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A Tale of Two Yield Curves: Modeling the Joint Term Structure of Dollar and Euro

Interest Rates

ABSTRACT

Modeling the joint dynamics of the term structures of interest rates in the U.S. and Europe,

the two largest economies in the world, is extremely important in international �nance. Such a

joint term structure model is essential for pricing and managing interest rate risks for international

banks and bond investors. In this paper, we provide both theoretical and empirical analysis of

multi-factor joint a�ne term structure models for dollars and euros. In particular, we provide a

systematic classi�cation of multi-factor joint a�ne term structure models similar to that of Dai and

Singleton (2000). A principal component analysis of daily dollar and euro interest rates reveals four

factors in the data. We estimate four-factor joint a�ne term structure models using the approximate

maximum likelihood method of A��t-Sahalia (2002a, b) and compare the in-sample and out-of-sample

performances of these models using some of the latest nonparametric methods. We �nd that a new

four-factor model with two common and two local factors best captures the joint term structure

dynamics in the US and Europe.

Key words: A�ne term structure models, International term structure models, Approximate Maxi-

mum Likelihood, LIBOR, Euribor, Speci�cation analysis of term structure of interest rates, Out-of-

sample model evaluation.

JEL Classi�cation: C4, C5, G1



1 Introduction

In recent years, �nancial markets have become more globalized. As banks and institutional investors

lend, borrow and invest internationally, they take on large bond market positions in di�erent coun-

tries. These international bond market positions create exposure to di�erent interest rate risks.1

Characterizing these risks is important for banks, investors and regulators. Banks and investors are

clearly interested in assessing and managing the risks in their portfolios. Regulators are also keen to

understand the underlying risk so as to set adequate bank capital requirements and monitor systemic

risk. However, the multiple sources of risks involved make it challenging to conduct risk management

on these bond portfolios

At the heart of managing these risks is an appropriate model for the joint term structure of inter-

est rates in multiple countries. This paper focuses on the joint term structure of the US dollar and

the euro. The euro is now the o�cial currency in twelve European countries and is gaining dominance

as one of the two major currencies in the world.2 Among di�erent bond markets, the dollar and

euro bond markets are the two most important. As of the end of 2003, Euro-zone domestic govern-

ments and corporations had an outstanding volume of US $5,462 billion worth of euro-denominated

bonds issued in their domestic countries.3 This represents 22.3 percent of outstanding volume of

domestic-issued debt among all developed countries and this size is second only to that of the United

States. Among international issuers from outside of the Euro-zone, euros and dollars are the favorite

currencies. Most international issuers choose to issue their bonds and notes in euros (43.5% of total

volume) and in US dollars (40.5% of total volume).4 The dominance of the Euro and US bond

markets means that their joint term structure deserves to be examined seriously.

Recently, a number of academic papers have started to investigate two-country joint term struc-

ture models. In this literature, a paper typically develops a term structure model and examines

whether it resolves the forward premium puzzle or provides international diversi�cation bene�ts.5

While these studies make important contributions, none of them have looked at the euro and dollar

term structures jointly. Doing so is the main focus of our paper. In addition, each of these studies

uses a di�erent speci�cation of the term structure model.6 With each di�erent speci�cation, di�erent

1Previous literature largely focuses on whether to hedge the exchange rate risk in such portfolios. However, these

portfolio values are driven by interest rates in both regions, in addition to the exchange rate risk.
2Countries have adopted the euro include Austria, Belgium, Finland, France, Germany, Greece, Italy, Ireland,

Luxembourg, The Netherlands, Spain and Portugal.
3European Central Bank (2004).
4European Central Bank (2004).
5Backus, Telmer and Foresi (2001), Inci and Lu (2004), Han and Hammond (2003), and Brennan and Xia (2006) look

at the forward premium puzzle. Dewachter and Maes (2001) and Ahn (2004) examine the international diversi�cation

bene�t. Hodrick and Vassalou (2002) and Tang and Xia (2006) empirically examine term structures in multiple

countries. Earlier references include Bakshi and Chen (1997) and Bansal (1997).
6A concurrent working paper, Mosburger and Schneider (2005), also compares several di�erent models on joint term

structure. However, they lack the proper tools to compare the performances of non-nested models and they only go up
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empirical results are drawn. For example, Backus, Telmer and Foresi (2001) propose a two-country

model that could potentially resolve the forward premium puzzle, but the long term yield could go

up as high as 80% due to implausibly high market price of risk. Using a di�erent model speci�ca-

tion with an extra factor, Han and Hammond (2003) �nd that such high market price of risk is not

necessary. Inci and Lu (2004) present yet another model and �nd similar results. Clearly, there is

a need for a comprehensive study examining multiple term structure speci�cations in the context of

Euro and US dollar bond markets.

In this paper, we provide a thorough analysis of multi-factor joint a�ne term structure models

for dollar and euro. Our study makes both theoretical and empirical contributions. Theoretically,

our paper systematically examines, decomposes and classi�es joint term structure models with up to

four local and common factors. In a domestic setting, Dai and Singleton (2000) provide an important

contribution by classifying a�ne term structure models into subfamilies.7 Within each subfamily

of two- or three-factor models, Dai and Singleton derive the maximal model that nests existing

models. However, international joint term structure models add another layer of complexity due

to the presence of local and common factors. We classify all three-factor or four-factor international

term structure models within the maximally admissible classi�cation schemes. Ours is the �rst paper

that provides a comprehensive classi�cation for international term structure models.

Empirically, we provide new evidence on the joint term structure using daily data in LIBOR and

Euribor from July 1999 to June 2003. Just like Litterman and Sheinkman (1991) who conclude that

three factors are needed to capture the US term structure, we �nd that a four-factor model best

captures the joint US-Euro term structure dynamics. One class of four-factor term structure model,

with two common and two other individual country factors, is particularly promising in terms of

in-sample goodness of �t and out-of-sample forecasting ability. The model that works the best is a

four-factor model in which only one of the common factors drives volatilities.

We conduct our empirical tests in three stages. First, using principal component analysis, we

examine the total number of factors and the numbers of common vs local factors that should be

included in the term structure models. Domestic term structure models usually use up to three-

factors (e.g. Dai and Singleton (2000)). But in an international setting, it remains an open question

how many factors should be included and how many of them should be common or local. Most

international papers use two or three factors with di�erent combinations of local and common factors

(e.g. Inci and Lu (2004), Hodrick and Vassalou (2002), Tang and Xia (2006), Backus, Telmer and

Foresi (2001)). Motivated by empirical evidence from principal component analysis, we go beyond

the usual three-factor models to examine four-factor models.

to three factors.
7Traditionally, interest rates were assumed to follow a univariate model, e.g. Vasicek (1977) and Cox, Ingersoll and

Ross (1985). Over time, researchers like Litterman and Sheinkman (1991) realized the importance of using multifactor

models. Among these, Du�e and Kan (1996)'s class of multifactor a�ne models is particularly popular due to its

exibility and tractibility.
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Second, we estimate the model utilizing the approximate maximum likelihood estimation, a pow-

erful method developed recently by A��t-Sahalia (1996, 2002a, and 2002b) and A��t-Sahalia and Kimmel

(2002). The absence of a closed-form solution for transition density of a�ne models makes maximum

likelihood estimation infeasible. Di�erent authors estimating international term structure models

resort to other estimation methods that are either inaccurate in small sample (Quasi-maximum

likelihood or E�cient Methods of Moment) or computationally burdensome (Simulated Methods of

Moment). The approximate maximum likelihood estimation provides extremely fast and accurate es-

timations for a�ne models. We show that A��t-Sahalia's approximate maximum likelihood estimation

techniques are applicable in estimating international term structure models.

Third, we utilize the latest advance in non-parametric modeling to compare non-nested models.

Dai and Singleton (2000) point out the di�culties in testing across non-nested a�ne models. Like-

wise, Tang and Xia (2006) note that \a suitable test in the current [non-nested] setting is... still not

available in the literature." Most papers use the Akaike Information Criteria and Schwartz criteria

as suggestive evidence of model comparison. New developments in non-parametrics allow us to over-

come this di�culty. Hong and Li (2005) and Hong, Li and Zhao (2006) recently developed powerful

nonparametric tests which are applicable even to non-nested models. Making use of these newly

developed tests, we are able to compare the in-sample and out-of-sample forecasting performances

across di�erent international a�ne models.

Our paper opens the door to a wide range of research possibilities. First of all, our framework

makes it possible to classify and compare new classes of term structure models. Recent literature in

domestic term structure proposes various new speci�cations like the essentially a�ne term structure

models of Du�ee (2002) and the market price of risk speci�cation of Cheridito, Filipovi�c and Kimmel

(2006). Our framework can be easily extended to incorporate these models.

Also, our framework can be adopted to study the forward premium puzzle and exchange rate

dynamics. Previous literature on joint term structure focuses on the forward premium puzzle, while

previous literature on the international bond portfolio focuses on the bene�t for exchange rate risk

hedging.8 This paper focuses on capturing the joint term structure risk and not the exchange rate

dynamics. Our approach is supported by our principal component evidence that the exchange rate

is driven primarily by a factor that is separate from the term structures and by similar results shown

in Inci and Lu (2004) and Han and Hammond (2003). As the exchange rate risk is to a large

extent orthogonal, the joint term structure risk can be examined separately. In practice, this focus is

important for investors in both markets. For instance, investors in a Euribor portfolio would normally

just assess the factors driving the Euribor term structure. With our framework, we can relate the

impact of LIBOR term structure on that of Euribor while abstracting from the second-order e�ect

of exchange rate. Nevertheless, our framework can be extended easily to incorporate exchange rate

dynamics and allows comparison of di�erent models.

8See for example Levich (2001), Filatov and Rappaport (1992), and Glen and Jorion (1993).
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Finally, our framework can be extended to calculate the Value-at-Risk (VaR) measure of risk

inherent in an international bond portfolio. Using the approximate maximum likelihood estimation

method, we can characterize the potential gains and losses and calculate the VaR of such a portfolio.

Given the importance and applicability of the topic, the two-country joint a�ne term structure

is likely to attract a substantial amount of research in the future. Our goal is to understand the

quantitative properties of these models in capturing the dynamics of joint term structures in the US

and Europe.

The rest of this paper is organized as follows. Section 2 introduces two-country a�ne models of

interest rate term structure. Section 3 presents the speci�cation analysis of three-factor joint term

structure models. Section 4 describes the estimation and ranking methodologies. Section 5 describes

the data and reports the empirical results for joint dynamics of LIBOR and Euribor. Section 6

concludes the paper.

2 Joint A�ne Term Structure Models

In single-country a�ne models, it is assumed that the spot rate r(t) is an a�ne function of N latent

state variables X(t) = [X1(t); X2(t); :::; Xn(t)]
0:

r(t) = �0 + �
0X(t); (1)

where �0 is a scalar and � is an N � 1 vector. In the absence of arbitrage opportunities, the time t
price of a zero-coupon bond maturing at t+ �m (�m > 0) equals

P (t; �m) = E
Q
t

24exp
0@� t+�mZ

t

r(s)ds

1A35 ;
where the expectation EQt is taken under the risk-neutral measure Q. Thus, the whole yield curve

is determined by X(t); which is assumed to follow an a�ne di�usion under the physical measure:

dX(t) = � [#�X(t)] dt+�StdW (t); (2)

and under the risk-neutral measure:

dX(t) = e� he#�X(t)i dt+�StdfW (t): (3)

fW (t) is an N � 1 independent standard Brownian motion under measure Q; and e�;� are N � N
parameter matrices, and e� is an N � 1 parameter vector. The matrix St is diagonal with (i; i)-th
elements

St(ii) �
q
�i + �0iX(t); i = 1; :::; N; (4)
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where �i is a scalar parameter and �i is an N � 1 parameter vector.
Under the above assumptions, bond prices have the exponential a�ne form:

P (X(t); �m) = exp
�
�A(�m)�B(�m)0X(t)

�
:

The yields of zero coupon bonds (denoted by Y (X(t); �m) = � ln(P (X(t); �m))=�m) are an a�ne
function of the state variables,9

Y (X(t); �m) = A(�m)=�m +
�
B(�m)

0=�m
�
X(t) (5)

where the scalar function A(�) and the N � 1 vector-valued function B(�) either have a closed-form
or can be easily solved via numerical methods.

The completely a�ne models of Dai and Singleton (2000) assume that the market price of risk is

�(t) = St� (6)

where � is an N � 1 parameter vector. This implies that the compensation for risk is a �xed
multiple of the variance of risk and that the market prices of risk cannot change sign over time.

These restrictions make it di�cult to replicate some stylized facts of historical excess bond returns.

Du�ee (2002) extends completely a�ne models to essentially a�ne models.

Dai and Singleton (2000) greatly simplify the econometric analysis of a�ne models by providing

a systematic scheme that classi�es all admissible N -factor a�ne models into N + 1 subfamilies10,

denoted as Am(N); where m 2 f0; 1; :::; Ng is the number of state variables that a�ect the instan-
taneous variance of X(t). They also introduce a canonical representation for Am(N); which has the

most exible speci�cation within each subfamily, as it either nests or is equivalent (via an invariant

transform) to all the models in Am(N).
11 In the canonical representation, � is normalized to the

identity matrix and the state vector X(t) is ordered so that the �rst m elements of X(t) a�ect the

instantaneous variance of X(t): Setting �i = 0 for i = 1; 2; :::;m; and �i = 1 for i = m + 1; :::N;

we have St(ii) = Xi(t)
1=2 for i = 1; :::;m; and St(ii) = [1 + �0iXi(t)]

1=2 for i = m + 1; :::; N; where

�i = (�i1; :::; �im;0; :::; 0)
0 :

For a two-country model we need to de�ne expressions for both domestic spot rate r(t) and

foreign spot rate r�(t). As in the one-country model (1), the spot rates are assumed to follow a�ne

structures:

r(t) = �0 + �
0X(t); r�(t) = ��0 + �

�0X(t); (7)

9See, e. g., Dai and Singleton (2000) and references therein.
10Admissibility means that �i + �

0
iX(t) � 0 for all i and all possible values of X(t):

11See Dai and Singleton (2000) for their complete set of restrictions on model parameters. A��t-Sahalia and Kimmel

(2002) discuss the limitations of these restrictions and provide a comprehensive set of existence, stationarity and

boundary restrictions for a�ne models with up to three factors.
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where �0 and �
�
0 are scalars, � and �

� are N � 1 vectors and N is the total number of factors in the

joint term structure. X(t) denotes all factors including both domestic and common factors. On the

one hand, if all elements of vectors � and �� are non-zero, then all factors a�ect both spot rates r(t)

and r�(t). On the other hand, if only those elements of � are non-zero for which the corresponding

elements of �� are zero, then only domestic factors a�ect spot rates r(t) and r�(t). We call factors

that enter expressions for both r(t) and r�(t) common factors. We call all other factors in vector

X(t) country-speci�c factors. This setup is general so that the joint a�ne term structure model can

be decomposed into two country-speci�c a�ne models, each of which can still depend on common

factors.

Under the physical structure, the a�ne dynamics of the factors follow:

dX(t) = � [#�X(t)] dt+ StdW (t); (8)

For the joint a�ne term structure, we further assume the canonical representation Am(N), where

m 2 f0; 1; :::; Ng is the number of state variables that a�ect the instantaneous variance of X(t): In
particular, for i = m+ 1; :::N; we have St(ii) = Xi(t)

1=2 for i = 1; :::;m; and St(ii) = [1 + �
0
iXi(t)]

1=2

for i = m+ 1; :::; N; where �i = (�i1; :::; �im;0; :::; 0)
0 :12

The country risk premiums are assumed to follow completely a�ne speci�cations. Hence, the

domestic country risk premium is de�ned by �(t) = St�; where � is an N � 1 parameter vector with
zero components corresponding to the foreign country-speci�c factors. Similarly, we assume that the

foreign country risk premium is de�ned by ��(t) = St��; where �� is an N �1 parameter vector with
zero components corresponding to the domestic country-speci�c factors. Our decomposition from

joint to single-country term structure models can be applied in a similar way towards decomposition

in the risk-neutral measure. Under the risk-neutral measure,

dX(t) = e� he#�X(t)i dt+ StdfW (t) (9)

where parameter vector e# and parameter matrix e� are just aggregation from their single-country

risk-neutral counterparts.

Before we proceed to the speci�cation analysis of the joint term structure model, it is helpful

to de�ne two terms. First, a two-country joint term structure model is decomposable if it can be

decomposed in physical measure into two single-country a�ne models. It can be shown that all

a�ne joint term structure models are decomposable as long as the dynamics of the common factors

do not depend on the dynamics of the country-speci�c factor. The dynamics of the country-speci�c

factors may or may not depend on the dynamics of the common factors. Moreover, they are also

12Admissibility restrictions in Dai and Singleton (2000) and A��t-Sahalia and Kimmel (2002) also apply to our two-

country a�ne term structure model. Additional restrictions on the structure of the a�ne two-country term structure

are discussed in this section and in Appendix 1.
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decomposable in the risk-neutral measure. We restrict our analysis to decomposable models, which

has the important advantage of reducing the dimensionality of the joint model by one.

Second, a two-country joint term structure model is symmetric if the submodels for domestic and

foreign countries have the same structure. We restrict our analysis to symmetric models. In these

cases, each country has the same number of local and foreign factors, although the extent to which

they are a�ected by these factors can be di�erent. While the symmetry assumption simpli�es the

classi�cation analysis, it can be easily relaxed and the methodology can be extended to non-symmetric

models. In the next section, we provide speci�cation analysis of three-factor decomposable symmetric

joint term structure models for two countries.

3 Speci�cation Analysis of Three-Factor Joint Term Structure Mod-

els

In this section, we demonstrate the structure of three-factor a�ne joint term structure models. We

build upon the single-country speci�cation analysis by Dai and Singleton (2000) described in the

previous section. We classify all admissible models into subfamilies and within each subfamily derive

the maximal model that nests existing models. In Appendix 1, we go on to classify symmetric four-

factor joint term structure models. The main idea is to treat the two-country model as a single

model where some factor(s) are common and the others are country-speci�c. We then study possible

speci�cations for common factors. Dropping trivial cases, we come up with speci�cations for all

interesting models.

3.1 A0(3) model

For model A0(3), the stochastic di�erential equation (8) takes the form

d

26664
X1t

X2t

X3t

37775 =
26664
�11 0 0

�21 �22 0

�31 �32 �33

37775
26664
�X1t
�X2t
�X3t

37775 dt+ d
26664
W1t

W2t

W3t

37775 : (10)

Note that for the general case when entries in the lower triangular submatrix of � are non-zero,

only X3 can be an individual country factor in (10). If we assume a symmetric nature for dependence

between single country term structures then we would have either one or three common factors. The

non-trivial case is that of one common factor. Without loss of generality we can assume that X1

is the common factor, X2 is the domestic individual factor and X3 is the foreign individual factor.

In other words, domestic country is a�ected by X1 and X2, while foreign country is a�ected by X1

and X3: In this case, we need to add the additional restriction that �32 = 0: Note that �21 can be

non-zero. Thus for each country we have an A0(2) model with one common factor. Speci�cally, for

the domestic country we have r(t) = �0 + �1X1(t) + �2X2(t); and
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d

24 X1t
X2t

35 =
24 �11 0

�21 �22

3524 �X1t
�X2t

35 dt+ d
24 W1t

W2t

35 ;
while for the foreign country the spot rate is r�(t) = ��0 + �

�
1X1(t) + �

�
3X3(t); and the dynamics of

factors are

d

24 X1t
X3t

35 =
24 �11 0

�31 �33

3524 �X1t
�X3t

35 dt+ d
24 W1t

W3t

35 :
3.2 A1(3) model

For model A1(3); equation (8) becomes

d

26664
X1t

X2t

X3t

37775 =

26664
�11 0 0

�21 �22 �23

�31 �32 �33

37775
26664
#1 �X1t
�X2t
�X3t

37775 dt (11)

+

26664
p
X1t 0 0

0
p
1 + �21X1t 0

0 0
p
1 + �31X1t

37775 d
26664
W1t

W2t

W3t

37775 :
The only symmetric case is when X1 is the common factor. To ensure that X2 and X3 are single

country factors we have to add extra restrictions: �23 = �32 = 0: For each country we have an A1(2)

model. Factor X1 enters both drift and volatility terms in (11)), and no single country factor a�ects

volatility directly. For the domestic country we have r(t) = �0 + �1X1(t) + �2X2(t); and

d

24 X1t
X2t

35 =
24 �11 0

�21 �22

3524 #1 �X1t
�X2t

35 dt+
24 pX1t 0

0
p
1 + �21X1t

35 d
24 W1t

W2t

35 ;
while for the foreign country the spot rate is r�(t) = ��0 + �

�
1X1(t) + �

�
3X3(t); and the dynamics of

factors are

d

24 X1t
X3t

35 =
24 �11 0

�31 �33

3524 #1 �X1t
�X3t

35 dt+
24 pX1t 0

0
p
1 + �31X1t

35 d
24 W1t

W3t

35 :
3.3 A2(3) model

Similarly, A2(3) has the following dynamics:

d

26664
X1t

X2t

X3t

37775 =

26664
�11 �12 0

�21 �22 0

�31 �32 �33

37775
26664
#1 �X1t
#2 �X2t
�X3t

37775 dt (12)
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+

26664
p
X1t 0 0

0
p
X2t 0

0 0
p
1 + �31X1t + �32X2t

37775 d
26664
W1t

W2t

W3t

37775
In this subfamily, the only symmetric case is that in which X3 is the common factor. This

implies that �12 = �21 = �32 = �33 = 0 and �31 = �32 = 0: For the domestic country we have

r(t) = �0 + �1X1(t) + �3X3(t); and

d

24 X1t
X3t

35 =
24 �11 0

0 �33

3524 #1 �X1t
�X3t

35 dt+
24 pX1t 0

0 1

35 d
24 W1t

W3t

35 ;
while for the foreign country the spot rate is r�(t) = ��0 + �

�
2X2(t) + �

�
3X3(t); and the dynamics of

factors are

d

24 X2t
X3t

35 =
24 �22 0

0 �33

3524 #1 �X1t
�X3t

35 dt+
24 pX2t 0

0 1

35 d
24 W2t

W3t

35 :
In this case, the common factor only a�ects correlation through the drift term of (12)) while both

single-country factors a�ect volatility as well as correlation. For each country we have a particular

case of the A1(2) model.

3.4 A3(3) model

Finally, for the A3(3) equation, (8) simpli�es to

d

26664
X1t

X2t

X3t

37775 =
26664
�11 �12 �13

�21 �22 �23

�31 �32 �33

37775
26664
#1 �X1t
#2 �X2t
#3 �X3t

37775 dt+
26664
p
X1t 0 0

0
p
X2t 0

0 0
p
X3t

37775 d
26664
W1t

W2t

W3t

37775 : (13)

Without loss of generality, X1 is the common factor. This implies that �12 = �13 = �23 = �32 = 0:

For the domestic country we have r(t) = �0 + �1X1(t) + �2X2(t); and

d

24 X1t
X2t

35 =
24 �11 0

�21 �22

3524 #1 �X1t
#2 �X2t

35 dt+
24 pX1t 0

0
p
X2t

35 d
24 W1t

W2t

35 ;
while for the foreign country the spot rate is r�(t) = ��0 + �

�
1X1(t) + �

�
3X3(t); and the dynamics of

factors are

d

24 X1t
X3t

35 =
24 �11 0

�31 �33

3524 #1 �X1t
#3 �X3t

35 dt+
24 pX1t 0

0
p
X3t

35 d
24 W1t

W3t

35 :
Factor X1 enters both drift and volatility terms in (13). Additionally, for each country the

country-speci�c factor also a�ects both drift and volatility.

This completes the speci�cation analysis for three-factor model. In Appendix 1, we report the

results for the classi�cation of the symmetric four-factor two-common-factor models. In the next

section, we will discuss estimation and ranking methodologies.
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4 Estimation and Ranking Methodologies

After classifying the models, the next task is to �nd out which model best characterizes the joint term

structure of interest rates of dollars and euros. We approach this task in three steps. We �rst examine

the principal components of the individual country term structures and the joint term structure. We

then estimate the models using the approximate maximum likelihood method. Finally, we examine

the in-sample and out-of-sample performances of di�erent models. We now describe the empirical

methodologies underlying these three steps.

4.1 Principal Component Analysis

Principal component analysis has been used before on bond markets in multiple contexts. Litterman

and Sheinkman (1991) characterize the common factors that a�ect US bond markets. Wadhwa

(1999) conducts principal component analysis of the implied volatilities in the swaptions market.

Heidari and Wu (2003) include both interest rates and interest rate options and examine whether a

common �nite-dimensional system spans both types of instruments.

Following Litterman and Sheinkman (1991) and Heidari and Wu (2003), we conduct principal

analysis to examine the factors underlying the US and Euro interest rate markets. As Heidari and Wu

(2003) explain, although principal component analysis is traditionally performed on excess returns

of assets, it can also be used directly on interest rates.

We perform principal component analysis of the Euribor and LIBOR rates to identify the common

factors underlying the two yield curves. We call these the Euribor and LIBOR factors. We also

form a portfolio of Euribor and LIBOR interest rates, perform principal component analysis of the

joint term structure, and create factors underlying the joint term structure. We call these factors

the common factors. We use principal component analysis to gauge how many factors are needed to

characterize the Euribor and LIBOR term structures. As we will see in the results section, we need

two or three factors to characterize the domestic term structures and four factors to characterize the

joint term structure.

We then regress the LIBOR factors and Euribor factors on the common factors. We do this to

examine how the common factors are related to the Euribor and LIBOR factors. Finally, we assess

the number of common factors needed in the joint term structure model. In order to do that, we

perform principal component analysis on the residuals of LIBOR after it is regressed on the �rst one

or two principal components of the joint model. We do the same for Euribor. That way, we can

examine the number of factors after the common factors are taken out.

The principal component analysis provides guidance for us on the total number of factors and the

numbers of common vs local factors needed in explaining the LIBOR and Euribor term structure.

However, one can say that the structural factors estimated in a formal term structure model could

be di�erent from that of the linear factors found in a principal component analysis. To assess this
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possibility, Heidari and Wu (2003) conduct a simulation analysis.

In the simulation, Heidari and Wu estimate a three-factor Gaussian a�ne model on LIBOR using

the quasi-maximum likelihood method and an extended Kalman �lter. They use these extracted

factors to produce a simulated series of LIBOR rates. They then conduct principal component

analysis on the simulated interest rates. By design, the simulated series of LIBOR rates are governed

by three dynamic factors in a non-linear function. When Heidari and Wu (2003) conduct principal

component analysis on the LIBOR series, they show that exactly three principal components explain

100% of the series. Heidari and Wu's results echo Singleton and Umantsev (2003)'s �ndings that

LIBOR rates are approximately linear in terms of the state variables in an a�ne model. Hence,

principal component analysis is useful in identifying the number of factors in an a�ne framework.

4.2 Approximate Maximum Likelihood Estimation

After we identify the number of factors, we proceed to estimate the models. The best estimation

method for a�ne term structure model should be maximum likelihood estimation, given its con-

sistency and asymptotic e�ciency. However, except for the case of a multi-factor Gaussian model,

the transition density of an a�ne model generally has no closed-form. In these cases, maximum

likelihood estimation is infeasible and alternative estimation methods have to be used.

Most papers use the quasi-maximum likelihood estimation (e.g. Han and Hammond (2003),

Dewachter and Maes (2001), Brennan and Xia (2006), Tang and Xia (2006)) because of its ease of

application. As A��t-Sahalia and Kimmel (2002) point out, two assumptions are needed in quasi-

maximum likelihood estimation. First, the density of the state vector conditional on the previous

observation is assumed to follow a multivariate Gaussian distribution. Second, the mean vector and

covariance matrix of the state vector are assumed to be proportional to the length of time between

observations. As A��t-Sahalia and Kimmel (2002) point out, both these assumptions are unlikely to

hold. Only some a�ne yield models have a Gaussian transition density, and even in those cases,

the assumptions of quasi-maximum likelihood estimation regarding the means and variances of the

transition density are not accurate.

Another popular method is the simulation-based e�cient method of moments of Galant and

Tauchen (1996). Dai and Singleton (2000) use this in their a�ne term structure estimation. The

e�cient method of moments is e�cient as the number of moment conditions goes to in�nity with the

number of data observations. However, Du�ee and Stanton (2002) �nd that this method performs

poorly in a small sample in the context of a�ne term structure model. Other potential estimation

methods include simulated maximum likelihood estimation of Brandt and Santa-Clara (2002), and

Durham and Gallant (2002), or the empirical characteristic function method of Singleton (2001) and

Jiang and Knight (2002). These methods are computationally intensive for a scalar di�usion and

especially di�cult for multivariate di�usions.

Following A��t-Sahalia (1996, 2002a, 2002b) and A��t-Sahalia and Kimmel (2002), we estimate the
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joint term structure models using the approximate maximum likelihood method. The approximate

likelihood method provides extremely fast and accurate estimations for a�ne models (see the com-

parison in Jensen and Polsen (2002) and Egorov, Li and Xu (2003)) when the data are sampled daily

as in our case. The disadvantage of this method is that it requires preliminary work in obtaining

a closed-form formula for the approximate likelihood through linear expansions. Fortunately, A��t-

Sahalia and Kimmel (2002) derive this analytic formula for two-factor and three-factor models. Since

the relationship between the state vector and bond yields is a�ne, as in equation (5), we can derive

the transition function of the bond yields from the transition function of the state vector through

a change of variables and multiplication by a Jacobian. Let pX(�t; xjxo; �) denote the transition
function, that is the conditional density of X (t+�t) = x given X (t) = xo. Let pY (�; yjyo; �)
also denote the transition function of the vector of yields Y (t+�t) = y given Y (t) = yo. In our

case, with daily data, �t is the inverse of the number of trading days in a year (�t � 1=250). We
obtain latent factors X by inverting a system of equations (5) by taking enough yields. To guarantee

invertability of state vector X the rank of this system should be equal to the number factors N . This

system can be written in matrix form as Y = �o(�)+�
0(�)X: It follows that X = �0�1(�)(Y ��o(�)):

Hence,

pY (�t; yjyo; �) � �0�1(�)pX(�t;�0�1(�)(y � �o(�))j�0�1(�)(yo � �o(�)); �): (14)

Noting that the yields vector follows a Markov process and applying Bayes rule, the log-likelihood

function for discrete data on the yield vector yt sampled at dates t0; t1; ::::; tn is obtained:

Ln(�) � n�1
nX
i=1

lY
�
ti � ti�1; yti jyti�1 ; �

�
; (15)

where lY = ln pY :

To estimate this likelihood function, we need to derive a closed-form approximation for lY and for

the log-likelihood function of the discretely sampled vector of yields. A��t-Sahalia and Kimmel (2002)

use the highly accurate linear expansion method described in A��t-Sahalia (1999, 2002) to derive

the analytical formula in two- and three-factor a�ne term structure models. In our classi�cation,

we break down the joint term structure model into two-country models with a lower dimension of

factors. This makes it possible to apply A��t-Sahalia and Kimmel (2002)'s results for three-factor

models toward our four-factor models of joint term structure.13

In summary, here is an overview of the approximate maximum likelihood estimation proce-

dure. Given an initial value of parameter vector � we can can estimate �o(�) and �(�): A�ne

structure implies a system of ordinary di�erential equations for �o(�) and �(�). It also provides

us linear transformation from the observed yields Y (ti) to the latent factors (or state variables)

X (ti) for i = 0; 1; 2; :::; n. Close form approximation of A��t-Sahalia provides transition density

13For �ve-factor joint term structure models with three common factors, or for four-factor models with four common

factors, we need closed-form formulas for approximate likelihood of four-factor a�ne models. We use Mathematica

code to obtain these formulas, which are available from authors upon request.
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pY
�
ti � ti�1; yti jyti�1 ; �

�
for i = 1; 2; :::; n and thus likelihood function Ln(�): In the end we maxi-

mize the likelihood function Ln(�): Thus, the only role the a�ne structure plays in the estimation

method is to simplify the transformation from observed yields to state variables.

This procedure can be extended for the case when we want to use more yields than the number

of factors in our model. In this situation, we usually assume that some yields are observed with

an error and make assumptions on the structure of these errors. The simplest assumption is to

assume that all errors are independent and normally distributed with unknown standard deviation

and zero mean. The log likelihood function Ln(�) in that case should be augmented by additional

term accounting for these errors.

4.3 In-Sample and Out-of-Sample Tests

To assess the in-sample and out-of-sample goodness of �t of the models, we adopt an omnibus

nonparametric speci�cation test for continuous time models derived from Hong, Li and Zhao (2006).

This test is based upon the transition density capturing the full dynamics of a continuous time

process. The basic idea is the following: if a model is correctly speci�ed, then the probability

integral transform of data via the model transition density should be i.i.d. U[0,1]. This probability

integral transform can be called the \generalized residuals" of the continuous time model. We test

this i.i.d. U[0,1] hypothesis for the model generalized residuals by comparing the kernel estimator of

the joint density of the generalized residuals with the product of two U[0,1] densities.

Dai and Singleton (2000) point out that it has been challenging to formally compare the relative

goodness of �t of di�erent a�ne models, given that these models have non-nested speci�cations with

di�erent estimation methods. Our non-parametric approach allows comparison of the performance

across di�erent non-nested models via a metric measuring the distance of the model generalized

residuals from i.i.d. U[0,1]. As the transition density can capture the full dynamics of fXtg, the om-
nibus test has power against any model misspeci�cation. In addition, this test signi�cantly improves

the size and power performance of the marginal density-based test.

Suppose we have a random sample of interest rates fr��gL�=1 of size L; where � is the time

interval at which the data are observed or recorded. For a given continuous-time interest rate model,

there is a model-implied transition density of

@

@r
P
�
r�� � rjI(��1)�; �

�
= p(r; ��jI(��1)�; �); 0 < r <1;

where � is an unknown �nite-dimensional parameter vector, I(��1)� = fr(��1)�; r(��2)�; :::; r�g is
the information set available at time (� � 1)�. We divide the whole sample into two sub-samples:
an estimation sample fr��gR�=1 of size R; which is used to estimate model parameters, and a forecast
sample fr��gL�=R+1 of size n = L � R; which is used to evaluate density forecast.14 We can then
14One can also use rolling estimation or recursive estimation. We expect that our test procedures are applicable to

these di�erent estimation methods under suitable regularity conditions.
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de�ne the probability integral transform of the data in the forecast sample with respect to the

model-implied transition density:

Z� (�) �
Z r��

�1
p(r; ��jI(��1)�; �)dr; � = R+ 1; :::; L: (16)

If the continuous-time model is correctly speci�ed in the sense that there exists some �0 such that

the model-implied transition density p(r; ��jI(��1)�; �0) coincides with the true transition density
of interest rates, then the transformed sequence fZ� (�0)g is i.i.d. U [0; 1]. Intuitively, the U [0; 1]
distribution indicates proper speci�cation of the stationary distribution of r��, and the i.i.d. property

characterizes the correct speci�cation of its dynamic structure. If fZ� (�)g is not i.i.d. U [0; 1] for
all � 2 � , then p(r; ��jI(��1)�; �) is not optimal and there exists room for further improvement.

Thus density forecast evaluation boils down to testing whether fZ� (�)g; which is often referred to as
the \generalized residuals" of the model-implied transition density p(r; ��jI(��1)�; �); follows i.i.d.
U [0; 1] :

We measure the distance between a forecast density model and the true transition density by

comparing a kernel estimator ĝj(z1; z2) for the joint density of fZ� ; Z��jg and unity, the product
of two U [0; 1] densities, where j is a lag order. The detail of this kernel estimator is reported in

Appendix 2. Simulation studies in Hong and Li (2005) show that the tests perform well in small

samples even for highly persistent �nancial data.

Hong and Li (2005) propose an in-sample speci�cation test that uses a quadratic form between

ĝj(z1; z2) and 1, the product of two U [0; 1] densities. This test is extended to the out-of-sample

context in Hong, Li and Zhao (2006) as

Q̂(j) �
�
(n� j)h

Z 1

0

Z 1

0
[ĝj(z1; z2)� 1]2 dz1dz2 � h	0h

�
=V

1=2
0 ; j = 1; 2; :::; (17)

where j is a prespeci�ed lag order, the nonstochastic centering and scaling factors are

	0h �
"
(h�1 � 2)

Z 1

�1
k2(u)du+ 2

Z 1

0

Z b

�1
k2b (u)dudb

#2
� 1; (18)

V0 � 2

"Z 1

�1

�Z 1

�1
k(u+ v)k(v)dv

�2
du

#2
; (19)

and kb(�) � k(�)=
R b
�1 k(v)dv: Note that the modi�cation of the kernel k(�) in the boundary regions

a�ects the centering constant 	0h; although not the asymptotic variance V0.

Under suitable regularity conditions, Q̂(j) ! N(0; 1) in distribution when the continuous-time

model is correctly speci�ed. In a simulation experiment mimicking the dynamics of U.S. interest

rates via the Vasicek model, Hong and Li (2005) �nd that the in-sample version of Q̂(j) has good

sizes for n � 250 (i.e., about one year of daily data). This is a substantial improvement over other
nonparametric tests (see A��t-Sahalia 1996 and Pritsker 1998).
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With various choices for lag order j; Q̂(j) can reveal useful information regarding which lag order

signi�cantly departs from i.i.d. U [0; 1]. This is analogous to the use of the sample autocorrelation

function in the linear time series context. If a large set of fQ̂(j)g is considered, then some of them
will probably be signi�cant even if the null is true, due to statistical sampling variation. In fact, on

average one out of twenty will be signi�cant at the 5% level under the null. On the other hand, the

choice of lag order j is expected to have a signi�cant impact on the power of Q̂(j): Moreover, when

comparing two di�erent models, it is desirable to use a single portmanteau test statistic. For this

purpose, we consider the following portmanteau evaluation statistic

Ŵ (p) =
1
p
p

pX
j=1

Q̂(j): (20)

Like many time series test statistics, we still have to choose the lag truncation order p: The power

of Ŵ (p) is still a�ected by the choice of p; but not as much as the power of Q̂(j) is a�ected by the

choice of individual lag order j. We can show that for any p; Ŵ (p)! N (0; 1) in distribution when

the continuous-time model is correctly speci�ed. Intuitively, when the forecast model is correctly

speci�ed, we have cov[Q̂(i); Q̂(j)] ! 0 in probability for i 6= j as n ! 1: That is, Q̂(i) and Q̂(j)
are asymptotically independent whenever i 6= j. Thus, the portmanteau test statistic Ŵ (p) is a

normalized sum of approximately i.i.d. N(0,1) random variables, and so is asymptotically N(0,1).

This test may be viewed as a generalization of the popular Box-Pierce-Ljung type autocorrelation

test from a linear time series context to a continuous-time context with an out-of-sample setting.

Under model misspeci�cation, we can show that as n!1; Q̂(j)!1 in probability whenever

fZ� ; Z��jg are not independent or U [0; 1]: As long as model misspeci�cation occurs such that there
exists some lag order j 2 f1; :::; pg at which Q̂(j)!1; we have Ŵ (p)!1 in probability. Therefore,

the portmanteau test statistic Ŵ (p) can be used as an omnibus procedure to evaluate the out-of-

sample density forecast performance of a continuous-time model.

5 Data Description and Empirical Results

We apply the econometric methodology described above on the euro interest rates, i.e. Euribor and

the US interest rates, i.e. LIBOR. We use daily data from July 1, 1999 til June 30, 2003. It consists

of 1) Euribor with maturities of 1, 3, 6 and 9 months, 2) LIBOR with maturities of 1, 3 and 6

months, 3) Euro-Euribor interest rate swap with maturities of 1 to 10 years, and 4) USD-LIBOR

interest rate swap with maturities of 1 to 10 years. We use daily exchange rate data provided by

GTIS.

As our empirical inquiry is speci�c to dollars and euros, we are limited to the relatively short

time sample after the Euro was launched. The euro was launched on January 1, 1999 for accounting

purposes and electronic fund transfers, although the euro notes and coins were not issued as legal
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tender until 2002.15 To minimize any noise due to the initial adoption of the euro, we start our data

series on July 1, 1999.

Both Euribor and LIBOR, denoted here for simplicity as B (�) are simply compounded interest

rates, related to continuously compounded spot rates Y (�) by

B(�) =
1

�

�
e�Y (�) � 1

�
; (21)

where the maturities � follow the actual-over-360-day-counting convention for both currencies, start-

ing two business days forward. The swap rates for both LIBOR and Euribor have payment intervals

of six months and are related to the zero prices (discount factors) by

SWAP (�) = 2
1�B(�)P2�
i=1B (i=2)

: (22)

Using these relationships we recover LIBOR and Euribor zero coupon yields for maturities starting

from 1 year till 10 years using swap rates. Table 1 presents the summary statistics for the levels

and changes in these zero coupon bond yields over the sample period. Panel A shows the means,

medians, standard deviations, skewness and kurtosis for the levels and changes of LIBOR of di�erent

maturities. Panel B shows the same statistics for Euribor. Panel C shows the correlation between

the levels and changes of LIBOR and Euribor of di�erent maturities. Figure 1 presents these zero

coupon bond yields graphically.

We �rst perform principal component analysis in order to understand how many factors we need

to capture most of the behavior of LIBOR and Euribor. We consider the principal components of

the joint term structure using both LIBOR and Euribor of all maturities. We then consider the �rst

three principal components for LIBOR and Euribor separately.

Table 2 reports the variations of LIBOR, Euribor and the joint LIBOR-Euribor portfolio that are

explained by the �rst seven principal components. Although most of the variation in LIBOR, Euribor

and joint term structure seems to be captured by the �rst principal component, it is commonly

accepted that a single factor is not enough for modeling even single-country term structure for interest

rates. More factors would typically be desirable, but computation time imposes a constraint. As a

result, usually three factors (and occasionally two factors) are used to explain the term structure in

a single country.

Table 2 also shows that the �rst three principal components capture 99.97% variation in LIBOR

and 99.93% in Euribor. In the case of the joint term structure, the �rst two principal components

explain 98.28% of the variation; three principal components explain 99.68%; and four principal

components explain 99.84%. Only when the number of principal components goes up to four is

15The euro is the monetary unit of the European Union. Countries that use the euro include twelve of the �fteen

EU member states. Greece, the 12 th member, did not adopt the Euro until 2001. All the others adopted the euro

in 1999. The euro replaced the national currencies previously used in these countries. Before adopting the EU, these

countries had to meet economic criteria set by the EU on ination levels, budget de�cits, and currency stability.

16



the variation captured comparable to the 99.83% for the �rst two principal components of LIBOR.

Thus, in order to capture variation of up to the �rst three factors in LIBOR or Euribor, we need

at least four term structure factors. Obviously, explaining 0.16% more (from 99.68% to 99.84%) of

the variation in the joint term structure only represents weak suggestive evidence that we need four

factors instead of three. To examine this issue more carefully, we have to examine the identities of

these factors.

Table 3 reports the common factors in the joint term structure models. We regress the �rst three

principal components of LIBOR (i.e. LIBOR factors) on the �rst six principal components of the

joint term structure (i.e. common factors). We then regress the �rst three principal components of

Euribor (i.e. Euribor factors) on the �rst six common factors. The results of these regressions are

summarized in Table 3. Panel A reports the results from regressing LIBOR and Euribor factors on

six common factors. As seen in the �rst row, when the �rst LIBOR factor is regressed upon the �rst

six common factors, the coe�cient on the �rst common factors is 0.905. This suggests that the �rst

common factor is most associated with the �rst LIBOR factor. Similarly, we �nd that the second

common factor is most associated with the second Euribor factor with a coe�cient of 0.874. The

third common factor is most associated with the second LIBOR factor, with a coe�cient of 0.868.

The fourth common factor is most associated with the second Euribor factor, with a coe�cient of

-0.831. This suggests that we need to go up to a four-factor joint term structure model in order to

capture the variation embedded in the second Euribor factor in a two-factor domestic term structure

model.

Panel B reports the R-square from regressing LIBOR and Euribor factors on the �rst �ve factors

estimated in the joint term structure model. The �rst common factor explains 99.245% of variation

of the �rst LIBOR factor and almost none of the variation of the second and third LIBOR factors.

On the other hand, the �rst common factor explains only 86.267% of variation of the �rst Euribor

factor. If we go up to the �rst three factors in a joint model, we can explain most of the variations in

the �rst LIBOR factor (99.99%), second LIBOR factor (96.5%), and �rst Euribor factor (99.97%).

However, we are not able to fully capture the variations in the second Euribor factor (only 83.37%).

Only when we go up to the the fourth joint component will we be able to explain 99.96% of the

second Euribor component. If the goal is to capture the �rst two factors of each domestic model,

then we need a four-factor joint term structure model. The �rst three factors do not seem to be

enough. Furthermore, if the goal is to capture the �rst three factors of each domestic model, then we

would need a �ve-factor or even a six-factor model to capture the variation. Hence, Table 2 shows

that at least a four-factor model is needed to capture the joint dynamics.

Panel C reports the results from regressing the log of exchange rates on the �rst six joint term

structure common factors. The R-square is 0.59%, implying that the exchange rate is largely orthog-

onal to the common factors from the joint term structure. This con�rms the results in Inci and Lu

(2004) and Han and Hammond (2003) that exchange rate is a separate factor.
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In summary, from Table 3 we see that the exchange rate factor only has a minimal relationship to

the dynamics of the yield curve factors. In contrast, the movement in LIBOR a�ects the yield curve

movement in Euribor and vice versa. Hence, the rest of the empirical work will focus on establishing

the local and common factors driving the two yield curves.

In Table 4, we turn our attention to the number of local factors versus common factors in a joint

term structure model. Each column presents the result of a principal component analysis and reports

the variation explained by the �rst seven principal components. To set the benchmark, column 2

reports the result of a principal component analysis conducted on LIBOR only (same as in table 1).

Column 3 contains the results of the principal component analysis on the residuals of LIBOR after

its regression on the �rst common factor (i.e. �rst principal component in joint term structure).

Column 4 contains the results of the principal component analysis of residuals for LIBOR after

the regression on the �rst two common factors. These columns suggest the number of local factors

needed to explain the variation in LIBOR after a common factor is incorporated. After the �rst

common factor, one local LIBOR factor would only capture 60.75% of the variation. We still need

two local factors to capture most of the variations. After two common factors, however, one local

LIBOR factor would explain about 90.56% of the variation. Therefore, the best combination here

is to have two common factors and a local LIBOR factor. Columns 5, 6, 7 present the results for

Euribor. After 2 common factors, 88.23% would be explained by the �rst local factor. Again, the

best combination here is to have two common factors and a local Euribor factor.

Overall, Table 3 and Table 4 show that the best way to explain the two yield curves is to have four

factors in total: one LIBOR local factor, one Euribor local factor, and two common factors. If we

have only three factors, then the best case scenario is to have a local LIBOR factor, a local Euribor

factor and a common factor. In this case, while the �rst LIBOR factors and Euribor factors can

be explained by the common factor reasonably well, at 99.25% and 86.27% respectively, the second

and third LIBOR and Euribor factors cannot be explained well by the local factors. Only 60.76%

of the LIBOR variation and about 85% of Euribor variation can be explained, which is far from

satisfactory. Motivated by the above evidence, in our estimation we consider four-factor models in

the paper. The results in Tables 3 and 4 show that a model with two common components and one

country-speci�c component in each country can explain over 99.9% of �rst principal components of

LIBOR and Euribor as well as 91% of the residual variation in the LIBOR and 88.2% of the residual

variation in Euribor.

Another motivation for consideration of models with more than three factors comes from recent

papers by Cochrane and Piazzesi (2002, 2004) and Dai, Singleton and Yang (2004). This literature

addresses bond risk premia, and, in particular, it shows that up to �ve factors might be needed for

a�ne models to forecast bond risk premia in US government bonds. Hence, a four-factor joint term

structure model would be more preferable to a three-factor model.

Since the increasing number of factors signi�cantly increases the number of parameters to be
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estimated, this poses a substantial challenge for the term structure literature. This makes it cru-

cial to adopt approximate maximum likelihood estimation, a fast and e�cient method, as de-

scribed in the methodology section. We conduct the approximate maximum likelihood estimation

for models A0(4);A1(4);A2;1(4);A2;2(4);A3(4) and A4(4), and examine the in-sample and out-of-

sample performance of these models.

Table 5 reports the non-parametric Pormanteau statistics for both in-sample and out-of sample

performance. We show the results for four factor completely a�ne models of joint term structure of

LIBOR and Euribor. We choose the �rst half of the sample (from July 1, 1999 to June 30, 2001)

as the estimation sample and the second half (from July 1, 2001 to June 30, 2003) as the forecast

sample.

Table 5 also shows the non-parametric Pormanteau statistics W (p) for p = 5; 10; and 20; where

p represents the lag truncation order. The use of W (p) with various lag orders can reveal which lag

order signi�cantly departs from iid. U[0,1]. As a robustness check, we separately report results when

we limit our sample to only two-year and �ve-year zero coupon bonds for LIBOR and Euribor.

The W (p) statistics have a standard normal distribution and the results show that all models

are rejected. One caveat about this non-parametric test is that it is extremely powerful. As an

in-sample statistic, it tests whether the entire distribution is captured by the model. As an out-

of-sample forecast statistic, it tests whether the forecast of the entire distribution is accurate. As

a result, this test often rejects a model which may match the moments very well and which may

not be rejected in other speci�cation tests. We therefore use this speci�cation test as a way to

compare and rank di�erent models rather than a way to reject models. In so comparing models,

out-of-sample performance is especially important. This is because introducing more complicated

models with larger numbers of estimated parameters creates a potential danger of over�tting noise

in the data. Thus the model that performs better out-of-sample might be more e�ective in capturing

the underlying data generating process.

Our results show that the A1(4) model is the best model to capture joint term structure both

in-sample and out-of-sample. The next best sets of models in terms of performance are A0(4)

and A2;2(4): The A2;1(4) and A3(4) models perform signi�cantly worse, and A4(4) has the worst

performance by far both in-sample and out-of-sample.

We can interpret our results in light of the tradeo� between exibility in variance and factor

correlations as pointed out in Dai and Singleton (2000). Recall that in Am(N); m is the number of

state variables that a�ect the instantaneous variance of X(t): The Gaussian model (m = 0) implies

that none of the state variables a�ect the variance. At the other extreme, when m = 4, all state

variables a�ect the variances. On the surface, it might look as though A4(4) would be the most

exible speci�cation and should have the best empirical performance. However, because parameter

restrictions are imposed to ensure admissibility, models with m = 4 will have zero correlation across

the state variables. Hence, as Dai and Singleton point out, in moving from m = 0 to m = 4, there
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is a tradeo� between the exibility in specifying the conditional variance and that in allowing for

conditional correlation among the factors.

Our �ndings can be interpreted in light of this tradeo�. We �nd that A1(4) is the best model. In

the A1(4) model, both countries' term structures are A1(3): So, both countries have richer volatility

and correlation structures while providing substantial freedom in correlation of factors: In A1(4); the

volatility is described by a single common factor while correlation is driven by two common factors

and country speci�c factors. This provides maximum exibility in �tting correlation of factors among

models that have non-Gaussian structure (i.e. among models A1(4), A2;1(4), A2;2(4),A3(4), A4(4):)

Model A0(4) allows for maximal exibility in �tting factor correlation, and thus the correlation

of interest rates. This results in A0(4) having an overall good performance: But in this case, none

of the state variables can a�ect the variance. Hence, the variance is restricted to be homoskedastic

and hence the model performs worse than A1(4).

Models A2;1(4); A2;2(4) and A3(4) all have two factors driving volatility. They all assume a

restricted A2(3) for each country. In model A2;2(4); volatility in each country is driven by the

country-speci�c factor, while both common factors are Gaussian. In model A2;1(4); for each country

the volatility is driven by both common factors. In model A3(4), for each country the volatility is

driven by one common factor and the country-speci�c factor. This in turn gives less freedom to

capture correlation among factors. Among these three models, A2;1(4) �ts the data better than

A3(4) and A2;2(4). But overall, our estimation suggests that these models perform worse than

A1(4) both in-sample and out-of-sample.

Finally, for model A4(4); each country's term structure is described by a restricted A3(3) model.

Although these models allow for time varying volatility and correlated factors, they impose zero

conditional correlations with positive unconditional correlation. This is clearly counterfactual. This

results in A4(4) having the worst �t of all six models both in-sample and out-of-sample.

In summary, our tables examine the feature of an ideal a�ne model that captures the joint term

structures in increasing speci�city. Tables 2, 3, and 4 suggest that this term structure model should

consist of four factors. In particular, Table 4 suggests that two of these four factors should be common

factors and the other two should be local factors. Finally, Table 5 shows that this model should have

an A1(4) factor structure. That is, in this 4-factor model, one common factor should drive volatility,

while the other common factor and the local factors should not drive volatility.

6 Conclusion

International bond market positions in euros and dollars create exposure to di�erent interest rate

risks and exchange rate risk for banks and investors. In order to manage these risks, one needs an

appropriate model for the joint term structure of interest rate for dollars and euros. In this paper, we

provide a thorough analysis of multi-factor joint a�ne term structure models for dollars and euros.
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Our paper systematically examines, decomposes and classi�es joint term structure models with up

to four local and common factors. We then provide new evidence on the joint term structure using

daily data in LIBOR and Euribor from July 1999 to June 2003.

Our methodology builds on, and extends, three main streams of research. First, we take advantage

of recent advances in domestic term structure speci�cation analysis. Speci�cally, we show that the

system for classifying domestic a�ne model structures can be adapted to provide classi�cation of joint

a�ne models in two countries. Second, we extend the applications of estimation techniques recently

developed by A��t-Sahalia (1996, 2002a, and 2002b) and A��t-Sahalia and Kimmel (2002). The absence

of a closed-form solution for transition density of a�ne models makes maximum likelihood estimation

infeasible. We show that A��t-Sahalia's approximate maximum likelihood techniques are applicable in

estimating joint term structure models. Third, we utilize the latest advances in nonparametric tests.

Recently developed by Hong and Li (2005) and Hong, Li and Zhao (2006), these nonparametric tests

provide powerful alternatives to standard out-of-sample tests. We apply these nonparametric tests

to identify the factor model with the best out-of-sample properties.

We �nd that a four-factor model with two common factors and two local factors best describes

the term structures of Euribor and LIBOR. Our analysis of principal components for daily data for

LIBOR and Euribor motivates us to study a new set of four-factor models. We conclude that the

best model is one with two common factors and two local factors. This model has an A1(4) factor

structure where one common factor drives volatility, while the other common factor and the local

factors do not drive volatility. This model seems to provide the best tradeo� in terms of exibility in

modeling correlation and volatility. This opens up the possibility of improving previously developed

models and explaining some remaining puzzles about joint dynamics of interest rates.

We plan to extend our current study in a few di�erent directions. We �rst intend to study the

implications of our proposed models for the forward premium puzzle. Motivated by our principal

component analysis that exchange rate plays a secondary role in a�ecting domestic term structure, the

current study only focuses on capturing the joint dynamics of the interest rates. In future extensions,

we can study exchange rate dynamics more speci�cally and examine the forward premium puzzle.

We also plan to develop a methodology to characterize the risk involved in an international bond

portfolio. The joint term structure model allows us to characterize in detail the Value-at-Risk (VaR)

and other risk characteristics of these portfolios. We can then study the out-of-sample performance

of joint term structure models in forecasting the density and VaR of international bond portfolios.

In addition, our methodology can be extended to other a�ne models like those developed by Du�ee

(2002) and Cheridito, Filipovi�c, and Kimmel (2006). Finally, we plan to combine modeling joint term

structure of interest rates with the dynamics of interest rate derivatives like individual countries' caps

and oors and possibly cross-country derivatives.
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7 Appendix 1: Speci�cation Analysis of Four-Factor Joint Term

Structure Models

7.1 A0(4) model

For model A0(4) stochastic di�erential equation (8) takes the form

d

2666664
X1t

X2t

X3t

X4t

3777775 =
2666664
�11 0 0 0

�21 �22 0 0

�31 �32 �33 0

�41 �42 �43 �44

3777775

2666664
�X1t
�X2t
�X3t
�X4t

3777775 dt+ d
2666664
W1t

W2t

W3t

W4t

3777775 : (23)

Note that for the general case when all entries in the lower triangular submatrix of � are non-zero,

only X4 can be an individual country factor since it enters the equation (23) by itself. All other

factors enter in at least one equation for another factor in (23). If we assume symmetry, then we

would have either zero, or two, or four common factors. The non-trivial case is that of two common

factors. Without loss of generality we can assume that X1 and X2 are the common factors while X3

is the domestic individual factor and X4 is the foreign individual factor. In that case we need to add

additional restriction that �43 = 0: Thus for each country we have an A0(3) model with two common

factors. Speci�cally, for the domestic country we have r(t) = �0 + �1X1(t) + �2X2(t) + �3X3(t); and

d

26664
X1t

X2t

X3t

37775 =
26664
�11 0 0

�21 �22 0

�31 �32 �33

37775
26664
�X1t
�X2t
�X3t

37775 dt+ d
26664
W1t

W2t

W3t

37775 ;
while for the foreign country the spot rate is r�(t) = ��0 + �

�
1X1(t) + �

�
2X2(t) + �

�
4X4(t); and the

dynamics of factors are

d
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X1t

X2t

X4t

37775 =
26664
�11 0 0

�21 �22 0

�41 �42 �44

37775
26664
�X1t
�X2t
�X4t

37775 dt+ d
26664
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W4t

37775 :

7.2 A1(4) model

For model A1(4); equation (8) becomes

d
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+

2666664

p
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p
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p
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Assumption of symmetry of the model relative to domestic vs. foreign country implies that X1

should be a common factor. Without loss of generality X2 is the second common factor. To ensure

that X3 and X4 are single country factors we have to add extra restrictions: �23 = �24 = �34 =

�43 = 0: For each country we have an A1(3) model with two common factors X1 and X2: Factor

X1 enters into both the drift and volatility terms in (24) while factor X2 enters only the di�usion

term in (24). Moreover, no single country factor a�ects volatility directly since the equation for

X1 in the system (24) does not depend on any other factor. For the domestic country we have

r(t) = �0 + �1X1(t) + �2X2(t) + �3X3(t); and

d
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37775 ;
while for the foreign country the spot rate is r�(t) = ��0 + �

�
1X1(t) + �

�
2X2(t) + �

�
4X4(t); and the

dynamics of factors are
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7.3 A2(4) model

Similarly, A2(4) has the following dynamics:

d
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Now we have two possibilities for non-trivial symmetric choice of common factors. The �rst one

is the A2;1(4) model. This is the case when �34 = �43 = 0; and X1 and X2 are the two common

factors. In this model both common factors a�ect both the volatility and drift terms of (25), and no
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single-country factor a�ects the volatility term. For each country we have an A2(3) model. For the

domestic country we have r(t) = �0 + �1X1(t) + �2X2(t) + �3X3(t); and
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while for the foreign country the spot rate is r�(t) = ��0 + �

�
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�
2X2(t) + �
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dynamics of factors are
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The second model is A2;2(4). This is the case when X3 and X4 are the two common factors,

while X1 and X2 are the single-country factors in (25). This leads to restrictions �12 = �21 = �31 =

�32 = �41 = �42 = 0 and �31 = �32 = �41 = �42 = 0: We further impose, without loss of generality,

�34 = 0: In this case the common factors a�ect only correlation structure (i.e. the drift term). For

the domestic country we have r(t) = �0 + �1X1(t) + �3X3(t) + �4X4(t); and
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while for the foreign country the spot rate is r�(t) = ��0 + �

�
2X2(t) + �

�
3X3(t) + �

�
4X4(t); and the

dynamics of factors is
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Thus for both the domestic and the foreign country we have a special case of A1(3) model.

Common factors X3 and X4 follow a bivariate Gaussian process while each country speci�c factor is

a univariate square root process. This case turns out to be a particular case of A1(4) model if the

additional restriction is imposed that #1 = #2:

7.4 A3(4) model

For the A3(4) model, equation (8) specializes to

d

2666664
X1t

X2t

X3t

X4t

3777775 =

2666664
�11 �12 �13 0

�21 �22 �23 0

�31 �32 �33 0

�41 �42 �43 �44

3777775

2666664
#1 �X1t
#2 �X2t
#3 �X3t
�X4t

3777775 dt (26)

27



+

2666664

p
X1t 0 0 0

0
p
X2t 0 0

0 0
p
X3t 0

0 0 0
p
1 + �41X1t + �42X2t + �43X3t

3777775 d
2666664
W1t

W2t

W3t

W4t

3777775
Without loss of generality, non-trivial symmetric common factors are X1 and X4: This implies

that �42 = �43 = 0; and �12 = �13 = �23 = �32 = �42 = �43 = 0: For the domestic country we have

r(t) = �0 + �1X1(t) + �2X2(t) + �4X4(t); and
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while for the foreign country the spot rate is r�(t) = ��0 + �
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4X4(t); and the

dynamics of factors are
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�31 �33 0

�41 0 �44

37775
26664
#1 �X1t
#3 �X3t
�X4t

37775 dt+
26664
p
X1t 0 0

0
p
X3t 0

0 0
p
1 + �41X1t

37775 d
26664
W1t

W3t

W4t

37775 :

7.5 A4(4) model

Finally, for the A4(4) model, equation (8) simpli�es to

d

2666664
X1t

X2t

X3t

X4t

3777775 =

2666664
�11 �12 �13 �14

�21 �22 �23 �24

�31 �32 �33 �34

�41 �42 �43 �44

3777775

2666664
#1 �X1t
#2 �X2t
#3 �X3t
#4 �X4t

3777775 dt (27)

+

2666664

p
X1t 0 0 0

0
p
X2t 0 0

0 0
p
X3t 0

0 0 0
p
X4t

3777775 d
2666664
W1t

W2t

W3t

W4t

3777775 :

Without loss of generality, non-trivial symmetric common factors are X1 and X2: This implies

that �13 = �14 = �23 = �24 = �34 = �43 = 0: For the domestic country we have r(t) = �0+ �1X1(t)+

�2X2(t) + �4X4(t); and

d

26664
X1t

X2t

X3t

37775 =
26664
�11 �12 0

�21 �22 0

�31 �32 �33

37775
26664
#1 �X1t
#2 �X2t
#3 �X3t

37775 dt+
26664
p
X1t 0 0

0
p
X2t 0

0 0
p
X3t

37775 d
26664
W1t

W2t

W3t

37775 ;
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while for the foreign country the spot rate is r�(t) = ��0 + �
�
1X1(t) + �

�
2X2(t) + �

�
4X4(t); and the

dynamics of factors are

d

26664
X1t

X2t

X4t

37775 =
26664
�11 �12 0

�21 �22 0

�41 �42 �44

37775
26664
#1 �X1t
#2 �X2t
#4 �X4t

37775 dt+
26664
p
X1t 0 0

0
p
X2t 0

0 0
p
X4t

37775 d
26664
W1t

W2t

W4t

37775 :
For each country we get a particular case of A3(3) model.

8 Appendix 2: Kernel Estimators for Non-parametric In-Sample

and Out-of-sample Tests

Our kernel estimator of the joint density is, for any integer j > 0;

ĝj(z1; z2) � (n� j)�1
LX

�=R+j+1

Kh
�
z1; Ẑ�

�
Kh

�
z2; Ẑ��j

�
; 0 � z1; z2 � 1; (28)

where Ẑ� = Z� (�̂R); �̂R is any
p
R-consistent estimator for �0; and Kh(z1; z2) is a boundary-modi�ed

kernel function.

The boundary-modi�ed kernel function is de�ned as follows. For x 2 [0; 1]; we de�ne

Kh(x; y) �

8>>><>>>:
h�1k

�
x�y
h

�
=
R 1
�(x=h) k(u)du; if x 2 [0; h);

h�1k
�
x�y
h

�
; if x 2 [h; 1� h];

h�1k
�
x�y
h

�
=
R (1�x)=h
�1 k(u)du; if x 2 (1� h; 1];

(29)

where k(�) is a prespeci�ed symmetric probability density, and h � h(n) is a bandwidth such that

h! 0; nh!1 as n!1. Throughout our empirical analysis, we use the quartic kernel

k(u) =
15

16
(1� u2)21(juj � 1); (30)

where 1(�) is the indicator function. In practice, the choice of bandwidth h is more important than
the choice of the kernel k(u). Like Scott (1992), we choose h = ŜZn

� 1
6 ; where ŜZ is the sample

standard deviation of fẐ�gL�=R+1: This simple bandwidth rule attains the optimal rate for bivariate
kernel density estimation.

The modi�ed kernel in (25) can automatically deal with the boundary bias problem associated

with standard kernel estimation. As is well known (e.g., H�ardle 1990, pp. 130-133), a standard kernel

density estimator gives biased estimates near the boundaries of data, because a standard kernel

provides an asymmetric coverage of the data in the boundary regions. In contrast, the weighting

functions in the denominators of Kh (x; y) for x 2 [0; h) [ (1 � h; 1] account for the asymmetric
coverage and ensure that the estimator (29) is asymptotically unbiased uniformly over the entire

support [0; 1] for the generalized residuals. The modi�ed-kernel in (30) has several advantages over
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some existing alternative solutions to the boundary bias problem in the literature. One alternative

is to simply ignore the data in the boundary regions and only use the data in the interior region.

Such a trimming procedure is simple, but in the present context, it would lead to the loss of a

signi�cant amount of information. For a nearly uniformly distributed transformed sequence fZ�g ;
the data in the boundary region is still about 10% when the sample size n = 5000 and the bandwidth

h = ŜZn
� 1
6 ; where ŜZ is the sample standard deviation of fẐ�gLt=R+1. For a �nancial time series

such as interest rates, one may be particularly interested in the tail distribution of the underlying

process, which is exactly contained in (and only in) the boundary regions. Alternatively, we can also

use the so-called jackknife kernel to eliminate the boundary bias, as in Chapman and Pearson (2000)

and Diebold, Hahn and Tay (1999). In the present context, the jackknife kernel, however, has the

undesirable property that it may generate negative density estimates in the boundary regions. It

also induces a relatively large variance for the kernel estimates in the boundary regions, adversely

a�ecting the power of the test in �nite samples. In contrast, our modi�ed kernel always produces

nonnegative density estimates with a smaller variance in the boundary regions.

One advantage of this approach is that since there is no serial dependence in fZ�g under correct
model speci�cation, nonparametric joint density estimators and related test statistics are expected to

perform well in �nite samples. This is appealing because there exists persistent dependence in interest

rate time series data. Another advantage is that there is no asymptotic bias for nonparametric density

estimators under the null hypothesis of correct model speci�cation either, because the conditional

density of Z� given fZ��1; Z��2; :::g is uniform (i.e. a constant). Moreover, our test can be applied

to time-inhomogeneous continuous-time processes, because fZ�g is always i.i.d. U [0; 1] under correct
model speci�cation.16

16Egorov, Li and Xu (2002) extend A��t-Sahalia's (2002) Hermite expansion approach to obtain accurate closed-form

approximation for the transition density of time-inhomogeneous di�usion models.
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mean median std dev skewness kurtosis
Levels
1-month LIBOR 3.7980 3.7500 2.0759 0.0554 1.3036
6-month LIBOR 3.8950 3.7200 2.1608 0.0839 1.3104
2-year LIBOR swap 4.6016 4.6050 1.9382 -0.0450 1.5888
5-year LIBOR swap 5.3947 5.4550 1.4539 -0.2392 1.8970
10-year LIBOR swap 5.9291 5.9650 1.1090 -0.2606 2.0225

Changes in
1-month LIBOR -0.0039 0 0.0513 1.3412 138.8800
6-month LIBOR -0.0043 0 0.0412 -2.7039 28.6190
2-year LIBOR swap -0.0044 -0.0050 0.0643 0.1589 5.3032
5-year LIBOR swap -0.0036 0 0.0691 0.2979 4.6131
10-year LIBOR swap -0.0028 0 0.0684 0.2593 5.8087

mean median std dev skewness kurtosis
Levels
1-month Euribor 3.6501 3.3820 0.7956 0.1994 1.8049
6-month Euribor 3.7280 3.5380 0.8095 0.0895 2.0770
2-year Euribor swap 4.1152 4.2600 0.8384 -0.4313 2.5734
5-year Euribor swap 4.6898 4.8300 0.6868 -0.7307 2.9384
10-year Euribor swap 5.2237 5.3450 0.5487 -0.8148 2.9866

Changes in
1-month Euribor -0.0005 -0.0010 0.0331 -0.7725 72.2850
6-month Euribor -0.0007 -0.0010 0.0266 -0.6282 19.0240
2-year Euribor swap -0.0011 0 0.0437 0.5543 4.6783
5-year Euribor swap -0.0011 0 0.0467 0.5008 4.2775
10-year Euribor swap -0.0010 0 0.0425 0.4178 4.1020

Panel A: LIBOR series

Panel B: Euribor series

Table 1
Summary Statistics

This table reports the summary statistics of the level and change series of 1-month, 6-month, 
2-year, 5-year and 10-year zero coupon bond yields. The sample is from July 1, 1999 to June 
30, 2003. Panel A shows the summary statistics for LIBOR.  Panel B shows the summary 
statistics for Euribor. Panel C shows the correlations between levels of LIBOR and Euribor 
(upper table), and correlations between changes in LIBOR and Euribor (lower table)



6-month 2-year 5-year 6-month 2-year 5-year
LIBOR LIBOR LIBOR Euribor Euribor Euribor

6-month LIBOR 1 0.979 0.941 0.697 0.786 0.802
2-year LIBOR  1 0.989 0.684 0.831 0.870
5-year LIBOR  1 0.672 0.844 0.898

6-month Euribor  1 0.922 0.837
2-year Euribor  1 0.979

6-month 2-year 5-year 6-month 2-year 5-year
LIBOR LIBOR LIBOR Euribor Euribor Euribor

6-month LIBOR 1 0.395 0.295 0.380 0.279 0.179
2-year LIBOR 1 0.897 0.262 0.699 0.650
5-year LIBOR 1 0.218 0.678 0.686

6-month Euribor 1 0.363 0.200
2-year Euribor 1 0.922

Table 1 Summary Statistics (continued)

Panel C: Correlations
Levels

Changes In



Number of 
Principal components LIBOR Euribor Joint

1 98.456% 96.368% 94.738%
2 1.377% 3.263% 3.540%
3 0.137% 0.301% 1.401%
4 0.018% 0.046% 0.162%
5 0.006% 0.012% 0.086%
6 0.002% 0.005% 0.049%
7 0.001% 0.001% 0.001%

First two 99.833% 99.631% 98.278%
First three 99.970% 99.932% 99.679%
First four 99.988% 99.978% 99.841%
First five 99.994% 99.990% 99.927%
First six 99.996% 99.995% 99.976%

First seven 99.998% 99.996% 99.984%

Table 2

Percentage of variations explained

Principal Component Analysis for LIBOR, Euribor and Joint Term Structure Models

Table 2 reports the variations of LIBOR, Euribor and joint LIBOR-Euribor term structure models that are 
explained by the first seven principal components. The estimation is done using daily LIBOR and Euribor 
from July 1, 1999 till June 30, 2003.  Column 1 lists the number of principal components.  Column 2 
reports the LIBOR term structure model variation that is explained by the corresponding principal 
components.  Column 3 reports the Euribor term structure model variation that is explained by the 
corresponding number of principal components.  Column 4 reports the joint term structure model 
variation that is explained by the corresponding number of principal components.  The results for 
principal components ranging from 1 to 7 are first reported, followed by the results from the first two up 
to first seven principal components.



1st factor 2nd factor 3rd factor 4th factor 5th factor 6th factor R2

LIBOR 1st factor 0.905 0.406 0.055 0.107 -0.349 -0.019 0.99999
LIBOR 2nd -0.001 0.008 0.868 -0.483 -0.021 -0.052 0.99992
LIBOR 3rd 0.001 -0.085 0.002 0.022 -0.974 0.128 0.99933
Euribor 1st -0.425 0.874 0.097 0.196 -0.077 -0.031 0.99999
Euribor 2nd 0.017 0.246 -0.478 -0.831 -0.032 0.041 0.99980
Euribor 3rd -0.004 -0.046 -0.077 0.031 -0.138 -0.932 0.98548

Table 3
Common Factors in the Term Structure Models

Panel A: Results from regressing LIBOR and Euribor factors on all six common factors 
Regression coefficients on common factor

Table 3 reports the results from regressing the LIBOR and Euribor factors on to the common factors. LIBOR and Euribor factors are principal 
components from LIBOR and Euribor term structure models, while common factors are principal components from the joint term structure model.  
Panel A reports the results from regressing LIBOR and Euribor factors on six common factors.  Panel B reports the R-square from regressing LIBOR 
and Euribor factors on the first six common factors.  Panel C reports the results from regressing log of exchange rates on six common factors. In 
panel A, the first column lists the dependent variables, i.e. the first three LIBOR or Euribor factors.  The next six columns reports the regression 
coefficients on the first six common factors.  The last column reports the R2 of the regressions.   In panel B, the first column lists the dependent 
variables, i.e. the first three LIBOR and the first three Euribor factors.  The next column reports the R2 when the dependent variable is regressed 
upon the first factor of the joint term structure model.  The next 4 columns report the result when the regressions are run on the first two factors, first 
three factors, first four factors, and first five factors, respectively. In panel C, the first column is the dependent variable, i.e. log of exchange rates. 
The next six columns report the coefficients on the first six common factors. The last column reports the R2 of the regression.The estimation is done 
using daily LIBOR and Euribor data from July 1, 1999 till June 30, 2003.  



Only 1st factor First 2 factors First 3 factors First 4 factors First 5 factors
LIBOR 1st factor 0.99245 0.99920 0.99997 0.99999 0.99999

LIBOR 2nd 0.00006 0.00029 0.96525 0.99977 0.99980
LIBOR 3rd 0.00167 0.23574 0.23581 0.23652 0.99198
Euribor 1st 0.86267 0.99900 0.99966 0.99997 0.99999
Euribor 2nd 0.03921 0.35896 0.83370 0.99955 0.99969
Euribor 3rd 0.02197 0.14200 0.27543 0.27801 0.30464

1st factor 2nd factor 3rd factor 4th factor 5th factor 6th factor R2

Log Exchange Rates 0.00003 0.00000 0.00006 0.00025 -0.00025 -0.00047 0.00599

Table 3 Panel B: R2 from regressing LIBOR and Euribor factors on the first five common factors

Panel C: Results from regressing log exchange rates on all six common factors 
Regression coefficients on common factor

R2



Principal 
Component LIBOR only LIBOR after 1 

common factor
LIBOR after 2 

common factors Euribor only Euribor after 1 
common factor

Euribor after 2 
common factors

1 0.98456 0.60756 0.90956 0.96368 0.85074 0.88229
2 0.01377 0.33526 0.06909 0.03263 0.13176 0.09397
3 0.00137 0.04449 0.01182 0.00301 0.01409 0.01453
4 0.00018 0.00753 0.00409 0.00046 0.00212 0.00468
5 0.00006 0.00265 0.00181 0.00012 0.00070 0.00181
6 0.00002 0.00101 0.00140 0.00004 0.00027 0.00110
7 0.00001 0.00054 0.00082 0.00002 0.00013 0.00060

Percentage of variations explained

Principal Component Analysis for LIBOR and Euribor Models after taking out 1 or 2 common factors
Table 4

Table 4 reports the variations of LIBOR and Euribor residuals that are explained by the first seven principal components. 
The estimation is done using daily LIBOR and Euribor data from July 1, 1999 till June 30, 2003.  Column 1 lists the 
number of principal components.  Column 2 reports the LIBOR term structure model variation that is explained by the 
corresponding number of principal components.  Column 3 reports the variations explained for the residuals of LIBOR 
after it is regressed on the first common factor.  Column 4 reports the variations explained for the residuals of LIBOR 
after it is regressed on the first two common factors.  Column 5 reports the Euribor term structure model variation that is 
explained by the corresponding number of principal components.  Column 6 reports the variations explained for the 
residuals of Euribor after it is regressed on the first common factors.  Column 7 reports the variations explained for the 
residuals of Euribor after it is regressed on the first two common factors.  



Model Maturity Int. Rate W(6) W(10) W(20) W(6) W(10) W(20)
A0(4) Combined 65.22 76.19 82.04 98.22 103.52 101.35

2y LIBOR 33.62 33.40 41.72 69.79 73.86 73.08
10y LIBOR 34.01 38.54 37.15 66.97 76.22 74.63
2y Euribor 39.29 44.73 42.37 60.01 82.03 70.93
10y Euribor 45.20 66.32 65.13 73.00 77.18 70.01

A1(4) Combined 57.03 59.28 66.63 67.22 73.76 86.13
2y LIBOR 20.10 24.87 27.62 28.19 33.01 35.77
10y LIBOR 26.03 30.02 38.15 25.90 29.62 30.17
2y Euribor 31.01 33.81 39.31 34.03 37.98 39.00
10y Euribor 27.88 27.91 38.44 40.55 48.44 48.74

A2,1(4) Combined 103.21 108.08 111.37 167.49 183.03 201.72
2y LIBOR 50.07 53.77 55.92 92.29 97.32 101.24
10y LIBOR 52.34 56.13 58.11 93.99 96.11 98.13
2y Euribor 51.88 54.44 56.02 95.43 102.02 103.55
10y Euribor 52.90 56.01 58.30 92.22 99.71 102.70

A2,2(4) Combined 65.23 70.03 102.64 97.03 102.04 103.75
2y LIBOR 31.55 67.32 87.25 61.01 63.28 67.21
10y LIBOR 48.53 42.03 38.09 29.01 35.55 40.38
2y Euribor 50.01 53.37 40.22 67.72 77.73 100.90
10y Euribor 54.34 68.11 56.13 70.12 90.01 93.11

A3(4) Combined 110.71 121.01 123.55 227.73 244.32 290.11
2y LIBOR 53.20 55.12 58.11 87.12 91.16 93.33
10y LIBOR 49.14 50.97 56.00 88.11 92.20 94.70
2y Euribor 52.19 54.12 56.79 88.03 93.81 94.91
10y Euribor 49.93 56.12 68.33 89.54 93.72 94.92

A4(4) Combined 242.90 351.99 490.82 335.03 480.72 504.33
2y LIBOR 91.33 133.17 140.05 118.20 165.66 168.91
10y LIBOR 92.13 140.01 127.78 138.04 149.14 159.14
2y Euribor 123.45 135.55 142.21 135.51 177.82 182.90
10y Euribor 135.15 152.79 190.13 154.12 163.88 180.01

Table 5
Non-parametric Pormanteau statistics for the In-sample and Out-of-sample 

Performance of Affine Models

Out-of-SampleIn-Sample

Table 5 reports the non-parametric pormanteau statistics W(p) defined in equation (19) in the text 
for in-sample and out-of-sample performances of six specifications of four-factor affine models.   p 
represents the lag truncation order and equals 6, 10 and 20 in our case. We separately report results 
when our sample is limited to only 2-year and 10-year zero coupon bonds for LIBOR and Euribor, 
respectively. The estimation is done using daily LIBOR and Euribor data from July 1, 1999 till June 
30, 2003.  W(p) has a standard normal distribution.
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Figure 1. Term Structures from July 1, 1999 till June 30, 2003
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