model

(38) are slightly lower than the corresponding estimates for GICAPM/GICAPM�. This pattern

is more accentuated in the case of Adj:R2GLS, given that the FF3 model has either negligible
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(Panel A, SBM25) or negative estimates (Panels B and C, augmented portfolios) of Adj:R2GLS.

Therefore, these facts suggest that both SMB and HML don�t add explanatory power over the

cross-section, in the presence of the factors contained in the Generalized ICAPM. The levels and

respective p-values for the Di¤erence test (37) - reported in the last two columns of Table 7 -

con�rm these �ndings. In Panel A, we accept the null that neither group of excluded factors is

important, although the p-values associated with GICAPM/GICAPM� (as restricted models)

are signi�cantly higher when compared to FF3 (0.866 for GICAPM� versus 0.205 for FF3). In

both Panels B and C, the test accepts the exclusion of both SMB and HML, i.e., both the

GICAPM and GICAPM� are note rejected as restricted models. On the other hand, the test

strongly rejects the exclusion of the four factors contained in the Generalized ICAPM (V R/V R�,

V IR/V IR�, CIRR/CIRR�, EY 10t+1), with p-values signi�cantly lower than 5%. Therefore, the

FF3 model as a special case of the general model, is rejected.

The weak performance of the FF3 model in pricing alternative classes of portfolios (e.g, industry

portfolios) is partially related with the fact that both SMB and HML were designed to price the

SBM25 portfolios. In response to that, I reestimate both the Generalized ICAPM and FF3, by

assigning a bigger weight to the SBM25 in comparison to the other portfolios, in the joint �rst

stage GMM estimation. Thus, the �rst stage weighting matrix assigns a weight of 2 to each of

the 25 size/BM portfolios, and a weight of 1 (as previously) to the remaining portfolios. The

estimation is conducted for SBM25+ IND38 and SBM25+CF=P +E=P +D=P + IND38. The

"reduced" RMSE,

RMSE� =

vuut 1

25

25X
n=1

�̂2n; (39)

measures the average pricing error, within the SBM25 portfolios. In addition, the "weighted"

cross-sectional R2,

R�2 = 1� �̂0W��̂

R
0
W�R

; (40)

is a proxy for the model�s overall explanatory power, with the pricing errors weighted properly
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according to W�.11 The results in Table 8 show that the estimates of RMSE� associated with

GICAPM/GICAPM� are lower than the counterparts associated with the FF3 model, for both

classes of portfolios. These results are con�rmed by the adjusted weightedR2, which assumes higher

values for both GICAPM/GICAPM� in comparison with FF3 (0.531 for GICAPM� versus 0.316

for FF3 in Panel A, and 0.570 versus 0.404 in the estimation with all test portfolios). Therefore,

by assigning more importance to the SBM25 portfolios, the Generalized ICAPM continues to do

well relative to the FF3 model.

In order to have an assessment on the individual pricing errors, Figure 5 plots the estimated

excess returns (vertical axis) against the realized excess returns associated with the SBM25 port-

folios. Panels A, B, and C are associated with GICAPM , GICAPM� and FF3 models, re-

spectively. The estimated returns are from the �rst stage estimation, in order to be able to

compare across models. We can con�rm the better �t around the 45� line, in the case of both

GICAPM/GICAPM� compared to FF3. The biggest outlier is the extreme small-growth portfo-

lio (southern point) which is di¢ cult to price for all three models. Figure 7, Panel A, presents the

�rst stage pricing errors for SBM25. We can see that for most portfolios, the pricing errors arising

from GICAPM/GICAPM� compare favorably with those associated with FF3. In particular,

FF3 has signi�cantly higher pricing errors for portfolios SBM21, SBM45, SBM51, SBM55, where

the �rst index denotes the size quintile and the second index measures the BM quintile. Figure 6

(Panels A, B and C) plots the estimated/realized excess returns for the industry portfolios. The

graphs show that there is also signi�cant less dispersion around the 45� line, for the Generalized

ICAPM in comparison with FF3. The graph for the industry pricing errors (Figure 8, Panel A),

shows that for most industries, FF3 has larger pricing errors than GICAPM/GICAPM�. The

di¤erence in error magnitudes across models is greater for Food (FO, in the graph); Tobacco (SM);

Wood (WO); Chemicals (CH); Metal (ME) and Transportation (TR).

11In the calculation of the "weighted" cross-sectional R2, all the pricing errors are included.
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3.2 Model estimation and evaluation: The Hansen and Jagannathan

(1997) distance

In alternative to the traditional �rst-stage estimation with equally pricing errors, several authors

have used the weighting matrix associated with the Hansen and Jagannathan (1997) distance, in

the �rst stage estimation (e.g., Jagannathan and Wang (1996), Hodrick and Zhang (2001), Jacobs

and Wang (2004), among others). The HJ weighting matrix is given by

WHJ =

 
1

T

TX
t=1

RtR
0
t

!�1
; (41)

where Rt is the vector containing asset returns at time t, thus assets with a larger second moment

in returns are given less weight in the estimation. The HJ distance, which is equal to

HJ = (�̂0WHJ�̂)
1
2 ; (42)

can be interpreted as the minimum distance between a given candidate SDF an the set of all true

SDF�s. The HJ method shares with the �rst stage estimation (with equally weighted errors) the

attractive feature that one can compare the results across di¤erent models, since they don�t rely on

the estimation of S (as it is the case with e¢ cient GMM). Nevertheless, the results associated with

WHJ are more di¢ cult to interpret than the estimation with equally weighted errors. Moreover,

often the second moments matrix of returns is near singular which causes di¢ culties in the inversion

(Cochrane (1996)).

The results associated with the HJ method are presented in Table 9, for the case of the SBM25

portfolios. Panel A presents the �rst stage estimates, and Panel B reports the corresponding

e¢ cient estimates. The average pricing error is similar across the three models, although RMSE

is not a convenient measure in this context, since the GMM estimation does not weight portfolios

equally. More relevant is the fact that the HJ distance is lower for both GICAPM/GICAPM�

relative to FF3 (0.341/0.331 versus 0.367). Moreover, we can not reject the null thatHJ is zero, for
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bothGICAPM/GICAPM� at the 5% signi�cance level (p-values of 0.087 and 0.063, respectively).

On the other, we reject the null HJ = 0, in the case of FF312. By looking at Adj:R2GLS it happens

that FF3 has higher values than in Table 4, but still with lower estimates in comparison with both

GICAPM/GICAPM� (0.196 versus 0.432/0.285). Compared to the corresponding t-statistics

in Table 4, the �rst stage risk prices associated with V R (V R�) and CIRR (CIRR�) are now

statistically signi�cant. On the other hand, the three models are rejected by the J-test at the

5% level, although the test level associated with FF3 is the double of the corresponding levels for

GICAPM/GICAPM�.

The estimation results for the augmented portfolios are reported in Tables 10 (SBM25 +

IND38) and 11 (all portfolios). We can see that in both cases, the estimates associated with HJ

are similar across the three models. Nevertheless, the FF3 model still has very low estimates for

Adj:R2GLS (-0.643 in the case of SBM25 + IND38, and 0.001 in the case of all portfolios).

Figure 5 (Panels D, E and F) present the plot for the estimated/average returns associated with

the SBM25 portfolios, arising from the HJ estimation. We can see that bothGICAPM/GICAPM�

have a better �t relative to FF3, although the di¤erence is not as relevant as in the estimation

with equally-weighted errors (Panels A to C). The plot of the corresponding average pricing errors

in Figure 7 (Panel B), con�rms this evidence, with the portfolio pricing errors being more similar

across models, (compared to Panel A in the same �gure), with the greatest gap being with portfolio

SBM51. In the cases of the industry portfolios, both Figures 6 (Panels D, E and F) and 8 (Panel

B) show that the pricing ability for the industry portfolios associated with FF3 is closest to both

GICAPM/GICAPM�, in comparison with the case of equally weighted errors.

3.3 The Value Premium

The value premium refers to the CAPM anomaly in which growth stocks have low average returns

and large negative pricing errors (associated with the CAPM) and value stocks have large aver-

age returns and positive pricing errors (Fama and French (1992, 1993)). We already saw in the

12The p-values associated with the test HJ = 0, are calculated as in Jagannathan and Wang (1996) and Hodrick
and Zhang (2001), with 10.000 simulations of a weighted sum of �2 (1) distributions.
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previous sub-sections that the GICAPM/GICAPM� model is able to do reasonably well - and

even outperform the FF3 model - in pricing the SBM25 portfolios. This sub-section goes one step

further and seeks to assess how GICAPM/GICAPM� perform in explaining the extreme growth

and value portfolios in comparison to FF3, by assigning a larger weight to those portfolios in the

�rst stage estimation. The analysis done above for the SBM25 portfolios is replicated for the ex-

treme BM quintiles within each size quintile: SBM11, SBM15, SBM21, SBM25, SBM31, SBM35,

SBM41, SBM45, SBM51, and SBM55. The GMM weighting matrix assigns a weight of 2 for each

of these 10 portfolios, and a weight of 1 for all remaining portfolios. In this case, the estimation

is done with the three classes of portfolios, SBM25 (Panel A), SBM25+ IND38 (Panel B), and

all portfolios (Panel C). The "reduced" RMSE is now given by

RMSE� =

vuut 1

10

10X
n=1

�̂2n; (43)

where the �̂n�s denote the pricing errors associated with the 10 portfolios described above. The

"weighted" cross-sectional R2 is similar to that in (40) withW� accounting for the new weights.

The results presented in Table 12 indicate that the estimates ofRMSE� associated withGICAPM/GICAPM�

compare favorably with the corresponding estimates for FF3: In the case of the SBM25 portfo-

lios, RMSE� achieves 0.114%/0.134% for GICAPM and GICAPM�, respectively, compared to

0.182% for FF3. This pattern is maintained for the other two groups of portfolios in Panels

B and C. On the other hand, the "weighted" cross-sectional R2 assumes higher values for both

GICAPM/GICAPM� in comparison to FF3 (0.799/0.779 versus 0.646, in the case of SBM25).

The previous analysis is further replicated for the separate cases of growth and value portfolios.

The growth portfolios which are given a higher weight are SBM11, SBM21, SBM31, SBM41,

SBM51, whereas the extreme value portfolios are SBM15, SBM25, SBM35, SBM45, SBM55. The

results (not shown) largely con�rm the �ndings in Table 12, with RMSE� achieving lower values in

both GICAPM/GICAPM� relative to FF3 and with the "weighted" cross-sectional R2 assuming

higher values for both GICAPM/GICAPM� against FF3.
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Within the class of SBM25 portfolios, the most di¢ cult portfolio to price is the extreme

small-growth portfolio (SBM11), as shown in Figures 5 and 7. The pricing error estimates for this

portfolio (�̂11) are -0.324%, -0.357% and -0.353% forGICAPM , GICAPM� and FF3, respectively.

When the �rst stage GMM estimation assigns a weight of 2 to SBM11 and 1 to the remaining

24 portfolios in SBM25 - i.e., more importance is given to the small-growth portfolio - then

the estimated errors are -0.235%, -0.279% and -0.288% for GICAPM , GICAPM� and FF3,

respectively.

What are the factors that drive the ability of the Generalized ICAPM to price the value pre-

mium? To address this issue, I calculate the risk premium (covariance times risk price) for each

factor, and across each BM quintile. Table 13 reports the factor risk premiums and average pricing

error across book-to-market quintiles, for both the GICAPM , GICAPM� and FF3 models13. We

can see that in both GICAPM and GICAPM� the risk premium attached to CIRR is negative

for growth stocks (denoted by BM1) and positive for value stocks (BM5), producing a gap of -

0.475%/-0.432% across extreme quintiles, forGICAPM andGICAPM�, respectively. In addition,

the risk premium associated with EY 10, is almost zero for growth stocks and largely positive for

value stocks, with a resulting gap of -0.338%/-0.315% respectively for GICAPM and GICAPM�.

Thus both CIRR and EY 10 mimic the role played by HML in the FF3 model, into explaining

the value premium. By comparing across models the average pricing errors per BM quintile, we

can see that, with the sole exception of the middle BM quintile, both GICAPM/GICAPM� have

lower average errors than the FF3 model.

In retrospect, the results of this subsection con�rm that the Generalized ICAPM is able to

price the value premium.

13The average risk premium per BM quintile is equal to the risk price times the average covariance associated
with that quintile.
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4 Conclusion

This paper derives a theoretical asset pricing model that represents a generalization from the

Intertemporal CAPM, by relaxing the representative investor assumption. There are two types of

investor heterogeneity. First, there are idiosyncratic shocks in wealth, which are not fully insurable

by �nancial markets. Second, each investor is assumed to have di¤erent "intertemporal risks", i.e.,

they face di¤erent state variables that proxy for changes in future portfolio returns. The result is a

�ve factor model, whose factors are the change in aggregate wealth; aggregate intertemporal risk;

dispersion on investor�s wealth; dispersion in investor�s intertemporal risk; and the comovement

across investors between shocks in wealth and in intertemporal risk. The cross-sectional factors are

the novelty relative to the standard ICAPM, and arise from the existence of investor heterogeneity.

The model is denoted as the Generalized ICAPM (GICAPM).

In the empirical implementation of the model, due to measurement issues, the cross-sectional

variance of returns is used as a proxy for the dispersion in wealth across investors. Furthermore,

the cross-sectional variance for the dividend-to-price ratio is used as proxy for the dispersion in

intertemporal risk. Finally the market return is used instead of changes in market wealth, and the

market earnings yield is the proxy used for aggregate intertemporal risk.

The empirical test of the model shows that the Generalized ICAPM is able to price reasonably

well the Fama and French (1993) portfolios, and compares favorably with the Fama and French

(1993) model. These results are robust to tests made with additional classes of portfolios - industry

portfolios and alternative characteristic portfolios sorted on the cash �ow-to-price, earnings-to-price

and dividend-to-price ratios. In addition, the results are robust to di¤erent estimation methodolo-

gies, the two-stage GMM procedure with equally weighted pricing errors in the �rst stage, and in

alternative, the two-stage method with the Hansen and Jagannathan (1997) weighting matrix, in

the �rst stage. Moreover, the Generalized ICAPM is able to price at least as well as the Fama and

French (1993) model, the extreme growth and value portfolios, that is, the GICAPM explains the

value premium anomaly.
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A An ICAPM with cross-sectional risk

The problem for Investor i is stated as
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and can be represented in a dynamic programming framework, in the following form
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where Jt (W i
t ; z

i
t) denotes the value function for investor i; R

i
p;t+1 is the gross return on investor i�s

reference portfolio; zit are the state variables that forecast R
i
p;t+1,

14 and !in;t is the weight for asset
n in the portfolio of investor i. The f.o.c. with respect to Cit is equal to
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where U 0 (Cit) stands for the �rst partial derivative relative to C
i
t , and JW;t+1 is the �rst partial

derivative of Jt (:) w.r.t W i
t+1. By applying the envelope theorem to (A.1), JW;t (:) can be repre-
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and by using Equation (A.2), Equation (A.3) simpli�es to
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which can be rewritten, given (A.2), as follows
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By updating (A.5), substituting the result in (A.2), and rearranging, we obtain the Euler
equation for investor i,
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14For notational convenience let�s assume that there is only one state variable, i.e., zit is a scalar.
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Given (A.6), the stochastic discount factor (SDF) for investor i is equal to
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Let the portfolio return for investor i be represented as

Rip;t+1 =

N�1X
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with Rf;t+1 denoting a benchmark return (for example, the risk-free rate).15 Therefore, the f.o.c.
with respect to !in;t is given by
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By substituting (A.8) in (A.6), and rearranging, we obtain
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and by using (A.9) leads to
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for an arbitrary return Rn;t+1. By averaging across I investors, the general pricing equation (A.10)
can be rewritten as

1 = Et [Mt+1Rn;t+1] ; (A.11)
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where Mt+1 represents the average SDF in the economy.

The function h(W i
t+1; z

i
t+1) in Equation (A.12) can be approximated by a second order Taylor

15The normalization that the benchmark return is the Nth asset does not play any role in the derivation.
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equation,
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with Wt+1 representing the cross sectional average or market wealth, and zt+1 denoting the cross
sectional average for the state variable. By taking the average across the I investors, the average
SDF in the economy is given by
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where VWt+1 represents the cross sectional variance for wealth; V Zt+1 is the cross sectional variance
associated with the state variable; and CWZt+1 denotes the cross sectional covariance between
wealth and the state variable.
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By applying the Steins�s Lemma16 to Covt [Rn;t+1;Mt+1], we obtain
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Et [hzzW (Wt+1; zt+1)CWZt+1]gCovt(Rn;t+1; zt+1)+
1

2
Et [hWW (Wt+1; zt+1)] Covt(Rn;t+1; V Wt+1) +

1

2
Et [hzz(Wt+1; zt+1)] Covt(Rn;t+1; V Zt+1)+

Et [hWz(Wt+1; zt+1)] Covt(Rn;t+1; CWZt+1): (A.18)

By further noting that the expected conditional SDF is equal to

Et (Mt+1) = Et [h (Wt+1; zt+1)] +
1

2
Et [hWW (Wt+1; zt+1)VWt+1] +

1

2
Et [hzz (Wt+1; zt+1)V Zt+1] +

Et [hWz (Wt+1; zt+1)CWZt+1] ; (A.19)

it follows that the general pricing equation,

Et(Rn;t+1)�Rf;t+1 = �
Covt (Rn;t+1;Mt+1)

Et (Mt+1)
;

can be represented as,

Et(Rn;t+1)�Rf;t+1 = �MtCovt(Rn;t+1;
Wt+1

Wt

) + �ztCovt(Rn;t+1; zt+1) + �VWtCovt(Rn;t+1; V Wt+1)

+�V ZtCovt(Rn;t+1; V Zt+1) + �CWZtCovt(Rn;t+1; CWZt+1): (A.20)

In the above asset pricing model, the risk prices associated with the market factor, the state
variable factor, the cross sectional variance of wealth, the cross sectional variance for the state
variable, and the cross sectional covariance between wealth and state variable, are equal to the
following expressions,17

�Mt � �Wt

JWW (Wt; zt) +
1
2 Et [JWWWW (:)VWt+1] +

1
2 Et [JWWzz (:)V Zt+1] + Et [JWWWz (:)CWZt+1]

JW (Wt; zt) +
1
2 Et [JWWW (:)VWt+1] +

1
2 Et [JWzz (:)V Zt+1] + Et [JWWz (:)CWZt+1]

;

(A.21)

�zt � �
JWz (Wt; zt) +

1
2 Et [JWWWz (:)VWt+1] +

1
2 Et [JWzzz (:)V Zt+1] + Et [JzzWW (:)CWZt+1]

JW (Wt; zt) +
1
2 Et [JWWW (:)VWt+1] +

1
2 Et [JWzz (:)V Zt+1] + Et [JWWz (:)CWZt+1]

;

(A.22)

16See Cochrane (2001), Chapter 10.
17The functions with unspeci�ed arguments (:), have arguments (Wt+1; zt+1).
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�VWt � �
1
2
JWWW (Wt; zt)

JW (Wt; zt) +
1
2 Et [JWWW (:)VWt+1] +

1
2 Et [JWzz (:)V Zt+1] + Et [JWWz (:)CWZt+1]

;

(A.23)

�V Zt � �
1
2
JWzz(Wt; zt)

JW (Wt; zt) +
1
2 Et [JWWW (:)VWt+1] +

1
2 Et [JWzz (:)V Zt+1] + Et [JWWz (:)CWZt+1]

;

(A.24)

�CWZt � �
JWWz(Wt; zt)

JW (Wt; zt) +
1
2 Et [JWWW (:)VWt+1] +

1
2 Et [JWzz (:)V Zt+1] + Et [JWWz (:)CWZt+1]

:

(A.25)
In the above derivations for the factor risk prices I have used equation (A.7), and the following

assumptions 8>>>>>><>>>>>>:

Et [JW (Wt+1; zt+1)] = JW (Wt; zt)

Et [JWW (Wt+1; zt+1)] = JWW (Wt; zt)

Et [JWz (Wt+1; zt+1)] = JWz (Wt; zt)

Et [JWWW (Wt+1; zt+1)] = JWWW (Wt; zt)

Et [JWWz (Wt+1; zt+1)] = JWWz (Wt; zt)

Et [JWzz (Wt+1; zt+1)] = JWzz (Wt; zt)

:

If there are neither idiosyncratic shocks attached to wealth and to intertemporal risk (i.e., there
is no heterogeneity across investors), then we have

VWt+1 = V Zt+1 = CWZt+1 = 0;

and the pricing equation (A.20) specializes to the Merton (1973) ICAPM,

Et(Rn;t+1)�Rf;t+1 = �MtCovt(Rn;t+1;
Wt+1

Wt

) + �ztCovt(Rn;t+1; zt+1); (A.26)

with risk prices being given by

�Mt � �Wt
JWW (Wt; zt)

JW (Wt; zt)
; (A.27)

�zt � �
JWz (Wt; zt)

JW (Wt; zt)
: (A.28)

By comparing (A.21-A.22) with the corresponding risk prices (A.27-A.28), it is clear that the
risk prices associated with market wealth and "hedging opportunities" in the GICAPM, will not
only depend on JW (Wt; zt) ; JWW (Wt; zt) and JWz (Wt; zt) - as in the standard ICAPM - but also on
higher order derivatives of the value function, and hence in general, the market and intertemporal
risk prices will be di¤erent in the two models.
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Table 1: Descriptive statistics for factors
This table reports descriptive statistics for the factors used in the GICAPM model presented in Equa-
tions (22-23). The factors are the excess market return (RMRF ); the log smoothed market earnings
yield (EY 10); the cross-sectional return variance (V R; V R�); the cross-sectional dividend yield variance
(V IR; V IR�); and the cross-sectional covariance between returns and dividend yields (CIRR;CIRR�).
V R; V IR;CIRR are computed based on the SBM25 portfolios, while V R�; V IR�; CIRR� are based on
the SBM100 portfolios. The sample is 1963:01-2003:12. � designates the �rst order autocorrelation. The
correlations between the factors are presented in Panels B and C. For further details refer to Section 2.

Panel A
Mean St. Dev. Min. Max. �

RMRF 0:005 0:045 �0:231 0:161 0:055
EY 10 �2:830 0:453 �3:789 �1:893 0:998
V R 0:022 0:013 0:008 0:144 0:503
V IR 0:001 0:001 0:0004 0:005 0:263
CIRR 0:000 0:000 �0:0001 0:0001 0:104
V R� 0:030 0:013 0:015 0:154 0:584
V IR� 0:002 0:001 0:0006 0:009 0:383
CIRR� 0:000 0:000 �0:0001 0:0001 0:115

Panel B
RMRF EY 10 V R V IR CIRR

RMRF 1:000 �0:012 �0:018 �0:001 �0:398
EY 10 1:000 �0:274 0:612 0:030
V R 1:000 �0:127 �0:118
V IR 1:000 0:041
CIRR 1:000

Panel C
RMRF EY 10 V R� V IR� CIRR�

RMRF 1:000 �0:012 0:026 �0:039 �0:408
EY 10 1:000 �0:313 0:493 0:033
V R� 1:000 �0:173 �0:139
V IR� 1:000 0:096
CIRR� 1:000
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Table 3: VAR coe¢ cient estimates
This table presents the estimated coe¢ cients (�rst line of each variable) and associated Newey-
West t-statistics (calculated with 5 lags, second line) for the �rst-order VAR presented in Equa-
tion (35). The VAR vector is given by [RMRFt; V Rt; V IRt; CIRRt; EY 10t]

0 in Panel A, and
[RMRFt; V R

�
t ; V IR

�
t ; CIRR

�
t ; EY 10t]

0 in Panel B, where RMRF is the excess market return; EY 10 is the
log smoothed market earnings yield; V R(V R�) is the cross-sectional return variance; V IR(V IR�) is the
cross-sectional dividend yield variance; and CIRR(CIRR�) denotes the cross-sectional covariance between
returns and dividend yields. The usable sample is 1963:02-2003:12. Italic (bold) t-statistics denote statis-
tical signi�cance at the 10% (5%) level. Adj:R2 is the adjusted R2. For further details refer to Section 3.

Panel A
RMRF V R V IR CIRR EY 10 Adj:R2

RMRF 0:011 �0:194 �4:095 �240:735 0:007 0:009
(0:233) (�1:545) (�1:261) (�2:663) (1:144)

V R �0:014 0:463 �0:562 6:654 �0:004 0:270
(�0:971) (7:172) (�0:690) (0:217) (�2:008)

V IR 0:000 0:007 �0:185 1:594 0:001 0:399
(0:059) (4:011) (�2:738) (1:277) (14:602)

CIRR �0:0001 0:0001 0:001 0:043 �0:000 0:033
(�3:176) (1:055) (1:028) (1:050) (�0:138)

EY 10 �0:453 0:172 0:766 �8:777 1:000 0:996
(�13:520) (1:621) (0:322) (�0:126) (269:684)

Panel B
RMRF V R� V IR� CIRR� EY 10 Adj:R2

RMRF 0:019 �0:220 �1:834 �207:158 0:004 0:005
(0:403) (�1:631) (�1:095) (�2:100) (0:845)

V R� �0:024 0:540 �0:254 1:144 �0:004 0:361
(�1 :826 ) (8:359) (�0:599) (0:038) (�2:719)

V IR� 0:000 0:003 0:186 1:497 0:001 0:260
(0:034) (1:090) (2:480) (0:828) (10:237)

CIRR� �0:000 0:000 0:001 0:053 0:000 0:031
(�3:276) (0:911) (1:123) (1:268) (0:034)

EY 10 �0:462 0:197 0:476 �50:617 0:999 0:996
(�14:166) (1 :758 ) (0:390) (�0:698) (312:500)
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Table 7: Model comparison tests
This table reports evaluation measures for the GICAPM=GICAPM� in Equation (36) and the Fama
and French (1993) model (FF3). Panels A, B, and C present the results for the estimation with
SBM25; SBM25 + IND38; and all portfolios, respectively. GICAPM + FF3 and GICAPM� + FF3

represent the unrestricted models. RMSE refers to the square root of the average pricing error
(in %). R2OLS and Adj:R2OLS denote the original and adjusted OLS R2, respectively. R2GLS and
Adj:R2GLS stand for the original and adjusted GLS R

2, respectively. Dtest and p(D) denote respec-
tively the level and associated p-values for the asymptotic di¤erence �2 test. The row labeled FF3�

presents the test values for the Fama and French (1993) model as a special case of GICAPM� + FF3.

Model RMSE(%) R2OLS Adj:R2OLS R2GLS Adj:R2GLS D test p (D)
Panel A (SBM25)

GICAPM 0:104 0:818 0:781 0:738 0:685 0:706 0:703
FF3 0:139 0:683 0:654 0:167 0:091 3:224 0:521

GICAPM + FF3 0:103 0:822 0:763 0:720 0:627
GICAPM� 0:104 0:819 0:783 0:429 0:314 0:288 0:866
FF3� 5:917 0:205

GICAPM� + FF3 0:103 0:823 0:764 0:496 0:327
Panel B (SBM25+IND38)

GICAPM 0:154 0:431 0:388 0:448 0:406 2:827 0:243
FF3 0:188 0:157 0:127 �1:291 �1:374 12:548 0:014

GICAPM + FF3 0:153 0:434 0:367 0:123 0:020
GICAPM� 0:153 0:433 0:390 0:437 0:395 2:389 0:303
FF3� 14:758 0:005

GICAPM� + FF3 0:153 0:435 0:368 0:291 0:207
Panel C (SBM25+CF/P+E/P+D/P+IND38)

GICAPM 0:133 0:505 0:481 0:501 0:477 1:656 0:437
FF3 0:159 0:301 0:284 �0:712 �0:752 18:223 0:001

GICAPM + FF3 0:133 0:506 0:469 0:534 0:500
GICAPM� 0:134 0:497 0:473 0:468 0:442 1:933 0:380
FF3� 17:941 0:001

GICAPM� + FF3 0:134 0:498 0:461 0:340 0:291
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Table 8: Pricing the size/book-to-market portfolios
This table reports evaluation measures for the GICAPM=GICAPM� in Equation (36) and the
Fama and French (1993) model (FF3). The SBM25 portfolios receive a bigger weight in the
estimation, relative to the other portfolios. Panels A and B present the results for the esti-
mation with SBM25 + IND38 and all portfolios, respectively. RMSE� refers to the square
root of the average pricing error (in %), associated with the SBM25 portfolios. R2 and
Adj:R2 denote the original and adjusted measures for the weighted cross-sectional R2, respectively.

Model RMSE�(%) R2 Adj:R2

Panel A (SBM25+IND38)
GICAPM 0:131 0:548 0:514
GICAPM� 0:121 0:564 0:531
FF3 0:154 0:340 0:316

Panel B (SBM25+CF/P+E/P+D/P+IND38)
GICAPM 0:133 0:583 0:563
GICAPM� 0:124 0:590 0:570
FF3 0:156 0:418 0:404
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Table 12: Pricing growth and value portfolios
This table reports evaluation measures for the GICAPM=GICAPM� in Equation (36) and the Fama
and French (1993) model (FF3). The extreme growth and value portfolios receive a bigger weight
in the estimation, relative to the other portfolios. Panels A, B and C present the results for the
estimation with SBM25, SBM25 + IND38 and all portfolios, respectively. RMSE� refers to the
square root of the average pricing error (in %), associated with the extreme portfolios. R2 and
Adj:R2 denote the original and adjusted measures for the weighted cross-sectional R2, respectively.

Model RMSE�(%) R2 Adj:R2

Panel A (SBM25)
GICAPM 0:114 0:832 0:799
GICAPM� 0:134 0:816 0:779
FF3 0:182 0:676 0:646

Panel B (SBM25+IND38)
GICAPM 0:173 0:506 0:468
GICAPM� 0:162 0:517 0:481
FF3 0:192 0:290 0:265

Panel C (SBM25+CF/P+E/P+D/P+IND38)
GICAPM 0:176 0:548 0:527
GICAPM� 0:165 0:551 0:530
FF3 0:191 0:381 0:367
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Table 13: Average risk premia and pricing errors across BM quintiles
This table reports the average risk premium (covariance times risk price) for each factor, across the
book-to-market BM) quintiles. The models are the GICAPM (Panel A), GICAPM� (Panel B), and
the Fama and French (1993) model (Panel C). E(R) denotes the average excess return for each BM
quintile, and � represents the average pricing error per quintile, for each model. The risk price es-
timates are obtained from Table 4. For a description of the factors see Table 4. All the values are
presented in percentage points. BM1 denotes the lowest BM quintile, and Dif: denotes the di¤er-
ence across extreme quintiles. The sample is 1963:02-2003:12. For further details, refer to Section 3.

Panel A (GICAPM)
E (R) RMRF V R V IR CIRR EY 10 ��

BM1 0:404 0:603 0:128 0:004 �0:414 0:090 �0:007
BM2 0:631 0:511 0:078 �0:020 �0:172 0:247 �0:012
BM3 0:738 0:453 0:043 �0:036 �0:045 0:313 0:010
BM4 0:875 0:422 0:048 �0:040 0:040 0:394 0:011
BM5 0:952 0:451 0:053 �0:050 0:061 0:428 0:099
Dif: �0:548 0:152 0:075 0:055 �0:475 �0:338 �0:016

Panel B (GICAPM�)
E (R) RMRF V R� V IR� CIRR� EY 10 ��

BM1 0:404 0:620 0:145 0:005 �0:368 0:001 0:002
BM2 0:631 0:525 0:079 0:037 �0:145 0:152 �0:018
BM3 0:738 0:466 0:042 0:042 �0:026 0:219 �0:004
BM4 0:875 0:434 0:045 0:036 0:051 0:291 0:017
BM5 0:952 0:464 0:049 0:048 0:064 0:316 0:011
Dif: �0:548 0:156 0:096 �0:043 �0:432 �0:315 �0:009

Panel C (FF3)
E (R) RMRF SMB HML ��

BM1 0:404 0:562 0:214 �0:354 �0:018
BM2 0:631 0:476 0:155 0:037 �0:037
BM3 0:738 0:422 0:115 0:204 �0:003
BM4 0:875 0:394 0:100 0:331 0:050
BM5 0:952 0:421 0:121 0:446 �0:036
Dif: �0:548 0:141 0:093 �0:800 0:018
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Figure 2: Cross-sectional variance in returns
This �gure plots time-series of the cross-sectional variance in portfolio returns. In Panel A, the cross-
sectional return variance is based on the SBM25 portfolios (V R), and in Panel B it is based on the
SBM100 portfolios (V R�). The sample is 1963:01-2003:12. Further details are presented in Section 2.
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Figure 3: Cross-sectional variance in the dividend-to-price ratio
This �gure plots time-series of the cross-sectional variance in portfolio dividend
yields. In Panel A, the cross-sectional dividend yield variance is based on the
SBM25 portfolios (V IR), and in Panel B it is based on the SBM100 portfolios
(V IR�). The sample is 1963:01-2003:12. Further details are presented in Section 2.
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Figure 4: Cross-sectional covariance between returns and dividend-to-price ratios
This �gure plots time-series of the cross-sectional covariance between portfolio re-
turns and dividend yields. In Panel A, the cross-sectional covariance is based on the
SBM25 portfolios (CIRR), and in Panel B it is based on the SBM100 portfolios
(CIRR�). The sample is 1963:01-2003:12. Further details are presented in Section 2.
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Figure 5: Model �t: Size/BM portfolios
This Figure plots the estimated excess returns (vertical axis) versus the realized excess re-
turns (horizontal axis), in the case of the SBM25 portfolios. The models are the
GICAPM , GICAPM� and the Fama and French (1993) model. In Panels A, B, C,
the estimates are associated with equally weighted estimation (Table 4), and in Panels D,
E, F, the estimates are associated with the Hansen-Jagannathan (HJ) procedure (Table 9).58



0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.000 0.002 0.004 0.006 0.008 0.010 0.012

Panel A (GICAPM)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.000 0.002 0.004 0.006 0.008 0.010 0.012

Panel D (GICAPM, HJ)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.000 0.002 0.004 0.006 0.008 0.010 0.012

Panel B (GICAPM*)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.000 0.002 0.004 0.006 0.008 0.010 0.012

Panel E (GICAPM*, HJ)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.000 0.002 0.004 0.006 0.008 0.010 0.012

Panel C (FF3)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.000 0.002 0.004 0.006 0.008 0.010 0.012

Panel F (FF3, HJ)

Figure 6: Model �t: Industry portfolios
This Figure plots the estimated excess returns (vertical axis) versus the realized excess re-
turns (horizontal axis), in the case of the industry portfolios. The models are the
GICAPM , GICAPM� and the Fama and French (1993) model. In Panels A, B, C,
the estimates are associated with equally weighted estimation (Table 5), and in Panels D,
E, F, the estimates are associated with the Hansen-Jagannathan (HJ) procedure (Table 10).59
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Figure 7: Pricing errors: Size/BM portfolios
This �gure plots the pricing errors associated with Figure 5. Panel A presents the
pricing errors associated with equally weighted estimation (Table 4), and Panel B re-
ports the estimates associated with the Hansen-Jagannathan (HJ) procedure (Ta-
ble 9). ij denotes the portfolio associated with ith size and jth BM quintile.
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Figure 8: Pricing errors: Industry portfolios
This �gure plots the pricing errors associated with Figure 6. Panel A presents the
pricing errors associated with equally weighted estimation (Table 5), and Panel B re-
ports the estimates associated with the Hansen-Jagannathan (HJ) procedure (Table 10).
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