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Abstract

This paper applies the minimax deviations approach to real options in incomplete markets by

constructing narrow bounds around the value of real options embedded in capital budgeting

decisions. While it is straightforward to obtain the unique value of a real option with HARA

utility functions, the parameters of risk-aversion are often subject to misspecification and raise

concerns for practical uses. Noticing that investors allow deviation from parameters related to

a benchmark pricing kernel, we derive narrow bounds. Comparison with the approaches in the

literature clarifies advantages of the minimax bounds.
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1 Introduction

Asset pricing in complete markets is well established. The value of an asset (a focus asset) is

obtained from the prices of other traded assets (basis assets). Continuous trading in the underlying

assets makes it possible to replicate the asset’s payoffs, and the present value of the focus asset must

equal the price of the replicating portfolio in the absence of arbitrage opportunities. The value of

the focus asset does not require specifying investors’ risk preference and is obtained by discounting

at the risk free rates the asset’s expected payoff computed with risk-neutral probabilities, which

are the probabilities that correctly price assets in a risk-neutral economy.

However, exact replication of the focus assets’ payoffs is not readily available in many cases.

Trading cannot be done continuously and is costly. The risk factors that affect an asset’s payoffs

are not represented by traded assets. This is often the case of real options, or options embedded

in capital investment decisions. The bounds provided by the no-arbitrage approach are too wide

to be useful on the value of the option because there are infinite elements in the set of admissible

martingale measures that accurately price the option, the focus asset. Holding the option becomes

inherently risky because the portfolio of basis assets does not perfectly hedge the option.

Cochrane and Saa-Requejo (2000) derive tighter bounds on option prices by imposing restric-

tions on Sharpe ratios or, equivalently, on the volatilities of the pricing kernel. Cases with high

Sharpe ratios provide near-arbitrage opportunities and cannot last because investors bid to buy

assets with high Sharpe ratios. One of the problems with this method is that a Sharpe ratio can

be very low for arbitrage opportunities and cannot be reduced further with a typical threshold. In

addition, it can easily construct bounds which conflict with risk-averse preference. Bernardo and

Ledoit (2000) rule out investment opportunities whose attractiveness to a representative investor

exceeds a specified threshold. Their measure of attractiveness is the ratio of the expectation of

the positive parts of the payoff (gain) on an investment to the expectation of the negative parts

of the payoff (loss). By varying the gain-loss ratio, they are able to accommodate any bounds,

from unique values to no-arbitrage bounds. In addition to setting an arbitrary gain-loss ratio, this

approach easily tolerates the narrow bounds which conflict with risk preference implied by the

benchmark pricing kernels.

Mello and Pyo (2006) suggests a way of narrowing the bounds, that does not impose further

exogenous restrictions as in the literature. Instead, their approach extracts additional information

on the investor’s confidence on the initial estimation of the preference parameters. They observe
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maximum deviations around a benchmark price and take a minimum of the two in a sense that a

minimum deviation implicitly exhibit more confidence on a pricing implication on that side over

the other side. Minimax bounds presented by Mello and Pyo (2006) are shown to be simple in

derivation, consistent with risk-aversion, and efficient in tightness of the bounds.

While they illustrate advantages of minimax bounds on call option values without dynamic

rebalancing, they do not have to calibrate utility functions because they use the connection between

the Black-Scholes formula and exponential utility function as shown by Rubinstein (1976). Since

real options embedded in capital budgeting decisions display characteristics different from call

options on stock, this article presents a framework of constructing minimax bounds by specifically

calibrating utility functions in equilibrium settings. To make the results robust, we utilize a versatile

utility function: HARA class utility function. Although expressions for the minimax bounds are

not neat, the framework applies the minimax bounds to real options and presents practical ways

of deriving minimax bounds in most cases of utility functions.

We use a numerical example to illustrate how the minimax deviation suggested by Mello and

Pyo (2006) is compared to those two approaches in the literature in the case of a real option

embedded in a capital budgeting problem. It is not necessary to set up an arbitrary threshold for

the bounds and the obtained bounds are consistent with risk preference reflected in a benchmark

price. More importantly, the bounds are really tight around a benchmark price as opposed to those

constructed with a typical threshold in the literature.

The article is organized as follows. First, we briefly review the minimax deviations approach

to narrow bounds on asset prices in an incomplete market. Next we derive the value of an op-

tion to defer a capital investment decision in a dynamically incomplete market, making explicit

assumptions about a representative investor’s attitudes toward risk. We show that when pricing is

embedded in a utility maximization framework, a unique martingale measure emerges that reflects

the investor’s willingness to pay for cash across states and time. Next, we derive the correspond-

ing risk-adjusted probabilities, and note that the expressions for the risk-adjusted probabilities in

incomplete markets closely resemble the expressions for the risk-neutral probabilities that would

be obtained in complete markets. We show that there is a linear relationship between changes in

the investor’s coefficient of absolute risk aversion and changes in the values of the risk-adjusted

probabilities. More important, changing the absolute risk-aversion leads to very small changes in

risk-adjusted probabilities. This is useful, because it implies that less precise information about the

investor’s risk preferences, measured by its coefficient of absolute risk aversion, does not translate
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proportionally into less precise valuations. In Section 4 we show that the precise location of the

option value depends on the risk-adjusted probabilities for the risks not priced in the market and

the no-arbitrage bounds. Section 5 develops the methodology to tighten the bounds on the values

of the option. Comparison with other methods is presented in Section 6. A numerical example is

presented in Section 7. Section 8 concludes.

2 Review of the Minimax Bounds

Mello and Pyo (2006) presents the minimax deviation approach to narrow the bounds on asset

prices in an incomplete market, assuming that the pricing kernel declines monotonically with the

state variable, that is, a state claim that pays off when consumption is low (high) has a relatively

high (low) value, since such claim allows the benchmark investor to smooth consumption across

future states of nature.1 A benchmark investor that makes a capital budgeting decision exhibits

risk-aversion with utility functions u, where u is a continuously differentiable and concave von

Newmann-Morgenstern utility function with marginal utility of consumption u0
³
c∗j

´
> 0 with risk-

aversion u00
³
c∗j

´
< 0, and c̃∗ = (c∗1, .., c

∗
S) ∈ RS is an equilibrium state contingent consumption

package. A pricing kernel m∗j is given by

m∗j =
u0
³
c∗j

´
E [u0 (c̃∗)]

· 1

1 + rf
(1)

The pricing kernel, m∗j , is subject to misspecification of parameter values and is approximated

by the minimax bounds as

m∗j ∈
µ

p̂j + e∗j
qj (1 + rf )

,
p̂j − e∗∗j
qj (1 + rf )

¶
=

µ
1

1 + rF
,

p̂j − e∗∗j
qj (1 + rf )

¶
(2)

where qj is the objective probabilities, p̂j the estimated risk-adjusted probabilities,and rf the risk-

free rate of return. The total deviation ej = e+j − e−j can be decomposed into a positive part

e+j = max (ej , 0) and a negative part e
−
j = max (−ej , 0). The minimax deviation is computed as

e∗j = min
³
e+j , e

−
j

´
=

⎧⎨⎩ min (qj − p̂j , p̂j) if 0 ≤ p̂j ≤ qj

min (1− p̂j , p̂j − qj) if qj < p̂j ≤ 1
(3)

1See Mello and Pyo (2006) for details.
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and the other deviation on the pricing kernels, e∗∗j is computed by solving the following equations:

u
¡
p̂j + e∗j

¢
− u (p̂j) = u (p̂j)− u

¡
p̂j − e∗∗j

¢
if qj − p̂j ≤ p̂j (4)

u (p̂j)− u
¡
p̂j − e∗j

¢
= u

¡
p̂j − e∗∗j

¢
− u (p̂j) if qj − p̂j > p̂j (5)

3 The Value of a Real Option in Incomplete Markets

In the next three sections we apply the minimax approach described above to narrow the bounds

of a real option value in incomplete markets. We illustrate the approach with an option to defer a

real investment decision.

3.1 A Risky Project

Consider a risky project requiring the following alternative capital outlays, depending whether the

investment occurs now, IN , or is deferred one period, ID:

IN = (I0, I1 × I {VM ≥WM}) if invested immediately, or

ID = (0, (I0(1 + rf ) + I1)× I {VM ≥WM − I0(1 + rf )− I1}) if deferred.

where the rate rf denotes the constant risk free rate of interest, and I {VM ≥WM} is an indicator

function with VM , the value of the project, and WM , the selling price of the project at time 1.

M ∈ {u, d}, where u indicates the up state in the binomial tree for variable M , and d the down

state.

The project faces two different types of risks. The first risk is realized at time 1. This risk can be

traded in the securities markets by means of a twin security whose payoffs are perfectly correlated

with that source of risk. Accordingly, we call this risk market risk. The second risk starts to affect

payoffs at time 1 and is realized at time 2, and is not traded in the securities market. Accordingly,

we call this risk private risk. Combining both risks, we have four states and just two securities.

With fewer securities than the number of states in the economy, the market is incomplete.

Upon the realization of market risk at time 1, the project has values ṼM = (Vu, Vd) with

objective probabilities q1 = (q, 1− q), respectively. Similarly, the twin security, which has market

value at time 0 of S0, will generate payoffs at time 1 of S̃1 = {Su, Sd}. This security and the risk-free

bond paying rf are the basis assets used to obtain a market value for the project. As market risk is
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fully realized at time 1, after that date, and with no loss of generality, there is no more uncertainty

as to the value of the twin security. At time 2, after the realization of private risk, the project

ends, and there are four possible payoffs: ṼMP = (Vuu, Vud, Vdu, Vdd) with objective probabilities

q2 =
¡
qu, 1− qu, qd, q1−d

¢
. Note that ṼMP is the value after market risk M , and private risk P

have been realized. Also, qu is the probability of a good outcome for private risk conditional on a

good outcome for market risk, q; similarly, qd is the probability of a good outcome for private risk

conditional on a bad outcome for market risk 1− q.

This example separates the risks affecting the project’s payoffs by their time of realization. This

differs from the usual characterization of market incompleteness, which considers all risks occurring

simultaneously. Also, the different sources of risk are not necessarily independent of each other,

and some degree of correlation is possible. We separate the timing of realization of the risks and

allow for some degree of dependence among different risks to give the problem the flavor of a typical

real option, as well as to highlight the investor’s ability to change the distribution of the project’s

returns. This is what in the literature on real options is referred to as managerial flexibility.

At first, it might appear that the problem described can be reduced to two independent static

problems in states u and d, beyond which the market becomes truly incomplete. Also, it might

appear that there are no truly dynamic issues in the model. This is not so. The confusion arises

because the traded risky security becomes risk-free after period one, to simplify the exposition.

However, this simplification does not make the market complete before time 1, because private risk

cannot be hedged at that date or at any other date. Finding the solution to two independent static

problems in states u and d separate from each other is equivalent to a local maximization problem,

and doing that means that the initial value is the solution to a local maximum, instead of a global

maximum. For this reason, the initial value must be determined by maximization over the entire

set of states and dates.

The problem cannot be solved by the no-arbitrage approach, since in the absence of traded

assets that replicate the project’s payoffs at time 2, it is not possible to obtain the risk-neutral

probabilities (RNP) that would determine the value at time 1. On the other hand, it is not possible

to figure out the values at time 1 in states u and d using only the value at time 0 and the risk-neutral

probability derived from market risk. Therefore, one must first solve the optimization problem to

obtain the project value at time 0 and then compute the the risk-adjusted probabilities using the

well-known equivalence between the two approaches.
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3.2 Equilibrium Values

Market incompleteness forces the investor in the project to bear risks that cannot be fully hedged in

the capital markets. Therefore, the value of the project is not independent of its payoff distribution

as well as of the investor’s marginal rate of substitution for consumption across states and time.

Because attitudes toward risk matter, the choice of utility function also matters.2 We assume that

preferences are described by an extended power utility function, also denoted by the class of HARA

utility functions.3 We do not impose additional assumptions on pricing kernels such as those used

in Levy (1985)4, because risk-aversion implicit in the utility function is equivalent to monotonicity

of pricing kernels with the state variable (Perrakis and Ryan (1984)). Equivalently, risk-averse

investors compute pricing kernels that are monotone in the state variable governing private risks5.

The HARA class of utility functions of wealth exhibits increasing (IRRA) or decreasing (DRRA)

relative risk aversion depending on whether the sign of the parameter a in the utility function is

positive or negative:

U (X) =
2X

t=0

1

b− 1

µ
a+ b

Xt

(1 + ρ)t

¶1−1
b

(6)

Note that when a = 0, an extended power reduces to a narrow power utility function. An extended

power utility function seems to accommodate the problem of Black-Scholes model mispricing re-

ported by Jackwerth (2000) and Ait-Sahalia and Lo (2000)6. The utility function in Equation

(6) is subject to the usual positivity conditions: b > 0 : Xt

(1+ρ)t
> max

¡
−a

b , 0
¢
. a and b are the

parameters characterizing the absolute risk aversion coefficient, RA (x) = −U 00(x)
U 0(x)

, and the relative

2Researchers valuing options have frequently related the narrow power utility function to the Black-Scholes valu-

ation model. Rubinstein (1976), Brennan (1979), and more recently He and Leland (1993) and Ait-Sahalia and Lo

(2000) note that the Black-Scholes model can be obtained in an equilibrium economy, when agents have a narrow

power utility characterized by constant relative risk aversion (CRRA) and aggregate wealth and the underlying asset

price are joint lognormally distributed.
3The HARA class of utility functions is very general and well established, but a different class could have been

used. It is important to note that we do not need to specify the sign of the coefficient of relative risk aversion.
4Levy (1985) assumes that the pricing kernel declines monotonically with the state variable.
5The monotonicity relationship can decline or increase with the state variable depending upon the benchmark

pricing kernel. More specifically, when the benchmark pricing kernel declines monotonically with the state variable,

the pricing kernel is greater (lower) than one in lower (higher) states of private risks, and vice versa.

The case where the pricing kernel declines (increases) monotonically with the state variable occurs when the payoffs

are positively (negatively) correated with the market risk. With positive (negative) correlation, the investor favors

a higher payoff in “down” (“up”) state for private risk, when the payoff of market risk is high (low). If the pricing

kernel is not monotone with the state variable, the investor exhibits risk-loving preferences.
6According to these authors, differences in model and market prices cannot be captured by CRRA preferences.
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risk aversion, RR (x) = −xU 00(x)
U 0(x)

. The cash payoffs are Xt at times t = 0, 1, 2, which are discounted

at the rate ρ per period.

Since one of the risks affecting the project’s payout is traded in the market, it is possible to form

a portfolio of the riskless bond and the traded twin security to partially hedge the project’s risks

and improve the investor’s welfare. This requires trading a portfolio of xk shares of the risk-free

asset and yk shares of the twin security, a portfolio that changes with each different alternative

action k ∈ {R, N , D}, where R means reject, N means invest immediately, and D means defer

investment. The notation for the utility is UMP
k , where M and P stand for market and private

risk, respectively, with M,P ∈ {u, d}. Thus, Uud
D represents the utility attained when the investor

has deferred investing in the project until time 1, and the outcome for market risk was high and

for private risk low.

To value the opportunity created by investing in the project with the option to defer, it is

necessary to determine first the maximum expected utility that can be attained if the project is

not taken, and use this as the benchmark against which one measures the improvement in the

investor utility from taking the project. When the project is not taken, the investor only invests

in the basis assets and returns depend solely on the realization of market risk. In Appendix A

we present details of the derivations necessary to obtain the expressions for the values of each

alternative, “invest immediately”, V ∗N , “defer investment”, V
∗
D, and the option to defer, V

∗
O.

3.3 Risk-Adjusted Probabilities

The value of this option to defer the investment can also be computed from the risk-adjusted

probabilities. The risk-neutral probabilities associated with market risk can be determined as in

Cox, Ross and Rubinstein (1979), and are p and 1 − p, for an up and down shift, respectively.

The one-to-one correspondence between the values and the risk-adjusted probabilities are derived

in Appendix B. The risk-adjusted probability of a good outcome for private risk conditional on

a good outcome from market risk pu, and the risk-adjusted probability of a good outcome from

private risk conditional on a bad outcome from market risk pd are given by:

pu =
(1 + rf ) (Zu + I1)− Vud

Vuu − Vud
(7)

pd =
(1 + rf ) (Zd + I1)− Vdd

Vdu − Vdd
(8)
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where Zu and Zd are derived in Appendix B as:

Zu =
1 + rf
p

[φ− (1− p) I0] (9)

Zd =
1 + rf
1− p

[ψ − (1− p) I0] (10)

The expressions for the risk-adjusted probabilities for private risk, pu and pd, closely resemble

the expressions for the risk-neutral probabilities in complete markets. With complete markets, pu

would be replaced by pu(C) =
(1+rf)(V C

u +I1)−Vud
Vuu−Vud and pd by pd(C) =

(1+rf)(V C
d +I1)−Vdd

Vdu−Vdd , where V C
u

and V C
d are the project values at time 1 in complete markets. The only difference is the factors

Zu instead of V C
u and Zd instead of V C

d . The values of ZM are preference-dependent through the

parameters φ and ψ.

Figure (1) relates the changes in the values of pu to the changes in risk preference represented

by the absolute risk aversion (ARA), using the values shown in Table (1). The figure shows the

linear relationship that exists between changes in the investor’s ARA coefficient and changes in the

values of the risk-adjusted probabilities. Furthermore, varying ARA leads to very small changes in

the risk-adjusted probabilities. Note, also, that the difference between the objective probabilities

and the risk neutral probabilities is largest at q = 0.5, rapidly declining as q values move away

from 0.5. These findings are useful, because they imply that less precise information about the

investor’s risk preferences, measured by its ARA coefficient, does not translate proportionally into

less precise valuations.

Table (1) shows that the differences between the values of the objective probabilities and those

of the risk-adjusted probabilities are maximized when the objective probabilities are 0.5, declining

to zero when the objective probabilities are either 0 or 1. This is because objective probabilities

correspond to certain wealth, while risk-adjusted probabilities are related to certainty-equivalent

wealth. It is well known that the difference between certainty-equivalent wealth and certain wealth

is maximized at the midpoint of a range of possible payoffs, and is minimized at the extreme points

of either lowest or highest payoffs.

4 Locating Option Values within the No-Arbitrage Bounds

The option values obtained from the risk-adjusted probabilities lie within the no-arbitrage bounds

set by the risk-neutral probabilities for market risk only. In this section we show that the option

value is expressed as a simple function of the no-arbitrage bounds and the risk-adjusted probabilities
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for private risk. To do this, we introduce two no-arbitrage bounds (NA) for the “defer investment”

alternative: DNAU , the upper bound, and DNAL, the lower bound; and two no-arbitrage bounds

for the “invest immediately” alternative: NNAU , the upper bound, and NNAL, the lower bound.

With these bounds we determine the no-arbitrage bounds for the option to defer and then locate

the option value within these no-arbitrage bounds.

Consider first the “defer investment” alternative. Under this alternative, the project is not

taken if the outcome for market risk at time 1 is low, and the location within the bounds is given

by the risk-adjusted probability for private risk, conditional on a good outcome for market risk,

pu.

To derive DNAU , we use the discounted value of the highest terminal payoff, given a good

outcome for market risk, with risk-neutral probability p. Similarly, the lower bound, DNAL, is

obtained by discounting the value of the lowest terminal payoff, given a good outcome for market

risk:

DNAU = p

Ã
−I0 −

I1
1 + rf

+
Vuu

(1 + rf )
2

!
(11)

DNAL = p

Ã
−I0 −

I1
1 + rf

+
Vud

(1 + rf )
2

!
(12)

Using pu = (1+rf)(Zu+I1)−Vud
(Vuu−Vud)p , the location within the no-arbitrage bounds of the value of the

“defer investment” alternative is given by the expression:

V ∗D = puDNAU + (1− pu)DNAL

= p

Ã
−I0 −

I1
1 + rf

+
Vud

(1 + rf )
2

!
+

p (Vuu − Vud)

(1 + rf )
2 pu (13)

where this last expression is exactly the same from either specifying preferences or using the risk-

adjusted probabilities. This way of determining the value of the alternative “defer investment”

is consistent with the other approaches because the triple (DNAU , DNAL, p
u) includes all the

information necessary to obtain the exact value of the “defer investment” alternative.

For the “invest immediately” alternative, the no-arbitrage bounds are the discounted expected

values using the highest possible payoffs, NNAU , and using the lowest possible payoffs, NNAD, for

both outcomes of market risk, as follows:

NNAU = −I0 −
I1

1 + rf
+

pVuu

(1 + rf )
2 +

(1− p)Vdu

(1 + rf )
2 (14)

NNAL = −I0 −
I1

1 + rf
+

pVud

(1 + rf )
2 +

(1− p)Vdd

(1 + rf )
2 (15)
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Recall that the risk-adjusted probability for private risk, conditional on a bad outcome for market

risk, is pd = (1+rf)(Zd+I1)−Vdd
(Vdu−Vdd)p , which can also be expressed as

pd =
(1 + rf )

2

Vdu − Vdd

µ
V ∗N − V ∗D
1− p

+ I0

¶
+
(1 + rf ) I1 − Vdd

Vdu − Vdd
(16)

Solving for the value of the “invest immediately” alternative, V ∗N , gives:

V ∗N = V ∗D + (1− p)

"
Vdu − Vdd

(1 + rf )
2 p

u − I1
1 + rf

+
Vdd

(1 + rf )
2 − I0

#

= V ∗D +

Ã
NNAU −NNAL −

p (Vuu − Vud)

(1 + rf )
2

!
pu − (1− p)

µ
I1

1 + rf
+ I0

¶
+
(1− p)Vdd

(1 + rf )
2

= V ∗D + [NNAU −NNAL − (DNAU −DNAL)] p
d − (1− p)

µ
I1

1 + rf
+ I0

¶
+
(1− p)Vdd

(1 + rf )
2

= V ∗D + [(NNAU −DNAU )− (NNAL −DNAL)] p
d + (NNAL −DNAL)

= puDNAU + (1− pu)DNAL − pd (DNAU −NNAU)−
³
1− pd

´
(DNAL −NNAL) (17)

The value of the option to defer investment within the no-arbitrage bounds is then given by:

VO = pd (DNAU −NNAU ) +
³
1− pd

´
(DNAL −NNAL) (18)

In this expression, the value of the option to defer investment is obtained from two sets of no-

arbitrage bounds and one risk-adjusted probability for private risk, pd. Note that if (DNAU −NNAU )

and (DNAL −NNAL) are treated as payoffs discounted at the risk free rate, the expression is exactly

equal to that obtained using the binomial method to value options in complete markets, with pd

replacing the risk-neutral probability of an upward movement. The expression for the value of the

option to defer does not require the risk-adjusted probability for private risk when market risk is

high, pu, because payoffs resulting from a high realization of market risk affect equally the “invest

immediately” and the “defer investment” alternatives, cancelling each other out. The value of the

option to defer investment comes from avoiding the losses in the downward market movement that

are unavoidable under the “invest immediately” alternative. From the pairs of no-arbitrage bounds

for the “defer investment” and the “invest immediately” alternatives, (DNAU , DNAL) and (NNAU ,

NNAL), we derive the no-arbitrage bounds for the option to defer as follows:

ONAU = DNAL −NNAL = (1− p)

Ã
I0 +

I1
1 + rf

− Vdd

(1 + rf )
2

!
(19)

ONAL = DNAU −NNAU = (1− p)

Ã
I0 +

I1
1 + rf

− Vdu

(1 + rf )
2

!
(20)
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The upper (lower) bound is derived from both the lower (upper) bounds for the “invest im-

mediately” and the “defer investment”. To get the upper bound on the option to defer we need

to determine the maximum loss from investing immediately. This maximum loss is given by the

difference between the lower bounds of the two investing alternatives. Consistency requires that if

a bad outcome for private risk is realized, it must affect both N and D. Conversely, to get the lower

bound on the option value, we need to determine the minimum loss from the “invest immediately”

alternative, which is given from the upper bounds of the two alternatives.

5 Tightening the Bounds with the Minimax Deviations Approach

5.1 No-Arbitrage Bounds

The no-arbitrage bounds are obtained with information about the project payoffs and the basis

assets. These bounds, however, do not provide information about pricing private risks, because

such risks are not traded in the securities markets. In the presence of private risk, the no-arbitrage

bounds are often too wide to be of economic consequence. To obtain precise values for assets

subject to private risk in incomplete markets it is necessary to specify investor preferences toward

risk. However, in many cases it is difficult to know these preferences accurately.

The trade-off between more precise valuations from specifying preferences and the possibility

of misspecification has prompted attempts to narrow the no-arbitrage bounds. Here we develop a

method to narrow the bounds on option values in incomplete markets based on the idea of minimax

deviations from benchmark preferences.

Consider the case that pricing kernels monotonically decline in the state variable. When in-

vestor’s preferences admit infinite risk-loving with respect to private risks, the value of the option

coincides with the upper bound of the no-arbitrage value (NAU). This upper bound assumes

values of
¡
pu, pd

¢
= (1, 1) for the probabilities associated with private risk. Conversely, if investor’s

preferences exhibit infinite risk aversion with respect to private risks, the value of the option equals

the lower bound of the no-arbitrage bound (NAL), which assumes values of
¡
pu, pd

¢
= (0, 0) for

the probabilities of private risk.7 Absent any arbitrage opportunities, less extreme risk preferences

7A risk-neutral investor is not willing to pay anything to avoid a given risk. If an investor is more risk-averse

(seeking) than another investor, it would pay more to avoid (take) a given risk than other investor would. That is,

a more risk-averse (seeking) investor assigns a lower (higher) value to an uncertain project than a less risk-averse

(seeking) investor. At the extreme case, if an investor exhibits infinite risk aversion (seeking), it is willing pay any

amount over (below) the guaranteed minimum (maximum) to avoid (take) risk. Hence, an investor with infinite risk
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generate option values within these bounds.

5.2 Risk-Averse Bounds

If investors are risk averse, it is possible to narrow the bounds immediately to an interval that

excludes any attitude deviating from risk-aversion. To see this, consider the case of no risk-

aversion with respect to private risks. The value of the option to defer is easily computed by using

the objective probabilities for private risk (qu, qd) and the risk-neutral probabilities for market risk,

p. An investor who displays risk aversion with respect to private risks and uses the benchmark

pricing kernel puts a value on the option that lies below the value implied by the risk-neutral case

just defined, (qu, qd, p). If the option values lie below, the investor puts a value on the option

that lies between the upper bound defined by the risk-neutral case just defined, (qu, qd, p), and

the lower bound defined by the infinite risk aversion case, (pu = 0, pd = 0, p). Hence, with a

monotonic decreasing pricing kernel and risk aversion, the no-arbitrage upper bound (NAU) can

be replaced by the risk-averse upper bound (RAU) defined by (qu, qd, p), which coincides with the

highest bound for an investor who displays risk-aversion. This bound is easily computed. First,

the values of the “defer investment” and “invest immediately” alternatives are given using (qu, qd,

p):

VD(qu) =
p

1 + rf

µ
quVuu + (1− qu)Vud

1 + rf
− I1

¶
− pI0 (21)

VN(qu,qd) =
pqu (Vuu − Vud)

(1 + rf )
2 +

pVud

(1 + rf )
2 −

I1
1 + rf

− I0

+
(1− p) qd (Vdu − Vdd)

(1 + rf )
2 +

(1− p)Vdd

(1 + rf )
2 . (22)

VD(qu) equals DRAU , and VN(qu,qd) equals NRAU . Thus, the lowest risk-averse bound for the value

of the option to defer becomes:

ORAL = DRAU −NRAU (23)

It is possible to narrow the bounds even further by raising the lower bound from the current

no-arbitrage bound, ONAL, to a new risk-averse bound, ORAL, by considering that some levels of

risk-aversion are implausibly high. Option values computed from risk-adjusted probabilities for

private risk with values close to zero imply that the investor is approximately infinite risk-averse.

It is therefore reasonable to assume that for such investors their risk preferences are far from risk-

neutral, resulting in the exclusion of values derived under risk neutrality. On the other hand, when

aversion (seeking) assigns the value at the lower (higher) bound.

12



the correct risk-adjusted probabilities are close to the objective probabilities, investors are unlikely

to exhibit infinite risk-aversion, and option values associated with very high levels of risk-aversion

can reasonably be rule out from the risk-averse bounds.

5.3 Minimax Bounds

The difficulty is where to draw the line limiting plausible levels of risk-aversion. To do this,

we measure the minimax deviation from the risk preference of the investor. First, computing

the deviations from pu to either 0 (infinite risk-aversion) or qu (risk-neutrality), we choose the

minimum of the two deviations. Assuming that the inequality 0 ≤ pu < qu holds, even if the

underlying preferences that lead to pu are initially misspecified, we set one bound on pu with

the minimum of the two maximum deviations, [(0, pu) , (pu, qu)], based on the intuition that the

minimax deviation indicates a greater confidence on the part of the investor about the correct value

of the project. The minimum of the two maximum deviations gives an indication as to whether

the risk preferences underlying pu are closer to risk neutrality or to infinite risk aversion. Thus, if

qu−pu < pu, the upper bound is qu, otherwise the lower bound is 0. Note that the confidence range

does not provide guidance as to whether the investor is more or less risk-averse than that implied

by the initial estimated parameters. Thus, it is reasonable to take symmetric changes in utility

around pu to allow for the equal likelihood of either higher or lower utility around the benchmark

level, otherwise the benchmark utility level should itself move towards the larger interval of the

two until the two intervals become balanced.

To represent investor’s confidence range, we use minimax deviation eu = min (qu − pu, pu) as

defined in Equation (3) for 0 ≤ pu ≤ qu and eu = min (1− pu, pu − qu ) for qu < pu ≤ 1. This

is then applied to the other bound by maintaining the same level of utility changes. Consider

the case of 0 ≤ pu ≤ qu. If qu − pu < pu, we have eu = qu − pu with the upper bound as qu.

The lower bound is then set at pu − eu∗. The last term eu∗ is obtained by solving Equation (4)

with pu, qu, eu, eu∗ replacing p̂j , qj , e
∗
j , e

∗∗. In this case the risk-averse bounds are (pu − eu∗, qu).

Similarly assuming 0 ≤ pd < qd, the risk-averse bounds for private risks with bad outcome of

market risks are
¡
pd − ed∗, qd

¢
with ed∗ computed by solving Equation (4).8

Using the minimax deviation eu to narrow the option bounds, we turn our attention to risk-

adjusted probabilities. A correct risk-adjusted probability is more likely to lie around the estimated

risk-adjusted probabilities with the parameter values estimated by the investor. The final bounds

8The case with the other inequality qu < pu ≤ 1 and qd < pd ≤ 1 can be considered in a similar way.
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become narrow as the computed risk-adjusted probability moves closer to each extreme. Indeed,

when the computed risk-adjusted probability falls on either extreme, the risk-averse bounds are an

exact point. On the other hand, if the computed risk-adjusted probability equals the mid-point of

(0, qu), our approach cannot narrow the bounds at all.

The idea of minimax deviation is easy to apply. Once the investor obtains the lower bounds for

the “defer investment” alternatives, the lower bounds for the “invest immediately” are similarly

computed as
¡
qd − ed∗, qd + ed

¢
=
¡
qd − ed∗, qd

¢
.

DRAL = VD(pu−eu∗) (24)

NRAL = VN(qu,qd−ed∗) (25)

The risk-averse bounds for the option to defer are obtained as

ORAU = DRAL −NRAL = VD(pu−eu∗) − VN(qu,qd−ed∗) (26)

ORAL = DRAU −NRAU = VD(qu) − VN(qu,qd) (27)

The bounds on the value of the option are narrowed by the use of minimax deviation, eu. From:

ONAU = DNAL −NNAL = VD(0) − VN(qu,0) (28)

ONAL = DNAU −NNAU = VD(1) − VN(qu,1) (29)

and (ORAU , ORAL), the upper bound falls from ONAU , and the lower bound increases from ONAL,

the no-arbitrage bounds:

ORAU ≤ ONAU (30)

ORAL ≥ ONAL (31)

and the value of real option lies in the narrower bounds:

VO ∈ (ORAL, ORAU ) ⊂ (ONAL, ONAU ) (32)

6 Comparison with Alternative Methods

Since the Sharpe ratio approach presented by Cochrane and Saa-Requejo (2000) does not rule

out arbitrage opportunities, we focus the comparison on the gain-loss ratio method suggested

by Bernardo and Ledoit (2000). Although Bernardo and Ledoit mention using a risk-neutral
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benchmark, they recognize the necessity of a benchmark model for precision as in Rubinstein

(1976). The benchmark model would require them to specify a utility function with corresponding

parameter values and then to select an appropriate gain-loss ratio to narrow bounds on the pricing

kernels. However, they select the gain-loss ratio independent of risk preference implied in the

chosen benchmark pricing kernels. The gain-loss ratio is based on the payoffs alone because it is

the expectation of the project’s positive excess payoffs divided by the expectation of its negative

excess payoffs.

The limitation of using a quantity based on payoffs alone to narrow bounds is its potential

conflict on the selected benchmark pricing kernels, which reflect risk-aversion of a utility function.

The bounds constructed by gain-loss ratios could include pricing kernels that imply both risk-

aversion and risk-loving. The consequence is that a risk-averse investor allows pricing kernels

reflecting both risk-aversion and risk-loving, which is an inherent conflict in the gain-loss ratio

method. For example, the method would construct the bounds on the estimated risk-adjusted

probability, pu, as (a, b) using a gain-loss ratio such as 2. When we have an inequality of pu < qu, it

is expected to have any bounds contained in (0, qu) because the other intervals (qu, 1) will represent

risk-loving preference for this pricing kernel. However, the upper bound, b, can be easily greater

than qu and we have an inequality a < pu < qu < b. Then, one sub-interval (a, qu) represents

risk-aversion and the other sub-interval (qu, b) risk-loving, while pu exhibits risk-aversion from a

utility function. Thus, the latter interval (qu, b) violates the implicit assumption in the benchmark

pricing kernels of risk aversion. The case of an inequality, pu > qu, can be similarly argued.

The minimax deviation approach constructs the narrow bounds around pu such as (pu − eu∗, qu) :

pu−eu∗ < pu < qu if pu < qu, including the interval for risk-aversion alone. The minimax deviation

approach is robust in the sense that it does not require any arbitrary quantity such as a Sharpe ra-

tio or a gain-loss ratio. This is consistent with the no-arbitrage principle as opposed to the Sharpe

ratio method; and is easily extended to a dynamic framework as in Cochrane and Saa-Requejo

(2000). Furthermore, it is free from inherent conflicts as opposed to the gain-loss ratio method by

Bernardo and Ledoit (2000).

7 Numerical Example

We use a numerical example to illustrate how the two approaches in the literature are compared

with that by Mello and Pyo (2006) in the case of a real option embedded in a capital budgeting
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problem. The real (as opposed to financial) feature of the option arises from two assumptions: 1)

the realizations of the different risks may not be necessarily independent, and one source of risk

may have an on the range of possible realizations of the other source of risk; and, 2) the investor has

the flexibility to make subsequent investment decisions only after having observed the realization

of the first risk as presented below.

We assign the following values to the variables already defined in the previous part:

rf = 8%; ρ = 10%; I = (I0, I1) = (90, 10) ;

S = (S0, S1) = (S0, (Su, Sd)) = (20, (36, 12)) ;

q1 = (q, 1− q) = (0.5, 0.5) ; q2 =
¡
qu, 1− qu, qd, 1− qd

¢
= (0.5, 0.5, 0.75, 0.25) ;

VMP = (Vuu, Vud, Vdu, Vdd) = (221.40, 199.80, 88.56, 45.36).

We obtain the risk-neutral probability of a high outcome for market risks from the twin security,

p =
1.08× 20− 12
36− 12 = 0.4 (33)

The option to defer has a zero payoff in a high realization of market risk, and some positive

payoffs in the event of a bad outcome for market risk. This is because both alternatives, “Invest

Immediately” and “defer investment”, have the same payoffs under a good outcome of market risk,

but the “invest immediately” alternative incurs losses in case of a bad outcome of market risk.

The option to defer gains from realizing a low outcome of market risks by avoiding investment in

this case. The pricing kernel, m1, corresponds to a high outcome of market risks, while the pricing

kernel, m2, corresponds to a low outcome of market risks and a high outcome of private risks, and

the pricing kernel, m3, to a low outcome of both market risks and private risks. If the benchmark

investor is risk-neutral, we have the following pricing kernel

m1 =
0.4

0.5× 1.082 = 0.685871 ; m2 =
0.6× 0.75
0.375× 1.082 = 1.028807 ; m3 =

0.6× 0.25
0.125× 1.082 = 1.028807

where numerators reflect the risk-neutral probabilities from market risks, which are multiplied by

the probability of private risks. The pricing kernel gives the risk-neutral benchmark investor the

value of option to defer as 19.56,

VO = 0.5× 0.685871 × 0 + 0.375× 1.028807×
³
90 (1.08)2 + 10× 1.08− 88.56

´
+0.125× 1.028807×

³
90 (1.08)2 + 10× 1.08− 45.36

´
= 0× 0.375× 1.028807× 27.216 + 0.125× 1.028807× 70.416 = 19.56 (34)
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7.1 Minimax Bounds

The minimax deviation developed by Mello and Pyo (2006) constructs bounds that are consistent

with risk aversion, even if they do not impose additional restrictions on the pricing kernel. To

illustrate this, consider the utility function given by (6) with (a, b) = (210, 0.6) . From (79),

the risk-adjusted probabilities for private risk are computed as
¡
pu, pd

¢
= (0.4908, 0.7314). The

value of the option to defer is computed with (68) as V ∗O = 19.97, which is also obtained with¡
1− p, pd

¢
= (0.6, 0.7314) as

V ∗O =
0.4× 0
1.082

+
0.6× 0.7314× 27.216

1.082
+
0.6× (1− 0.7314)× 70.416

1.082
= 19.97 (35)

Since qd − pd = 0.75 − 0.7314 = 0.0186 < 0.7314 = pd, we let the minimax deviation be ed∗ =

0.0186, which results in the utility loss of 0.000053406 from the benchmark price. By allowing the

utility gain of 0.000053406 on the other side of the benchmark price, which is computed from the

risk-adjusted probability, 0.7314, we obtain the risk-adjusted probability for the lower bound as

pd − ed∗∗ = 0.7314− 0.0373 = 0.6941.

ORAL =
0.4× 0
1.082

+
0.6× 0.75× 27.216

1.082
+
0.6× 0.25× 70.416

1.082
= 19.56 (36)

ORAU =
0.4× 0
1.082

+
0.6× 0.6941× 27.216

1.082
+
0.6× (1− 0.6941)× 70.416

1.082
= 20.80 (37)

The option risk-averse bounds (19.56, 20.80) are significantly narrower than the no-arbitrage

bounds (14.00, 36.22).

7.2 Good-Deal Bounds with Sharpe Ratio

Since the good deal bounds by Cochrane and Saa-Requejo impose the volatility constraint on the

pricing kernels, we compute pricing kernels corresponding to the upper bound and the lower bound

for the value of the option to defer. The pricing kernel of the lower bound and its volatility, σ (m),

are:

m1 =
0.4

0.5× 1.082 = 0.685871 ; m2 =
0.6× 1

0.375× 1.082 = 1. 371742 ; m3 =
0.6× 0

0.125× 1.082 = 0

E (m) = 0.5× 0.685871 + 0.375× 1. 371742 + 0.125× 0 = 0.857339; σ (m) = 0.453661

The pricing kernel generates the lower bound of the value of the option to defer as

ONAL = 0.5× 0.685871 × 0 + 0.375× 1. 371742 × 27.216 + 0.125× 0× 70.416 = 14.00 (38)
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The pricing kernel of the upper bound and their volatility, σ (m), are:

m1 =
0.4

0.5× 1.082 = 0.685871; m2 =
0.6× 0

0.375× 1.082 = 0; m3 =
0.6× 1

0.125× 1.082 = 4.115226

E (m) = 0.857339; σ (m) = 1.271639

The pricing kernel generates the upper bound of the value of the option to defer as

ONAU = 0.5× 0.685871 × 0 + 0.375× 0 × 27.216 + 0.125× 4.115226× 70.416 = 36.22 (39)

From the two pricing kernels with their volatilities (0.453661, 1.271639), we have the no-arbitrage

bounds (14, 00, 36.22) around the unique price of 19.56 for the risk-neutral benchmark investor.

To illustrate the application of Cochrane and Saa-Requejo to our example, we now compute the

Sharpe ratio of the twin security with market risks alone because the twin security is considered

as a basis asset:

E [X] = 0.5

µ
36− 20
20

¶
+ 0.5

µ
12− 20
20

¶
= 0.2

V ar [X] = 0.5 (0.8− 0.2)2 + 0.5 (−0.4− 0.2)2 = 0.36; σ [X] = (0.36)1/2 = 60%

Sharpe Ratio =
0.2− 0.08
0.6

= 0.2 (40)

The volatility constraint on the pricing kernels with twice the Sharpe ratio from the basis asset is

σ (m) ≤ h

(1 + rf )
2 =

c× Sharpe ratio
(1 + rf )

2 =
2× 0.2
1.082

= 0.342935 (41)

We need to reduce the volatility of the pricing kernel to satisfy the constraint. The first element

of the pricing kernel is fixed because it only reflects market risks, which is determined by the basis

asset. In case of the upper bound, we move m2 upward from 0 and m3 downward from 4.115226,

while maintaining E (m) = 0.857339. The pricing kernel is given as

m1 = 0.685871; m2 = 0.786315; m3 = 1.756280; E (m) = 0.857339; σ (m) = 0.342935

and generates the upper bound, 23.46. Similarly, the pricing kernel for the lower bound is obtained

as

m1 = 0.685871; m2 = 1.271298; m3 = 0.301331; E (m) = 0.857339; σ (m) = 0.342935

and produces the lower bound, 15.61. Thus, the volatility constraint with twice the Sharpe ratio

results in the narrower bounds from (14, 00, 36.22) to (15.61, 23.46) around the risk-neutral price

of 19.56.
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The good-deal bounds do not require a benchmark price and generates loose bounds with a

typical threshold of twice the Sharpe ratio. The problem with these bounds is that the bounds

conflict with a benchmark price, if any, of any risk-averse investor because the Sharpe ratio con-

straint constructs bounds around a risk-neutral benchmark price. From the obtained bounds of

(15.61, 23.46) , one range of (15.61, 19.56) represents risk-loving preference and the other range of

(19.56, 23.46) exhibits risk-averse preference.

7.3 Pricing Bounds with Gain-Loss Ratio

We compute the benchmark pricing kernel from the risk-adjusted probability, 0.7314, of a high

outcome of private risks with a low outcome of market risks computed in the previous part:

m∗1 =
0.4

0.5× 1.082 = 0.685871 ; m∗2 =
0.6× 0.7314
0.375× 1.082 = 1.003292; m∗3 =

0.6× 0.2686
0.125× 1.082 = 1.105350

The benchmark price of the option to defer is computed as

V ∗O = 0.5× 0.685871× 0 + 0.375× 1.003292× 27.216 + 0.125× 1.105350× 70.416 = 19.97

Since the gain-loss ratio is equivalent to the ratio of the maximum and minimum values of the

pricing kernel, we focus on the pricing kernel. As in the previous part, the first element, m1, is

fixed at m1 = 0.685871.

0.5× 0.685871 + 0.375m2 + 0.125m3 =
1

1.082
= 0.857339

0.375m2 + 0.125m3 = 0.514403 and m2,m3 > 0

m3 =
1

0.125
(0.514403− 0.375m2) = 4.115227− 3m2, 0 < m2 < 1.371742 (42)

max
E∗ [ex+]
E∗ [ex−] = min

sup
³
mj/m

∗
j

´
inf
³
mj/m∗j

´ = min
sup (m2/1.003292, (4.115227− 3m2)/1.105350)

inf (m2/1.003292, (4.115227− 3m2)/1.105350)

m2 > 0 subject to
sup (m2/1.003292, (4.115227− 3m2)/1.105350)

inf (m2/1.003292, (4.115227− 3m2)/1.105350)
≤ L (43)

The restriction results in

4.115227

1.101710L+ 3
≤ m2 ≤

3.735307L

1 + 2.723038L
and m3 = 4.115227− 3m2 (44)

If we let L = 1, we have the benchmark pricing kernel and the value of the option to defer,

m2 =
4.115227

1. 106910 + 3
= 1.003295; m3 = 4.115227− 3× 1.003295 = 1.105341

VO = 0.5× 0.685871× 0 + 0.375× 1.003295× 27.216 + 0.125× 1.105341× 70.416 = 19. 97

19



If we let L = 2, we restrict the pricing kernel to be

4.115227

1.101710L+ 3
= 0.790869 ≤ m2 ≤

3.735307L

1 + 2.723038L
= 1.158940 (45)

0.638407 ≤ m3 ≤ 1.742618 (46)

The corresponding narrow bounds are (17.45, 23.41):

OU = 0.5× 0.685871× 0 + 0.375× 0.790869× 27.216 + 0.125× 1.742618× 70.416 = 23.41

OL = 0.5× 0.685871× 0 + 0.375× 1.158940× 27.216 + 0.125× 0.638407× 70.416 = 17. 45

Figure (2) summarizes benchmark prices with alternative bounds obtained as above. The

difficulty of relying on the gain-loss ratio constraint of Bernardo and Ledoit is that it may generate

bounds that are inherently inconsistent with the risk preferences of the decision maker. This is

because the gain-loss ratio constraint does not consider assumptions implied by a benchmark price,

so does not rely on information regarding these preferences from a benchmark price, and bases the

bounds on a value exclusively from the asset payoffs. Setting bounds based on payoffs alone is

more likely to include prices that indicate inconsistent attitudes toward risk. Inside the bounds set

by an L ratio, it is possible to find values that conform in a region with the investor displaying risk

aversion, while in a neighboring region also inside the bounds set by the same L ratio, the values are

consistent with the investor displaying a risk-loving preferences. Such anomalies are less desirable,

and more so when the gain-loss ratio is effectively an individual-specific measure, impossible to

separate from the decision-maker. The same investor cannot be simultaneously risk-averse and

risk-loving with respect to the same project.

When we compare the result with that obtained from the gain-loss ratio of Bernardo and Ledoit,

(17.45, 23.41) with a ratio of L = 2, it becomes clear that their bounds include values that are

not consistent with pricing implications on the benchmark pricing kernel when investors are risk-

averse. Since the benchmark price for the option, 19.97, is obtained using a utility function that

indicates risk-aversion, any consistent bounds must also exhibit risk aversion. The option to defer

has the lowest risk-averse bound at 19.56. Any value below this number implies risk-loving on the

part of the investor. The value of the option to defer comes from avoiding losses associated with

premature implementation of the project. The higher the investor’s risk aversion the greater the

value assigned to these losses. Therefore, in the range of values (17.45, 19.56) , which are possible

with a Bernardo-Ledoit gain-loss ratio of L = 2, the investor exhibits a risk-loving attitude, which

is inconsistent with the economic assumptions embedded in the benchmark price.
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8 Conclusion

Unlike asset pricing in a complete market, it is impossible to compute the unique values of certain

assets using other liquid assets in an incomplete market. Relative pricing formulas typically provide

pricing implications that are too loose to be economically meaningful. To improve precision, we

necessarily specify investors’ risk preferences and rely on arguments about the marginal rate of

substitution for consumption across time and states. The weakness of a preference-based approach

is the restriction imposed on the agents’ attitudes toward risk, which makes it susceptible to

misspecification. The challenge is to achieve a good balance between the level of precision in prices

and the restrictions imposed on the economy.

We apply the minimax deviations approach presented by Mello and Pyo (2006) to preclude

arbitrage opportunities and to improve pricing implications on real options in an incomplete market.

Taking a versatile HARA class utility function, we calibrate a equilibrium framework to compute

benchmark prices and derive minimax bounds on a real option value. We then compare the

minimax deviation approach with the methods developed by Cochrane and Saa-Requejo (2000)

and Bernardo and Ledoit (2000), in the case of a capital budgeting decision with an option to defer

investment. We show that the method of Cochrane and Saa-Requejo compromises the range of

the bounds and risk preference of a benchmark investor, if any. We also show that the method

of Bernardo and Ledoit can give bounds on the value of the option that are inconsistent with the

risk preferences of the decision maker. While current approaches in the literature exogenously

impose threshold restrictions on the values to obtain narrower bounds, Mello and Pyo (2006) uses

information inherent to the investor’s risk preference on the initial parameter estimation to compute

narrower bounds, which are tight and consistent with risk preference implied in a benchmark price.

Real options, perhaps more than other risky assets, have features that test the preference-free

relative pricing approach. Often, the event on which the option payoff depends is not a traded

asset. Thin trading of real assets may also make it impossible to hedge. The key question is

then how to deal with private risk factors that can significantly impact the value of the option.

While current approaches in the literature exogenously impose restrictions on the values to obtain

narrower bounds, we illustrate that Mello and Pyo (2006) extracts additional information from the

investor’s confidence on the initial parameter estimation to compute narrower bounds.
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A Real Option Values in a Preference-Based Approach

The expected utility of not investing (or rejecting) the project, E [UR], is given by:

E [UR] = qUu
R + (1− q)Ud

R

where

UM
R =

1

b− 1

⎡⎣(a− b [xk + Syk])
1− 1

b + a1−
1
b +

Ã
a+ b

(1 + rf )
2 xk + SMyk (1 + rf )

(1 + ρ)2

!1− 1
b

⎤⎦
E [UR] =

q

b− 1 (A
u
R)
1− 1

b +
(a− bxR − bSyR)

1−1
b + a1−

1
b

b− 1 +
1− q

b− 1
³
Ad
R

´1− 1
b

(47)

where

AM
R = a+ b

(1 + rf )
2 xR + SM (1 + rf ) yR

(1 + ρ)2
(48)

for M ∈ {u, d}. The maximum expected utility, U∗R, results from choosing the optimal amounts xR

and yR :

U∗R = max
(xR,yR)

E [UR] (49)

subject to the positivity conditions. The constrained maximization problem is solved by applying

the Kuhn-Tucker theorem, given that the expected utility function is concave, and the constraints

are convex functions of xR and yR.

The derivatives of the expected utility are

∂E [UR]

∂xR
=

(1 + rf )
2

(1 + ρ)2

µ
q (Au

R)
−1
b + (1− q)

³
Ad
R

´− 1
b

¶
− (a− b [xR + SyR])

− 1
b = 0

∂E [UR]

∂yR
=

1 + rf

(1 + ρ)2

µ
qSu (A

u
R)
− 1
b + (1− q)Sd

³
Ad
R

´−1
b

¶
− S (a− b [xR + SyR])

− 1
b = 0

From these equations, and using the expressions above for Au
R and Ad

R, we solve for the values

of xR and yR that maximize the expected utility E∗ [UR] :

x∗R = −
A1
A2
+A3 × (A2 ×A4 −A1 ×A5)

A2 × (−A3 ×A5 +A2 ×A6)
(50)

y∗R =
A2 ×A4 +A1 ×A5
−A3 ×A5 +A2 ×A6

(51)

where

An =
(1 + rf ) a

I{n=1,4}bI{n=2,3,5,6}S
I{n=3}
u S

I{n=6}
d

(1 + ρ)2
+ (−a)I{n=1} bI{n=2,3}SI{n=3,6}

×
"

(1 + r)2

(1 + rf )
2 (Su − Sd)

µ
S (1 + rf )− Sd

q

¶I{n=1,2,3}
µ
Su − S (1 + rf )

1− q

¶I{n=4,5,6}
#−b

n = 1, 2, ..., 6
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In the expression above, I{n=1,4} is the indicator function of the events {n = 1, 4}, i.e., I{n=1, 4}
is 1 if the event {n = 1 or 4} occurs; otherwise it is 0. Plugging the values x∗R and y∗R into (47)

gives:

U∗R =
q

b− 1 (A
u
R)
1− 1

b +
(a− bx∗R − bSy∗R)

1−1
b + a1−

1
b

b− 1 +
1− q

b− 1
³
Ad
R

´1− 1
b

(52)

Next, we evaluate the alternatives of investing I0 in the project at time 0 and I1 at time 1 —

the “invest immediately” alternative and of investing all I0(1 + rf ) + I1 at time 1 — the “defer

investment” alternative.

The expected utility is:

E [Uk] = qquUuu
N + q (1− qu)Uud

N + (1− q) qdUdu
N + (1− q)

³
1− qd

´
Udd
N (53)

in the case of the “invest immediately”, the state contingent utilities are:

UMP
N =

(a− b [I0 + xN + SyN + VN ])
1− 1

b

b− 1 +
1

b− 1

µ
a− bI1

1 + ρ

¶1−1
b

+
AMP
N

b− 1 (54)

where

AMP
N =

Ã
a+ b

VMP + (1 + rf )
2 xN + SM (1 + rf ) yN

(1 + ρ)2

!1− 1
b

(55)

M,P ∈ {u, d}

The expected utility of the “invest immediately” is then

E [UN ] =
1

b− 1

Ã
(a− b [I0 + xN + SyN + VN ])

1− 1
b +

µ
a− bI1

1 + r

¶1−1
b

+ J

!
(56)

where

J = qqu (Auu
N )

1−1
b + q (1− qu)

³
Aud
N

´1− 1
b

+(1− q) qd
³
Adu
N

´1−1
b
+ (1− q)

³
1− qd

´³
Add
N

´1− 1
b (57)

The maximized expected utility is:

U∗N = max
(xN ,yN )

E [UN ] (58)

subject to the positivity conditions. It is solved by choosing the appropriate quantities for xN and

yN . The value of investing immediately in the project can be computed as the maximum amount
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of money, V ∗N , that the investor is willing to pay and still be left it with the same level of utility

as when it decides to reject the project:

V ∗N = VN such that U∗N = U∗R (59)

From (56) and solving for V ∗N gives

V ∗N =
a

b
− (I0 + xN + SyN)−

1

b

Ã
(b− 1)U∗R −

µ
a− bI1

1 + ρ

¶1−1
b

− J

! b
b−1

(60)

Next we consider deferring investing I0 until time 1, when I0(1 + rf ) + I1 is either invested or

not. The state-contingent utilities are

UMP
D =

1

b− 1 (a− b [I0 + xD + SyD + VD])
1− 1

b

+
1

b− 1

"
I{M=u}

µ
a− b

I1
1 + ρ

¶1− 1
b

+
¡
AMP
D

¢1−1
b

#
(61)

where

AMP
D = a+

b
³
I{M=u}V

MP +
¡
I{M=d}I0 + xD

¢
(1 + rf )

2 + yD (1 + rf )SM

´
(1 + ρ)2

(62)

And after simplification, the expected utility (53) under the “defer investment” alternative is:

E [UD] =
1

b− 1 (a− b [I0 + xD + SyD + VD])
1−1

b +
q

b− 1

µ
a− b

I1
1 + ρ

¶1− 1
b

(63)

+
qqu

b− 1 (A
uu
D )

1−1
b +

q (1− qu)

b− 1
³
Aud
D

´1−1
b
+
(1− q)

b− 1
³
Adu
D

´1−1
b

The maximum expected utility, U∗D, under the deferring investment alternative is given as

U∗D = max
(xD,yD)

E [UD] (64)

subject to the positivity conditions. It is solved by choosing the appropriate amounts xD and yD.

The value of the “defer investment” alternative is the maximum amount of money, V ∗D, that the

investor is willing to pay and still be left with the same level of utility of not investing in the

project.

Thus, the project value, V ∗D, for the “defer investment” alternative’ is

V ∗D = VD such that U∗D = U∗R (65)

From (63) and solving for V ∗D yields,

V ∗D =
a

b
− (I0 + xD + SyD)−

1

b
D

b
b−1
D (66)
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where

DD = (b− 1)U∗R − q

µ
a− b

I1
1 + ρ

¶1−1
b

− qqu (Auu
D )

1− 1
b

−q (1− qu)
³
Aud
D

´1−1
b − (1− q)

³
Ad
D

´1− 1
b (67)

From the values of investing in the project immediately, VN , and investing later, VD, it is

possible to determine the value of the option to defer, V ∗O = V ∗D − V ∗N :

V ∗O = xN − xD + S (yN − yD)

−1
b

⎡⎣D b
b−1
D +

Ã
(b− 1)U∗R −

µ
a− bI1

1 + ρ

¶1− 1
b

− J

! b
b−1
⎤⎦ (68)

B Risk-Adjusted Probabilities in Incomplete Markets

The risk-adjusted probabilities associated with private risks are determined by equating the value of

the investment decision at time 1, after market risk has been realized, to the discounted expectation

of the payoffs at time 2, after private risk has been realized:

Vu + I1 =
Vuup

u + Vud (1− pu)

1 + rf
(69)

and solving for the risk-adjusted probability of a good outcome from private risk conditional on a

good outcome from market risk, pu, gives:

pu =
(Vu + I1) (1 + rf )− Vud

Vuu − Vud
(70)

To compute pu, Vu needs to be known. When the action is to defer investment, with value V ∗D,

I0 is set aside until time 1. If at time 1 the outcome for market risk is high, which happens with

risk-neutral probability p, the value of the project is Vu given an implicit investment of I0 (1 + rf ),

and before an investment of I1 is made. If the outcome for market risk is low, the best course of

action is not to implement the project. Consequently:

V ∗D =
p[Vu − (1 + rf ) I0]

1 + rf
(71)

Solving for Vu gives:

Vu =
(1 + rf ) (V

∗
D + pI0)

p
(72)
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Substituting (72) into (70) and using (71) above yields:

pu =
1 + rf

Vuu − Vud

∙
(1 + rf ) (V

∗
D + pI0)

p
+ I1

¸
− Vud

Vuu − Vud

=
(1 + rf )

2

(Vuu − Vud) p

µ
a

b
− xD − SyD −

1

b
D

b
b−1
D − (1− p) I0

¶
+
(1 + rf ) I1 − Vud

Vuu − Vud

=
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(Vuu − Vud)

∙
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p

φ− (1 + rf ) (1− p) I0
p

+ I1

¸
− Vud

Vuu − Vud

=
(1 + rf ) (Zu + I1)− Vud

Vuu − Vud
(73)

where

Zu =
1 + rf

p
φ− (1 + rf ) (1− p) I0

p
=
1 + rf
p

[φ− (1− p) I0] (74)

φ =
a

b
− xD − SyD −

1

b
D

b
b−1
D (75)

and DD is given in (67).

The same procedure can be used to find the risk-adjusted probability of realizing a good outcome

from private risk, conditional on a bad outcome from market risk, pd. From

Vd + I1 =
Vdup

d + Vdd
¡
1− pd

¢
1 + rf

(76)

we get

pd =
(Vd + I1) (1 + rf )− Vdd

Vdu − Vdd
(77)

where pd depends on an intermediate value of the project, at time 1, when the outcome of the

market risk is low, Vd. To get this value we use the expression that equates the discounted value

of the project at time 1, to the value of the “invest immediately” alternative plus the investment

necessary at time 0, I0:

V ∗N + I0 =
pVu + (1− p)Vd

1 + rf
(78)

Using (72) and (60), we can solve for Vd . Substituting in (77) yields:

pd =
(1 + rf )

Vdu − Vdd

∙
(1 + rf ) (V

∗
N − V ∗D + I0)

1− p
+ I1

¸
− Vdd

Vdu − Vdd

=
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2
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¸
+
(1 + rf )
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ψ + (1 + rf ) I0 + I1

¸
− Vdd

Vdu − Vdd

=
(1 + rf ) (Zd + I1)− Vdd

Vdu − Vdd
(79)
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where

Zd =
1 + rf
1− p

ψ − (1 + rf ) I0 =
1 + rf
1− p

[ψ − (1− p) I0] (80)

ψ = −1
b

Ã
(b− 1)U∗R −

µ
a− bI1

1 + ρ

¶1−1
b

− J

! b
b−1

+ xD − xN + S (yD − yN ) +
1

b
D

b
b−1
D

and DD is given in (67), and J in (57).
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Table 1: Changes in risk-neutral probabilities over changes in Absolute Risk Aversion (ARA)
qu = 0.1 qu = 0.3 qu = 0.5 qu = 0.7 qu = 0.9
(ARA, pu) (ARA, pu) (ARA, pu) (ARA, pu) (ARA, pu)

(0.01928, 0.0956) (0.01925, 0.2894) (0.01922, 0.4871) (0.01919, 0.6889) (0.01916, 0.8951)
(0.01171, 0.0973) (0.01169, 0.2935) (0.01168, 0.4922) (0.01167, 0.6934) (0.01166, 0.8971)
(0.00841, 0.0980) (0.00840, 0.2954) (0.00840, 0.4944) (0.00839, 0.6953) (0.00838, 0.8979)
(0.00656, 0.0985) (0.00656, 0.2964) (0.00655, 0.4957) (0.00655, 0.6963) (0.00654, 0.8984)
(0.00538, 0.0987) (0.00537, 0.2970) (0.00537, 0.4964) (0.00537, 0.6970) (0.00537, 0.8987)
(0.00456, 0.0989) (0.00455, 0.2975) (0.00455, 0.4970) (0.00455, 0.6975) (0.00455, 0.8989)
For a given level of objective probabilities (qu) of a good outcome with respect to private risks, the pairs,
(ARA, pu) of absolute risk aversion and the corresponding risk-adjusted probability of a good outcome,
are computed using the parameter values: a = (150, 250, 350, 450, 550, 650) and b = 0.6.
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Figure 1: Changes in risk-adjusted probabilities relative to changes in absolute risk aversion.
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Figure 2: Benchmark prices with alternative bounds.
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