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Derivatives Hedging Errors and Volatility 
 
 
 
 
Abstract 
 

This paper provides a general representation for the errors of delta-hedging derivatives contracts 

under mis-estimated volatility. A new option Greek η, ‘eta’, non-linear but easily computable 

for portfolios, is developed, which quantifies the dependence between the prospective hedging 

errors and the volatility forecast errors. The hedging errors are studied in more detail for a 

standard vanilla option, a geometric average rate option, and an up-and-out call option with a 

continuously monitored barrier. Two alternative approaches are provided for deriving the 

conditional and unconditional distribution of hedging errors: binomial tree and kernel 

estimation. The techniques developed enable us to quantify the absolute and relative difficulties 

of hedging different instruments or portfolios of instruments.  
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I. Introduction 

 

Participants in derivatives market rely heavily on models to price and hedge derivative 

instruments. Most of the derivative models require that the underlying asset of the derivative 

follow a certain process. However, in practice, the process of the underlying asset cannot be 

completely specified because critical parameters of the process, such as volatility, are not 

known with certainty. As a result, financial institutions embark upon hedging strategies 

employing volatility estimates in order to cover their risk exposure. But how do they know that 

the estimates used are sufficiently good? What if the estimation errors lead to seriously wrong 

hedging techniques, large replication errors and, ultimately, great losses? The aim of this paper 

is to investigate hedging errors arising from incorporating the wrong hedge ratios and analyse 

the distribution of these errors. Furthermore, the paper provides techniques for obtaining 

information on the absolute and relative difficulties of hedging different instruments or 

portfolios of instruments, an issue of particular importance to both academics and practitioners. 

 

The research literature on hedging techniques and their implications for risk management is 

comprised of two main strands based on the hedging methodology used. The first strand is 

established within the Black and Scholes (1973) paradigm and includes studies following Black 

and Scholes’ (BS) methodology of an exact replication strategy under a completely specified 

price process. Boyle and Emanuel’s (1980) study forms one of the main contributions in this 

stream. Their analysis investigates the return distribution of discretely adjusted hedge portfolios 

and shows that the excess hedge return is highly skewed and has its own variance, which is 

inversely related to the frequency of rebalancing. Other papers, which use a similar 

methodology, include those of Bhattacharaya (1980) and Leland (1985). It should be clear at the 
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outset of this research that, the approach taken by papers in the first strand requires the 

parameters of the processes for the underlying traded and non-traded securities to be specified 

precisely. Option prices and hedges are then derived as functions of the parameters of the 

processes and the prices of the underlying securities.  

 

The second strand of the literature includes relatively recent papers, which explore more robust 

approaches to hedging. Their analysis is characterised by a more general set of assumptions, and 

their objective is to explore the implications of misspecified asset price processes. In particular, 

Ahn et al (1999) provide optimal hedging strategies for misspecified volatilities. El Karoui et al 

(1995) examine the robustness of the Black and Scholes’ (1973) valuation formula as well as 

the behaviour of the hedged portfolio with respect to misspecified volatility. Neuberger (1994) 

constructs volatility-hedging instruments eliminating volatility exposure. Gibson et al (1999) 

define model risk and identify its sources. Their approach is based on a methodology which 

forms part of our analysis in section II below. Rubinstein (2001) provides a decomposition of 

the dollar profit earned from an option. Bick (1995) generalizes Black and Scholes’ (1973) 

results and provides a family of dynamic trading strategies independent of any assumptions on 

the price process. Having adopted a different perspective from the above papers, Chatfield 

(1996) examines the impact of model uncertainty on forecast accuracy. Although his study is 

based on the principles of time series analysis, his results are equally important for constructing 

option hedges (and derivatives hedges in general), since lack of precise knowledge of the stock 

price distribution is a major source of uncertainty. Finally, research in this field has been also 

conducted by Jacquier and Jarrow (2000). They conduct tests of specification errors arising 

from the omission of a relevant variable in a derivatives model.  
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This paper examines in detail the nature of hedging errors arising from the use of incorrect 

volatility estimates. It is well understood that if we had perfect knowledge of the quadratic 

variation and hedge more frequently, we could obtain arbitrarily smaller hedge errors. We can, 

therefore, use the difference between the actual strategy and an artificial one which assumes 

perfect knowledge of the quadratic variation, to characterise the form of hedge errors. We 

present a general decomposition of the replication errors and techniques measuring the 

sensitivity of delta-hedging a derivatives contract with respect to the error in the volatility 

forecast. Furthermore, a new Greek η, ‘eta’, is introduced, which measures the sensitivity of the 

replicating portfolio with respect to movements in volatility levels. ‘Eta’ is non-linear but easily 

computable for portfolios, and quantifies the difficulty of hedging different option positions and 

portfolios of options. Finally, our analysis provides alternative methods of deriving the exact 

conditional and unconditional distribution of expiry hedging errors resulting from misspecified 

volatility. Our findings can be applied to any contingent claim including contracts with 

complicated path dependencies under different assumptions for the process of the underlying 

asset.  

 

It is necessary to distinguish between three different measures of volatility1 as functions of time 

which are utilised throughout the paper. The first designated by )(tσ and referred to as the 

‘underlying’ volatility, drives the unknown dynamics of the underlying asset price process.  

The second provides the ‘ex-post’ volatility )(tRσ , which is a discrete time realization and 

corresponds to the realised sample quadratic variation.  )(tRσ  and )(tσ are the same in the 

                                                           
1 Throughout the analysis,  reference is made to a fourth ‘selling’ volatility, a scalar at which the option is evaluated at the beginning of the 

contract.  
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continuous limit. The third measure corresponds to the forecast volatility )(tFσ , which is the 

volatility used in the replication strategy and is also called the ‘hedging’ volatility.  

 

The rest of the paper is structured as follows. Section II provides a general decomposition of 

hedging errors. A method of quantifying likely delta hedging errors as a function of the 

volatility forecast error is obtained. Section III presents applications of the above tools on three 

different option contracts: a standard vanilla option, a geometric average rate call option, and an 

up-and-out call option with a continuously monitored barrier. Section IV describes two 

alternative approaches for deriving the conditional and unconditional distributions of hedging 

errors: binomial tree and kernel estimation. Finally, section VI concludes.  

 

 

II. Decomposition of Hedging Errors 

 

Section II shows how to decompose the dollar replication error from an option position into 

three basic components: i) the discretisation error, which is the error due to adjusting he 

dynamic portfolio at discrete points in time, ii) the volatility error, which is the error due to 

hedging at an incorrect volatility estimate, and iii) the premium error, which is the error 

resulting from mis-pricing the option at the time of purchase. To give greater insight to these 

three components, we consider three scenarios, all based on a simple but realistic example. 
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A. Assumptions   

We assume that a writer sells an option contract of maturity T and with strike K on an 

underlying asset, a stock )(tS . He then embarks upon a delta-hedging strategy to eliminate his 

risk exposure, by taking a long position in the underlying stock. The dynamics of the underlying  

stock price is driven by the following diffusion equation under the risk neutral measure Q,  

(1)                                          )()()()()( tdWtStdttrStdS σ+=  

where )(tW  is a Wiener process under Q. There are no transaction costs, no differential taxes, 

and no borrowing or lending restrictions. Interest rates are nonstochastic and constant. 

 

The sample quadratic variation to be realised at time it can be computed as:  

(2)                          ∑
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The ex-post volatility )( iR tσ , which corresponds to the sample quadratic variation at time it , is 

then 

(3)                                           1...0,
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= Ni
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tQV

t
i

i
iRσ .                                                   

 

The price of the option, which is evaluated under the assumption of geometric Brownian motion 

and corresponds to the volatility used in delta hedging the option, is referred to as the ‘forecast’ 

price, )),(( ii
F ttSc 2. The ‘correct value’ of the option contract corresponds to the option price 

                                                           
2 The superscript R stands for ‘realized’. The superscript F stands for ‘forecast’ and indicates that computations are carried out according to the 

writer’s assumptions.    
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evaluated at the ex-post volatility )( kR tσ , under the same assumptions, and is denoted as 

)),(( ii
R ttSc 3.  

 

According to (2), the definition of the sample quadratic variation is based on revision on a fine 

time grid. However, revision dates do not have to be equally spaced for the analysis to hold. We 

now derive a general decomposition of hedge errors. As the notation is rather complicated, 

Table1 summarises the symbols used throughout the analysis.  

 

[Insert Table 1 here] 

 

 

B. 1st Component: Discretisation Error 

In this section, we obtain the first component of the hedging error, which is due to adjusting the 

hedge portfolio at discrete points in time. It is well understood that even if the writer had perfect 

foreknowledge of the quadratic variation, he would still experience replication errors, as he 

could not continuously rebalance his hedging position. If the writer adjusts his delta hedge 

N times during the life of the option, the time interval between the hedge rebalances will 

be NTt /=∆ . Assuming without loss of generality that the risk-free rate is zero, the return on 

the writer’s net position from time 1−it  to it  is:  

(4)                                             )()()()( 1 ii
R
Sii tStctctH ∆∆ −+−= .                                            

 

                                                           
3 Naturally this price is not known until the end, but computing it provides us with a useful decomposition for hedging errors. 
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If the BS partial differential equation (PDE) is applied and any high-order terms are ignored, 

)( itH can be written in the form,  

 

(5)                                        ))(1()()()( 2
1

2
1

2
12

1
iiiiSS tuttSttc −∆= −−− σ                                                        

where )1,0(~)( Ntu i . The aggregate final hedging error can then be calculated as follows: 

 

(6)                                                       ∑
=

=
N

i
itHTHE

1
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Combining equations (5) and (6), we show that the final hedging error will be,   
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Equation (7) shows the replication error the writer experiences at expiry due to rebalancing the 

portfolio at discrete points in time. Boyle and Emanuel (1980) show that the magnitude of this 

error is inversely related to the frequency of rebalancing under the BS assumptions. 

Nevertheless, the smaller the adjustment period of the portfolio, the higher the excess kurtosis 

for asset price returns under non-Gaussian processes, leading to a larger potential replication 

error.  

 

We now present the second component of the hedging error, which is due to lack of precise 

knowledge of the critical parameter of volatility.  
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C. 2nd Component: Volatility Error 

In this section, we use the difference between the actual delta strategy used by the writer and an 

artificial one, which assumes perfect knowledge of the quadratic variation. We also assume that 

the option is sold at the ‘correct’ price, which corresponds to the sample realised quadratic 

variation. The return on the writer’s net position from time 1−it  to it  will now be,   

(8)                                            )()()()( 1 ii
F
Sii tStctctH ∆+∆−= −                                                   

where the delta of the hedging strategy F
Sc  is calculated based upon the writer’s volatility 

forecast Fσ . Ignoring the high-order terms and employing BS PDE, we can show that the 

formula for the intermediate hedging errors (Gibson et al, 1998) is,  
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The hedging error at maturity is now given by,   
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Equation (10) is a general representation for final hedging errors of contingent claims under 

misspecified hedging strategies. The replication error is expressed as the sum of two different 

terms. The first one reflects the effect of the volatility misspecification. If the writer's forecast is 

correct, then the two deltas R
Sc  and F

Sc  are equal and equation (10) reduces to equation (7). In 

this case, hedging errors result only from the second term, the discretisation error in gamma. We 

now present the third and final hedging error component.   
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D. 3rd Component: Premium Error 

The two hedging error components presented come from rebalancing the hedge portfolio at 

discrete points in time and from imprecise knowledge of volatility. We now provide the third 

component, which comes from selling the option at the wrong premium. In this case, the final 

value of the hedging error will be given by,    

)()()(())()(()( 1
1

00 ii
F
S

N

i
i

RF tStctctctcTHE ∆+∆−+−= −
=
∑                                                     

+−= ))()(( 00 tctc RF                                                                                                                                      

))}(1()()()()()())()({( 2
1

2
1

2
2
1

1
1111 iiiSSi

N

i
iii

R
Si

F
S tuttStctuttSttctc −∆+∆− −−

=
−−−−∑ σσ . 

 

The first term of the above equation represents the bias caused by the difference between the 

forecast price and the correct option value. Selling the option at the wrong volatility will shift 

the hedging portfolio upwards or downwards with respect to the option payoff by the price bias. 

Because this component is just a scalar, it is not included in the remaining of the analysis. 

 

In the following section, we present a new option ‘Greek’ which quantifies the sensitivity of 

replication error to volatility misspecification.  

 

E. Sensitivity Measure against Volatility Errors     

Let ttSttctct iii
R
Si

F
Si ∆−= −−−−− )()())()(()( 11111 σδ  and ttSttct iiiSSi ∆= −−−− )()()()( 1

2
1

2
12

1
1 σγ   

denote the exposure from volatility misestimation and gamma discretisation respectively. 

Equations (9) and (10) then become,   

(11)                                       ))(1)(()()()( 2
11 iiiii tuttuttH −+= −− γδ , 
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(12)                                    ∑∑
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The first term in equation (12) will be referred to as the volatility error component VE and the 

second as the truncation error componentTE . The rest of our analysis focuses on the role 

of )( 1−itδ 4, as we want to isolate the impact of volatility misspecification on replication 

strategies. The variance of the expiry hedging error will then be equal to the variance of the 

volatility error component )(TVE :  
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Since )1,0(~ Nu , 2
1

2 ~ χu , 1)( 2 =Ε u  and 2)var( 2 =u , we can show that, 
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Equation (14) is an approximation because of the statistical dependency among )( itu  and )( itδ , 

used in calculating )( itH and )( 1+itH respectively. Nevertheless, in section III, we show that (14) 

provides a good approximation of the unconditional variance of the final hedging errors.  

  

Using a Taylor series expansion, we express )( 1−itδ  with respect to the 1st and 2nd partial 

derivatives of delta with respect to volatility. Let )( itε designate the percentage error in the 

volatility forecast, )())()(()( iRiRiFi tttt σσσε −= . Ignoring any high-order terms, the 

discrepancy between the deltas evaluated at the ex-post and at the hedging volatility respectively 

can be written as follows, 

                                                           
4 Table 4 shows that, for a reasonably frequent rebalancing of the hedge, the variance of the hedging error due to discrete hedging takes 

relatively small values.  
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where the partial derivative of delta with respect to volatility denotes the ‘delvar’, or 

‘Ddeltadvol’5, and the second partial of delta with respect to volatility designates the  

‘Ddelvardvol’ (Taleb, 1997). Delvar and Ddelvardvol measure the sensitivity of delta and 

delvar respectively to the implied volatility.  

 

Combining equations (14) and (15) and ignoring the second-order term of the series expansion, 

we obtain that 
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The Ddelvardvol merely gives a second-order effect on the aggregate variance. We focus on the 

first-order effect of the delvar on the variance of the hedging errors. Equation (16) provides a 

general approximation for the unconditional variance of hedging errors. For many purposes, this 

approximation gives a sufficient indication of risk exposure. In fact, since )( itu is not correlated 

with )( 1+itu , the resulting correlation between )( itH and )( 1+itH  is sufficiently small, and our 

variance seems to be fairly robust. Nevertheless, in section IV we will develop alternative 

methods for deriving the exact distribution of both unconditional and conditional moments of 

the aggregate hedging errors.  

                                                           
5 Pronounced “D-delta-d-vol”.  



 14

In a continuous-time framework, formula (16) is transformed to the corresponding double 

integral. The partial derivative of this double integral with respect to volatility is a new option 

‘Greek,’ which we name ‘eta’ and denote by the Greek letter η 6. η  measures the size of the 

change in the standard deviation of the replication error with respect to movements in volatility 

levels: 
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η  predicts the error in our delta hedge for every 1% error in our volatility estimate, 

ση∆=))(( THESD , where RF σσσ −=∆ . Table 2 presents the values for the new option 

‘Greek’ for three different contracts.  

 

[Insert Table 2 here] 

   

η  provides a tool ranking these options based on their hedging difficulty. The barrier contract 

displays the greatest value and the geometric the lowest, as expected. Using η , we can 

investigate how much easier is to hedge a portfolio, compared to hedging its individual options. 

Although all other ‘Greeks’ are linear in terms of options portfolios, η  is non-linear, but easily 

computable. If a portfolio P consists of an amount kw  of option k )1( Kk ≤≤ , the η  of the 

portfolio, Pη , is given by, 
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where  

                                                           
6 The Greek letter ‘eta’ sounds the same with the Greek word ‘etta’ which means to lose  (in a battle). 
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ijtS denotes the value of the underlying asset at time it in sample path j .  )(
ijt

P S
σ∂
∆∂

 and 

)(
ijt

k S
σ∂
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 designate the delvar of the portfolio P and of the thk option respectively. This 

calculation is relatively easy to implement on most portfolio risk systems. Note in particular that 

the η  of a portfolio is less than the sum of the η ’s of the individual options. Another property, 

which makesη  distinct from other ‘Greeks’, is that a negative and a positive position can have 

the same η .         

 

One of the most important aspects of our analysis is that it applies to any contingent claim that 

can be spanned under a general diffusion process. It therefore provides a theoretical tool for 

understanding the risk involved in misspecified replicating strategies of more exotic products 

with path-dependence features. Moreover, it provides a measure of hedging difficulty and an 

ordinal ranking of options. The following section includes applications of the tools presented on 

various option contracts. 

 

 

III. Applications on Vanilla, Asian and Barrier Options 

 

This section applies the tools described in section II to three distinct hedging situations. In order 

to demonstrate the generality of our approach and that some contracts are much easier to hedge 

than others, we have chosen three different call options: a European, an average rate, and an up-
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and-out with a continuous-time monitored barrier. We assume that the options mature after 1 

year and are struck at $50. They are written on stock with an initial value of $50. The 

simulations are run for different numbers of rebalancing dates so that the effect of hedging more 

frequently to be investigated. Before presenting the three options in detail, we include Table 3.    

 

[Insert Table 3 here] 

 

Table 3 presents a summary statistics for the replication errors of all the three contracts. It 

underlines the distinctness of each option and therefore justifies the use of three distinct hedging 

situations to demonstrate our tools. The first, second and third columns present the results for 

the option payoff, hedging portfolio and replication error at expiry respectively. The Asian 

option exhibits the smallest mean and standard deviation of the expiry hedging errors, whereas 

the barrier option displays the greatest expected error and standard deviation. In the fourth 

column, we present a summary statistics for standardised hedging errors. We scale the errors for 

each contract by the standard deviation of the corresponding option payoff )(TC  at maturity. 

The standardised hedging errors then correspond to a short position of ))((1 TCSD  in each 

option. The payoff at expiry of such a short position shows unit standard deviation.        

 

A. Vanilla Option 

If the claim is a European call option, it is evaluated and hedged according to the Black and 

Scholes (1973) pricing formula. In the case of the plain vanilla, the delvar is given by,   

(19)                                        
σσ

2
12 )(

ddntTSdc
c

SS
S −=−−=

∂
∂

.                                           

Figure 1 presents the call payoff as well as the replication portfolio at expiry. The delta used in 

the actual hedging strategy corresponds to the trader’s ‘forecast’ volatility, which deviates from 
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the volatility still to be realised. Under perfect replication, the portfolio price should coincide 

with the option payoff. The distance between the line and the scatter plot in Figure 1 depicts the 

replication error at the maturity of the option. The impact of incorporating an incorrect volatility 

estimate is clear. Figure 1 also implies that the closer to the strike the option finishes, the greater 

the magnitude of the replication error. A similar pattern in the behaviour of the aggregate 

replication errors will also prevail when incorrectly delta hedging an average rate and a reverse 

knock-out option. This is mostly attributed to the volatility error component. Figure 2 gives an 

insight to the behaviour of this component. It depicts the error in delta, the difference between 

the actual delta used in hedging and the delta evaluated at the ex-post volatility, with respect to 

the underlying asset values. 

 

[Insert Table 4 here] 

 

Table 4 presents the unconditional variance, skewness and kurtosis for the replication error and 

its two components, for different numbers of rebalancing dates. It also displays the 

approximation of the hedging error variance. The very small difference observed between 

))((
...1

THEVar
Mj=

 and ∑
=

−=

N

i
iMj

tE
1

1
2

...1
)(δ  is due the statistical dependencies among )( itδ  and )( itu , 

used in calculating )( itH and )( 1+itH respectively. At each date, )( itu  is uncorrelated to all 

previous deltas and normal disturbances, but it affects the subsequent )( itδ value when 

calculating )( 1+itH . If the assumption of independence were valid, the hedging error would be 

distributed as a mixture of normal distributions, with zero skewness. Nevertheless, (16) gives a 

good approximation of the unconditional variance of the final hedging errors. The expiry errors 

exhibit negative skewness for all the different numbers of time steps and a kurtosis less than 3. 
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As expected, Table 4 illustrates that, for a given number of paths, the variance of the truncation 

error component is inversely related to the frequency of rebalancing. Boyle and Emanuel (1980) 

reach similar conclusions. At this point, we should underline the fact that the variance of the 

truncation error component remains constant as volatility error changes. Finally, the variance of 

the volatility error component is slightly reduced when we increase the frequency of hedge 

rebalances. 

 

To draw conclusions on the impact of the level of moneyness on the replication errors, we run 

the simulations for out-, at-, and in-the-money calls. According to Table 5, the variance of the 

expiry error increases the nearer the underlying asset is to the strike. Indeed, the at-the-money 

option displays the biggest variance.  

 

[Insert Table 5 here] 

 

It is also clear from Tables 4 and 5 that the volatility error component attributes mostly to the 

magnitude of the final hedging error. Moreover, we find that for standard out-, at-, and in-the-

money vanilla options, the standard deviation of the final delta error component as well as of 

the final hedging error is remarkably linear over a wide range of volatility error. 

 

B. Geometric Average Rate Call Option 

The average rate option is chosen as an easier case to hedge than the vanilla. The option is 

struck on the geometric average of the underlying stock with initial value of $50. The option has 

1-year maturity with a strike of $50. Starting from the beginning of the option contract, the 

averaging is taken over a period of 1 year and reset 101 times at equidistant dates. That is, the 
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geometric average is updated every two hedge rebalances. The formulae used in evaluating and 

delta hedging consider a discrete averaging (Clewlow and Strickland, 1997).  

 

We expect the average rate option to be easier to hedge than a vanilla for two main reasons: a 

geometric average rate option has a smaller standard deviation of payoff, and its gamma does 

not exhibit a spike at expiry. A geometric average on the underlying stock exhibits a variation 

smaller by roughly a factor of 3 compared to the underlying. Indeed, Table 3 shows that the 

standard deviation of the Asian option payoff is smaller by approximately 3  (Kemna and 

Vorst, 1990). We can also observe that the hedging errors arising from delta hedging such an 

option display a smaller variance when compared to a plain vanilla. In particular, the delta of a 

geometric average rate option converges to zero towards expiration, even when the option dies 

in-the-money, whereas the vanilla hedge ratio approaches either 0 or 1, and may get ‘spiked’ 

between them. Nevertheless, when the errors are scaled by the standard deviation of the options’ 

payoffs, the replication errors display similar dispersion for both types of claim. This means that 

a short position of ))((1 TCSD in the geometric average rate option is, apparently, no easier to 

hedge than the same position in the vanilla. η  justifies our results. Whereas the η  of a vanilla 

and a geometric average rate call option is 7.51 and 4.38 respectively, the η  of a short position 

of ))((1 TCSD in the vanilla and in the average rate option is 1.14 and 1.22 respectively7.  

Moreover, attention must be given to the skewness, kurtosis and η . The European option 

exhibits a greater kurtosis, smaller skewness and greater η when compared to the average rate 

option.      

                                                           
7 If we hedge more frequently at the beginning and less frequently at the end so that the time steps provide equal increments in the quadratic 

variation of the forward average, then the average rate option will be ‘more efficiently’ hedged and display smaller hedging errors. 

Nevertheless, the ‘eta’ of the standardised replication errors is equal to 1.15, which is still very close to the ‘eta’ of the plain vanilla.        
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C. Up-and-Out Call Option with a Continuous-Time Monitored Barrier 

As an example of an instrument which is more difficult to hedge than a vanilla option, we have 

chosen to examine an up-and-out call option.  The payoff of a barrier option not only depends 

on the final price of the underlying but also on whether or not the price of the underlying asset 

has crossed a predetermined barrier level throughout the life of the contract. An up-and-out call 

option knocks out if it goes too far into the money. It is therefore more difficult to hedge than a 

down-and-out, which has no such singularity in its intrinsic value. The discontinuity in the 

delta, as the underlying asset triggers the barrier, makes the up-and-out call notoriously difficult 

to hedge. According to Table 3, the up-and-out call exhibits the largest variance of all the 

options. It is therefore expected to have a greater η  than the vanilla and the Asian option. This 

is clearly shown in Table 2.  

 

The first published analytical solution of ‘out’ barrier options, with constant barrier level over 

time, is found in Rubinstein and Reiner (1991). In order to restrict the effect of the singularity 

near the constant barrier, Rich (1994) presents an analytical solution for the case of a 

continuous-time monitored barrier, which grows exponentially with time. We have chosen to 

apply an exponential barrier in order to restrict the replication error stemming from the 

discontinuity near the level of the barrier. Let )( i
uo tC  denote the value of an up-and-out call 

option at time it  with strike price K and initial barrier )( 0tB , where )( 0tBK < . )( itB  denotes 

the value of the continuous monitored barrier at it , with )(
0 )()( itT

i etBtB −−= θ , where 0≥θ . 

Closed-form solutions of the up-and-out option8 can be derived as long as the exponential 

barrier does not intersect with the strike price.  
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We assume that a writer is short an up-and-out call option and then creates a replicating 

portfolio to eliminate his delta exposure. The initial barrier level )( 0tB and θ  are set to $70 and 

0.1 respectively. Figure 3 shows the final payoff of the up-and-out call as well as of the hedging 

portfolio. The misspecified replicating portfolio of the up-and-out call presents the same spike 

around the strike as the vanilla option. The volatility as well as the truncation error explains the 

shape of the final hedging errors around the strike and in the neighbourhood of the barrier.  

To conclude this section we present how well η  predicts the sensitivity of the expiry replication 

errors of the three options, with respect to the error in volatility. Figure 4 includes the actual as 

well as the forecast standard deviation of the hedging error, which is remarkably linear over a 

wide range of volatility error.    

 

 

IV. Estimation Of Conditional and Unconditional Distribution of Replication 

Errors at expiry  

 

For many purposes, our approximation to the unconditional hedging variance is sufficient. If 

necessary, we can compute both the conditional and unconditional distributions of hedging error 

much more precisely. In this section, we describe methods for doing so.  

 

 

A. Hedging Errors in a Binomial Tree 

The analysis of hedging errors within a binomial context provides a convenient numerical 

scheme, through which the distribution of hedging errors can be estimated. It allows the 

                                                                                                                                                                                         
8The formulae for the delta, gamma and delvar of an up-and-out call with exponential barrier are available from the authors. 
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computation of all the moments of the conditional distribution at each node of the tree and of 

the unconditional at expiry.  

 

Each node of the tree is designated by ],[ ij . Let j denote the space grid and i  the time grid, 

with ],,0[ Ni ∈ where N is the number of time steps and ]1,1[ +∈ ij . The price of the underlying 

stock of the option will evolve according to the binomial option pricing model in Cox et al 

(1979), 11]0,1[],[ +−−= jii duSijS , teu ∆= σ , ted ∆−= σ , and NTt =∆ . ]0,1[S  represents the 

initial stock price, and σ denote the volatility driving the evolution of the underlying asset. 

Table 6 summarises the values stored at each node. 

 

[Insert Table 6 here] 

 

The framework of our analysis is essentially the same as previously. A writer sells a call option 

and then embarks upon a hedging strategy to cover his short position. The writer uses the BS 

formula to delta hedge his risk exposure. The difference between the trader’s delta and the ‘true’ 

delta, multiplied by the stock price, corresponds to the value misinvested in the hedge.  

 

Under this binomial tree setting, the moments about zero of the cumulative hedging error can be 

estimated. The analysis is first illustrated for node [1,0] and then for nodes [1,1] and  

[2,1]. The expected sum and higher moments at node [1,0] are set to zero. With the use of a 

simple recursive formula9, forward calculations are conducted and the misinvested value at each 

node of the tree is calculated. In the next time step, the initial stock price can either increase to 

]1,2[S  or decrease to ]1,1[S . Suppose the stock price goes up. At node [2,1], the hedging error 

                                                           
9 See Appendix A. 
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comes from two sources: the return (loss) from the value misinvested in the hedge at [1,0], and 

the expected sum of cumulative hedging errors at [1,0], which is set to zero. It should be pointed 

out that there is only one path from [1,0] to [2,1]. The same applies when the underlying price 

goes to ]1,1[S . However, in the second time step, there are two possible paths leading to [2,2]. 

In this case, the calculation of the expected sum of the cumulative hedging errors involves 

considering the hedging errors coming from the two paths and weighting them respectively. 

This way, the expected sum of cumulative hedging errors can be calculated recursively at each 

node of the tree. It must be stressed that the binomial tree analysis involves forward 

calculations10. Once the expected sum is estimated, the second, third and fourth moment about 

zero of the cumulative hedging errors can also be computed. Then, the moments about the mean 

can be recovered from the moments about zero. This way, both conditional and unconditional 

moments as well as skewness and kurtosis can be retrieved at each node and each time step.  

 

Consider a binomial tree with 200 time steps and a standard vanilla option with a strike and 

initial underlying price of $50.A writer sells the option and delta hedges at a volatility of 10%, 

while the underlying volatility is 20%. Comparison with the analysis of section II shows that the 

binomial tree is quite accurate. Table 7 summarises the results.  

 

[Insert Table 7 here] 

 

Finally, Figures 5 present the conditional mean, standard deviation, skewness and kurtosis of 

hedging errors as a function of the underlying asset at expiry.  It is clear that the conditional 

standard deviation has increased values around the strike.       

                                                           
10 One of our future objectives is to derive a forward Kolmogorov equation for the distribution of hedging errors. 
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B. Kernel Estimation of the Hedging Errors Distribution  

An alternative way of estimating both conditional and unconditional distribution of the hedging 

errors is to apply a kernel estimation technique to the simulation results of section II. Having 

derived the conditional moments via the kernel estimators, our objective is to compare the 

kernel estimation technique to the binomial tree.  

 

Let us consider a writer selling a 1-year standard vanilla option at the correct volatility and then 

embarking upon a misspecified delta hedging strategy. 5000 simulations have been carried out 

for 200 time steps, providing us with 5000 pairs of final stock prices jS and final hedging 

errors jε , where j denotes the corresponding sample path11. We will now proceed to derive 

kernel estimators of the local mean and variance of jε close to any given stock value S .  

 

In the kernel estimation technique, a weight function jw  must be constructed. The objective is 

to assign weights to each hedging error jε , according to how close it is to S . To succeed, we 

will first have to choose a bandwidth β . If β  is very large, the weighting will be over larger 

neighbourhoods of S , and if β  is very small, the neighbourhood will be smaller. It is clear that 

controlling the weight function comes to adjusting the bandwidth. Equations (21) and (22) gives 

the bandwidth as well as the weight function,  

(20)                                                      
k

SS )( minmax −
=β ,                                                         

(21)                                                       


















 −
−

=

2

2
1

β
SS

j

j

ew .                                                          

                                                           
11 For reasons of simplification, we use a different notation in this section. 
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Having constructed β  and jw , we can now carry through our analysis. Given any stock value, 

the local mean 
~
µ  and local variance 

~
σ of the hedging errors can be calculated according to the 

following equations:  

(22)                                                     
∑

∑

=

== M

j
j

M

j
jj

j

w

w
E

1

1][
ε

ε ,                                  

(23)                                                      
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The standard error of the local mean can now be computed:  

(24)                                                      ∑
=

=
M

j
jWSE

1

2
~~

)( σµ                                                               

where the JW  are the normalised weights.   

 

By applying a gaussian kernel estimator to the expiry replication errors (Ullah, 1988), we also 

obtain the unconditional distribution12. Figure 6 shows the unconditional distribution of the 

expiry hedging error for the plain vanilla, the geometric average rate and the up-and-out call 

option. 

 

                                                           
12 A third way of deriving the conditional distribution is to use a Brownian bridge. This way, we can construct sample paths ending up at a given 

price, and then calculate the conditional moments of the hedging error at that price. The Brownian Bridge is a convenient way of obtaining the 

conditional distribution for the plain vanilla and the barrier option, depending on the level of the barrier. However, it is difficult to apply it to the 

geometric average rate option. 
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V. Summary 

 

This paper analyses the distribution of delta hedge errors and provides a general decomposition 

for them. For a large class of contingent claims as well as for portfolios of claims, it enables us  

to quantify the prospective hedging errors which stem from lack of information about future 

volatility. 

  

The decomposition is based on the idea that if we knew in advance what the future sample 

quadratic variation was, the hedging error would be very small and its only source would be due 

to the discrete (vs. continuous) rebalancing of the hedge. Hedging errors are analysed in terms 

of three components. The first component involves the exposure from the error in delta, 

resulting from volatility misestimation. The second component measures the exposure from the 

error in gamma discretisation. Finally, the third component is a price bias resulting from the 

option having been sold at the incorrect level of volatility. Using this decomposition, we 

develop an approximate method for calculating the unconditional variance of the hedging errors 

at maturity. We demonstrate the use of this technique by applying it to three distinct options: a 

vanilla, a geometric average rate and an up-and-out call.  

 

We draw the following conclusions from our analysis. The standard deviation of the final 

hedging error is remarkably linear over a wide range of volatility errors.  This means that the 

sensitivity of the standard deviation, with respect to different levels of volatility, is a meaningful 

new ‘Greek’, which we name ‘eta’ and denote by the Greek letter η . η  measures the sensitivity 

of hedging error to volatility error and provides us with the probable hedging error.  
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Although the options’ ‘Greeks’ are all linear, η  is non-linear, but easily computable for 

portfolios. For realistically-frequent rebalances of the hedge, the gamma component is small for 

the vanilla as well as the average rate option, and the delta component is likely to dwarf the 

gamma. However, for the up-and-out call, the exposure to the gamma error is greater owing to 

the singularity around the barrier. The above analysis provides an approximate method for 

deriving the unconditional variance due to the statistical dependencies among the variables 

involved in hedging errors. Nevertheless, the resulting correlation is small, and our variance 

estimate is fairly robust.  

 

For many purposes, our approximation to the unconditional variance of hedging error is 

sufficient. Yet if necessary, we can compute both the conditional and unconditional distribution 

of the hedging errors arising from not knowing the volatility. We develop two different 

techniques for doing this: a binomial approach and kernel estimation. We also suggest a third 

one: a Brownian bridge construction. Binomial tree allows for estimating all the moments of the 

conditional and unconditional distributions of hedging errors. The calculations can be done 

quite efficiently. Moreover, we can derive as many moments of the distributions as we are 

interested in. Alternatively, using kernel estimation, we compute the unconditional distribution 

of the expiry hedging errors, as well as local estimates and confidence intervals for the hedging 

errors, conditional either on the payoff or on the underlying asset value at expiry. These 

techniques demonstrate that the mean and variance strongly depend on how close to the strike 

the underlying finishes. This confirms practitioners’ beliefs about getting ‘spiked’ at expiry. 
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Appendix: Binomial Tree Derivation 

The amount misinvested ].[ ijV  in the hedge at each node ],[ ij  can be calculated recursively by, 

))()(](,[],[ 11 dNdNijSijV F −= . 

)( 1
FdN  represents the delta ratio as calculated by the writer’s assumptions about volatility. Both 

deltas are calculated according to BS. )( 1
FdN  is calculated using the forecast volatility, while )( 1dN  

is calculated using the volatility which evolves the stock price in the tree.  

 

Let ],[ ija  be the expected sum of the cumulative hedging errors at ],[ ij . At node ]0,1[ , 

],[ ija  is zero, while for all other nodes, ],[ ija is given by the following equation: 

]1,[)1(]1,[](,[])1,1[)1(]1,1[](,[],[ −−+−+−−−+−−= ijVdijaijWijVuijaijWija dnup  

where 
i

jijWup
1],[ −=  and 

i
jiijWdn

1],[ +−= . For simplicity, ],[)1( ijVu−  will be denoted by 

].[ ijrup  and ],[)1( ijVd − V[j, i](d-1) by ].[ ijrdn . The above formula then becomes,  

]1,[]1,[](,[])1,1[]1,1[](,[],[ −+−+−−+−−= ijrijaijWijrijaijWija dndnupup . 

 

The second, third and fourth moments about zero of the cumulative hedging errors can be also 

calculated according to the following equations respectively:  
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+−−+−−−−+−−= ])1,1[]1,1[]1,1[2]1,1[](,[],[ 2 ijrijaijrijbijWijb upupup  

])1,[]1,[]1,[2]1,[](,[ 2 −+−−+− ijrijaijrijbijW dndndn , 

++−−−−+−−−−+−−= )]1,1[]1,1[3]1,1[]1,1[3]1,1[](,[],[ 32
upupupup rijaijrijbijrijcijWijc  

])1,[]1,[]1,[3]1,[]1,[3]1,[](,[ 33 −+−−+−−+− ijrijaijrijbijrijcijW dndndndn , 

+−−−−+−−−−+−−= ]1,1[]1,1[6]1,1[]1,1[4]1,1[](,[],[ 2 ijbijrijcijrijdijWijd upupup  

              +−−+−+−−+−− ]1,[]1,[4]1,[](,[])1,1[]1,1[4 43 ijcijrijdijWijrijr dndnupup     

])1,[]1,[]1,[4]1,[]1,[6 433 −+−−+−− ijrijaijrijbijr dndnup , 

      where ]0,1[b , ]0,1[c  and ]0,1[d  are set to be zero. At each node, the conditional moments about 

the mean of the cumulative hedging error can be calculated from the moments about zero:  

])[(],[ 1
' k

k
k

k XEXE µµµ −== . 

 

The unconditional moments about zero at maturity can be calculated from the conditional moments 

about zero. Finally, the unconditional moments about the mean can be computed.    
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TABLE 1 

Summary of Notation 

σ  Underlying volatility 
Rσ  Ex-post (realized) volatility 

Fσ  Hedging (forecast) volatility 
)( itH  Return on the hedged portfolio at time it  

)(/)( THEtHE i  Intermediate Hedging error/Final (Expiry) Hedging Error  

σ∂
∂==∆

RF

S

cc
/

 
Delta of an option evaluated at RF σσ /  

σσ ∂
∂=∆

RF
Sc /

 
‘Delvar’ or ‘Ddeltadvol’ of an option evaluated at Fσ  and Rσ  
respectively  

2

/2

σσσ ∂
∂=∆

RF
Sc  

‘DdelvarDvol’ of an option evaluated at RF σσ /  

2

/2

S
cc

RF

SS ∂
∂==Γ  

‘Gamma’ of an option evaluated at RF σσ /  

 
 

 
 

 

 

 

 

 
 
 

 
 

TABLE 2 

‘Eta’ for different option contracts 

Geometric Average 
Rate Option 

 
Vanilla 

Up-and-Out 
with Exponential Barrier 

4.3834 7.5073 23.683 
Spot Price 
Strike 
Initial Barrier 
Averaging Resets 
Averaging Period 

$50 
$50 
$70 
101 

1 year 

Maturity 
Number of Hedge Rebalances 
Number of Simulations 
Underlying volatility )(tσ  

1 year 
 200 

2000 
20% 

TABLE 3 

Summary Statistics of Option Payoffs, Replication Portfolios and Errors at Expiry 

 )(TC  )(TH  )(THE  
))((

)(
TCSD

THE  

Vanilla Mean 4.1684 4.1784 0.0100 0.0015 
 S.D. 6.6046 6.9843 1.0046 0.1584 
 Skewness 1.9550 1.8997 -0.4995 -0.4995 
 Kurtosis 4.1237 3.8691 -0.4058 -0.4058 
 Min 0 -3.5083 -3.8311 -0.5801 
 Max 43.4935 44.934 1.7852 0.2703 
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TABLE 4 

Unconditional Variances, Skewness & Kurtosis for Expiry Hedging Errors for a Vanilla Option  

under Misspecified Hedging Volatility 

Number of 
Hedge 

Rebalances 





∑
=

−

N

i
itE

1
1

2 )(δ  




∑
=

−

N

i
ii tutVar

1
1 )()(δ  




 −∑
=

−

N

i
ii tutVar

1

2
1 ))(1)((γ  

 
))(( THEVar  

200 1.0096 1.0362 0.06176 1.0183 
500 1.0099 1.0191 0.02348 1.0099 
750 1.0219 0.9673 0.01684 0.9645 

1000 1.0187 0.9930 0.01292 0.9884 
2000 1.0184 0.9981 0.00648 0.9965 

 
Number of 

Hedge 
Rebalances 

 
)]([ THESkewness

 

 
)]([ THEKurtosis  

  

200 -0.3326 2.1901 
500 -0.3644 2.2794 
750 -0.2704 2.2026 

1000 -0.3438 2.2675 
2000 -0.3137 2.2160 

   
   

Spot Price 
Strike  
Maturity 
Number of simulations 
% Error in volatility forecast 
Underlying volatility 

 $50 
 $50 

 1 year 
 2000 
-50% 
 20% 

 

 

 

TABLE 3 (continues) 
 

 )(TC  )(TH  )(THE  
))((

)(
TCSD

THE  

Geometric Mean 2.3443 2.3664 0.0221 0.0062 
Average  S.D. 3.5846 3.8418 0.6042 0.1686 
Rate  Skewness 1.7310 1.6671 -0.4918 -0.4918 
 Kurtosis 2.7386 2.5172 -0.4323 -0.4323 
 Min 0 -1.9654 -1.9654 -0.5483 
 Max 22.9598 23.9902 1.1295 0.3151 
      
Up-and- Mean 2.3683 2.3410 -0.0273 -0.0065 
out  S.D. 4.1869 5.9597 2.9363 0.7013 
 Skewness 1.8617 2.3124 3.2512 3.2512 
 Kurtosis 2.6433 6.6598 16.2315 16.2315 
 Min 0 -7.6754 -7.6754 -1.8332 
 Max 19.6997 42.6782 25.7027 6.1389 
Spot Price 
Strike 
Initial Barrier 
Averaging Resets 
Averaging Period 

$50 
$50 
$70 
101 

        1 year 

Maturity 
Number of Hedge Rebalances 
Number of Simulations 
Underlying volatility  
% Error in volatility forecast 
 

         1 year   
200 

2000 
20% 
-50% 
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TABLE 5 
A Comparison of Unconditional Variance of Final Hedging Errors for Out-, At-, and In-the-Money 

Vanilla Options under Misspecified Hedging Volatility 
 

 
)( 0tS

 






∑
=

−

N

i
itE

1
1

2 )(β  




∑
=

−

N

i
ii tutVar

1
1 )()(β  




 −∑
=

−

N

i
ii tutVar

1

2
1 ))(1)((γ  

 
)]([ THEVar  

35 0.1788 0.1697 0.00710 0.1621 
40 0.7147 0.7726 0.02846 0.7618 
50 1.0096 1.0362 0.06176 1.0183 
60 0.9864 1.0003 0.03769 0.9785 
65 0.5911 0.5745 0.02305 0.5590 

Strike 
Maturity 
Number of Hedge Rebalances 
Number of Simulations 
Error in volatility forecast 
Underlying volatility )(tσ  

 $50 
 1 year 

 200 
2000 
-50% 

20 

 

 
 
 

TABLE 6 
Values stored at each node of the tree 

],[ ijS  Price of the underlying stock 
],[ ijV  Hedging error  
],[ ijp  Probability of reaching ],[ ij  
],[ ija  Expected sum of cumulative hedging errors 
],[ ijb  Second moment about zero of cumulative hedging errors  
],[ ijc  Third moment about zero of cumulative hedging errors 
],[ ijd  Fourth moment about zero of cumulative hedging errors 

 
  
 

 TABLE 7 
Comparison of Binomial Tree with Monte Carlo simulations 

 Mean Variance 
 

Binomial Tree 
 

 
        0 

 
1.0222 

 
Monte Carlo Simulations 

 

  

Variance of the Volatility Error 
Component 

0.00025 1.0329 

Variance of Expiry Hedging Error                 0.00465 1.0087 
Initial Stock Price 
Strike 
Maturity 
Number of Hedge Rebalances 

$50 
$50 

1 year 
200 

Number of Simulations 
Error in volatility forecast 
Underlying volatility )(tσ  

 10000 
-50% 
  20% 
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FIGURE 2 
Error in Delta and Volatility

'correct' volatility=20%  

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

20 40 60 80 100

underlying asset value

di
ffe

re
nc

e 
be

tw
ee

n 
de

lta
 u

se
d

in
 h

ed
gi

ng
 a

nd
 th

e 
'tr

ue
' d

el
ta

Hedging Volatility 10% Hedging Volatility 20%

FIGURE 1 
Delta Hedging a European Call Option at the Incorrect Volatility 

200 hedge rebalances, 2000 simulations, strike=$50, 
1-year maturity, underlying volatility=20%, 

& absolute volatility error=50%
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FIGURE 3 
Delta Hedging an Up-and-Out Call Option at the Incorrect Volatility

200 hedge rebalances, 2000 simulations, strike=$50, 
1-year maturity, underlying volatility =20%, 

& absolute volatility error=50%
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FIGURE 4
Actual and Forecast Standard Deviations of Expiry Replication 

Errors due to Misspecified Deltas: the new Greek 'eta'
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FIGURE 6 

Kernel Estimation of the Unconditional Distribution 
of Expiry Hedging Errors, for 200 hedge rebalances, 
2000 paths, strike=$50, absolute volatility error=50% 
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FIGURE 5 
Conditional Moments of Hedging Errors 
in a Binomial Tree with 200 timesteps
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