
An Analysis of the True Notional Bond System
Applied to the CBOT T-Bond Futures�y

Ramzi Ben Abdallahz

HEC Montréal, Canada

Michèle Breton
CREF and GERAD, HEC Montréal, Canada

June 3, 2007

Abstract

The main purpose of this paper is to apply the True Notional Bond
System (TNBS) proposed by Oviedo (2006) for the theoretical pric-
ing of the Chicago Board of Trade Treasury-bond futures, one of the
most traded derivatives in the world. This system is proposed as an
alternative to the current conversion factor system (CFS), whose poor
performance is well known. In this paper, we price the CBOT T-
bond futures as well as all its embedded delivery options and compare
the corresponding results under the CFS in a stochastic interest rate
framework. Our pricing procedure is an adaptation of the Dynamic
Programming (DP) algorithm described in Ben-Abdallah et al. (2006),
giving the value of the futures contract under the TNBS as a function
of time and current short-term interest rate. Numerical illustrations,
provided under the Vacisek and CIR models, show that the TNBS re-
duces dramatically the value of all the delivery options embedded in
the CBOT T-bond futures.
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1 Introduction

A futures contract is an agreement between two investors traded on an ex-
change to sell or to buy an underlying asset at some given time in the future,
called the delivery date, for a given price, called the futures price. By con-
vention, at the time the futures is written (the inception date), the futures
price is known and sets the value for both parties to zero. A futures contract
is marked to market once a day to eliminate counterparty risk. Precisely,
at the end of each trading day, the futures contract is rewritten at a new
settlement price, that is, the closing futures price, and the di¤erence with
the last settlement futures price is substracted (resp. added) from the short
(resp. long) trader account.

The Treasury Bond futures traded on the Chicago Board of Trade (the
CBOT T-bond futures in the sequel) is the most actively traded and widely
used futures contract in the United States, largely because of its ability to
hedge long term interest rate risk. It calls for the delivery of $100,000 of
a long-term governmental bond. The notional or reference bond is a bond
with a 6% coupon rate and a maturity of 20 years. Delivery months are
March, June, September and December.

Since the notional bond is a hypothetical bond that is generally not
traded in the market place, the short has the option to choose which bond
to deliver among a deliverable set �xed by the CBOT. The actual delivery
day within the delivery month is also at the option of the short. These
two delivery privileges o¤ered to the short trader are known as the choosing
option (or quality option) and the timing option.

The choosing option allows the delivery of any governmental bond with
at least 15 years to maturity or earliest call. To make the delivery fair for
both parties, the price received by the short trader is adjusted according
to the quality of the T-bond delivered. This adjustment is made via a set
of conversion factors de�ned by the CBOT as the prices of the eligible T-
bonds at the �rst delivery date under the assumption that interest rates
for all maturities equal 6% par annum, compounded semiannually. The T-
bond actually delivered by the short trader is called the cheapest-to-deliver
(CTD).

The timing option allows the short trader to deliver early within a deliv-
ery month according to special features, that is, the delivery sequence and
the end-of-month delivery rule. The delivery sequence consists of three con-
secutive business days: The position day, the notice day, and the delivery
day. During the position day, the short trader can declare his intention to
deliver until up to 8:00 p.m., while the CBOT closes at 2:00 p.m. (Central
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Standard Time). On the notice day, the short trader has until 5:00 p.m.
to state which T-bond will be actually delivered. The delivery then takes
place before 10:00 a.m. of the delivery day, against a payment based on the
settlement price of the position day (adjusted according to the conversion
factor). Finally, during the last seven business days before maturity, trad-
ing on the T-bond futures contracts stops while delivery, based on the last
settlement price, remains possible according to the delivery sequence. The
so-called wild card play (or end-of-the day option or six hours option) and
the end-of-month option refer respectively to the timing option during the
three day delivery sequence and to the end-of-month rule.

The modeling and measurement of the delivery options implicit in T-
bond futures contracts has been extensively examined in the literature. In
particular, the issue of the poor performance of the current conversion factor
system (which is directly related to the value of the quality option) has
been the subject of a substantial volume of research (see for instance Kane
and Marcus (1984,1986), Jones (1985), Arak et al. (1986), Johnston and
McConnel (1989) and Schulte and Violi (2001)). More recently, Oviedo
(2006) proposes an alternative method for computing futures invoice prices
called the True Notional Bond System (TNBS) aiming to improve the design
of the T-bond futures by better achieving the objective of delivering same
quality bonds. The author performs an empirical comparison of the losses
resulting from delivering alternative bonds (other than the CTD) computed
for each of the systems (the CFS and the TNBS). His results show that the
average loss in the CFS is more than twice the one of the TNBS. However,
the paper does not take into account all the special delivery features of the
T-bond futures, namely the delivery sequence and the end-of-the month rule.

The main purpose of this paper is to obtain precise values of the quality
and timing options under the TNBS and compare them with the correspond-
ing under the CFS, in a stochastic interest rate framework. We assume that
this rate moves according to a Markov di¤usion process that is consistent
with the no-arbitrage principle. Our pricing procedure is an adaptation of
the Dynamic Programming (DP) algorithm described in Ben-Abdallah et
al. (2006), giving the value of the futures contract under the TNBS as a
function of time and current short-term interest rate.

The paper is organized as follows. In section 2, we �rst give a general
description of the TNBS and then present the pricing model and the DP
formulation for the value of the contract. Section 3 describes in details
the numerical procedure. In section 4, we report on some numerical re-
sults obtained under the Vasicek (1977) and Cox, Ingersoll and Ross (1985)
(hereafter CIR) models for the short rate process. Section 5 is a conclusion.
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2 Model and DP formulation

2.1 Notation

We consider frictionless cash and T-bond futures markets in which trading
takes place continuously. Denote

� (c;M) 2 � an eligible T-bond with a principal of 1 dollar, a continuous
coupon rate c, and a maturity M , where the set � of eligible bonds is
known at the date the contract is written;

� frtg a Markov process for the risk-free short-term interest rate;

� �(r; t; �) the price at t of a zero-coupon bond maturing at � � t when
rt = r under the process frtg

�(r; t; �) = E

�
exp(�

Z �

t
rudu) j rt = r

�
; (1)

� p (t; c;M; r) the price at t of the eligible T-bond (c;M) when rt = r;

p (t; c;M; r) = c

Z M

t
�(r; t; u)du+ �(r; t;M):

2.2 A general description of the True Notional Bond System

We recall here the description of the TNBS as proposed by Oviedo (2006).
This system relies on the criterion of closeness of the futures invoice prices
to spot market prices at expiration. In the TNBS, the futures invoice price
is set as the present value of the remaining cash �ows of the bond to be
delivered, discounted at the yield to maturity implied by the settlement
price.

In the TNBS, upon delivery, if the level of interest rates is rt = r, the
futures invoice price of the bond (c;M) is computed in two steps.

First, given the futures settlement price g� for the T-bond futures at t,
one can compute the yield to maturity of the notional bond, denoted here
by rB, that makes its price equal to g�, that is

g� = p
�
t; 6%; 20; rB

�
: (2)

Second, once the yield to maturity of the notional bond rB is com-
puted, the futures invoice price of the bond (c;M) is obtained by simply

4



using this rate to discount its cash �ows, that is, the futures invoice price is
p
�
t; c;M; rB

�
:

The CFS and the TNBS use the same inputs to compute the futures
invoice price, namely the settlement futures price as well as the characteris-
tics of the bond to be delivered. However, the functional form of the futures
invoice price in the TNBS makes all the deliverable bonds equal for any level
of �at yield curves, while in the CFS this is only achieved for the speci�c
level of 6%.

2.3 Dynamic Programming formulation

To be consistent with the CBOT delivery rules, we consider a sequence of
motoring dates thm where the lower index m = 0; :::; n is computed in days
from the date the contract is written and the upper index h 2 f2; 5; 8g
indicates the time in hours within that day. Assuming that the contract
is written at t0 = t20; we denote the marking to market dates by t

2
m for

m = 0; : : : ; n, where tn represents the last trading date during the delivery
month. We denote the delivery position dates by t8m for m = n; : : : ; n,
where tn and tn are respectively the �rst and the last date of the delivery
month, 0 < n < n < n. Finally, the delivery notice dates are denoted t5m for
m = n+ 1; : : : ; n+ 1.

Since under the TNBS equation (2) de�nes an equivalence between the
settlement futures price and the implied yield rB, we use this yield as a state
variable. Our dynamic program is de�ned on the state space f(r; rB) : r � 0;
rB � 0g and determines the value of the contract for the short trader at
each monitoring date, as a function of the spot interest rate at the current
date and the yield to maturity of the notional bond as implied by the last
settlement price, assuming that the short trader behaves optimally. A fair
settlement price makes the value of the contract null for both parties at the
settlement dates.

The contract is evaluated by backward recursion in three distinct periods:
The end-of-the-month period, where no trading takes place, but delivery is
still possible (m = n; :::; n), the beginning of the delivery month where
trading and delivery are both possible (m = n; :::; n), and the period before
the delivery month, where no action is taken by the short trader, but the
settlement price is adjusted every day (m = 0; :::; n).
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2.3.1 End-of-the-month Period

The expected exercise value vem
�
r; rB

�
at the delivery position date t8m and

the actual exercise value vam
�
r; rB

�
for the short trader, for m = n; :::; n, are

functions of the interest rate at the current date r, and the yield to maturity
of the notional bond rB as implied by the last settlement price. These values
are expressed as follows:

vem
�
r; rB

�
= E

" 
vam

�
rt5m+1 ; r

B
�
e
�
R t5m+1
t8m

rudu

!
j rt8m = r

#
, (3)

vam
�
r; rB

�
= max
(c;M)2�

�
p
�
t5m+1; c;M; r

B
�
� p

�
t5m+1; c;M; r

�	
. (4)

Otherwise, if the short trader decides not to deliver at t8m, for m =
n; :::; n, the holding value vhm

�
r; rB

�
is computed by no-arbitrage to be the

expected value of the future potentialities of the contract and given by (6) be-
low. The short trader will of course issue an intention to deliver at

�
t8m; r; r

B
�

if and only if
vem(r; r

B) > vhm(r; r
B).

The value function for the short trader at t8m, form = n; :::; n; is thus de�ned
recursively by:

v8m
�
r; rB

�
= max

n
vem
�
r; rB

�
; vhm

�
r; rB

�o
; (5)

vhm
�
r; rB

�
= E

"
v8m+1

�
rt8m+1 ; r

B
�
e
�
R t8m+1
t8m

rudu j rt8m = r
#
; (6)

v8n
�
r; rB

�
= ven

�
r; rB

�
; (7)

and the settlement value for the short trader at (t2m0 ; rt2
m0
; rB) is the expected

discounted value at t8m0 :

v2m0
�
r; rB

�
= E

24v8m0

�
rt8
m0
; rB

�
e
�
R t8
m0

t2
m0

rudu
j rt2

m0
= r

35 ; (8)

where m0 = n.
The fair settlement price g�t2n (r) at t

2
n should be selected so that the value

to both parties is 0, taking into account the timing and quality options. To
do so, the rate r� is selected such that v2n (r; r

�) = 0 for all r, thus obtaining
a function r� (r) at t2n and the fair settlement price g

�
t2n
(r) at t2n is the price

of the notional bond (6%; 20) when its cash �ows are discounted at the rate
r�.
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2.3.2 Delivery Month

During the delivery month, the exercise value functions vem
�
r; rB

�
and vam

�
r; rB

�
at respectively t8m and t5m, for m = n; :::; n � 1 remain the same as in the
end-of-the-month period and are given by (3)-(4), while the holding value
at t8m accounts for the interim payment at the next marking-to-market date,
that is,

vhm
�
r; rB

�
= E

"�
p
�
t2m; 6%; 20; r

B
�
� g�m+1

�
rt2m+1

��
e
�
R t2m+1
t8m

rudu

+ v2m+1

�
rt2m+1

�
e
�
R t2m+1
t8m

rudu j rt8m = r
#

= E

"�
p
�
t2m; 6%; 20; r

B
�
� g�m+1

�
rt2m+1

��
e
�
R t2m+1
t8m

rudu j rt8m = r
#
.

(9)

The value function at t8m and t2m is then given by (5) and by (8), with
m0 = m.

2.3.3 Initial Period

Within the time period
h
t0; t

2
n�1

i
, delivery is not possible, so that the value

of the contract for the short trader only involves taking into account the
interim payments in the marking to market account. The value function at
t2m, for m = 0; :::; n� 1, is thus given by

v2m(r) = E

"�
gm(r)� g�m+1

�
rt2m+1

��
e
�
R t2m+1
t2m

rudu j rt2m = r
#
:

Therefore, the successive settlement prices can be obtained by the recursive
relation

g�m (r) =

E

"
g�m+1

�
rt2m+1

�
e
�
R t2m+1
t2m

rudu j rt2m = r
#

�(r; t2m; t
2
m+1)

for all r; m = 0; :::; n�1:

(10)
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3 The Dynamic Programming procedure

Equations (3)-(10) de�ne a dynamic program which can be used to �nd
the fair settlement prices and the optimal timing and choosing strategies
for the short trader by backward induction. In this section, we describe a
numerical procedure to solve this dynamic program which does not admit
a closed-form solution, even for the most simple case where the interest
rate for all maturities is assumed to be constant. Two speci�c numerical
problems must be addressed.

First, the optimization in (4) which consists in �nding the CTD by solv-
ing the following expression at t5m+1

max
(c;M)2�

��
c

Z M

t
�
�
rB; t; u

�
du+ �

�
rB; t;M

��
�
�
c

Z M

t
� (r; t; u) du+ � (r; t;M)

��
:

It is important to mention here that it can be easily shown that the
optimal coupon is extremal and given by either c � min c whenever the
short-term interest rate is less than the yield to maturity of the notional
bond or c � max c in the opposite case. Since the set of eligible bonds is
�xed, an intelligent enumeration of eligible bonds with extremal coupons
will yield the optimal maturity and the value of vam

�
r; rB

�
.

The second problem is the computation of the expectations in (3), (6),
(8), (9) and (10) of functions which are analytically intractable. To solve
it, we compute expectations of linear �nite elements interpolation functions
over a �nite discretization grid.

Let G = fa1; : : : ; aqg be a grid de�ned on the set of interest rates, with
the convention that a0 = �1 and aq+1 = +1. Given a function h : G ! R,
the interpolation function bh : R! R is given by:

bh (r) = qX
i=0

(�i + �ir) I (ai � r < ai+1) , for all r 2 R,

where the function I is the indicator function and the coe¢ cients �i and �i
are obtained by matching bh and h on G, that is

�i =
ai+1h(ai)� aih(ai+1)

ai+1 � ai
;

�i =
h(ai+1)� h(ai)
ai+1 � ai

; i = 1; :::q � 1;
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and �0 = �1; �0 = �1; �q = �q�1; �q = �q�1.

The expected value at t and rt = ak of a future payo¤ bh at � is then
given by:

eh (t; � ; ak) � E hbh (r� ) e� R �t rudu j rt = aki
= E

"
qX
i=0

(�i + �ir� ) I (ai � r� < ai+1) e�
R �
t rudu j rt = ak

#

=

qX
i=0

�iA
��t
k;i + �iB

��t
k;i for all ak 2 G,

where A��tk;i and B
��t
k;i are de�ned as the transition parameters and given by

the following expressions:

A��tk;i � E
h
I (ai � r� < ai+1) e�

R �
t rudu j rt = ak

i
(11)

and
B��tk;i � E

h
r�I (ai � r� < ai+1) e�

R �
t rudu j rt = ak

i
, (12)

where t0 � t � � , k = 0; : : : ; q, and i = 0; : : : ; q.
We assume that these transition parameters and the discount factor

�(r; t; �) can be obtained with precision from the dynamics of frt, t � t0g.
Notice that for several dynamics of the interest rates, closed-form solutions
exist for the transition parameters and discount factor, as discussed in Ben-
Ameur et al (2007). Examples include Vasicek (1977), CIR (1985), and Hull
and White (1990). Closed form formulas for the transition parameters and
discount factor for the Vasicek and in the CIR model are recalled in the
Appendix.

The algorithm consists in solving the dynamic program (3)-(10) by back-
ward induction from the last delivery position date t8n on the grid G, which
is the grid used for both the spot interest rate and the yield to maturity of
the notional bond.

We start by �nding the CTD and the actual exercise values for the
short trader at the notice dates on all the points of G � G, that is, for all
possible interest rates and for all possible futures prices represented by the
yield to maturity of the notional bond. We obtain, on each point of the
interest rates grid, a vector of actual exercise values associated to the grid
of yields to maturity rB. For each yield to maturity, a linear interpolation
yields a continuous function of the interest rate. The expected exercise
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values are then obtained at the position date. These are compared with
the holding values, which are known on the two-dimensional grid points.
The optimal value function at the notice date is then interpolated and the
expectation is computed between either two successive notice dates (during
the end-of-the-month period) or the last settlement and current notice dates
(during the delivery month). This yields the value for the short trader at the
settlement date as a function of the interest rate and the yield to maturity
of the notional bond, which is null for a fair settlement price. At every
settlement date, a simple research on the grid of rB�s for a given interest
rate yields the yield to maturity of the notional bond r�(r) that makes the
settlement value null for that interest rate. This optimal rate is then used
to discount the notional bond�s cash �ows, thus obtaining the fair futures
price for all interest rates. These are then interpolated, and their expected
values computed, in order to compute the holding value.

The detailed algorithm is provided in the Appendix.

4 Numerical Illustration

In our numerical experiments, the �nite set of deliverable bonds contains
62 bonds with maturity ranging from 15 to 30 years in steps of 6 months.
Since only the bonds with extremal coupon rates are optimal to deliver,
we consider only two coupon rates corresponding to the highest and lowest
coupon rates in the current CBOT set of deliverable bonds, namely c =
7:625% and c = 4:5%. The inception date is chosen to be three months
prior to the �rst day of the delivery month.

We apply our dynamic programming procedure to obtain futures prices
at the inception date under both the Vasicek and CIR term structure models,
using the closed-form formulas (13)-(15) or (16)-(18) for the discount factor
and transition parameters. Table 1 below gives the (risk neutral) parameter
values used in the numerical experiments, where r is the long-term mean, �
is the mean reversion speed and � is the volatility of the short-term interest
rate. These parameters are those of Shoji and Osaki (1996) who estimate
these models using the 1-month U.S. Treasury Bill rate over the period
1964-1992.
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Table 1: Input data
Vasicek CIR

r 0.062098 0.061677
� 0.565888 0.545788
� 0.025416 0.091471

The interest rates grid points a1; :::; aq are selected to be equally spaced
with a0 = �1, a1 = r � 8d, aq = r + 8d for the Vasicek model, while
a1 = max(0; r � 8d) and aq = r + 8d for the CIR model where d =q

�2

2� (1� exp(�0:5�)) for the Vasicek model and

d =
q
r �

2

� (exp(�0:25�)� exp(�0:5�)) + r
�2

2� (1� exp(�0:25�))2 for the CIR
model. The number of grid points is 600.

We �rst give the precise de�nition adopted here for the timing option.
In fact, de�nitions of implicit delivery options are not uniform throughout
the literature and one must be cautious in comparing results across studies.
In this paper, the timing option gives the short trader the right to deliver
on any day during the delivery month. The delivery month is divided into
two periods; in the �rst 15 business days, the futures market is open, while
in the last 7 business days, it is closed.

We disentangle the individual e¤ects of each implicit option by pricing
various futures contracts embedding di¤erent combinations of these options.
We thus price four di¤erent futures contracts, namely the straight futures
contract (F1) (o¤ering no options at all which corresponds to the case where
the short declares his intention to deliver on the �rst position day and is
allowed to deliver only one bond assumed here to be the notional bond),
the contract o¤ering the quality option alone (F2) (without timing option),
the contract o¤ering only the timing option (F3) and the full contract (F4)
(o¤ering all the embedded delivery options). The computation of these four
prices allows us to price each option alone as well as in the presence of the
other option. For instance, the value of the quality option in the presence
of the timing option is computed as the di¤erence (F3)-(F4) between the
price of the contract o¤ering to the seller only the timing option and the
full contract. Similarly, the di¤erence (F1)-(F2) is the value of the quality
option without timing, (F1)-(F3) is the value of the timing option without
quality and �nally (F2)-(F4) is the value of the timing option when the
quality option is o¤ered to the short trader1. The price of all the embedded

1 It is important to mention here that the way we price the timing option allows us to
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options is obtained by comparing the price of the straight contract with the
price of the contract with all embedded options.

4.1 Option Prices

We now report the prices of the quality and timing options at the inception
date for levels of interest rates ranging from 1% to 16%. Parameter values
are those given in Table 1.

Figure 1 compares the values of the embedded quality option (with and
without the timing option) as a function of the interest rate for the Vasicek
and CIR dynamics.

Figure 1: Quality option values vs interest rates

Without the timing option, the quality option is worth an average 0.0374
percentage points of par (ppp) for the Vasicek model while this value is
0.0346 ppp for the CIR model. When the timing option is embedded in the
contract, we notice a considerable increase in the value of the quality option
which is worth an average 0.0663 ppp (Vasicek) and 0.0615 ppp (CIR). The
fact that the quality option is more valuable in the presence of the timing
option is due to switches in the cheapest-to-deliver bond that could occur
during the delivery month. We can also notice from Figure 1 that the
shape of the curve representing the quality option with respect to interest
rates is di¤erent for the two interest rate models considered here (downward
sloping for Vasicek and humped for CIR). This shape depends essentially on

value the option to deliver late in the delivery month. Some other papers in the literature
assume that delivery is only possible on the last day of the delivery month and thus de�ne
the timing option as the option to deliver early in the month.
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the convexity of the cheapest-to-deliver bonds (corresponding to di¤erent
levels of interest rates) with respect to the notional bond. Furthermore, we
observe, for both models, that the presence of the timing option has no big
impact on the value of the quality option for high levels of interest rates.

In Figure 2, we report on the evolution, during the delivery month, of
the quality option values under both the Vasicek and the CIR dynamics.
We observe that the quality option does not have a speci�c relation with
respect to time to maturity. In fact, we can see for the CIR dynamic that
the relation of the quality option with elapsed time is decreasing for low
interest rates, increasing for higher levels, while the curve is �at for very
high interest rates.

Figure 2: Evolution of the value of the quality option through the delivery
month

Figure 3 plots the value of the timing option (with and without the
quality option) for both dynamics considered here.

13



Figure 3: Timing option values vs interest rates

Without the quality option, the timing option is worth an average 0.0583
ppp (Vasicek) and 0.0804 ppp (CIR) while when the quality option is o¤ered
to the seller, the timing option is more valuable and is worth an average
0.0872 ppp (Vasicek) and 0.11 ppp (CIR). Again, and for the same reason
we discussed earlier, the timing option is more valuable in the presence of
the quality option. It is important to notice here that the value of the
timing option can exceed the value of the quality option. In addition, the
timing option is observed to be negatively related to interest rates and this
can be easily explained by the fact that since we are valuing the option to
deliver late, when interest rates increase and reach a high level, the short
trader can invest the proceeds of early exercise at higher rates. Moreover,
the value of the timing option is zero for high levels of interest rates and
this is consistent with the behavior of the quality option for same levels of
interest rates observed in Figure 1.

4.2 Comparison of the options values under the CFS and the
TNBS

We compare here the average values of the quality and timing options ob-
tained under the conversion factor system and the TNBS.

Results are reported in Table 2 for both interest rate models. We can
notice that, for the Vasicek model, the average value of the quality option in
the CFS is nearly 6 times the one of the TNBS. For example, if we consider
a $100,000 futures contract, then the quality option is worth $390 under
the CFS while this value is dramatically reduced to $66.3 under the TNBS.
The ratio is 5.2 for the CIR dynamic. For details about the valuation of the
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quality option under the CFS, we refer to Ben-Abdallah et al. (2006).
Table 2 also shows that the TNBS reduces considerably the value of the

timing option which is nearly 3 times higher in the CFS.

Table 2: Comparison of options values under the CFS and the TNBS
Value of the quality Value of the timing

option with timing (ppp) option with quality (ppp)
Vasicek CIR Vasicek CIR

CFS 0.39 0.32 0.25 0.32
TNBS 0.0663 0.0615 0.0872 0.11
ratio 5.88 5.2 2.86 2.9

Figures 4 and 5 compare, respectively, the quality and the timing options
under both systems for both dynamics.

Figure 4: Comparison of the quality option under the CFS and the TNBS
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Figure 5: Comparison of the timing option under the CFS and the TNBS

4.3 Optimal delivery strategy

We present here an example of the optimal delivery decision and the asso-
ciated change in the CTD for the day 15 of the delivery month under the
Vasicek model and for various combinations of the two state variables r and
rB. This illustration corresponds to the parameters given in Table 1. The
decision is represented by a binary variable equal to 1 if delivery is optimal
and 0 otherwise and the CTD is identi�ed by the pair (c;M). Table 3 re-
ports on the optimal decision for small variations of interest rates ranging
between 5.7% and 6.3%. Figure 6 summarizes the delivery strategy for all
combinations of our two state variables. According to Figure 6, it is not
optimal to deliver for some combinations of interest rates and the cheapest-
to-deliver bond is (4.5%,30) whenever the yield to maturity of the notional
bond is greater than the the short-term interest rate while the CTD switches
to the bond (7.625%,30) in the opposite case. The impact of a change of the
input parameters on the optimal delivery strategy has also been studied and
results show that we can have all combinations of extremal coupon rates and
maturities for the CTD while the decision is always similar to that reported
in Figure 6. It is worthwhile mentioning that bonds with both maximal
coupon rates and maturities or both minimal coupon rates and maturities
may be optimal to deliver (which is not the case for deterministic rates).
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Table 3: Optimal delivery strategy on the day 15 of the DM (Vasicek)
rB(%)

r(%) 5:7 5:8 5:9 6 6:1 6:2 6:3

5:7 0 0 0 0 1 1 1
5:8 0 0 0 0 0 1 1
5:9 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0
6:1 1 0 0 0 0 0 0
6:2 1 1 0 0 0 0 0
6:3 1 1 1 0 0 0 0

Figure 6: Optimal delivery strategy (decision and CTD)

4.4 Sensitivity of option prices

In this last section, we perform sensitivity analyses of the option values to
the parameters of the interest rate models. We present here the results for
the Vasicek model. Results about the impact of a change in the parameters
on the options values under the CIR model are similar and given in �gures
10, 11 and 12 in the Appendix.

Figure 7 presents the impact of a variation of the mean reversion speed
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when r = 0:06 and � = 0:02.

Figure 7: Options values sensitivities to kappa (Vasicek)

We observe that both the quality and timing options values are neg-
atively a¤ected by the mean reversion speed. This is consistent with the
observation of Chen et al. (1999) about the quality option value in the
Japanese futures market under the Hull and White dynamics. The authors
argue that an increase in the mean reversion rate, which determines the
relative volatilities of long and short rates, dampens out short term rate
movements quickly and therefore reduces the long term volatility, which is
positively related to the quality option value.

Figure 8 presents the impact of a variation of the long term mean when
� = 0:56 and � = 0:02: We observe a negative relation between the quality
option and the long term mean for low and high levels of interest rates.
This relation becomes positive for intermediate levels. The timing option is
however observed to be always positively a¤ected by the long term mean.
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Figure 8: Options values sensitivities to rbar (Vasicek)

Figure 9 presents the impact of a variation in volatility when r = 0:06
and � = 0:56. As expected, the relation between options values and volatility
is observed to be positive. Chen et al. (1999) �nd similar results for the
quality option in the Japanese futures market.

Figure 9: Options values sensitivities to sigma (Vasicek)

5 Conclusion

In this paper, we propose an e¢ cient numerical method for pricing CBOT
T-bond futures when the TNBS is the system adopted to obtain same qual-
ity bonds. This method takes into account all the inter-dependent embedded
delivery options. We price the contract and the delivery options in a sto-
chastic interest rate framework. Numerical illustrations, provided here under
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the Vasicek and CIR models, show that the TNBS dramatically reduces the
value of the quality and timing options.

6 Appendix

6.1 Transition parameters

We give, for the Vasicek (1977) and CIR (1985) models, the closed-form
formulas for the transition parameters A�k;i and B

�
k;i de�ned respectively in

(11) and (12) as well as for the discount factor �(r; t; t + �) de�ned in (1).
For proofs and more details about the derivation of these closed-forms we
refer to Ben-Ameur et al (2007).

6.1.1 The Vasicek model

Under the risk-neutral probability measure, the interest rate process is the
solution to the following stochastic di¤erential equation

drt = �(r � rt)dt+ �dBt; for t � 0;

where fBt; t � 0g is a standard Brownian motion, � is the mean reversion
speed, r is the long term mean and � is the volatility.

The discount factor and the transition parameters are then given by

�(r; t; t+ �) = exp(��2(r; �) + �22 (�) =2); (13)

A�k;i = e
�(�2(ak;�)+�22(�)=2) [�(xk;i)� �(xk;i�1)] ; (14)

and

B�k;i = e�(�2(ak;�)+�
2
2(�)=2) [(�1(ak; �)� �12 (�))(�(xk;i)� �(xk;i�1))

��1 (�) (e�x
2
k;i � e�x

2
k;i�1)=

p
2�
i
; (15)

where

xk;i = (ai � �1(ak; �) + �12 (�))=�1 for i = 0; :::; q;
xk;�1 = �1

and � is the standard normal distribution function.
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6.1.2 The CIR model

Under the risk-neutral probability measure, the interest rate process is the
solution to the following stochastic di¤erential equation

drt = �(r � rt)dt+ �
p
rtdBt; for t � 0:

For the CIR model, the discount factor and the transition parameters
are given by

�(r; t; t+ �) = exp(X(�; 1; 0)� rY (�; 1; 0)); (16)

A�k;i = �(ak; t; t+ �)
1X
u=0

e���=2
(��=2)

u

u!

�
Fd+2u(

ai+1
�
)� Fd+2u(

ai
�
)

�
; (17)

and

B�k;i = �(ak; t; t+ �)�
1X
u=0

e���=2
(��=2)

u

u!

�
�2(ai+1fd+2u(

ai+1
�
)� aifd+2u(

ai
�
)

+(d+ 2u)(Fd+2u(
ai+1
�
)� Fd+2u(

ai
�
))

�
; (18)

where Fd+2u and fd+2u are the distribution and the density functions of a
chi-square random variable with d+ 2u degrees of freedom,

X(�; !; �) =
2�r

�2
log

"
2
(!)e(
(!)+�)�=2

(��2 + 
(!) + �)(e
(!)� � 1) + 2
(!)

#
;

Y (�; !; �) =
�(
(!) + �+ e
(!)�(
(!)� �)) + 2!(e
(!)� � 1)

(��2 + 
(!) + �)(e
(!)� � 1) + 2
(!)
,


(!) =
p
�2 + 2!�2;


 =
p
�2 + 2�2;

� =
�2e
� � 1

2(
 + �)(e
� � 1) + 2
 ;

d =
4�r

�2
and

�k =
8
2e
�ak

�2 [(
 + �)(e
� � 1) + 2
] (e
� � 1) :
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6.2 Futures pricing algorithm

1. Initialization:

De�ne G. Set evhn �r; rB� = 0 for all r; rB 2 G � G.
2. Step 1: (end-of-the-month, m = n; :::; n)

2.1 Set j = 1:

2.1.1 Set m = n.
2.1.2 Compute vam

�
r; rBj

�
at (m; r; rBj ) for all r 2 G.

2.1.3 Interpolate vam(r; r
B
j ), setting h(r) = v

a
m(r; r

B
j ), r 2 G, yield-

ing bvam �r; rBj � = bh(r);
and compute the expectation of bh(r) = bvam �r; rBj � at t = t8m
and � = t5m+1 for all r 2 G, yielding

evem �r; rBj � = eh �t8m; t5m+1; r� for all r 2 G:

2.1.4 Compute

evm �r; rBj � = max hevem �r; rBj � ; evhm �r; rBj �i for all r 2 G;

and interpolate h(r) = evm(r; rBj ), r 2 G, yielding
bvm �r; rBj � = bh(r):

2.1.5 While m � n, compute the expectation of bh(r) = bvm �r; rBj �
at t = t8m�1 and � = t

8
m for all r 2 G, yielding

evhm�1 �r; rBj � = eh �t8m�1; t8m; r� for all r 2 G;

set m = m� 1 and go to step 2.1.2,
Else, compute the expectation of bh(r) = bvn �r; rBj � at t = t2n
and � = t8n, yielding ev2n �r; rBj � = eh �t2n; t8n; r� :

2.1.6 While j < q, set j = j + 1 and go to step 2.1.1.

2.2 Find using linear interpolation the function r�(r) such that ev2n (r; r�) =
0 and compute, for all r 2 G, the futures price eg�n (r) as the price
of the notional bond if its yield to maturity is r�(r):
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2.3 Interpolate h(r) = eg�n (r), r 2 G, yielding
bg�n (r) = bh(r);

and compute the expectation of bh(r) at t = t8n�1 and � = t2n, for
all r 2 G, yielding

eg8n�1 (r) = eh �t8n�1; t2n; r� for all r 2 G:

3. Step 2 (delivery month, m = n; :::; n� 1)

3.1 Set m = n� 1.
3.2 Set j = 1.

3.2.1 Compute vam
�
r; rBj

�
for all r 2 G:

3.2.2 Interpolate and compute expectations at t = t8m and � =
t5m+1 as in step 2.1.3, setting h(r) = evam(r; rBj ), r 2 G, yieldingevem �r; rBj � = eh �t8m; t5m+1; r� for all r 2 G:

3.2.3 Using (9), compute

evhm �r; rBj � = p �t2m; 6%; 20; rBj � � �r; t8m; t2m+1��eg8m (r) for all r 2 G.

3.2.4 Compute

evm �r; rBj � = max hevem �r; rBj � ; evhm �r; rBj �i for all r 2 G;

and interpolate as in step 2.1.4, setting h(r) = evm(r; rBj ),
r 2 G, yielding bvm �r; rBj � = bh(r):

3.2.5 Compute the expectation of bh(r) = bvm �r; rBj � at t = t2m and
� = t8m yielding ev2m �r; rBj � = eh �t2m; t8m; r� ; for all r 2 G:

3.2.6 While j < q, set j = j + 1 and go to step 3.2.1.

3.3 Find as in step 2.2 the function r�(r) such that ev2m (r; r�) = 0 and
compute the futures price eg�m (r) ; for all r 2 G; as the price of
the notional bond if its yield to maturity is r�(r):

3.4 Interpolate as in step 2.3, setting h(r) = eg�m (r), r 2 G, yieldingbg�m (r) = bh(r):
23



3.5 While m � n, compute the expectation of bh(r) at t = t8m�1 and
� = t2m, for all r 2 G, yielding eg8m�1 (r) = eh �t8m�1; t2m; r� for all
r 2 G; set m = m� 1 and go to step 3.2.
Else, compute the expectation of bh(r) at t = t2m�1 and � = t2m,
for all r 2 G, yielding eg2m�1 (r) = eh �t2m�1; t2m; r� for all r 2 G:

4. Step 3 (before the delivery month, m = �1; : : : ; n� 1)

4.1 Set m = n� 1.
4.2 Using (10), compute

eg�m (r) = eg2m (r)
�(r; t2m; t

2
m+1)

:

4.3 Interpolate setting h(r) = eg�m (r), r 2 G, yielding bg�m (r) = bh(r):
Compute the expectation of bh(r) at t = t2m�1 and � = t2m, for all
r 2 G, yielding eg2m�1 (r) = eh �t2m�1; t2m; r� for all r 2 G:

4.4 While m � �1, set m = m� 1 and go to step 4.2.

6.3 Sensitivity of option prices under the CIR model

Figure 10: Options values sensitivities to kappa (CIR)
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Figure 11: Options values sensitivities to rbar (CIR)

Figure 12: Options values sensitivities to sigma (CIR)
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