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Abstract

This study asks whether a sufficiently flexible diffusion framework may explain the
interest rates data. We use the eigenfunctions of the infinitesimal generator to model
the pricing kernel semi-nonparametrically. Thus, we impose a flexible, but coherent,
structure on the short-term risk-free interest rate and on the market price of risk
and obtain the closed-form solutions for bond prices. We estimate various versions of
the model with a single and multiple independent Gaussian latent factors using the
EMM-MMC methodology and US Treasury zero-coupon bond yields data. Our results
suggest that flexible nonlinear transformations of the underlying Gaussian factor are
sufficient to explain the univariate bond yield dynamics. For the multivariate data,
the functional form flexibility does not appear to compensate for the lack of factor
correlation.
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1 Introduction

The literature on interest rates has developed in two major directions. Research in the

first branch has focused on understanding the time-series dynamics of the short-term

risk-free interest rate. The second branch of the literature has concentrated on dynamic

models of the term structure of interest rates, which describe how bond yields depend

on time to maturity and how the form of this relationship varies over time. Dynamic

models of the term structure of interest rates have developed to a significant extent in

the continuous time framework and evolved around alternative assumptions regarding

the form of the stochastic processes that the short-term risk-free interest rate and the

market price of risk follow. Historically, the short-term risk-free interest rate, also called

the instantaneous risk-free interest rate in the continuous time set-up, was first assumed

to be a one-dimensional diffusion process of various types. Then, in attempts to better

explain the data, multi-factor, alternative functional form, jump-diffusion and regime-shift

extensions were introduced1. The subset of extensions providing readily available closed-

form solutions for bond prices is limited. Even today the availability of analytic solutions

is still a crucial computational issue.

Models with state discontinuities, such as jumps, have a certain intuitive appeal and

have become popular in empirical finance literature in general, and in the short-term

interest rate and term structure literatures in particular. However, for some purposes

their use may be problematic2. Therefore, it may be reasonable to ask whether there is a

pure diffusion framework that is flexible enough to explain the bond yields data.

We address this question using a semi-nonparametric modelling methodology. This

methodology combines flexibility in describing the data, similarly to non-parametric meth-

ods, and tractability in the sense of having closed form expressions for the stochastic

processes of interest, similarly to parametric models.

In this study we assume that the pricing kernel is an unknown non-linear square-

integrable function of unobservable underlying state variables (factors). We model this
1See, for example, Dai and Singleton(2003) for a comprehensive literature review. The next section also

discusses some representative references.
2Jones (2003) reviews the econometric analysis and hedging problems of jump-diffusion models in the

context of equity and options.
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function semi-nonparametrically3. Modeling the pricing kernel is equivalent to joint mod-

eling of the short-term risk-free interest rate and the market price of risk.

We attempt to recover the unknown functional form describing the price deflator by

estimating the weights of its expansion on some orthogonal terms. As such orthogonal

terms, we use eigenfunctions of the infinitesimal generator of state variables driving the

bond prices. The specific form, which the eigenfunctions take, depends on assumptions

about the dynamics of the underlying state variables4. In the empirical part of this work

we assume that factors are mean-reverting and Gaussian.

The properties of the eigenfunctions enable us to conveniently obtain closed-form bond

prices and concentrate on the following empirical questions:

1) Is there such a functional form of the relationship between the underlying diffusion

state variables and the pricing kernel that would fit the bond yields data? In other words,

can we explain the data while still remaining in a pure diffusion framework, which, besides,

is analytically tractable?

2) All the square-integrable functions of the underlying state variables considered as

candidates for the pricing kernel5 constitute a large subset of all possible diffusion pro-

cesses. Nevertheless, is a single unobservable state variable sufficient to explain the data?

Otherwise, how many state variables are needed? If the the data fit is still not satisfiable,

what are the model-inherent restrictions that cause this to happen?

The semi-nonparametric model by itself does not guarantee that the ”no-arbitrage”

condition holds. We propose two methods to enforce this condition and explore the im-

plications that the framework bears for the dynamics of the short-term risk-free interest

rate and the market price of risk.

There are two alternative paths available to implement empirically the theoretical and

methodological issues addressed in this paper. The first path is to estimate a full fledged

term-structure model, i.e. to estimate the joint dynamics of several bond yields. The

second is to estimate the time series dynamics of a single bond yield following the tradition
3To be more precise, the object that we model semi-nonparametrically is often called the price deflator

(e.g. Duffie (2001)) or the ”discount factor in continuous time” (e.g. Cochrane (2001)). The price deflator,
in turn defines the conventional pricing kernel.

4Meddahi(2001-a, b) uses eigenfunctions to model stochastic volatility and describes their interesting
expectation properties, which we build on later in the paper.

5At least theoretically, with an infinite number of terms in the expansion.
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of the literature on the dynamics of the short-term interest rate, but at the same time to

address the problematic issues inherent in this literature, such as non-instantaneous time

to maturity of the bond in question6. We follow both directions in this study and utilize

both univariate and multivariate data.

We estimate the model using the Efficient Method of Moments (EMM) of Gallant and

Tauchen (1996) augmented with the Markov Chain Monte Carlo methodology as described

in Chernozhukov and Hong (2003), Gallant (2003) and Gallant and Tauchen (2004-a).

In application to our model, EMM enables us to avoid an ad-hoc selection of moment

conditions and work with the unobservable variables, such as the underlying factors and the

short-term risk-free interest rate. The Markov Chain Monte Carlo methodology provides

a convenient extension to frequentist extremum estimation procedures in highly non-linear

and computationally formidable settings like the one considered in this paper.

We estimate the model with the univariate time-series data on ”6-month-to-maturity”

treasury yields, we are not able to reject the model. When trying to fit the joint evolution

of three yields at a time, we are less successful. We attribute this result mostly to our

assumption that the underlying latent factors are independent. Our findings suggest the

univariate yield dynamic can be readily accommodated with a flexible diffusion process.

In the multivariate context, our estimation results seem to support the discussion in the

literature about the importance of co-dependence among the underlying factors and appear

to suggest that flexible functional forms per se are not able to compensate for the lack of

factor correlation.

This paper is organized as follows: in part two we discuss the current modeling and

empirical issues and relation of our approach to the existing literature. In part three we

review the eigenfunction framework and discuss how we use eigenfunctions to model the

stochastic discount factor. In part four we discuss bond pricing and implications that our

framework bears for the instantaneous risk-free interest rate and the market price of risk.

In part five we discuss the data and estimation methodology. Next, we discuss the results

and, finally, conclude.
6Chapman, Long and Pearson (1997) discuss the cases where ignoring non-zero time to maturity be-

comes problematic.
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2 Current modeling and empirical issues, and related liter-

ature.

The literature on the term structure of interest rates has been developing in great part

around the fact that in a continuous time framework, a price, Bt(T ), at time t of a bond

that matures and pays one dollar at time T > t is equal to

Bt(T ) = EQ
t {e−

R T
t rsds · 1} (1)

where rs is the instantaneous risk-free interest rate, which is also sometimes referred to as

a short-term risk-free interest rate, and the expectation EQ
t is conditional on information

available at time t and taken with respect a risk-neutral probability measure7, Q.

The valuation equation (1) shows that knowing the parameters of the process that

drives rt under the risk-neutral measure should suffice to derive a bond-pricing formula.

However, from the time-series data of the observed bond yields, one can estimate parame-

ters of rt under objective measure, P . The risk-neutral probability measure, Q, is different

from the objective probability measure, P , which governs the observed real-world time-

series behavior of interest rates. To switch between the two measures, one has to specify

the so-called market price of risk and use Girsanov theorem. Using Girsanov theorem, one

can obtain:

Bt(T ) = EP
t {e−

R T
t rsdsξt,T · 1} (2)

where ξt,T is the Radon-Nikodym derivative, which in turn is a functional of the market

price of risk λs. Therefore, one also needs to model the market price of risk to be able to

switch between the risk-neutral and objective measures. A test of a term structure model,

which would use time series data of bond prices, would be a joint test of hypotheses about

the dynamics of rt and the market price of risk.

A subset of specifications for rt, which produce closed form solutions of the expectation

(1) for bond prices is limited. The vast body of literature avoids this problem and focuses

on estimation of the short-term risk-free interest rate dynamics, rt, under physical, or
7Harrison and Kreps(1979) is the seminal paper that discusses the issues related to the risk-neutral, or

equivalent martingale, measure and Girsanov Theorem in a multi-period setting.
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real-world, measure. Chapman and Pearson (2001) provide a comprehensive survey. A

few representative references8 are Aı̈t-Sahalia (1996), Durham (2003), Eraker (2001) and

Zhou (2003).

The extra allowed flexibility of rt, which this literature enjoys, does not come at no

price, however. Chapman and Pearson (2000) discuss the so-called proxy biases, which

arise because of using longer maturity interest rates as a proxy for the instantaneous

interest rate. They find that these biases are especially evident for more sophisticated,

non-linear models.

Studies, which do concentrate on the term structure of interest rates, often rely on

assuming relatively simple specifications for the short-term interest rate and the market

price of risk to obtain closed-form solutions for bond prices and relieve the computational

burden. Such analytic tractability explains, for example, the popularity of affine term-

structure models. However, the affine term structure models do not appear to be supported

by the data. As Dai and Singleton (2000) discuss, there is a trade-off between having a

flexible correlation structure of the underlying factors and having flexible dynamics of the

underlying factors’ volatility. In addition, the market price of risk has a constant sign in

the affine models.

In response, various extensions have been offered. For example, Ahn, Dittmar, Gallant

(2002), Ahn, Dittmar, Gallant and Gao (2003) avoid the trade-offs inherent in affine

models and described above, by assuming a quadratic relationship between underlying

state variables and instantaneous risk-free interest rate. Another example is regime shift

models of Bansal and Zhou (2002), Bansal, Tauchen and Zhou(2003) and Dai, Singleton

and Yang (2006) and others9. Duffie, Pan and Singleton(2000) is an example of a work

that studies jump-diffusions.

A different way of looking at a valuation equation (2), is through a prism of the

stochastic discount factor10, Mt,T , which assigns prices at time t to payoffs at different

states of nature at time T > t. A price at time t of a zero-coupon bond that pays one

dollar at time T :

Bt(T ) = EP
t {Mt,T · 1} (3)

8This list is by no means exhaustive.
9A significant number of regime shifts studies operate in a discrete time framework.

10Hansen and Richard (1987) is an earlier work that studies the nominal stochastic discount factor.
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In continuous time framework, it is more rigorous, however, to talk about the price deflator

Mt, that that defines the pricing kernel as Mt,T = MT
Mt

and enters the valuation equation

as:

MtBt(T ) = EP
t {MT · 1} (4)

Studies on the term-structure of interest normally assumes some specific form of the

stochastic discount factor, either directly or by specifying some particular dynamics for

the short-term risk-free interest rate and the market price of risk.

In contrast, in this study we examine a question about a functional form of the price

deflator, and thus the stochastic discount factor, by utilizing a flexible semi-nonparametric

framework.

By doing so, we continue a tradition of empirical and non-linear pricing kernels litera-

ture, e.g. Bansal, Hsieh and Vishwanathan (1993) and Bansal and Vishwanathan (1993),

Chapman (1997), Dittmar (2002), Rosenberg and Engle (2002), Chernov (2003). Most

of these studies try to avoid assumptions on exact form of preferences and the pricing

kernel by using various kinds of polynomials for semi-nonparametric modeling11,12. In

this study, we use eigenfunctions, which, in some cases, also take a form of orthogonal

polynomials. Interesting properties of the eigenfunctions allow us to obtain a bond pric-

ing formula and focus on the dynamics of the short-term risk-free interest rate and term

structure. This is one difference of our study from most of the pricing kernels literature.

The other difference is that in our framework the state variables are unobservable. This

is important, because features captured empirically may provide guidance for preference

based, general equilibrium models, which may otherwise be very difficult to test, given

quality and limited availability of, for example, consumption or aggregate wealth data.

Some of the examples of use of eigenfunctions for asset pricing are Lewis (1998), Linet-

sky (2002), Davydov and Linetsky (2003), Gorovoi and Linetsky (2003) and Goldstein and

Keirstead (1998). In contrast to our study, these papers consider expansions of payoffs of

securities on eigenfunctions of a pricing operator directly with the weight of each eigen-
11Exceptions are Bansal and Vishwanathan (1993) who use neural network approximations, and Chernov

(2003), who assumes the specific objective and risk-neutral asset prices dynamics and the specific form of
the market price of risk and tries to recover the pricing kernel from asset prices.

12Brandt and Yaron (2003) use a Hermite polynomial expansion of the pricing kernel to focus on time-
consistency issues in no-arbitrage, or market term-structure modeling.
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function depending in a specific way on the parameters of the underlying state variable.

Also, these studies are theoretical and are not concerned with econometric estimation.

In addition, Rogers (1997) and Rogers and Zane (1997) model the stochastic discount

factor using the potential approach. In his theoretical paper, Rogers(1997) mentions that

one of the generic approaches to construction of the potential examples is to use eigenfunc-

tions, and presents the bond pricing formula for such a case.13 We obtain analogous bond

pricing formula using the expectation properties of the eigenfunctions. The discussion of

the eigenfunction approach in Rogers (1997) is in generic terms and is not concerned with

the practical issues such as the implementation of a multi-factor case or how to impose

the positivity restriction on the stochastic discount factor.

Some examples of the papers that use eigenfunctions in econometrics are Hansen and

Scheinkman (1995), Florens, Renault and Touzi (1998), Hansen, Scheinkman and Touzi

(1998), Chen, Hansen and Scheinkman (2000) and Meddahi (2001-a,b). Although these

studies use eigenfunctions in a different context, they discuss the general theory of eigen-

functions and provide the relevant theoretical background, which we build on and discuss

in the next section.

3 Modeling Framework

3.1 Eigenfunctions

In this section we review the definition and properties of eigenfunctions14. The discussion

will be concerned with scalar diffusions. Later we will describe an extension to the case

independent multiple factors, which is based on a discussion in Meddahi(2001 a,b).

Let us consider a stationary scalar diffusion described by the following stochastic dif-

ferential equation

dxt = µ(xt)dt + σ(xt)dWt (5)

where t > 0, x ∈ (l; r), σ(x) > 0, Wt - one-dimensional Brownian motion on a filtration

{Ft}.
13Rogers and Zane (1997) do not use eigenfunctions.
14We follow the notation and exposition of Hansen at al.(1998) and Meddahi(2001-a,b) to a certain

degree, while describing a general framework for eigenfunctions and spectrum.

8



Another way to describe this diffusion is by using an infinitesimal generator. For

the functions φ that satisfy some conditions (C2
B, twice continuously differentiable and

bounded):

Aφ(x) = µ(x)φ(x)′ + 0.5σ(x)φ(x)′′ (6)

Let us define scale function and speed density, S(x) and m(x), respectively (see, for

example, Karlin and Taylor (1981) or Hansen et al. (1998)).

S(x) =
∫ x

s(ξ)dξ (7)

where

s(x) = exp(−
∫ x 2µ(ξ)

σ2(ξ)
dξ) (8)

Also,

m(x) =
1

s(x)σ2(x)
(9)

The density of a stationary distribution of measure Q15 can be represented as

q(x) =
m(x)∫ r

l m(ξ)dξ
(10)

assuming finite denominator.

Let us assume for a moment that all the conditions, like time reversibility, appropriate

boundary conditions and so on, that ensure existence and discreteness of the spectrum of

the infinitesimal generator, hold. As a matter of fact, these conditions will hold for the

forms of the stochastic processes governing the dynamics of the latent factors xt that we

use in the empirical work. The spectrum is

Aφ =
∞∑

i=0

−δi(φi|φ)φi (11)

where (φi|φ) is an inner product, i.e.

(φi|φ) =
∫ r

l
φ∗i (x)φ(x)dQ =

∫ r

l
φ∗i (x)φ(x)q(x)dx (12)

15This is not the risk-neutral measure Q discussed in the previous section.
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and φi is an i-th eigenfunction and δi is a corresponding eigenvalue, which solve the

following equation

Aφi = −δiφi (13)

which is the same as

µ(x)φi(x)′ +
1
2
σ2(x)φi(x)′′ + δiφi(x) = 0 (14)

The following property about conditional expectation follows from the definition of eigen-

functions (13) and will be important for derivation of bond prices:

E(φi(xT )|Ft) = e−δi(T−t)φi(xt) (15)

Eigenfunctions may take various forms depending on the form of underlying diffusion

process. For example, let us consider an Ornstein-Uhlenbeck process of the following

standardized form:

dxt = −κxtdt +
√

2κdWt (16)

One can show that in this case a stationary density, which is normal, and eigenfunctions are

Hermite polynomials Hi(x), which are orthogonal with respect to e−
x2

2 . The eigenvalues

are δi = κi. Hermite polynomials can be computed using the following relationships:

H0(xt) = 1,H1(xt) = xt,Hi(xt) =
1√
i
(xtHi−1 −

√
i− 1Hi−2(xt)) (17)

An Ornstein-Uhlenbeck processes, yt, of a general form

dyt = κ(θ − yt)dt + ηdWt (18)

is a linear transformation of the process xt described by (16):

yt =
η√
2κ

xt + θ (19)

Then, the eigenfunctions will be of the same form, but with a different argument, i.e.
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the eigenfunctions will be equal to the Hermite polynomials of the same form,Hi(y) =

Hi( η√
2κ

x + θ).

There are several other stochastic processes which are characterized by infinitesimal

generators whose eigenfunctions are orthogonal polynomials. For example, eigenfunctions

of an infinitesimal generator of a square-root process are generalized Laguerre polynomials

and the eigenvalues are δi = κi. In other words, if xt follows:

dxt = κ(α + 1− xt)dt +
√

2κ
√

xtdWt (20)

then eigenfunctions are:

Lα
0 (xt) = 1, Lα

1 (xt) =
1 + α− xt√

1 + α
,

√
1 + αiLα

i (xt) =
√

i− 1 + α(−xt + 2i + α− 1)Lα
i−1(xt)

+
√

i− 2 + α(i + α− 1)Lα
i−2(xt)

The extension to square-root processes of a general form is of the same nature as the

extension in the Ornstein-Uhlenbeck case.

With help of the eigenfunctions any square-integrable function ψ(x), i.e. any function

φ(x) for which the following inequality holds

∫ r

l
ψ(x)2dQ < ∞ (21)

may be represented as

ψ(x) .=
∞∑

i=0

(φi|ψ)φi(x) (22)

where ( .=) means convergence in mean-square. Denoting (φi|ψ) = ai, we rewrite (22) as

ψ(x) .=
∞∑

i=0

aiφi(x) (23)

In we the next sub-section we use (23) to model the stochastic discount factor.
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3.2 Price Deflator

We use the relationship (23) to model stochastic discount factor as a linear combination

of the eigenfunctions of the infinitesimal generator of the underlying state variable.

Let us assume that the instantaneous stochastic discount factor Mt, which assigns

prices at time t to payoffs at time t + dt, is some unknown square-integrable function ψ of

the latent factor xt, i.e.

Mt = ψ(xt) (24)

As in (23), the function ψ(xt) can be expanded on eigenfunctions of the infinitesimal

generator of xt, φi(xt):

Mt =
∞∑

i=0

aiφi(xt) (25)

The next step, which is discussed in the next section, is to derive the bond-pricing formula.

Than, we assume some particular forms of the dynamics of the state variable xt, we

truncate the number of terms in the summation (25) to some n < ∞ and, since the

functional form ψ(xt) is unknown, we estimate ai and the parameters of the underlying

state process, xt, from time-series of the observed bond prices.

3.3 Positivity of the Price Deflator

The ”no-arbitrage” condition holds if and only if the pricing kernel is positive16. We offer

two methods that can be used to implement the positivity constraint.

When eigenfunctions take the form of orthogonal polynomials, it is possible to impose

the positivity by finding the map between the weights of eigenfunctions and the coefficients

of the regular polynomials which only have complex roots.

For example, let us consider the special case, where the stochastic discount factor is

modeled as a linear combination of the first two Hermite polynomials Mt = a0+a1H1(xt)+

a2H2(xt).

The next step is to find numerically the map between the coefficients (a0,a1, a2) of

this combination of Hermite polynomials and coefficients (b, c) of a regular polynomial of
16See, for example, Hansen and Richard (1987).
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the second order that has only complex roots and, thus, never crosses zero:

a0 + a1H1(x) + a2H2(x) = (x− b− ic)(x− b + ic) (26)

In the process of estimation, one would start with a candidate for (b, c) and map into

(a0, a1, a2). Thus, Mt = a0 + a1H1(xt) + a2H2(xt) is either positive or negative on the

whole state space of xt. One only needs to evaluate Mt at any point of the state space of

xt and if Mt is negative, one has to multiply it by −1.

Another way to incorporate the positivity restriction is to consider it as a part of the

”prior information” at the estimation stage. This is what we do in this work, since we use

the Markov Chain Monte Carlo methodology.

3.4 Multi-Factor Extension

Let us consider the independent factors, x1t and x2t, with eigenfunctions φ1i and φ2j ,

respectively, and the stochastic discount factor Mt of the form:

Mt =
p1∑

i=0

p2∑

j=0

aijφ1i(x1t)φ2j(x2t) (27)

As Meddahi (2001-a) discusses, one can define multi-factor functions, φij(xt), where xt =

[x1t, x2t], as a product of two individual eigenfunctions,

φij(xt) = φ1i(x1t)φ2j(x2t), (28)

Then, the following property holds:

Et{φij(xT )} = e−δij(T−t)φij(xt) (29)

where δij = δ1i + δ2j .

Therefore, all the bond pricing results, discussed in the next section, are applicable. In

addition, the same principle can be can be used to extend the framework by introducing

more than two independent state variables.
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3.5 Generality of Eigenfunctions Approach.

In this subsection we explore the generality of the semi-nonparametric eigenfunctions

approach. Given a state variable xt, it in theory allows to model any square integrable

function of xt. The question is how to describe the set of all possible diffusion processes

for mt that we are able to model with an eigenfunction approach once we assumed some

specific form for a factor xt.

For example, if we assume that an underlying latent factor xt is governed by Ornestein-

Uhlenbeck process, then, with the help of Hermite polynomials, we should be able to model

the set of all the diffusion processes for mt that can be represented as any square integrable

function of the Ornestein-Uhlenbeck process. Let us call this set of diffusion processes for

mt as set I.

On the other hand, if we assume that an underlying latent factor xt is governed by a

square root process, then, with the help of Laguerre polynomials, we should be able to

model the set of all the diffusion processes for mt that can be represented as any square

integrable function of the square-root process. Let us call this set of diffusion processes

for mt as set II.

The question of interest is whether set I and set II coincide. If not, do these two sets

intersect? Is it possible to describe formally which processes belong to the intersection of

these two sets and which do not?

Consider a latent state variable xt:

dxt = µx(xt)dt + σx(xt)dWt (30)

Using the eigenfuntions of the infinitesimal generator of the process xt, we model a function

m1t = m1(xt), which can be any L2 of xt:

m1t =
∞∑

i=0

aiE
x
i (xt) (31)

Now consider an alternative state variable yt, which is a stochastic process different from
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xt, and an L2 function of yt, m2t = m2(yt):

dyt = µy(yt)dt + σy(yt)dWt (32)

m2t =
∞∑

i=0

aiE
y
i (yt) (33)

The same Brownian motion, Wt, drives both xt and yt. We would like to ask a question

whether for a given function m1(xt) there exists such a function m2(yt) that m1(xt) =

m2(yt) sample-wise for all t.

After introducing additional restrictions on m2(yt) (invertibility), the question can be

reformulated to whether there is a function yt = m(xt) = m−1
2 m1(xt).

Using Ito’s lemma we obtain a system of differential equations:

µy(m(xt)) = µx(xt)m′(xt) + 0.5σ2
x(xt)m′′(xt) (34)

σy(m(xt)) = σx(xt)m′(xt) (35)

The system reduces to the following differential equation:

0.5σ2
x(xt)m′′(xt) = µy(m(xt))− µx(xt)

σy(m(xt))
σx(xt)

(36)

Therefore, the sets of diffusion processes I and II intersect only if for a given L2 function,

m1(xt), there exists a function m(xt) = m−1
2 m1(xt) that solves the ordinary differential

equation (36), which is not guaranteed in the general case.

4 Bond prices, short-term risk-free interest rate and market

price of risk

In this section we derive a price at time t of a zero-coupon bond that matures and pays one

dollar at time T , Bt(T ). Recall the pricing equation MtBt(T ) = Et(MT · 1). Substitution

of the expression for the pricing kernel, (25), into this equation produces:

(
∞∑

i=0

aiφi(xt))Bt(T ) = Et(
∞∑

i=0

aiφi(xT )) (37)
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Next, we use the expectation property of eigenfunctions (15), which is

Et(φi(xT )) = e−δi(T−t)φi(xt) (38)

and obtain:

Bt(T ) =
∑∞

i=0 aie
−δi(T−t)φi(xt)∑∞

i=0 aiφi(xt)

=
∞∑

i=0

aiφi(xt)∑∞
j=0 ajφj(xt)

e−δi(T−t) (39)

The obtained bond price is a weighted average of e−δi(T−t), with the normalized orthogonal

components of the pricing kernel serving as the weights and summing up to one.

An expression for the corresponding instantaneous risk-free interest rate can be easily

obtained from the bond pricing formula (39) using the L’Hopital’s rule:

rt = lim
T−t→0

− ln(Bt(T ))
T − t

= lim
T−t→0

∑∞
i=0 aiδie

−δi(T−t)φi(xt)∑∞
i=0 aie−δi(T−t)φi(xt)

(40)

Thus, the instantaneous risk-free interest rate, rt, becomes

rt =
∑∞

i=0 aiδiφi(xt)∑∞
i=0 aiφi(xt)

(41)

The instantaneous risk-free interest rate in equation (41) is a weighted average of the

eigenvalues, δi, with the normalized orthogonal components of the pricing kernel serving

as the weights and summing up to one. It follows from (41) that a rate of change of the

instantaneous risk-free interest rates with respect to an eigenvalue, δi, is equal to

∂rt

∂δi
=

aiφi(xt)∑∞
i=0 aiφi(xt)

(42)

i.e. it is equal to a weighting term in a bond pricing and instantaneous risk-free interest

rate formulas.

Next, we discuss the implications of our approach for the market price of risk. Applying
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the text book exposition in Duffie (2001) to our case, we assume appropriate regularity

conditions and consider some arbitrary security with a price St following an Ito process

dSt = µ(St)dt + σ(St)dWt and the pricing kernel, Mt, following some Ito process dMt =

µ(Mt)dt + σ(Mt)dWt. Then, the cumulative-return process of this security is defined as

dRt = µ(Rt)dt + σ(Rt)dWt =
µ(St)

St
dt +

σ(St)
St

dWt (43)

Then, the expected excess return is expressed as

µ(Rt)− rt = − 1
Mt

σ(Rt)σ(Mt) (44)

where rt = −µ(Mt)/Mt is equal to a short-term riskless process. One can see that −σ(Mt)
Mt

is a Sharpe ratio, or a market price of risk, which we denote by −λt.

To derive the market price of risk in our framework, we use Ito lemma to obtain the

diffusion process for the instantaneous stochastic discount factor.

dMt = {A(
∞∑

i=0

aiφi(xt))}dt + σ(ft)(
∞∑

i=0

aiφi(xt))′dWt (45)

Using the definition of the eigenfunctions:

dMt = −(
∞∑

i=0

aiδiφi(xt))dt + σ(xt)(
∞∑

i=0

aiφi(xt)′)dWt (46)

Therefore,

λt =
σ(xt)(

∑∞
i=0 aiφi(xt)′)∑∞

i=0 aiφi(xt)
(47)

and

rt =
∑∞

i=0 aiδiφi(xt)∑∞
i=0 aiφi(xt)

(48)

The expression (48) for the risk-free interest rate, rt, coincides with the expression (41),

which is derived directly from the bond pricing formula.

Equations (47) and (48) demonstrate that by modeling the pricing kernel in the semi-

nonparametric way we allow for general and flexible specifications of the market price of

risk and the short-term risk-free interest rate. The rest of the paper is concerned with
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these specifications’ empirical performance.

5 Estimation Methodology

The basis of the estimation methodology is the Efficient Method of Moment (EMM) devel-

oped by Gallant and Tauchen(1996). However, the approach followed in this work differs

from the original EMM. Instead of using numeric optimization, we apply the Monte Carlo

Markov Chain methods along the lines of Chernozhukov and Hong(2003), Gallant (2003)

and Gallant and Tauchen(2004).

We first summarize the ideas behind the traditional Efficient Method of Moments

(EMM), using notation of Chernov, Gallant, Ghysels and Tauchen(2001). The logic of

EMM methodology is related to the ideas underlying the Simulated Method of Moments

of Duffie and Singleton (1993) and the Indirect Inference Method of Gourieroux, Monfort

and Renault(1993).

The task is to estimate the parameters, ρ, of a structural model, the estimation of which

with the maximum likelihood methods is either not feasible or practical. Let us call it the

main model. The key idea is to introduce an auxiliary model, which is misspecified, but

approximates the data sufficiently well and has a readily computable likelihood function,

f(·), in a closed form. The next step is to estimate the parameters, θ, of the auxiliary

model with quasi-maximum likelihood and using the observed data, ỹt, x̃t−1:

θ̃n = arg max
θ∈Θ

1
n

n∑

t=1

log[f(ỹt|x̃t−1, θ)] (49)

The obtained score vector is used to generate moment conditions by simulation from the

model of interest, i.e. the main model:

m(ρ, θ) =
1
N

N∑

t=1

∂

∂θ
log[f(ŷt|x̂t−1, θ)] (50)

If the main model is indeed true, then, by construction, there should exist such values,

ρ̂, of its parameters that the expectation of the score vector is zero when evaluated at

the data simulated using these parameter values. Thus, we choose the parameters of the

main model, ρ, such that, in effect, the simulated data resembles the real data as close as

18



possible. We achieve this by making a quadratic form of the expected score close to zero.

Thus, we obtain the traditional EMM estimator by:

ρ̂n = arg min
ρ

m′(ρ, θ̃n)(Ĩn)−1m(ρ, θ̃n) (51)

where Ĩn is a quasimaximum likelihood information matrix.

Gallant and Long (1997) demonstrate that a score of an auxiliary model has to span a

score of a true density asymptotically for EMM to be as efficient as Maximum Likelihood.

When compared to GMM, EMM allows to avoid both the explicit derivation of moments

and ad hoc selection of moment conditions.

A critical task is to choose the auxiliary model that approximates the true condi-

tional density of the process closely enough. For this purpose, Semi-Nonparametric (SNP)

density, proposed by Gallant and Nychka (1987), Gallant and Tauchen (1989), is often

used.

The semi-nonparametric density function of innovation zt is represented as

hK(z|x) =
[PK(z, x)]2φ(z)∫
[PK(z, x)]2φ(z)du

(52)

where P (z, x) is usually expressed as a polynomial of degree Kz and each coefficient is,

in turn, a polynomial of degree Kx in x. The leading term of the expansion, φ(z) is the

normal density. The remaining terms are aimed to capture departures from normality.

Next, to obtain the approximation for a transition density that governs the data,

f(yt|xt−1), where x = (yt−1, yt−2, ...), one performs the location-scale transformation:

y = Σxz + µx (53)

Then, the conditional density of the data is proportional to the normal density with the

first two moments, µx and Σx, respectively:

f(y|x, θ) ∝ [PK(z, x)]2nM (y|µx, Σx) (54)

In order to nest VAR, GARCH, ”level in volatility” and leverage effects, one can also
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impose additional structure on Σx and µx and assume that they depend on the past

observations, x = (yt−1, yt−2, ...). The number of lags in the GARCH part of conditional

volatility function are denoted Lg and Lr. The number of lags in the ”level-in-volatility”

and leverage parts of conditional volatility are denoted Lw and Lv, respectively. The

number of lags in conditional mean is denoted Lu.

In practice, a researcher starts with the least sophisticated and the most parsimonious

semi-nonparametric model, and keeps expanding and estimating the models until the

optimal one is found based on various information criteria, such as AIC or BIC. The

scores of the preferred model, m(ρ, θ̃n), then serve as the moment conditions, as described

in equations (50) and (51).

In this work, instead of finding ρ̂ by traditional numeric minimization we construct

a Markov Chain of parameters, ρ. Let us denote the objective function that we need to

minimize as sn:

sn(ρ) = m′(ρ, θ̃n)(Ĩn)−1m(ρ, θ̃n) (55)

Following Chernozhukov and Hong (2003) and Gallant and Tauchen (2004), we use the

objective function sn(ρ) to construct a function L(ρ) described below, which can be consid-

ered as an analog to the likelihood in the Bayesian Markov Chain Monte Carlo (MCMC)

methods. The form of L(ρ) motivates the name that Chernozhukov and Hong (2003) use

for their estimators, which is ”Laplace type estimators”:

L(ρ) = e−nsn(ρ) (56)

One of the advantages of using ”Bayesian-like” methodology is that we can impose a prior,

π(ρ, ψ) on the models parameters, ρ and/or some functionals of these parameters ψ. In

this particular work we impose the positivity restriction on the stochastic discount factor

as a prior.

Next, the standard Metropolis-Hastings MCMC algorithm is used to construct a

Markov Chain of parameters, ρ. The algorithm consists of the following steps.

1. A researcher comes up with a proposal density, q(ρnew|ρold), which, among other things,

should be easy to simulate from.
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2. A candidate for the next value in the chain, ρnew is drawn from a proposal density

q(ρnew|ρold).

3. Using the candidate value, ρnew the data simulation of length N is obtained and the ob-

jective function, sn(ρnew), the functional of the parameters, ψnew, the prior, π(ρnew, ρnew),

and the likelihood, L(ρnew) = e−nsn(ρnew) are computed.

4. The chain moves to ρnew with the probability

min{L(ρnew)π(ρnew, ψnew)q(ρnew|ρold)
L(ρold)π(ρold, ψold)q(ρold|ρnew)

, 1} (57)

By repeating the steps 2-4, we simulate a Markov Chain of the parameters of interest,

{ρ(1), ...., ρ(Nch)}.

where Nch is the number of simulations in the chain.

Intuitively, if the chain is constructed properly, the vector of the parameters, ρ, will

visit all the parts of its support, i.e. will ”mix”, with the relevant frequencies. These

frequencies are determined by the marginal distribution of the resulting Markov Chain.

The marginal distribution is approximately equal to what Chernozhukov and Hong (2003)

refer to as the quasi-posterior distribution. The quasi-posterior distribution, in turn, is

proportional to the product of the likelihood, L(ρ) and the prior, π(ρ, ψ).

One of the possible Laplace type estimators is the mean with respect to quasi-posterior

distribution, which in sample is equal to

ρ̂ =
1

Nch

Nch∑

i=1

ρ(i) (58)

Another estimator is the mode of the Markov Chain.

Chernozhukov and Hong (2003) demonstrate that under the appropriate regularity

conditions one of the ways to construct the confidence intervals for the parameter estimates

is to use the quantiles of the quasi-posterior distribution, i.e. the quantiles of a sequence

that forms the Markov Chain.

Once we obtain the estimate ρ̂, we use the traditional EMM model adequacy diagnostic
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tools, which are based on the fact that

nsn(ρ̂) ∼ χ2
dim(ρ)−dim(θ). (59)

One can not is not able to reject the null hypothesis that the model generated the data,

if the χ2 criterion is small enough.

An additional diagnostic tool is a reprojection, discussed in detail in Gallant and

Tauchen (1998). Briefly and in application to our problem, the methodology consists of

comparing conditional SNP density estimated using the data simulated from the estimated

structural/main model, and the conditional SNP density estimated (projected) using the

observed data. In the next section, we apply the described estimation methodology to the

data.

6 Results and Discussion

6.1 Data and Auxiliary Models

The data set we utilize is the same data set used in Ahn et al. (2003) and combines the

data sets of McCulloch and Kwon (1993) and Daniel Waggoner from the Federal Reserve

Bank of Atlanta17. The data set contains the zero-coupon yields of Treasury bills and

bonds, and covers the period of January 1952 through December 1999. In the subsequent

subsections we perform estimation using both univariate data on the yields with the time

to maturity of 6 months and the multivariate data on the yields with the time to maturity

of 6 months, 3 years and 10 years. The data is displayed in figure 1.

For the purposes of univariate analysis we select and utilize the SNP model that

incorporates semi-nonparametric VAR, GARCH, ”level in volatility” and non-linearity

effects:18 (Lu = 1, Lg = 1, Lr = 1, Lv = 0, Lw = 1, Lp = 1, Kz = 4, Iz = 0,Kx = 0, Ix = 0).

For the purposes of joint estimation of dynamics of three yields, we select and utilize

the similar multivariate score generator: (Lu = 1, Lg = 1, Lr = 1, Lv = 0, Lw = 0, Lp =

1,Kz = 4, Iz = 0, Kx = 0, Ix = 0).
17This part of sample is obtained using the methods described in Bliss (1997)
18The previous section describes in more detail how to decode SNP specification. We estimate the SNP

specification using the methodology, the detailed implementation o f which is discussed in Gallant and
Tauchen (2004-b).
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6.2 Estimation Results for Models with One Underlying Gaussian Fac-

tors Using Univariate Data.

In this subsection, we present the estimation results for the model in which the price

deflator is a semi-nonparametric function of a single Gaussian factor. These results are

obtained using the time-series yields data for the 6-months-to-maturity bond yields from

the data set used in Ahn, Dittmar, Gallant and Gao (2003). The existence of a vast body

of literature that studies the time-series dynamics of the short-term interest rate suggests

that such an exercise is interesting in its own right. Also, the estimates received using

time-series data for just one yield may serve as reasonable starting values for the estimation

of joint time-series dynamics of several yields. The objective of this empirical exercise is

to to establish whether the data can be explained in a flexible diffusion framework. Table

1 presents the estimation results of the models in which a single Gaussian factor, xt

dxt = κ(θ − xt)dt + σdWt

is underlying the dynamics of the price deflator, which in turn is modeled using various

numbers of Hermite polynomials of xt. For example, the model H(n) includes the first n

Hermite polynomials. The observational equation for a yield of a zero-coupon bond that

matures at time T, yt(T ), implied by the H(n) model is as follows:

yt(T ) = − 1
T − t

{ln(
n∑

i=0

aie
−κi(T−t)Hi(xt))− ln(

n∑

i=0

aiHi(xt))} (60)

The vector of estimated parameters {κ, θ, σ, a0, ..., an} consists of the parameters of the

stochastic process of the underlying state variable and the weights of the corresponding

Hermite polynomial expansion. Table 1 contains the results for n = 2, 3, 4. The weights

a0 of the Hermite polynomials of the 0th order and a1 of the Hermite polynomial of the

1st order are set equal to 1 for the econometric identification purposes.

In addition, we fit the CIR process

dxt = κ(θ − xt)dt + σdWt

as a benchmark directly to the the data in the tradition of the short-term risk-free interest

rate literature.
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We evaluate the models’ goodness of fit using a χ2 criterion and a corresponding p-

value. The first column represents the estimation results for the CIR process. The p-value

is 0.003, which means that the data rejects the model at the 1% significance level. The

subsequent columns represent the estimation results for the models containing various

numbers of Hermite polynomials.

As expected the fit improves as we add semi-nonparametric terms in the form of

Hermite polynomials. However, the number of degrees of freedom decreases as we add

parameters. We use the corresponding p-values to decide whether the models are rejected.

The χ2 statistic for the model with two Hermite polynomials is equal to 21.7 and the

corresponding p-value of 0.001 suggests that the model is rejected by the data even at the

1% significance level. The p-value for the model with three Hermite polynomials is 0.076

and, thus, the data is not able to reject this model at the 7% significance level. Adding

the fourth order Hermite polynomial results in an increase of the p-value to 0.12. Thus,

the model containing the first four Hermite polynomials can not be rejected by the data

at any conventional significance level.

Next, we present some additional diagnostics. Table 2 represents t-ratios of EMM

scores produced by the best fitting model. The EMM scores demonstrate the goodness

of fit of various empirical features of the data as summarized by the derivatives of the

likelihood of the auxiliary model (SNP). All the presented t-ratios are smaller than two in

magnitude suggesting that the model with four Hermite polynomials is able to accommo-

date relevant empirical features of the data, such as non-linearities, volatility persistence,

”level in volatility” effect and so on.

Figures 2, 3 and 4 provide some additional insights into our application of Markov

Chain Monte Carlo estimation technology on the example of estimation of a model with

one Gaussian factor and two Hermite polynomials. Figure 2 presents the chains of the

model parameters. The last panel is the chain of the values that the objective function

takes for each of the combination of model parameters. The presented results are ob-

tained from the restarted run, where starting values were already ”good”. Normally, with

less reasonable starting values and before the chain stabilizes, one initially observes hill-

climbing of the objective function. Figure 3 presents the sample autocorrelations of the
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parameters obtained from the chain. A good mixing chain is expected to be only mildly

serially correlated. Figure 4 contains kernel density estimates of the model parameters

from the chain. Ideally, we are interested in the shape to be close to that of the normal

density. All these criteria are probably more important in the Bayesian framework when

inferences are made directly from the obtained chain. We, on the other hand, use the

MCMC chain as the global optimizing mechanism in the spirit of simulated annealing

method.

Figures 5 and 6 contain reprojection results and compare the first and the second

reprojected (estimated imposing parametric restrictions implied by the model) moments

with the projected (unrestricted) ones. The first moments appear to be very close. The

second moments are more distinct, but are still reasonably close. This is an additional

evidence that we obtained a reasonably good fit of the moment conditions.

The presented results support a statement that it is possible to fit the time-series dy-

namics of the 6-months to maturity yields at conventional significance levels in a diffusion

framework that is flexible enough, but not overly parameterized. This is interesting in the

light of the fact that we use a history of the single bond yield to concentrate on the data’s

time-series properties, which could potentially be alternatively explained by various types

of discontinuities such as jumps and others.

6.3 Estimation Results for Gaussian Factor Models Using Multivariate

Data.

In this section we discuss estimation results obtained with multivariate bond yield data of

maturities 0.5, 3 and 10 years from the data set. Table 3 contains estimation results for

semi-nonparametric models building on one Gaussian factor and for a benchmark model

(CIR). Results suggest that one-factor Gaussian models with several Hermite polynomials

do fit the moment conditions better than the benchmark models, but are apparently not

flexible enough. Chi-squared statistics are very high and all the considered models are

rejected.

In table 4 we present the results of estimation of the models where the price deflator is

a linear combination of multivariate Hermite polynomials of three independent Gaussian
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factors. Two versions of each model are presented - full and diagonal. Full models include

all the interactions among Hermite polynomial of different state variables. Diagonal mod-

els do not include any interaction terms. Introduction of additional factors do improve

the overall fit of moment conditions dramatically when compared to one factor models.

However, all of the considered models are rejected. The p-value are all zero. Therefore,

we examine z-values to obtain a better idea about the extent of each model’s overall fit

of moment conditions. The best fit is provided by full version of the model with three

Hermite polynomials, with a z-statistic being around 47.5.

Table 5 contains additional EMM diagnostics in the form of derivatives of the likelihood

of the auxiliary model. Comparing the t-ratios produced by diagonal version of the model

with two multivariate Hermite polynomials (the least successful overall fit), with those

produced by the full version of the model with three Hermite multivariate polynomials (the

best overall fit), we can see that the latter model does fit most of moment conditions better.

In particular, some of the moment conditions associated with the GARCH (persistence

in volatility) features of the data become insignificantly different from zero. However, a

significant part of the moment conditions remain to be nonzero.

One of the possible explanations for the insufficient fit of moment conditions is the

assumption we made about the statistical properties of the underlying factors, namely that

they are Gaussian and independent. The empirical studies up to date have documented

that these assumptions are too restrictive19. The importance of having flexible correlation

structure among the underlying factors was discussed in Dai and Singleton (2000) and

Ahn et al. (2001). Apparently, even the introduction of a several Hermite polynomials is

not able to save a model with independent Gaussian factors. Insufficient number of terms

in the polynomial expansion may be another reason, although to us it seems to be less

likely.
19Although Ahn et al. (2001) did have some success with Gaussian quadratic model. However, the

factors were not independent in their work.
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7 Conclusion

In this study, we model the price deflator, and thus the pricing kernel, in a flexible semi-

nonparametric diffusion framework, which can be made arbitrarily sophisticated. It is

crucial to be able to extract the relevant information about the pricing kernel contained

in the bond prices, because it can be used later to either price other securities, e.g.

interest-rate derivatives, or study investors’ preferences towards risk. The expectation

properties of the eigenfunctions of the infinitesimal generator, which we are using as the

semi-nonparametric terms, enable us to obtain the closed-form bond prices. In addition,

any asset pricing model has to procure the ”no-arbitrage” condition. We offer and discuss

two different ways of imposing this restriction in our framework.

An important empirical question is to what extent a sufficiently flexible diffusion frame-

work can describe the yield data which is characterized by certain empirical features that

may be arguably to jump-diffusion and regime-shift data-generating processes. One prag-

matic argument is that diffusion models have better hedging abilities than models with

some kind of ”discontinuities”, for example jumps. This question is relevant both in the

context of the short-term risk free interest rate literature and in the context of the dy-

namic term structure of interest rates literature. The empirical part of this paper follows

the tradition of both literatures.

We estimated the model with the underlying Gaussian factors using both univariate

and multivariate data for bond yields. While estimating the time-series dynamics of a

single yield, we employ the obtained bond pricing formula to control for the fact that

the time to maturity is not equal to an instant. As a consequence, in our framework

the short-term risk-free interest rate remains truly unobservable and instantaneous. The

presented results suggest that the model with a single Gaussian factor and a sufficient, but

not excessive, number of semi-nonparametric terms can not be rejected at the conventional

significance levels by the data on 6-months-to-maturity treasury yields.

However, the joint data of yields of three different maturities convincingly rejected the

one Gaussian factor model prompting us to enrich the model with additional underlying

factors. We build our model on three independent Gaussian factors. We estimate a set

of semi-nonparametric models with up to three multivariate Hermite polynomials. The
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data rejects even the most comprehensive model we consider. The explanation appears to

lie in the nature of our assumptions about the underlying factors, namely that they are

Gaussian and independent.

There are several avenue along which this work can be generalized and extended.

The first one is to estimate the model with non-Gaussian underlying factors. The second

avenue is to relax the independence assumption on the underlying factors. Finally, filtering

out the unobserved stochastic discount factor would produce interesting insights into the

nature of investor risk preferences and their evolution over time.
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A Tables and Figures

Table 1: 1 Gaussian factor, Hermite polynomials, Score: 11s1s0s1s1400000
Coefficient/Model CIR H(2) H(3) H(4)

κ 0.12 0.41 0.74 0.60
( 0.07) (0.048) (0.05) (0.02)

θ 5.1 0.08 0.20 -0.15
(0.09) (0.036) (0.05) (0.03)

σ 0.197 0.17 0.29 0.17
(0.008) (0.02) (0.02) (0.01)

a0 1, fixed 1, fixed 1, fixed
a1 1, fixed 1, fixed 1, fixed
a2 -0.24 -0.11 -0.24

(0.042) (0.011) (0.002)
a3 0.31 0.37

(0.02) (0.002)
a4 -0.12

(0.002)
χ2 21.3 21.7 9.97 7.3

p− value 0.003 0.001 0.076 0.121
df 7 6 5 4

Table 2: EMM diagnostics of the model with 4 Hermite polynomials. The table presents
diagnostics for EMM scores (t-ratios). The score generating model is 11s1s0s1s1400000.
Coefficients a0[k] denote the weights of the Hermite polynomials in the SNP expansion,
b0 and B(k) denote VAR terms of the SNP expansion, R0, P (k) and Q(k)) are GARCH
terms of the SNP expansion, W(k) represents the ”level in volatility” effect.

Coefficient/Model H(3) H(4)
a0[1] 0.82122 -0.14169
a0[2] 1.15741 -1.62795
a0[3] 0.50755 0.51216
a0[4] -1.56840 -1.29474

A 0.00000 0.00000
b0 0.73823 0.08364

B(1) -0.15197 -0.80028
R0 1.33657 -0.84556

P (1) -2.16230 1.12631
Q(1) -2.27475 1.32500
W (1) -1.36818 0.58912
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Table 3: 1 Gaussian factor, Hermite polynomials, 3 yields
Coefficient/Model CIR H(2) H(4)

θ 0.073 0 (fixed) 0 (fixed)

κ 0.132 0.0247 0.0248

σ 0.033

λ 0.033

a0 0.958 0.975
a1 0.676 0.691
a2 0.226 0.227
a3 -1.297∗

a4 0.229∗

χ2 6653 2669 2257
z 892 314 273
df 36 35 33

∗ × 10−4

Table 4: 3 Gaussian factor, Hermite polynomials, 3 yields
Coefficient/Model H(2) H(3) H(2)d H(3)d

θ1,2,3 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed)
κ1 0.516 0.418 0.546 0.652
κ2 3.4 2.551 1.308 3.07
κ3 0.042 0.04 0.046 0.043

a000 0.247 0.238 0.28 0.231
a001 0.031 -0.08 -0.02 0.017
a002 0.094 0.094 0.09 0.093
a003 0.072∗ 0.012
a010 0.049∗ 0.014∗ 0.038∗ -0.915∗

a011 0.19∗ -0.188∗

a012 -0.0046∗

a020 -0.1095∗ 0.108∗ -0.64∗ -0.222∗

a021 -0.048∗

a030 0.0007∗ -0.786∗

a100 0.033 0.019 0.039 0.024
a101 -0.017∗ -0.235∗

a102 0.172∗

a110 -0.024∗ -0.14∗

a111 -0.157∗

a120 -0.063∗

a200 0.375∗ 0.497∗ 0.006 0.392∗

a201 -0.132∗

a210 -0.112∗

a300 0.151∗ 0.107∗

χ2 373.41 284.77 552.32 391.79
z 48.59 47.51 68.72 50.73
df 26 16 29 26

∗ × 10−2
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Table 5: EMM diagnostics of the Models with 3 Gaussian factors, and Hermite polyno-
mials, 3 yields. The models H2d and H2 are diagonal and full versions, respectively, of
the model with two Hermite Polynomials. The models H3d and H3 are diagonal and full
versions, respectively, of the model with three Hermite Polynomials. The coefficients are
as follows: a() coefficients of polynomial expansion; b[] and B() are VAR terms in con-
ditional mean; the rest of the coefficients are ARCH, GARCH, ”level-in-volatility” and
leverage terms in conditional volatility

t-ratio/model H2d H3d H2 H3

a(001) 1.14561 1.28345 -1.76703 -0.7603
a(002) -1.91892 -1.27282 -2.17165 -0.80028
a(003) -0.74574 1.25533 0.14716 0.98773
a(004) 1.94109 1.21672 -1.08947 -0.23999
a(010) -3.48619 -2.66802 -2.52494 -2.31814
a(020) 1.54831 1.08003 1.53658 1.44732
a(030) 1.78861 1.35591 1.52904 0.09513
a(040) -0.95856 -1.0055 -2.18202 -1.07637
a(100) -4.19297 -4.34541 -4.11906 -4.23122
a(200) -0.45423 -0.27014 -0.75011 -0.26519
a(300) -0.45887 -0.66277 -0.77003 -0.47026
a(400) -1.91375 -1.41115 -1.7247 -1.34642
A(1,1) 0 0 0 0
b0[1] -0.08893 0.10631 -0.19525 -0.32299
b0[2] -2.89369 -2.2744 -1.94503 -1.31902
b0[3] -0.49583 -0.39078 -2.47727 -1.53362
B(1,1) 0.31226 0.3931 0.45278 0.65301
B(2,1) -0.27096 -0.61131 0.7182 1.44031
B(3,1) -2.40572 -0.73565 0.6262 1.39749
B(1,2) 2.62368 2.67894 2.73346 2.94052
B(2,2) 5.35926 4.31353 4.10612 2.58745
B(3,2) -1.51983 0.81842 0.53847 1.84353
B(1,3) 1.00841 0.95267 0.93374 0.78887
B(2,3) 2.36126 2.6398 2.44285 1.62182
B(3,3) 3.90336 3.50049 2.26386 3.82997
R0[1] 0.13086 -0.016 -0.19718 -0.0434
R0[2] -0.83531 -1.74079 -1.06368 -0.94096
R0[3] -0.21029 -1.21865 -0.05404 0.6307
R0[4] 0.65376 0.3513 0.9389 0.32103
R0[5] -0.35001 -0.91603 -2.33278 -1.52294
R0[6] -7.17194 -4.60828 -3.72357 -2.47679
P(1,1) -1.29189 -0.43725 -0.6631 0.64026
P(2,1) 5.28172 4.45886 4.03658 3.02218
P(3,1) -0.00097 0.19557 -0.70846 -0.3969
Q(1,1) -0.79173 -0.09058 -0.47846 0.78592
Q(2,1) 4.52204 3.62819 4.08072 3.0646
Q(3,1) -3.07584 -1.36811 -1.42938 -1.31739
W(1,1) -3.27865 -1.38764 -3.11358 -2.65223
W(2,1) 4.94352 4.48599 5.1826 3.41861
W(3,1) 4.07728 2.71037 3.28695 2.5014
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Figure 1: Data Sample of Zero-coupon Yields
.
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Figure 2: Markov Chain for each of the parameters, {κ, θ, σ, a0, ..., a2} of ”1 Gausssian fac-
tor - 2 Hermite polynomials” model, estimated using 11s1s0s1s1400000 SNP score. Note:
the first two parameters of Hermite expansion, a0 and a1 are fixed for the identification
purposes. The last panel of the graph is the chain of the values that the objective function
takes. Every 50th point is plotted.
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Figure 3: Autocorrelation function for parameters, {κ, θ, σ, a0, ..., a2} of ”1 Gausssian fac-
tor - 3 Hermite polynomials” model, estimated using 11s1s0s1s1400000 SNP score. Note:
the first two parameters of Hermite expansion, a0 and a1 are fixed for the identification
purposes.
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Figure 4: Kernel density estimates from chain of parameters, {κ, θ, σ, a0, ..., a2} of ”1
Gausssian factor - 2 Hermite polynomials” model, estimated using 11s1s0s1s1400000 SNP
score. Note: the first two parameters of Hermite expansion, a0 and a1 are fixed for the
identification purposes.
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Figure 5: Conditional projected (unrestricted) and reprojected (estimated imposing para-
metric restrictions implied by the model) first moments; ”1 Gausssian factor - 4 Hermite
polynomials” model, estimated using 11s1s0s1s1400000 SNP score.
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Figure 6: Conditional projected (unrestricted) and reprojected (estimated imposing para-
metric restrictions implied by the model) second moments; ”1 Gausssian factor - 4 Hermite
polynomials” model, estimated using 11s1s0s1s1400000 SNP score.
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