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THE CAPM RELATION FOR INEFFICIENT 
PORTFOLIOS 

 
 

1 Introduction 

The simple and intellectually satisfying classical CAPM has been a main 

paradigm in finance. Thus, it was disconcerting to many believers when it appeared 

that empirical evidence offered little support to a CAPM basic prediction. Fama and 

French (1992), for example, found little relation between expected returns1 and betas. 

Subsequently, this relation has been investigated extensively. For example, the 

seminal works of Roll and Ross (1994) (RR) and Kandel and Stambaugh (1995) (KS) 

argued that the problem is not in the model but in our inability to identify efficient 

proxy portfolios. 

A Markowitz world (a finite set of nonredundant risky securities with finite 

first two moments) that has no further (equilibrium) assumptions induces an exact 

affine relation between expected returns and betas.2 Quantitatively, this relation is 

identical to a classical CAPM relation, so we call this relation a classical CAPM type 

relation and denote it briefly CAPM. We use the word type to differentiate from a 

CAPM relation that arises in general equilibrium under extensive assumptions. We 

say, and explain why below, that the CAPM (and the equilibrium CAPM) is well 

defined for all reference portfolios excluding those with expected returns equal to that 

of the global minimum variance portfolio (GMVP). 

In this context, we first develop a general and simple method to write the 

theoretical CAPM in terms of inefficient portfolios (CAPMI). We use the term 

“inefficient” portfolios to imply “non-frontier” portfolios, noting that the CAPM 

                                                 
1 Everywhere in the paper we use “expected returns” to briefly say “expected rates of return.” 
2 See, for example, Feldman and Reisman (2003) for a simple construction. 
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relation does hold for frontier portfolios on the negatively sloping part of the frontier. 

The CAPMI is more general than the CAPM, which is included in it. The CAPMI 

degenerates to the CAPM only in the special case of proxies that are on the portfolio 

frontier, and as a result one of the two beta addends of the CAPMI vanishes. The 

CAPMI facilitates a quick, simple, and clear demonstration of the additional results 

that we state below. 

Second, we show that a theoretical zero relation between expected returns and 

betas (a zero coefficient of the betas in the CAPM restriction) may occur where the 

CAPM is not well defined. It occurs, however, only under a degenerate indeterminate 

case that non-uniquely allows a theoretical zero relation as one possible relation out of 

infinitely many non-zero possible ones. This occurs where 

• the reference portfolio is in a degenerate cone in the mean-variance space, 

at the line where expected returns are equal to those of the GMVP 

• all securities have betas equal to 1 and the same expected return 

• there is no zero beta portfolio 

On the other hand, where a CAPM is well defined, we very simply 

demonstrate that, as Roll (1980) showed, “Every nonefficient index possesses zero-

beta portfolios at all levels of expected returns.” [Roll (1980), p. 1011]. In particular, 

for any inefficient proxy there is at least one and could be infinitely many zero beta 

portfolios of the same expected return, which, in turn, implies that for any inefficient 

portfolio proxy there is at least one portfolio and could be infinitely many portfolios 

that induce zero relations. We provide a numerical example of a zero relation case 

with both exogenously given and endogenously constructed zero relations. 

Consequently, a zero relation could be empirically detected. 



 3

Third, our analysis emphasizes an essential implication: where the CAPM is 

well defined and where market portfolio proxies are inefficient, CAPM regressions 

are essentially misspecified because of three sources of misspecification. The first 

source of misspecification arises because the use of the CAPM for inefficient 

portfolios inappropriately and incorrectly ignores a non-zero addend in the restriction. 

The second source of misspecification arises from the, above mentioned, existence of 

infinitely many “zero beta” portfolios, and at all expected returns, for any inefficient 

market portfolio proxy. Thus, the identification of a correct “market risk premium,” 

“excess return,” or beta coefficient, is extremely unlikely. On the other hand, the 

identification of “zero relations” that induce a zero 2R  becomes possible. The third 

source of misspecification arises from the use of unadjusted betas, while adjusting the 

betas is required for inefficient proxies. 

This misspecification is, of course, robust with respect to the explanatory 

power of the betas. Also subject to the misspecification are CAPM regressions that 

use different procedures from Fama and French’s (1992) and that produce positive 

beta explanatory power. The misspecification is also robust to various extensions, 

such as multiperiod, multifactor, and the conditioning on time and various attributes. 

This CAPMI implication might be particularly beneficial as it is not clear that the RR 

KS, and Jagannathan and Wang (1996) essential implication—that CAPM regression 

with inefficient proxies are meaningless—has been sufficiently internalized. 

Fourth, we suggest that applications/tests that use inefficient proxies should 

use our well-specified CAPMI rather than the misspecified CAPM for inefficient 

proxies. 

Finally, because the real-world unobservability of moments of returns (a cause 

of the use of inefficient proxies) impairs the usefulness of the CAPMI, we suggest the 
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implementation and testing of incomplete information equilibria models developed to 

handle unobservable moments, as demonstrated in Feldman (2005), for example. 

Given a finite number of nonredundant risky securities with distributions of 

rates of return that have finite means and variances, the Sharpe-Lintner-Mossin-

Black3 CAPM specifies an affine relation between security expected returns and 

betas. This relation holds for any portfolio frontier portfolio4 (henceforth frontier 

portfolio), other than the GMVP. The coefficient of the beta in this affine relation is 

the expected return on the frontier portfolio, which induces the beta, in excess of the 

expected return of a portfolio that is uncorrelated with it (a zero beta portfolio). This 

excess expected return (for a frontier portfolio) cannot be zero.5 We exclude the 

GMVP because a zero beta portfolio does not exist there, and the limit of the zero 

beta rate approaching the GMVP is infinite.6 Thus, we say that the CAPM is well 

defined with respect to any frontier portfolio except for the GMVP. 

Roll (1980) demonstrated that there is a theoretical zero relation between 

expected returns and betas for every inefficient portfolio, where the CAPM is well 

defined. We provide intuition and simple construction of this result. Consider the 

hyperbola that an inefficient proxy spans with the GMVP and also the (degenerate) 

hyperbola it spans with the frontier portfolio of the same expected return. We 

demonstrate below that each of these hyperbolas includes a zero beta portfolio to the 

inefficient proxy and that these two zero beta portfolios are of different expected 

returns. 

                                                 
3 Sharpe (1964), Lintner (1965), Mossin (1966), Black (1972). 
4 The portfolio frontier is the locus of minimum variance portfolios of risky assets for all expected 
returns. 
5 See, for example, Huang and Litzenberger (1988), Equation (3.14.2), which follows Merton (1972). 
6 The GMVP induces a beta of one on all securities. Geometrically, on a mean standard deviation 
Cartesian coordinates, the tangent to the GMVP is parallel to the expected return axis.  
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Now, all infinitely many portfolios, expanding to all expected returns, on the 

hyperbola spanned by these two zero beta portfolios are also zero beta with respect to 

the inefficient proxy. We call such a hyperbola a “zero beta hyperbola.” In addition, 

any zero beta portfolio not on this hyperbola generates infinitely many additional 

portfolios that are zero beta with respect to the inefficient proxy. There are vast 

regions where infinitely many such portfolios may exist, and we give a numerical 

example for such a case. Thus, we have at least one and possibly infinitely many zero 

beta hyperbolas and on each such hyperbola infinitely many zero beta portfolios. 

Because any non-degenerate zero beta hyperbola expands to all expected 

returns (as is the case for any non-degenerate hyperbola), it includes a portfolio with 

expected return equal to that of the inefficient proxy. Moreover, there are infinitely 

many portfolios on each zero beta hyperbola that induce incorrect “excess expected 

return” values (risk premiums/beta coefficients) in the CAPM relation. Thus, any 

inefficient proxy induces incorrect pricing due to incorrect excess expected return 

premia with respect to infinitely many portfolios. When these excess expected returns 

are zero—that is, the expected returns of the zero beta portfolios are equal to that of 

the inefficient proxy—they induce zero relations. Of course, each of these infinitely 

many portfolios, whether inducing an incorrect excess expected return value or a zero 

relation, induces a pricing error. 

Therefore, where the CAPM is well defined, using it with inefficient proxies 

gives rise to three sources of misspecification. The first is ignoring a non-zero addend 

in the relation, the second is using an incorrect excess expected return value, and the 

third is using an incorrect value for beta. Recapping, the reason for the first and the 

third sources of misspecification is the need to correct the inefficient proxy 

“coordinates” to efficient ones on which the CAPM is defined, the reason for the 
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second is that inefficient proxies have infinitely many zero beta portfolios and of all 

expected returns. 

Where the CAPM is not well defined, there is a special case of degenerate 

indeterminacy that (non-uniquely) allows a theoretical zero relation. This case 

requires, however, that all securities have the same expected return. The explanation 

is as follows. If all securities have the same expected return, 

(a) the portfolio frontier degenerates to one point that also becomes the 

efficient frontier, 

(b) the proxy portfolio must be of the same expected return as the GMVP,  

(c) all securities’ betas are equal to one, and  

(d) a zero beta portfolio does not exist. Then, for any constant, there are 

infinitely many pairs of weights that average the constant and 1 (where 1 stands for 

any security’s beta), such that the average is equal to the securities’ expected return. 

In particular, there is a constant (the expected return of the market securities) that 

induces a theoretical zero relation (a zero weight on the beta). Thus, an implication of 

a Markowitz world is that a theoretical zero relation exists only if all securities have 

the same expected return. 

While the analysis in this paper is done in a single-period mean-variance 

framework, its implications apply to multiperiod, multifactor models. This is because 

we can see the single period mean variance model here as a “freeze frame” picture of 

a dynamic equilibrium where, because of the tradeoff between time and space, only 

the instantaneous mean and instantaneous variance of returns are relevant until the 

decision is next revised in the next time instant. 

RR, KS, and Jagannathan and Wang (1996), perhaps the seminal articles in 

this context, elaborately discuss the relation between expected returns and betas and 
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its implications for regression estimates [see also the report of some of their results in 

Bodie, Kane, and Marcus (2005), Section 13.1, page 420]. We complement their 

results by specifying the CAPMI and demonstrating properties of the theoretical 

relation; see RR, KS, and Jagannathan and Wang (1996) for detailed perspectives and 

references. Section 2 demonstrates the results, Section 3 discusses implications, and 

Section 4 concludes. 

 
2 The CAPM Relation 

Below, we introduce the model—a Markowitz world—and develop the 

analytical results. 

2.1 Markowitz World and CAPM 

In this section, we present the economy and write a CAPM using the following 

notational conventions: constants and variables are typed in italic (slanted) font, 

operators and functions in straight font, and vectors and matrices in boldface (dark) 

straight font. 

In a market with N risky securities, let R be an 1×N  vector of rates of return 

of the securities, iR , 1,...,i N= , and 2N > . We do not specify the probability 

distributions of the rates of return. Rather, we assume means and variances that are 

real finite numbers and a positive definite covariance matrix, V, which implies that 

there are no redundant securities.7 This non-redundancy, in turn, implies that there are 

at least two securities with distinct expected returns and a non-frontier security. We 

call the vector of security expected returns E, the expectation operator E( )⋅ , the 

covariance , ,ij i jR Rσ ∀ , the variance 2 ,ii i iRσ σ ∀ , and the standard deviation 

2 ,i i iσ σ+ ∀ . 

                                                 
7 We define a redundant security as one whose return can be constructed by combining other securities. 
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Let some portfolio, say a, of the N market securities, be an 1×N  vector of real 

numbers, with components ia , 1,...,i N= , where ia  is the “weight” of security i in 

the portfolio and, unless otherwise noted, T 1=1 a , where 1  is an 1×N  vector of ones 

and the superscript T denotes the transpose operator. Let z be a zero beta operator, 

i.e., za is portfolio a’s zero beta frontier portfolio; thus, by definition, z 0zσ σ= =aa a a . 

We will call some portfolio that is uncorrelated with a, thus having a zero beta with 

respect to a, za. We call this world a Markowitz world.8 

Let q be some frontier portfolio other than the GMVP. Portfolio q stands for a 

frontier index or reference portfolio. Then, we can write a Sharpe-Lintner-Mossin-

Black (zero beta) CAPM for q: 

 z z 2E( ) [E( ) E( )]R R R
σ

= + −q q q
q

VqE 1 .9 (1) 

2.2 CAPMI 

In this section, we write a CAPMI in terms of any portfolio—efficient or 

inefficient—excluding those with an expected return equal to that of the GMVP 

where the CAPM is not well defined. The previous section’s CAPM is, thus, a special 

case of this section’s CAPMI. 

Let p be a portfolio with E( ) E( )R R=p q  and σ σ>p q . Portfolio p stands for an 

inefficient portfolio that serves as a proxy to q. In a mean-standard deviation 

Cartesian coordinate system where the mean is on the vertical axis, q lies on the 

frontier and p lies inside the frontier to the right of q.10 

We project Rp  on Rq , decomposing it into Rq  and a residual return Re : 

                                                 
8 Markowitz (1952), for example. See also Roy (1952). 
9 For a simple construction, see Feldman and Reisman (2003); for a geometric approach, see Bick 
(2004); and for a frontier expansion, see Ukhov (2005). 
10 For an examination of inefficient portfolios, see Diacogiannis (1999). 
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 R R R= +p q e , (2) 

implying 

 = +p q e , (3) 

 
where E( ) 0R =e , 0σ =qe , T 0=1 e , 2σ σ=pq q , 0σ >e , and e is the weights vector of 

Re . 

We will now demonstrate why Equation (2) and the five following properties 

hold. Equation (2) and the first two properties hold because we can project any 

portfolio p on any portfolio q such that R c bR R= + +p q e , where c and b are constants, 

E( ) 0R =e , and 0σ =qe . We achieve this if we choose 2b
σ
σ

= pq

q

, and 

2E( ) E( )c R R
σ
σ

= − pq
p q

q

.11 The choice that E( ) E( )R R=p q  implies that 0c = , 1b = , 

and, by left multiplying Equation (3) by T1 , that T 01 e = .12 Equation (3) implies that 

2
( )σ σ σ σ= = +pq q+e q q qe . Together with 0σ =qe , we have 2 2σ σ σ σ= + =pq q qe q . Finally, 

because 0σ =qe  Equation (2) implies that 2 2 2 2 2 22σ σ σ σ σ σ σ= = + + = +p q+e q e qe q e . 

Thus, the property σ σ>p q  implies that 0σ >e . 

Equation (2)’s projection is similar to regressing Rp  on Rq . Equivalently, this 

is a market model presentation of Rp , developed in Sharpe (1963). 

Substituting = +p q e  into Equation (1) yields 

                                                 
11 The (orthogonal) decomposition R c bR R= + +p q e , 0σ =qe  implies COV( , )R Rσ =qe q e  

2COV( , ) 0R R bR bσ σ− = − =q p q pq q , which, in turn, implies 2b
σ
σ

= pq

q

. If we choose b as implied, and, 

in addition, choose c to equal  2E( ) E( ) E( ) E( )c R b R R R
σ

σ
= − = − pq

p q p q
q

, we also have E( ) 0R =e  and 

accomplish the decomposition. 
12 With E( ) 0R =e  and T1 e = 0 , e is an arbitrage portfolio. 
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 z z 2

( )E( ) [E( ) E( )]R R R
σ
−

= + −q q q
q

V p eE 1 . (4) 

When we rearrange and define 2σp
p

Vpβ , and 2σ
−e

e

Veβ  as vectors of market security 

betas with respect to portfolios p and e respectively, Equation (4) becomes 

 
2 2

z z z2 2E( ) [E( ) E( )] [E( ) E( )]R R R R R
σ σ
σ σ

= + − + −p e
q q q p q q e

q q

E 1 β β . (5) 

Equation (1) implies that portfolios with expected returns equal to that of zq 

are uncorrelated with q.13 In addition, zzq is q. Thus, all portfolios with the same 

mean as q are uncorrelated with zq. Therefore, because we have E( ) E( )R R=p q , we 

also have z z=q p . That is, the frontier portfolio that is zero beta with respect to q is 

zero beta with respect to all portfolios of the same expected return equal to that of q, 

including, in particular, p. Thus, zE( ) E( )zR R=p q  , and we can rewrite Equation (5): 

 
2 2

2 2E( ) [E( ) E( )] [E( ) E( )]z z zR R R R R
σ σ
σ σ

= + − + −p e
p p p p p p e

q q

E 1 β β  (6) 

The intuition behind Equation (6) is straightforward. It is the CAPM where the 

efficient proxy portfolio is written as the sum of two portfolios: one that is inefficient 

and one that is the difference between an efficient portfolio and the inefficient one. 

For parsimony and without loss of generality, the efficient and inefficient portfolios 

have the same expected return. 

Examining Equation (6) we identify two potential sources of misspecification 

that arise while using the CAPM with inefficient index portfolios. The first potential 

source of misspecification is, simply, ignoring the second addend of Equation (6). The 

                                                 
13 Left multiplying Equation (1) by Ta  and rearranging yields z 2

z

E( ) E( )
E( ) E( )

R R
R R

σ σ
−

=
−

a q
aq q

q q

, which 

demonstrates the property if E( ) E( )R R=a zq . 
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second potential source of misspecification is using incorrect excess expected return 

values due to the existence of portfolios that, although zero beta with respect to p, are 

of expected returns different than that of zq. If, then, in empirical tests, the latter 

portfolios are used, the excess expected returns values [E( ) E( )]zR R−p p  are incorrect. 

We argue below that there are infinitely many such portfolios that could cause this 

misspecification. In particular, when this excess expected return is zero, we say that 

the (inefficient) proxies induce zero relations. We examine these issues in the 

following sections. 

2.3 Where the CAPMI is Not Well Defined 

In this section, we explore the case where the CAPMI is not well defined. 

Within this case, we further identify a special case, one where all securities have the 

same expected return. 

Equation (6) implies that there is a zero coefficient of pβ  if and only if 

E( ) E( )zR R=p p . The latter never happens with frontier zero beta portfolios because if 

E( ) E( )R R>p GMVP  [E( ) E( )]R R<p GMVP , then E( ) E( )zR R<p GMVP  [E( ) E( )]zR R>p GMVP  

(where zp is a frontier portfolio). See, for example, Huang and Litzenberger (1988), 

Equation (3.14.2), which follows Merton (1972).14 Also, geometrically, 

E( ) E( )zR R=p p  (where zp is a frontier portfolio) requires a flat frontier tangent 

(parallel to the standard deviation axis), a situation that cannot happen.15 

We will now examine the case where E( ) E( )R R=p GMVP . Because the 

covariance of the GMVP with any security equals the variance of the GMVP,16 all 

securities have a beta of one; there is no zero beta portfolio and thus no zero beta rate; 

                                                 
14 Geometrically, this means that the above (below) GMVP frontier portfolios’ tangent intersects the 
expected return axis below (above) the GMVP expected return. 
15 See our discussion of the case where all securities have the same expected return (below). 
16 See, for example, Huang and Litzenberger (1988), Section 3.12. 
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and we say that the CAPM is not well defined. We also note that as the reference 

frontier portfolio moves toward the GMVP, the absolute value of the zero beta rate 

tends to infinity. When at least two securities have different expected returns, CAPM 

does not exist. Geometrically, in this case, E( ) E( )R R=p GMVP  implies a frontier 

tangent having no intersection with (is parallel to) the expected return axis. 

If, however, all market securities have the same expected return, the frontier 

consists of one point only, which is also the GMVP, and any proxy has the same 

expected return as the GMVP. Thus, this is a special instance of the case where the 

CAPM is not well defined. Because all securities have the same expected return and 

the same beta, and because the zero beta rate is not specified, there are infinitely many 

pairs of coefficients that average any constant (standing for the non-existent zero beta 

rate) and 1 (standing for any security’s beta) to equal securities’ expected return. In 

particular, there is a pair of coefficients that allows a theoretical zero relation: if the 

constant that stands for the (non-existent) zero beta rate is equal to securities’ 

expected return, then a coefficient of one of the constant and a coefficient of zero of 

the betas explain all securities’ expected returns. We call this a case of indeterminate 

degeneracy. We use the term degeneracy because expected returns degenerate to a 

single value, the hyperbola degenerates to a single point, the GMVP and the market 

portfolio degenerate to one portfolio, all betas degenerate to one, and a zero beta 

portfolio and thus the zero beta rate do not exist. We call this case indeterminate 

because there are infinitely many distinct pairs of coefficients that explain expected 

returns, of which the theoretical zero relation is only one. Because of the latter 

property, we also say that the theoretical zero relation is non-unique. 
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2.4 Discontinuity and Disparity 

In a Markowitz world, there is an interesting “asymptotic discontinuity” when 

the reference portfolio becomes the GMVP. This discontinuity does not exist in a 

model with a risk-free asset. When there is a risk-free asset, the tangency portfolio 

becomes the GMVP as the risk-free rate goes to infinity (or negative infinity). 

Correspondingly, in analytical solutions, the weights of the frontier tangency portfolio 

go to the weights of the GMVP as the risk-free rate goes to infinity. In contrast, in a 

zero beta model, as is the model in this paper, as the tangency portfolio tends to 

become the GMVP, the zero beta rate grows in absolute value and tends to infinity. 

However, as the tangency portfolio becomes the GMVP, its beta with any portfolio 

becomes one. There is no zero beta portfolio, and thus no zero beta rate. We call this 

phenomenon “asymptotic discontinuity” and the qualitative difference between the 

properties of the model with and without a risk-free rate “disparity.” 

2.5 Where the CAPMI is Well Defined 

In this subsection we provide a very simple construction of zero relations and 

a hyperbola of zero beta portfolios for any inefficient proxy where the CAPM is well 

defined.17 See Roll (1980) for a comprehensive study of zero beta portfolios existence 

and properties. We start the discussion with a numerical example that demonstrates 

the existence of, both, exogenous and endogenous zero relations. Exogenous zero 

relations arise between the original assets in a Markowitz world. Endogenous ones 

arise between assets or portfolios and portfolios which are not originally uncorrelated. 

The interpretation of this example should be that in a Markowitz world there is no 

limit to the number of cases similar to those in the example. 

                                                 
17 For simplicity, we do not repeat the phrase, “where the CAPM is well defined” through the section. 
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Numerical example. Assume a four assets, q, p, u, and v, Markowitz world. If for 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

q
p
u
v

, we have 

2
2
2
0

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

E , and 

1 1 1 0
1 2 0 0
1 0 3 0
0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

V , then, solving for the portfolio 

frontier identifies q and v as frontier portfolios. Thus, we can view p as some 

inefficient proxy and note that u induces a zero relation with respect to p as it is 

uncorrelated with it and has the same expected return. More specific structure to 

support this example could be as follows. Because q, p, and u have the same expected 

return, projecting p and u on q yields = + pp q ε , and = + uu q ε , respectively, where 

both pε and uε  are of mean zero and uncorrelated with q. Then, setting 2σ σ= −
p uε ε q  

implies 0σ =pu . Thus, u is a zero beta portfolio of and with the same expected return 

as p, inducing a zero relation. This could be the case, for example, where the q, p, u, 

and v are distributed according to a multivariate normal distribution. As p and u are 

original exogenously given assets we call the zero relation that u induces with respect 

to p an exogenous one. 

The intuition behind the existence of exogenous zero relation portfolios as p 

and u in the example above and in general is straightforward. It follows from the 

property that a Markowitz world specifies the first two moments of return 

distributions, leaving freedom to further specify “distributions structure.” In order to 

leave “other things equal,” a constraint on such “distribution structuring” is that it 

should not change the frontier. 

We will now demonstrate that, within the example’s Markowitz world, there is 

an endogenously determined asset, a combination of p and q, where p and q are 

positively correlated, which induces a zero relation with respect to p. This asset, say 
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zp, has a weight of 2 in q and -1 in p. Thus, the variance of zp and its covariance with 

p are 

T

2

2 1 1 1 0 2
1 1 2 0 0 1

2
0 1 0 3 0 0
0 0 0 0 1 0

zσ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎜ ⎟ ⎜ ⎟⎜ ⎟= =
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

p , and 

T2 1 1 1 0 0
1 1 2 0 0 1

0
0 1 0 3 0 0
0 0 0 0 1 0

zσ

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟= =
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

p p . As the 

expected returns of p and zp are equal and they are uncorrelated, zp induces a zero 

relation with respect to p. 

We will now show that the latter property is not coincidental to the last 

example but, in fact, is a general property in this context:  it exists for any inefficient 

proxy at any Markowitz world. Consider some inefficient proxy, p, and the frontier 

portfolio with the same expected return q. Consider now the (degenerate) hyperbola 

spanned by q and p only. We claim that on this single expected return hyperbola, q 

must be the GMVP. This is because q was already the GMVP for its expected return 

on a hyperbola that was spanned by q, p and additional assets. The removal of the 

additional assets from the set of assets available to span the hyperbola, could not have 

improved the optimum, that is, could not have allowed the creation of a portfolio with 

variance lower than that of q.18 Thus, q must still be the GMVP on the hyperbola 

spanned by q and p. 

It is a well known property that a GMVP’s covariance with all assets is equal 

to a positive constant, its variance [see Huang and Litzenberger (1988), Section. 3.12, 

for example]. This property, together with the one that we demonstrated above, that q 

is the GMVP on the hyperbola spanned by q and p, imply that within any Markowitz 

world any inefficient proxy p and the frontier portfolio of the same expected return, q, 

                                                 
18 Presence of additional assets is not necessary for the argument, of course. However, were there no 
additional assets, q would have been the GMVP of the original hyperbola. 
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have a covariance matrix of the form , 0F F
I F

F I

v v
v v

v v
⎛ ⎞

> >⎜ ⎟
⎝ ⎠

, where Fv  is the 

variance of the frontier portfolio q, and Iv  is the variance of the inefficient portfolio 

of the same expected return, p. It, thus, becomes straight forward to identify a pair of 

weights, ( ,1 )α α− , of a portfolio that combines q and p, respectively, and form a 

portfolio that is uncorrelated with p. The weights of such a portfolio must solve the 

equation 
T 0

0
1 1

F F

F I

v v
v v

α
α

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

. Solving the equation we get the well defined 

solution, ( ,1 ) ,I F

I F I F

v v
v v v v

α α
⎛ ⎞

− = −⎜ ⎟− −⎝ ⎠
. Note that the weight of the frontier 

portfolio, I

I F

v
v v−

, is always positive and greater than one. It is the ratio of the 

variance of the inefficient portfolio over the variance increment of the inefficient 

portfolio over the frontier portfolio’s variance. This ratio can be interpreted as related 

to a relative measure of inefficiency. We also note that the variance of the zero 

relation portfolio is I F

I F

v v
v v−

  
T

2because,
I I

I F I F

F F

I F I F

v v
v v v vF F I F

z v v
F I I Fv v v v

v v v v
v v v v

σ − −

− −
− −

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟= =⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥−⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
p . 

We identify additional properties. Where 2I Fv v= , as is the case in our numerical 

example above, the variance of the zero relation portfolio will be equal to the variance 

of the inefficient proxy, that is, 2 2
zσ σ=p p . (Of course, the expected returns of these 

portfolios are equal as well.)  Further, 2 ( 2 )I F I Fv v v v> < , implies 

2 22 ( 2 )z F z Fv vσ σ< >p p . 

If we define a measure of relative inefficiency RI, F

I F

vRI
v v−

, we can write 

the variance ratio of the zero relation portfolio return over the frontier portfolio return 



 17

as 
2

1z I

F I F

v RI
v v v
σ

= = +
−

p . Then, we note that 
2

01 1z
RI

F

RI
v
σ

→= + ⎯⎯⎯→p , that is, as the 

“inefficiency” of the portfolio proxy grows, the zero relation portfolio gets closer to 

the frontier, and conversely, 
2

1z
RI

F

RI
v
σ

→∞= + ⎯⎯⎯→∞p , that is, the closer the portfolio 

proxy gets to the frontier, the higher is the variance of zero relation portfolio. 

Graphical representations of the Numerical example. We will now present eight 

graphs that manifest the numerical example. Figure 1 depicts the market’s four assets 

q, p, u, and v, the portfolio frontier they induce, and the GMVP. 

 

Figure 1: The Portfolio Frontier
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Figure 2 depicts the tangent to the efficient proxy q, which is also the pricing 

line induced by q. Note that v is a zero beta portfolio to q as it is at the level of the 

intersect of the tangent, or on the horizontal line. 

Figure 3 depicts the hyperbola spanned by p and GMVP. This hyperbola must 

have GMVP as its own GMVP. 
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Figure 2: The Tangent Line and The Zero-Beta 
Portfolios 
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Figure 3: The Inefficient Proxy-GMVP Frontier
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Figure 4 depicts the tangent to p on the hyperbola spanned by p and GMVP. 

This tangent defines zp, p’s zero beta portfolio on this hyperbola and a locus of higher 

variance zero beta portfolios to p at the expected return of zp, on the green line. 
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Figure 4: The Inefficient Proxy's Minimum Variance 
Zero-Beta Portfolios
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Figure 5: The Inefficient Proxy's Endogenous Zero-Beta 
Frontier
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Figure 5 depicts the hyperbola spanned by v and zp. As both spanning 

portfolios are zero beta with respect to p, all this hyperbola’s portfolios are also zero 

beta with respect to p. In our example, this hyperbola goes through the expected value 
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and standard deviation coordinates of p. As we demonstrate above, this is a special 

case that occurs when the variance of the inefficient proxy, p, is double that of the 

corresponding efficient one, q. The analysis above also demonstrates that if p 

“moves” to the left (right), the hyperbola moves to the right (left). 

Figure 6 superimposes Figure 5 on Figure 4 and depicts two loci of portfolios 

that are zero beta with respect to p:  the horizontal line that passes through zp and the 

hyperbola spanned by v and zp. Combinations of portfolios from each locus further 

induce loci of portfolios that are zero portfolios with respect to p. 

Figure 6: The Inefficient Proxy's Zero-Beta Portfolios
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Figure 7 depicts the direct generation of a zero relation to p by combining p 

and q. As in the analysis above and in Figure 5, the zero relation portfolio to p, in our 

example, has the same expected value and standard deviation as p. 

Figure 8 depicts an additional locus of portfolios that are zero beta with 

respect to p, generated by portfolio u, a market portfolio that is uncorrelated with p. 
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Figure 7: Zero Relations
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Figure 8: The Inefficient Proxy's Exogenous Zero-Beta 
Frontier
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We have thus, proved and illustrated the following proposition and corollary. 
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Proposition 1. i) In a Markowitz world, any inefficient proxy induces a zero relation. 

ii) Let, without loss of generality, the variance of some inefficient portfolio proxy, p, 

be Iv  and that of the frontier portfolio of the same expected return, q, be Fv , 

0I Fv v> > . Then, the portfolio whose weights are ( ),I F

I F I F

v v
v v v v

−
− −  in ( , )q p , respectively, 

induces a zero relation with respect to p, and its variance is I F

I F

v v
v v− . 

Corollary 1. If the variance of the inefficient proxy is double that of the frontier 

portfolio of the same expected return, then, the zero relation portfolio has the same 

variance (and, of course, the same expected return) as that of the inefficient proxy. As 

the inefficient portfolio proxy gets closer to the frontier, the variance of its zero 

relation grows to infinity. Conversely, as the variance of the inefficient portfolio proxy 

grows to infinity, its zero relation portfolio gets closer to the frontier. 

The following proposition identifies, for any inefficient proxy, a zero beta 

portfolio at a different expected return than that of the inefficient proxy and its zero 

relation portfolio that was identified in Proposition 1. It is the minimum variance 

inefficient proxy’s zero beta portfolio among all of the inefficient proxy’s zero beta 

portfolios at all expected returns. 

Proposition 2. [Roll (1980), Huang and Litzenberger (1988), Section 3.15]. Consider 

the hyperbola spanned by some inefficient proxy and the GMVP. Then, the GMVP is 

the GMVP of this hyperbola as well, and the zero beta portfolio of the inefficient 

proxy on this hyperbola, is the minimum variance zero beta portfolio of the inefficient 

proxy, among all the  zero beta portfolios of the inefficient proxy. 

The proof of the first part of Proposition 2 is similar to the proof of 

Proposition 1. The proof of the second part of Proposition 2, the identification of the 

inefficient proxy’s zero beta portfolio as the minimum variance one among all its zero 
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beta portfolios, is demonstrated in Huang and Litzenberger (1988), Section 3.15, by 

Lagrange’s method. 

Corollary 2. The zero beta portfolios, with respect to some inefficient proxy, identified 

in Propositions 1 and 2, are of different expected returns. 

Proof. The zero beta / zero relation portfolio identified in Proposition 1 is of the same 

expected return as the inefficient proxy. The zero beta portfolio identified in 

Proposition 2 is on the other side, with respect to the inefficient proxy, of the (non 

degenerate) hyperbola spanned by the inefficient proxy and the GMVP [see, for 

example, Huang and Litzenberger (1988), Section 3.15]. Thus, they must be of 

different expected returns. 

As the two zero beta portfolios identified in the propositions above are of 

different expected returns, they span a zero beta hyperbola that extends to all expected 

returns. We state this property in the following proposition. 

Proposition 3. Any inefficient proxy induces a hyperbola of zero beta portfolios that 

extends to all expected returns. Such a hyperbola is the one spanned, for example, by 

the zero relation portfolio identified in Proposition 1, and by the “minimum variance 

zero beta portfolio” identified in Proposition 2. Moreover, this hyperbola consists of 

the minimum variance zero beta portfolios at every expected return. The hyperbola 

includes one frontier portfolio, the (single) frontier portfolio that is uncorrelated with 

the frontier portfolio that has the same expected return as the inefficient proxy. 

Roll (1980) attains the results of Proposition 3 in a different way. Using our 

approach, the proof of the first and second part of Proposition 3 is straight forward. 

Proving the latter part of the proposition, the property that the said hyperbola consists 

of the minimum variance zero beta portfolios for each expected return can be done by 

contradiction. Following the proof of Proposition 1, existence of a zero beta portfolio 
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with lower variance than that of the said hyperbola portfolio, will facilitate combining 

it with the frontier portfolio of the same expected return and constructing a portfolio 

with variance lower than that of the frontier portfolio. This is, of course, a 

contradiction. 

Note, also, that any zero beta hyperbola includes a single frontier portfolio. 

This frontier portfolio is the (only) frontier portfolio that is uncorrelated with the 

frontier portfolio of the same expected return as that of the inefficient proxy that 

induces the zero beta hyperbola. In fact, all portfolios of the same expected return are 

uncorrelated with a single frontier portfolio. On the other hand, all the portfolios 

uncorrelated with a frontier portfolio are of a single expected return. A consequence 

of this is that as an inefficient proxy becomes efficient, the zero beta hyperbola it 

induces degenerates/collapses to a degenerate (single expected return) hyperbola (or a 

line). See Roll (1980). 

We reemphasize that although a zero relation generally induces a zero 2R  in a CAPM 

type regression, the choice of any zero beta portfolio at any expected return—except 

the single expected return corresponding to the frontier zero beta portfolio with 

respect to the proxy (zq in our case)—induces a pricing error by inducing an incorrect 

excess expected return value / risk premium / coefficient on the beta in the CAPM 

relation. As we demonstrated, there are infinitely many such portfolio and for every 

expected return. The likelihood of identifying the “correct” zero beta portfolio among 

the infinitely many ones seems to be negligible. 

2.6 The CAPMI Market Model: Correlated Explanatory Variables 

We cannot say that the omitted addend is uncorrelated with or orthogonal to, 

the existing addends. 



 25

Following Sharpe (1963) and Black (1972), we can write the CAPMI market 

model. To do that, we replace, the explanatory random variable Rq  in the CAPM 

market model with the difference in the random variables R R−p e .19 Thus, we replace 

one market model addend, related to Rq , with two addends, related to Rp  and Re  

respectively. Recalling the construction method of the CAPMI, it is easy to see that if 

p is indeed an inefficient portfolio (that is, if R R≠p q ), then Rp  and Re  must be 

correlated. In other words, the two “new” addends in the CAPMI market model must 

be correlated. This property might be material when considering the misspecification 

caused by ignoring, in implementations and tests, the addend related to Re . We cannot 

say that the omitted addend is orthogonal to, or uncorrelated with, the existing 

addends. 

 
3 Implications 

In this section we list a few implications of a Markowitz world. 

3.1 Misspecification of the CAPM and a Reemphasis of the Roll and Ross, 
Kandel and Stambaugh, and Jagannathan and Wang Implication 

 
Equation (6) is a well-specified CAPMI and is distinctly different from the 

CAPM.20 We say that when using inefficient proxies with the CAPM, we use a 

misspecified relation because we unjustifiably and incorrectly force an addend in the 

specified equation to be zero. This misspecification reemphasizes the important RR, 

KS, and Jagannathan and Wang results that demonstrate that it is meaningless to use 

inefficient proxies to implement regressions of CAPM, which is designed to use 

efficient proxies. For example, KS write in their abstract, “If the index portfolio is 

inefficient, then the coefficients and 2R  from an ordinary least squares regression of 

                                                 
19 Recall that by construction R R R= +p q e , thus R R R= −q p e . 
20 As specified in Equation (1), for example. 
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expected returns on betas can equal essentially any values….” Because real-world 

proxies are practically inefficient, such regressions based on the classical CAPM are 

misspecified. Jagannathan and Wang (1996, p. 41), provide and example of a 

portfolios rearranging, to which the CAPM should not be sensitive, that reduces the 

2R from 95% to zero. 

The misspecification that we demonstrate is robust with respect to the 

explanatory power of the betas. Positive explanatory power of the betas does not 

imply that the well-specified CAPMI would have resulted with the same values for R2 

and coefficients. In other words, CAPM regressions that unduly constrain a 

specification addend to be zero are subject to getting meaningless R2 and coefficients’ 

values regardless of the R2 and coefficients they produce. Thus, CAPM regressions 

that use different procedures from those used by Fama and French (1992), and that are 

able to produce positive beta explanatory power, are also subject to the same 

misspecification. In addition, this misspecification is robust to multiperiod and 

multifactor models, and to those conditioning on various attributes. 

A multitude of CAPM empirical studies followed the introduction of the 

CAPM in Sharpe (1964), Lintner (1965), Mossin (1966), and Black (1972), and the 

seminal empirical works of Black, Jensen, and Scholes (1972) and Fama and Macbeth 

(1973). Curiously, however, the issue of the misspecification with respect to 

inefficient proxies was not attended to until the Fama and French (1992) results 

induced the declaration, “Beta is dead…”. 

3.2 Infinitely Many Theoretical Zero Relations Within a Markowitz World 

While the main implication of this paper is the misspecification of the CAPM 

for inefficient portfolios and the values of the misspecified coefficients and 2R  are 

immaterial, the prevalence and likelihood of zero relations has captured special 
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interest in the literature. RR said, in their abstract, “For the special case of zero 

relation, a market portfolio proxy must lie inside the frontier, but it may be close to 

the frontier.” On page 104, they write, “Portfolios that produce a zero cross-sectional 

slope…lie on a parabola that is tangent to the efficient frontier at the global minimum 

variance point.” In addition, their Figure 1, page 10521 draws a boundary region that 

contains zero relation proxies, one such portfolio being 22 basis points away from the 

portfolio frontier. We emphasize that where the CAPM is well defined, any inefficient 

proxy has at least one and possibly infinitely many portfolios that induce zero 

relations. 

We say that for proxy portfolios whose expected returns are equal to that of 

the GMVP, the CAPMI is not well defined because, as described above, the GMVP 

has no zero beta portfolio and the limit zero beta rate is infinity. We identify, 

however, a degenerate indeterminate case that non-uniquely allows a theoretical zero 

relation: where all securities have the same expected return. The theoretical zero 

relation, however, is one possible relation out of infinitely many possible ones. 

3.3 The Misspecification with Respect to Any Zero Beta Portfolio 

When considering the misspecification of the CAPM for inefficient proxies 

where the CAPM is well defined, it is important to note that zero beta portfolios other 

than those noted below induce an incorrect excess expected return premium in the 

CAPM relation and, thus, a pricing error. This is in addition to the zero beta portfolios 

with expected returns equal to that of the proxy, which induce zero relations, and in 

addition to the zero beta portfolios of expected return equal to that of the frontier zero 

beta portfolio, which induce the correct excess expected return value in the CAPM 

                                                 
21 This figure is reproduced as Figure 13.1, in Bodie, Kane, and Marcus (2005), Chapter 13, page 421. 
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relation. As stated above, there are infinitely many such portfolios and for each 

expected return. 

We can specify regions where the zero beta portfolios could lie [see Roll 

(1980)], but considering the measure of these portfolios out of all portfolios might be 

irrelevant. Also, because a Markowitz world specifies only the first two moments of 

assets’ return distributions, each point in the mean-variance space might represent 

more than one asset. These zero beta portfolios induce zero relations or incorrect 

excess expected return values, thus, pricing errors. 

3.4 A Robust CAPMI and Incomplete Information Equilibria 

Expected returns and variances, and thus the portfolio frontier, are 

unobservable. Moreover, assets that are correlated with returns on optimally invested 

wealth or consumption growth—human capital, real-estate, and energy for example—

are not fully securitized and traded. Thus, in all likelihood, real-world portfolio 

proxies are inefficient. Though Equation (6) is a robust CAPMI in the sense that it 

holds for all proxy portfolios whether efficient or inefficient, an interesting question 

might arise regarding the usefulness of this relation, as inefficient proxies are 

unobservable as well. The answer to this question is twofold. First, observable or 

unobservable, the CAPMI had better be well specified. Particularly, the CAPMI 

expresses any portfolio as a combination of an inefficient one and the difference 

between an efficient and the inefficient one. The CAPM constrains this difference to 

be zero, limiting portfolios to be efficient. This constraint, however, is not satisfied; 

thus, the CAPM, which is a constrained (special case) of the CAPMI, is misspecified. 

Because the CAPM is misspecified for inefficient portfolios, we should use the 

CAPMI in implementation and testing. 
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Second, to resolve the problem of unobservable means and covariances, we 

suggest the use of an incomplete information methodology. There we would identify a 

CAPM in terms of endogenously determined moments. We would use Bayesian 

inference methods (filters) to form these moments, conditional on observations. These 

observations would include (noisy) functions of the sought after moments, such as 

prices, outputs, and macroeconomic variables. Such equilibria in a multiperiod, 

multifactor context were developed by Dothan and Feldman (1986), Detemple (1986, 

1991), Feldman (1989, 1992, 2002, 2003), Lundtofte (2005, 2006), and many others. 

Feldman (2005) includes a review of incomplete information works and a discussion 

of issues related to these equilibria. 

 
4 Conclusion 

The Sharpe-Lintner-Mossin-Black classical CAPM type relation (CAPM) 

implies an exact non-zero relation between expected returns and betas of frontier 

portfolios other than the GMVP. Because neither expected returns nor betas are 

directly observable and because not all assets that covary with the return on optimally 

invested portfolios or consumption growth are fully securitized, it is highly likely that 

CAPM implementations and tests use inefficient portfolios proxies. Roll and Ross 

(1994), Kandel and Stambaugh (1995), and Jagannathan and Wang (1996) in seminal 

works, demonstrate that inefficiency of proxy portfolio might render CAPM 

regression results meaningless. They offer their finding as the reason behind the 

empirical results of Fama and French (1992) and others, and they intensively examine 

the relation between expected returns and betas. 

We complement the RR and KS findings by specifying the CAPMI, the 

CAPM relation for any (inefficient) portfolio. We suggest that because we use 

inefficient proxies, we should use the CAPMI in implementations and tests, and not 
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use the CAPM, which is misspecified for use with inefficient portfolios. Three 

sources of misspecification arise when using the CAPM with inefficient index 

portfolios. One source of misspecification stems from ignoring an addend in the 

CAPMI. The second source arises because of the infinitely many zero beta portfolios, 

at all expected returns, which are likely to induce incorrect excess expected return 

values in the CAPM relation. And the third source of misspecification arises because 

betas of inefficient proxies are different from those of efficient ones. 

Using the CAPM with inefficient proxies is a misspecification that renders the 

resulting coefficients and 2R  meaningless. This reemphasizes the RR and KS 

implication that the CAPM is misspecified for use with inefficient proxies, which 

renders CAPM regressions with inefficient proxies meaningless. This 

misspecification is robust to CAPM procedures that, unlike Fama and French (1992), 

find explanatory powers of betas and is robust to various extensions of the basic 

model, such as multiperiod, multifactor, and the conditioning on various attributes. To 

overcome the problem that means and covariances are not observable, we suggest 

implementing and testing incomplete information equilibria, described in Feldman 

(2005), for example. 

While the analysis in this paper is done in a single period mean-variance 

framework, its implications apply to multiperiod, multifactor models. This is because 

we can see the single period mean variance model here as a “freeze frame” picture of 

a dynamic equilibrium where, because of the tradeoff between time and space, only 

the instantaneous mean and instantaneous variance of returns are relevant until the 

next decisions’ revision in the next time instant. 
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