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The paper presents alternate stochastic variance models and develops closed-form 
solutions to the fair price of VIX futures. The derivation for theoretical futures prices 
is based upon the conditional moments of VIX squared on affine stochastic volatility 
models with simultaneous jumps both in the asset price and variance processes. An 
integrated analysis of spot and option prices, or equivalently integrated volatility and 
VIX time series, is proposed to estimate monthly-updated model parameters and the 
market prices of risks. Existing literature, however, has not provided the moment 
conditions of the total quadratic variation (except for the stochastic-volatility model), 
which are given in this study. The daily VIX futures prices in the subsequent month, 
since 19 May 2004, are adopted to test the futures price formulas. Our results show 
that state-dependent jumps in volatilities and prices simultaneously fare better in 
fitting short-dated VIX futures prices whereas stochastic volatility and random jumps 
in returns outperforms for medium- and long-lived futures. In addition, while both 
price and volatility jump-risk premia appear to be positive, the diffusive volatility-risk 
premium is found to be negative that is consistent with the negative correlation 
between volatility and index returns. Gauging by the magnitude of risk premia, the 
volatility jump-risk premium is found to be far more important than the one for price 
jumps in terms of the VIX futures valuation. 
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I. INTRODUCTION 

In contrast to the implied volatility extracted from an option pricing model, the VIX 

(Volatility Index) uses a model-free formula to derive expected volatility directly 

from the prices of a weighted strip of S&P 500 index (SPX) options over a wide range 

of strike prices which incorporates information from the volatility skew. Thus, the 

VIX provides a more precise and robust measure of the market’s expectation of 

near-term stock market volatility. This VIX calculation supplies a script for 

replicating the VIX with a static portfolio of S&P 500 options. This critical fact lays 

the foundation for tradable products based on the VIX, facilitating hedging and 

arbitrage of VIX derivatives. Chicago Board Options Exchange (CBOE) has launched 

VIX futures on 26 March 2004 and VIX options on 24 February 2006. These will be 

the first of an entire family of volatility products traded in exchanges. Since the 

underlying VIX, or equivalently the model-free implied volatility of SPX options, is 

not tradable, it is impossible to use the no-arbitrage relationship to derive the fair 

value of the VIX futures. This paper is aimed to conquer the pricing difficulty and 

provides closed-form solutions to the value of the VIX futures contract. In particular, 

the underlying of the VIX, i.e. the SPX, incorporates both diffusive stochastic 

volatility and simultaneous jumps in returns and volatility, which are more capable of 

fully capturing the empirical features of equity index returns or option prices (see, 

Andersen et al., 2001; Alizadeh et al., 2002; Duffie et al., 2000; Eraker et al., 2003; 

Eraker, 2004). For model parameter estimation, a joint model is specified, not only for 

the physical probability distribution that governs the random shocks observed in the 

spot index market, but also for the risk-neutral probability distribution that allows to 

compute VIX futures prices as expectations of discounted payoffs. Since these two 

distributions have to be equivalent, there exists a link between the two through an 
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integral martingale representation that includes the innovations associated with the 

specific asset price processes and the risk premia associated with these sources of 

uncertainty. The main contributions of this paper are thus to propose closed-form 

solutions to the fair value of the VIX futures and to propose a methodology for an 

integrated analysis of spot and option prices, or equivalently integrated volatility and 

VIX. The market prices of risks are also estimated. Three specifications for the 

dynamics of the SPX prices are considered in the paper: affine diffusion with 

diffusive stochastic volatility model (SV) of Heston (1993); affine jump-diffusion 

with stochastic volatility and jumps in the asset price (SVJ) of Bates (1996); and the 

affine jump-diffusion with correlated jumps both in the asset price and stochastic 

volatility process (SVCJ) described by Duffie et al. (2000). The SVCJ class of models 

generalizes the models in Merton (1976), Heston (1993) and Bates (1996). Bates 

(2000) and Pan (2002) examine combined jump diffusion models with parameter 

estimation based upon joint options and returns, while Eraker et al. (2003) use returns 

data to investigate the performance of models with jumps in volatility and prices. 

Their results point toward models that include jumps to volatility. In response to these 

findings, Eraker (2004) uses joint options and returns data (an idea pursued in 

Chernov and Ghysels, 2000; and Pan, 2002) to investigate the performance of models 

with jumps in volatility and stock prices using the class of jump-in-volatility models 

proposed by Duffie et al. (2000) and an extension to allow for state-dependent jump 

frequency. A primary advantage of using joint options and returns is that risk 

premiums relating to volatility and jumps can be estimated. Eraker (2004) finds that 

while complex jump specifications (i.e. the stochastic volatility with state-dependent 

and correlated jumps; SVSCJ)1 add little explanatory power in fitting options data, 

                                                 
1 Allowing for volatility jumps, the stochastic volatility with state-dependent and correlated jumps 
(SVSCJ) specification generalizes the correlated jump model to allow the jump frequency to depend 
on volatility νt , i.e. λ0+λ1νt , considered by Bates (1996), Pan (2002), Eraker et al. (2003) and Eraker 
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these models fare better in fitting options and returns data simultaneously. Garcia et al. 

(2006) use joint moments of integrated volatilities, constructed from high-frequency 

underlying returns, and the implied volatilities of Hull and White (1987) and Heston 

(1993) option pricing formulas, respectively, to estimate the volatility risk premium 

for the exchange rate futures options. They find that there are, in general, several large 

differences between the estimates based on futures returns only and those based on 

futures and option prices. It also seems that there is a large variation in the parameters 

across different time periods. Bollerslev et al. (2005) estimate the stochastic volatility 

risk premium by implementing the procedure of a generalized method of moments 

(GMM) with VIX and high-frequency five-minute-based integrated volatilities. They 

find that the extracted volatility risk premium helps predict future stock market 

returns. The VIX is known as an index based on model-free implied volatilities 

calculated from SPX option prices. Thus, Jiang and Tian (2005) extend Britten-Jones 

and Neuberger’s (2000) model-free implied volatility under the diffusion assumption 

to asset price processes that include price jumps and implement it using observed 

option prices. Their results from the SPX options support that the model-free implied 

volatility is a more efficient forecast for future realized volatility than its predecessor 

(Black and Scholes’ implied volatility).2 Zhang and Zhu (2006) use historical VIX 

data to estimate parameters of a stochastic variance model and find that the model 

with parameters estimated from the whole period from 1990 to 2005 overprices the 
                                                                                                                                            
(2004). 

2 In 1993, the CBOE introduces the VIX that quickly becomes the benchmark for stock market 
volatility. The original VIX uses hypothetical 30-calendary-day at-the-money S&P 100 index (OEX) 
options data to compute an average of Black and Scholes’ (1973) implied volatility with strike prices 
close to the current spot index level and maturities interpolated at about one month. In order to provide 
a more precise and robust measure of expected market volatility and to create a viable underlying index 
for tradable volatility products, the CBOE has changed the definition of VIX in September 2003. The 
CBOE has created an identical historical record for the new VIX dating back to 1990. The new VIX 
still measures the market’s expectation of 30-calendary-day volatility, but it is based on the SPX option 
prices. VIX is based on real-time prices of options listed on the CBOE, and is designed to reflect 
investors’ consensus view of future (30-day) expected stock market volatility. It is often referred to as 
the “investor fear gauge”. Besides using options on the SPX rather than on the OEX, the new VIX 
changes its method of calculation to be model-free. 
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VIX futures by 16−44%. By using the parameters estimated from the recent one-year 

period, however, the discrepancy is dramatically reduced to 2−12%. Following the 

suggestions by the literature, this paper derives closed-form solutions to the fair price 

of the VIX futures by adopting the SVSCJ in Eraker (2004) for the SPX price 

dynamics. For the comparison purpose, its nested pricing models under the SV, SVJ 

and SVCJ specifications are also provided. In addition, model parameters are 

estimated based upon the joint data of the most recent one-month VIX data and the 

integrated volatilities calculated from high-frequency index returns. Existing literature, 

however, has not provided the moment conditions of the total quadratic variation, or 

equivalently total integrated volatility, for the SVJ, SVCJ and SVSCJ models, which 

are given in this study. The resulting parameter estimates are then adopted to 

investigate whether the subsequent month’s futures price changes can be explained by 

our models in an efficient way. Our empirical findings are summarized as follows. 

The SVSCJ provides the best out-of-sample pricing fits for short-dated VIX futures, 

while the SVJ outperforms for medium- and long-dated futures. The diffusive 

price-risk premiums are found to be positive, while the premiums associated with the 

diffusive volatility shocks are negative for all models. The price jump-risk premium is 

found to be positive and the SVJ achieves the greatest value, followed by the SVCJ 

and SVSCJ. The volatility jump-risk premium is also found to be positive, however, 

the SVSCJ has a greater value than the SVCJ.  

The rest of the paper is organized as follows: next two presents the general 

approach for pricing VIX futures; section three addresses the construction of 

integrated volatilities using high-frequency returns and their moment condition 

derivation; section four discusses alternate models for the index price dynamics upon 

which closed-form solutions for the fair value of the VIX futures are derived. Section 

five presents the data and econometric designs for model parameter estimation. 
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Section six examines in- and out-of-sample pricing fits to the VIX futures on our 

models; summary statistics for the market prices of risks are also included. Finally, 

section seven summarizes our empirical findings and points out the theoretical 

contributions on the literature to the valuation of the VIX futures. 

 

 

II. VIX FUTURES VALUATION 

A. Fair Price of VIX Futures 

Since the VIX cannot be replicated by a portfolio of the SPX options and it is not a 

traded asset, one cannot use the no-arbitrage principle to obtain a simple relationship 

between VIX futures and the VIX as that of stock futures and stock price. Pricing VIX 

futures becomes an issue. Carr and Wu (2006) present that the price of the VIX 

futures has a lower bound and an upper bound. The lower bound is the forward 

volatility swap rate and the upper bound is the forward-starting variance swap rate. 

Zhang and Zhu (2006) choose a Heston-type stochastic-variance model (1993) and 

developed a numerical expression for VIX futures. Free parameters are estimated 

from market data over 1990–2005. This study instead demonstrates the VIX squared 

in terms of expected variance and derives closed-form solutions for the VIX futures, 

after the convexity adjustment. VIX futures are a futures contract on VIX and cash 

settlement equal to VIX. It is a pure play on implied volatility at settlement. When 

VIX compared to the SPX, VIX tends to rise as the SPX falls, while VIX tends to 

decline or remain constant as the SPX rises. When VIX compared to VIX futures, 

VIX futures move much more stable than spot VIX. The current futures price is the 

market’s estimate of what the VIX index will be at settlement. In other words, VIX 

futures prices are based purely on expectation and thus there is no traditional 
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futures-to-cash relationship, namely no cost-of-carry relationship. By Martingale 

pricing theory, the current VIX futures prices expiring at t can be computed under a 

risk-neutral probability measure Q as, 

 

{ } VIX E)(F 0
VIX
0 t

Qt =  . (1) 

 

Consider the VIX definition (converted to our notation) as specified in the CBOE 

white paper (CBOE 2003). 
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where τ=T−t is the annualized 30-day period, Qi is the price of the out-of-the money 
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construction of VIX squared explicitly, the information of jumps in returns has an 

influence on the VIX squared through the price-jump component adjustment *
1ζ  and 

*
2ζ . Appendix A presents details for the VIX squared in terms of fair value of 

expected diffusive integrated variance. 

 

B. Convexity Adjustment 

As a theoretical expression of how the VIX futures is associated with expected 

variance, settlement is on the Wednesday before the third Friday based on the opening 

prices of options expiring in the following month. The VIX futures (strictly speaking 

VXB futures where the VXB is defined to be 10 times the VIX) settle bases on the 

square root of the value of the replicating strip (i.e. on volatility rather than variance) 

so there must be convexity adjustment for the difference between square root of 

expected variance and expected volatility, i.e. ( ) )(VIXEVIXE)(F 2
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From the approximation of Brockhaus and Long (2000) and Bates (2006), who use 

the second order Taylor expansion for the square root of latent affine stochastic 

processes x, i.e. x , the current VIX futures is worth theoretically  

 

( ) 2/32
0

2
02

0
2

0
VIX
0 )]VIX(E[8

)VIX(var)VIX(EVIXE)(F
t

Q
t

Q

t
Q

t
Qt

×
−≈=  (4) 

 

where })]VIX(E[8/{)VIX(var 2/32
0

2
0 t

Q
t

Q ×  is the convexity adjustment relevant to the 

VXB futures contract as of the valuation date 0. t is the settlement date of the VIX 

futures and T=t+τ is the expiration date of options in the strip. Thus, to calculate VIX 

futures we need both )VIX(E 2
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III. UNDERLYING MODELS AND CLOSED-FORM SOLUTIONS 

TO THE FAIR VALUE OF THE VIX FUTURES 

Since 2VIXt  is represented as the one-month expected average variance driven by 

diffusive and jump components over [t,t+30 days], different dynamics for the index 

price tS  will result in various expected average variance formulas and thus different 

theoretical VIX futures values.  

A. SVSCJ Model 

While a number of prior studies (see Bates, 1996; Bakshi et al., 1997; Andersen et al., 

2002; Chernov et al., 2003) point out the importance of stochastic volatility and jumps 

in returns to equity price models, Andersen et al. (2001), Alizadeh et al. (2002), and 

Eraker et al. (2003) find the presence of an additional, rapidly moving factor driving 

conditional volatility, which, unlike jumps in returns, has a persistent component. 

Jumps in volatility provide such a factor. Together, this suggests a strong evidence for 

volatility driven by diffusive and jump components. Jump models, however, typically 

specify jumps to arrive with constant intensity. This assumption poses problem in 

explaining the tendency of large movements to cluster over time. Bates (2000), Pan 

(2002) and Eraker (2004) use the linear specification tνλλ 10 +  for some 

non-negative constants 0λ  and 1λ , of jump-arrival intensity to allow jumps to arrive 

more frequently in high-volatility regimes. As a result, a state-dependent jump 

frequency allows for the possibility that when the market is more volatile, the 

jump-risk premia implicit option prices become higher. The stochastic volatility with 

state-dependent and correlated jumps (SVSCJ) is the most general model considered 

in this paper. The data-generating processes of ),(ln ttS ν  for the SVSCJ model are 
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of the form, 
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The instantaneous variance tν  of asset log-prices is modeled as a combination of 

jumps in volatility and a one-factor square-root diffusive process that was originally 

proposed for finance by Cox et al. (1985). tS ,ω  and t,νω  are standard Brownian 

motions correlated by ),( ,, ttS ddcorrdt νωωρ = , which are independent of the 

compounded Poisson processes tS dNz  and tdNzν , respectively. tN  is a univariate 

Poisson (counting) process with state-dependent intensity tνλλ 10 + . Jumps in 

volatility have an exponential distribution, )exp(~ νν μz , 3  and jumps in asset 

log-prices are normally distributed conditional on the realization of νz , formally 

),(N~ 2
jjjS zzz σρμ νν + . Thus, Sz  has mean νμρμ jjSz +=)E( , variance 

222)var( νμρσ jjSz += , and correlated with νz  by 222/ νν μρσμρ jjj + . 4  The 

instantaneous covariance of tSd ln  and tdν  is given by 
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10 ννν μρμμνλλρνσ +++ , comprising the familiar leverage effect 

                                                 
3  The probability density function of νz following an exponential distribution has the form, 
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(Black, 1976).5 The risk-neutral price jump-size mean for SdS /  is defined as 

1)1/(]2/)exp[( *2*** −−++= νν μρσμρμκ jjjj , satisfying the no-arbitrage condition. 

νκ , νθ  and vσ  are the speed of adjustment, long-run mean and variance of tν . 

While the presence of state-dependent jump frequency decreases the mean-reversion 

rate of the volatility dynamics from νκ  to νν μλκ 1− , the long-run mean increases 

from νθ  to )/()( 10 ννννν μλκμλθκ −+ . The dynamics of ),(ln ttS ν  under the 

risk-neutral probability measure Q are of the form, 
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where the parameters with asterisk (*) denotes corresponding risk-neutral paramseters. 

Comparing the specification of the risk-neutral dynamics of ),(ln ttS ν  with that of 

the data-generating process, the market prices of different risk factors are obtained. 

Whereas νη  represents the market price of unit price risk, the SVSCJ model 

incorporates a premium for price jump-size uncertainty by )()( **
νν μρμμρμ jjjj +−+  

and a premium for jump-timing risk by )/()( *
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Now, we can compute Tν  for T≥t, 
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The expected quadratic variation of the log-price over [t,T] is given by 
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From appendix (A.3), the VIX squared is expressed in terms of the expected variance 

attributed to the price-diffusion component by, 
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where =−= tTτ  365/30 . The VIX squared is a linear function of the instantaneous 

variance. From equation (14), mean and variance of 2VIXt  conditional on 2
0VIX  are 

computed as 
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By substituting )VIX(E 2
0 t
Q  and )VIX(var 2

0 t
Q  in equation (4) with the ones above, 

the fair price of the VIX futures expiring at t under the SVSCJ model is obtained. 
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B. SVCJ Model 

In Duffie et al. (2000) and Eraker et al. (2003), the type of jumps in the SVCJ model 

are defined as simultaneous correlated jumps in lnS and ν , with constant arrival 
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intensity. Rockinger and Semenova (2005) propose empirical characteristic functions 

for the estimation on S&P 500 data for the affine stochastic volatility models with 

uncorrelated jumps both in the asset price and variance processes (SVJJ). Eraker et al. 

(2003), while using return data, argue that the SVCJ specification is a realistic model 

of equity indices (S&P 500 and Nasdaq) returns. These papers suggest that besides a 

stochastic volatility, jumps both in the mean and the volatility equation are relevant. 

With same symbolic definitions above, the SVCJ is the result of setting Jλλ =0 , 

**
0 Jλλ =  and 0*

11 == λλ  in the SVSCJ, i.e. replacing tνλλ 10 +  ( tνλλ *
1

*
0 + ) with 

Jλ  ( *
Jλ ). The data-generating dynamics of ),(ln ttS ν  in the SVCJ model are thus 

assumed to be 
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where tN  is a univariate Poisson (counting) process with intensity Jλ . While the 

mean-reversion rate νκ  is not affected by the jumps, the presence of jumps in the 

volatility dynamics changes the long-run mean of the variance process from νθ  to 

)/( ννν κμλθ J+ . The corresponding risk-neutral processes are given by, 
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where νη  and **
νν μλμλ JJ −  denote the risk premia relating to stochastic volatility 

and volatility jumps, respectively, whereas ( ) ( )****
νν μρμλμρμλ jjJjjJ +−+  is the 

price-jump risk premium. 1)1/()2/exp( *2*** −−++= νν μρσμρμκ jjjj  is the 

risk-neutral jump compensator of percentage price changes. Under the assumed 

framework, the total quadratic variation of the asset log-price Tt ,υ  still consists of 

price-diffusion variance c
Tt ,υ  and price-jump variance J

Tt ,υ . By applying Itô’s lemma 

to tt νκν )exp( * , we can compute Tν  for tT ≥  and its first and second moments: 
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The expected total quadratic variation of the log-price is thus given by 
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From appendix (A.4), the VIX squared is expressed in terms of the expected variance 

attributed to the price-diffusion component by, 
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where 365/30=−= tTτ . The VIX squared is still a linear function of the 

instantaneous variance. From equation (25), mean and variance of 2VIXt  conditional 

on 2
0VIX  are computed as 
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By substituting )VIX(E 2
0 t
Q  and )VIX(var 2

0 t
Q  in equation (4) with the ones above, 

the fair price of the VIX futures expiring at t under the SVCJ model is obtained. 
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C. SVJ Model 

Given that the stochastic volatility model cannot explain the tail-fatness of the stock 

return distribution (Andersen et al., 1997), nor can it explain the smirkiness exhibited 

in the cross-sectional options data (Bates, 1996; Bakshi et al., 1997), the extension to 

include price jumps is well motivated. The stochastic volatility model with jumps in 

price only is a special case of the SVCJ obtained by letting 0J >λ  and 0=νμ . It 

should be emphasized, however, that our main motivation is to study how such 

underlying processes are applied to the valuation of the VIX futures and, in particular, 

their role in reconciling the spot and option dynamics. The data-generating processes 

of ),(ln ttS ν  are expressed by, 

 

 
)(               

 )(
2
1ln

,

******

jJtStSt

jJjJjJttSJt

dNzd

dtrSd

μλων

μλμλμλννηκλδ

−++

⎥⎦
⎤

⎢⎣
⎡ −++−+−−=

  (29) 

    
tttt

tttt

ddtdt

ddtd

,
**

,

 )(       

 )(

ννννν

νννν

ωνσνηνθκ

ωνσνθκν

++−=

+−=
 (30) 

 

where the price-jumps arrive at the exponential rate of dtJλ with the jump size, Sz , 

determined by the normal distribution ),(N 2
jj σμ . The corresponding risk-neutral 

processes then take the form, 
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Given the arrival of a jump event at time t, the risk-neutral stock price jumps from 
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−t
S  to )exp( *

St
zS −  and thus the mean relative jump size is =−= ]1)[exp(E **

Szκ  

1)2/exp( 2* −+ jj σμ . Thus, the term of **
jJjJ μλμλ −  in equation (29) denotes the 

price jump-risk premium. The diffusion variance tν  is modeled by Heston’s (1993) 

mean-reverting square-root process as specified, respectively, in equation (30) by a 

physical measure or in equation (32) under a risk-neutral measure. Under the assumed 

framework, the total quadratic variation in index returns can still be decomposed into 

the variance attributed to price diffusion and the one driven by price jumps. The first 

and second moments of the instantaneous variance ν  in the SVJ model are 
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The risk-neutral expected total quadratic variation of the log-price is computed as 

 )( ])[(               

)(E)(E)(E
22***

SVJ,
*

SVJ,

,,,

tTba jjJtTttT

J
Tt

Q
t

c
Tt

Q
tTt

Q
t

−+++×=

+=

−− σμλν

υυυ
 (35) 

where *

)(
*

SVJ,
]1[

*

ν

κ

κ

ν tT

tT
ea

−−

−
−

= , 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−=

−−

− *

)(
**

SVJ,

*

1)(
ν

κ

ν κ
θ

ν tT

tT
etTb , 

*
SVJ,

*
SVJ,, )(E tTttT

c
Tt

Q
t ba −− += νυ  

 )( ])[()(E 22**
, tTjjJ
J
Tt

Q
t −+= σμλυ . 

From appendix (A.5), the VIX squared is expressed in terms of the expected variance 

attributed to the price-diffusion component by, 
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where 365/30=−= tTτ and same symbols are defined as before. The VIX squared 

is again a linear function of the instantaneous variance. Mean and variance of the VIX 

squared conditional on current instantaneous variance 0ν  are computed as 
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The fair price of the VIX futures expiring at t under the SVJ model is thus given by 
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D. SV Model 

The volatility specification of the SV model, introduced by Heston (1993), captures 

an important stylized feature of the stock return dynamics, i.e. stochastic volatility, 

and also allows the Brownian shocks to price S and variance ν to be correlated with 

constant coefficient ρ, denoting the familiar leverage effect (Black, 1976). The SV 

model obtains as a special case of the general model in this paper with jumps 
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restricted to zero ( 0== ttS dNzdNz ν ). It assumes the following data-generating 

process for log-prices, 

 tStttSt ddtrSd ,  )
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where Sη  and νη , respectively, refer to the price risk premium parameter and the 

volatility risk premium parameter of interest. The instantaneous variance tν  of 

log-prices is modeled as a one-factor square-root process that was originally proposed 

for finance by Cox et al. (1985). Under the risk-neutral probability measure Q, the 

logarithmic index price and its instantaneous variance are assumed to follow the 

diffusions, 
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Cox, Ingersoll and Ross (1985) show that the distribution of Tν  conditional on tν  

is a non-central chi-square, i.e. )2 ,22 ,2( ***2
tt qc ςνχ +  with )(** * tT

tt ec −−= νκνς , 

)]1(/[2 )(2** * tTec −−−= νκ
νν σκ , 1/2 2*** −= ννν σθκq , and the second and third arguments 

being the degrees of freedom and non-centrality parameters, respectively.6 The first 

two conditional moments of the instantaneous variance Tν  are the same as the ones 

in the SVJ model given by equations (33) and (34) above. The expected total 

quadratic variation of the log-price is presented as 
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6 Its corresponding physical non-central chi-square distribution of Tν conditional on tν  is simply 
given by replacing the risk-neutral parameters *

νκ  and *
νθ  with νκ  and νθ . 
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where *
SVJ,
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From appendix (A.6), the VIX squared is expressed in terms of the expected diffusive 

variance by, 
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where 365/30=−= tTτ and same symbols are defined as before. The VIX squared 

is again a linear function of the instantaneous variance. Mean and variance of the VIX 

squared conditional on current instantaneous variance 0ν  are computed as 

)(1)VIX(E *
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where *
SVJ,

*
SV, tt αα = , *

SVJ,
*
SV, tt ββ = , *

SVJ,
*

SV, tt CC = , *
SVJ,

*
SV, tt DD =  and 

*
SV,

*
SV,2

0*
SV,

0 VIX
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a −

−

−
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By substituting )VIX(E 2
0 t
Q  and )VIX(var 2

0 t
Q  in equation (4) with the ones in 

equations (46) and (47), the fair price of the VIX futures expiring at t under the SV 

model is obtained. 
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IV. THEORETICAL RELATIONSHIP BETWEEN INTEGRATED 

VOLATILITY AND VIX 
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In order to obtain more informative parameter estimates and the risk premia relating 

to volatility and jumps, our empirical results presented are based on estimates 

obtained from joint spot and option prices, or equivalently integrated volatility and 

VIX in this paper.7 The theoretical relationship between integrated volatility and VIX 

is discussed in this section. By the theory of quadratic variation (see, e.g., Andersen et 

al., 2002), 
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where )(⋅tν  is the point-in-time price-diffusion variance that is latent and its 

consistent estimation through filtering is complicated by a host of market 

microstructure complications. ∫ Φ=
T

t u
c
Tt du)(, νυ  presents the integrated variance 

from time t to T, consisting of the variance driven by price-diffusion and 

volatility-jump components (if any). Tt ,υ  denotes the realized variance from time t to 

T computed by summing the squared high-frequency returns over the [t,T] 

time-interval. It is important to recognize that, in the presence of price jumps, the 

quadratic variation Tt ,υ  comprises two components, c
Tt ,υ  and J

Tt ,υ  with )(⋅Jν  

being the point-in-time price-jump variance and ∫ Φ=
T

t J
J
Tt du)(, νυ .8 Φ  represents 

the model parameters governing the index log-price dynamics under the physical 

probability measure P that are restricted to lie within some compact set containing the 

                                                 
7 The usage of joint data of underlying returns and option prices for the model parameter estimation 
and the extraction of related risk premia was an idea pursued in Chernov and Ghysels (2000) and Pan 
(2002). 
8 Hence, in implementing the moment conditions involving c

Tt ,υ , the following substitutions are also 
required: 
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true parameters of the process, say 0Φ . In other words, by summing increasingly 

finer sampled squared high-frequency returns, it is possible to obtain increasingly 

more accurate estimates of the realized volatility of the process. Following Aït-Sahalia 

et al. (2003), the daily realized volatility of the spot index is measured by the sum of 

squared 5-minute intraday returns and the squared close-to-open return. To correct for 

the bias in estimated realized volatility due to autocorrelation intraday returns, this 

study adopts a correction method suggested, in various forms, by French et al. (1987), 

Zhou (1996), and Hansen and Lunde (2006). In this correction method, the annualized 

realized variance over the period [t, t+τ] is calculated as: 
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υ τ  (50) 

where iR  is the index return during the i-th interval, n is the total number of 

intervals in the period, and m is the number of correction terms included. Similar to 

the findings of Jiang and Tian (2005),9 this study uses equation (50) with one 

correction term (i.e., m=1) to calculate the daily volatility using five-minute SPX 

returns. This is because 5-minute returns in our sample, 17 March 2004−18 April 

2006, 10  have a first-order autocorrelation of 0.0344 while higher-order 

autocorrelations are much smaller. Conditional moments for the integrated volatility 

for the stochastic volatility (SV) model have previously been derived by Bollerslev 

and Zhou (2002), Meddahi (2002), Andersen et al. (2004), Bollerslev et al. (2005), 

and Garcia et al. (2006). Meanwhile, the derivation of the operational moment 

conditions of c
Tt ,υ  implied by the stochastic volatility with price jumps (SVJ) model 

structure is provided by Bollerslev and Zhou (2002). Existing literature, however, has 

                                                 
9 Jiang and Tian (2005) adopt equation (6) with one correction term (i.e., m=1) to calculate the daily 
volatility using five-minute SPX returns due to a first-order autocorrelation of 0.31 in their sample 
period, June 1988−December 1994. 
10 Since our parameter estimation task involves the usage of lag 30-day integrated volatility, the data 
period mentioned here is one-month earlier than the period for model parameter estimation starting on 
21 April 2004. 
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not provided the moment conditions of the total quadratic variation Tt ,υ  for the SVJ, 

SVCJ and SVSCJ models, which are required for our parameter estimation purpose 

and are given in the appendix B. 

Using option prices, it is also possible to construct a model-free measure of the 

risk-neutral expectation of the integrated volatility. In particular, VIX at time t denotes 

the time-t implied volatility measure computed as a weighted average, or integral, of a 

continuum of 30-day maturity options. As formally shown by Britten-Jones and 

Neuberger (2000) for the stochastic-volatility model, the model-free implied volatility, 

or equivalently the VIX in this study, equals the risk-neutral expectation of the 

integrated volatility, adjusted for the price-jump components *
1ζ  and *

2ζ  as shown 

in equation (3), i.e. *
2,

*
1

2 /)(EVIX ζτυζ +≡ c
Tt

Q
tt  with τ =T−t=30/365. Appendix A 

provides details of the derivation for the values of *
1ζ  and *

2ζ  under alternate index 

log-price stochastic processes. Substituting for )(E ,
c
Tt

Q
t υ  in equation (3) by 

**
tTttT ba −− +ν , it follows )/(/)/(VIX *

1
**

2
***

1
*2 ζτζζτν tTtTtTtTtt aaba −−−− −−≡ . 

Combining these results, it now becomes to directly and analytically link the 

expectation of the realized volatility under the risk-neutral dynamics with the 

expectation of the realized volatility under the physical probability measure.  

tTttTTt
P
t −− += VVIXU)(E 2

,υ  (51) 

tTttTttTTt
P
t −−− ++= ZVIXYVIXX)(E 242

,υ  (52) 

where for the SVSCJ model, as an example,  
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where 365/30=−= tTτ . These equations, in conjunction with the moment 

restrictions of integrated volatility under the physical measure, provide the necessary 

identification of the risk premium parameters. While Bollerslev and Zhou (2004) and 

Bollerslev et al. (2005) have provided expressions for equation (51) under the SV 

specification, the rest function forms of equations (51) and (52) for the SVSCJ, for the 
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SVCJ by restricting Jλλ =0 , **
0 Jλλ = and 0*

11 == λλ , and for the SVJ by further 

imposing 0* == νν μμ , are given here.  

Further, the time to expiration, T, in the VIX calculation is measured in minutes 

rather than in days, shown as follows, 

year ain  Minutes
MMM daysOther day SettlementdayCurrent ++

=T  (53) 

where 
MCurrent day = # of minutes remaining until midnight of the current day 
MSettlement day = # of minutes from midnight until 8:30 a.m. on SPX settlement day 
MOther days = Total # of minutes in the days between current day and settlement day 

 

Therefore, using daily closing VIX data is equivalent to using daily closing time as 

the time of the calculation. The beginning and ending time of the 30-day realized 

volatility calculation, days 30, +ttυ , is thus assumed to be the closing time at t (Chicago 

time) and the closing time at t+30 calendar days, respectively. 

 

 

V. DATA AND MODEL ESTIMATION 

A. Historical VIX Time Series and VIX Futures Contracts 

Parameters of our VIX futures pricing models are estimated from joint options, or 

equivalently the VIX, and stock markets data, or equivalently integrated volatility 

calculated from five-minute intraday index returns over 30-day horizon. Price data on 

VIX futures and contemporaneous VIX levels came from the transaction records 

provided by the Chicago Futures Exchange (CFE), whereas the intraday SPX returns 

are from Chicago Merchant Exchange (CME). Model parameters are updated to 

remain the same within one-month window, i.e. the period between settlement dates 
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of each month. The settlement date for VIX futures is the Wednesday that is thirty 

days prior to the third Friday of the calendar month immediately following the month 

in which the contract expires. Since the first date available from CFE for the 

settlement value of VIX futures is 19 May 2004, the common sample period for 

parameter estimation is chosen from 21 April 2004 to 18 April 2006, in total 502 

trading dates. Daily settlement VIX futures prices from 19 May 2004 to 16 May 2006, 

resulting in 1956 observations and spanning 27 expirations, are adopted to test the 

validity of our pricing models. Table 1 summarizes the descriptive statistics for 

integrated volatility, VIX time series and daily VIX futures settlement prices. There is 

a tendency for integrated volatility to be lower than VIX and for VIX to be lower than 

its futures price. The integrated volatility is measured under the physical probability 

measure, whereas the prices of VIX and VIX futures are the resulting integration of 

investors’ subjective probabilities across states and the adjustment for investors’ risk 

aversion. Given the stylized characteristics of SPX options and VIX futures being 

derivatives and thus useful for the hedge purposes, the derivatives price-implied 

volatility would contain the negative volatility risk premium. In other words, the more 

exposure to volatility risk the investors face, the more expensive the volatility 

derivatives or higher value of implied volatility. Thus, it is not surprising for 

integrated volatility to be lower than either VIX or VIX futures prices. The second 

phenomenon indicates that the more vega risk exposure is, the higher price of the VIX 

futures will be. For investors with portfolios, for example, having great risk exposure 

to SPX option’s implied volatility, e.g. a vega-position option writer, they would like 

to pay more to purchase the VIX futures as hedge. Compared to the SPX index, VIX 

tends to rise as the SPX falls and tends to decline or remain constant as the SPX rises. 

Given the existed evidence of a negative correlation between VIX and SPX index, the 

value of his portfolio reduces dramatically at the state of high VIX or equivalently at 
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the state of low SPX. Thus, investors will put more weights on the risk-aversion 

adjustment factor at high VIX or low SPX. The resulting risk-neutral distribution 

across SPX levels, or equivalently the product of subjective probabilities towards 

future VIX and risk-aversion adjustment factors, implicit in VIX futures prices is 

more negatively skewed than the one given by VIX time series, or equivalently the 

SPX option traders. In other words, the component of expected SPX returns attributed 

to volatility risk given by VIX futures traders is positive and stronger than the one 

given by SPX option traders. The phenomenon reveals that most of the VIX futures 

traders during our sample period are volatility hedgers. This explanation justifies the 

tendency of higher VIX futures prices relative to its underlying VIX.  

 
 
 

Table 1 Descriptive statistics of 30-day realized volatility, VIX and daily 
settlement prices of VIX futures across maturities 

 
The 30-day realized volatility, )30,(2/1 +ttυ  , presents the total quadratic variation over [t,t+30 days], 
measured by the sum of autocorrelation-adjusted squared 5-minute intraday index returns and the 
squared close-to-open return. VIX and VIX daily settlement prices are divided by 100 and 1000, 
respectively, to denote the volatility level. The Sample period for estimating monthly-updated model 
parameters jointly using integrated volatility and VIX time series is 21 April 2004−18 April 2006, in 
total 502 trading days, while the data period for testing our VIX futures formulas is 19 May 2004−16 
May 2006, resulting in 1956 observations and spanning 27 expirations. 

 )30,(2/1 +ttυ  TVIX  Daily VIX Futures Settlement Price 

   All <60 days 60−180 >180 days 

Obs. 502 502 1956 793 727 436 

Mean 0.0954 0.1348 0.1533 0.1425 0.1580 0.1650 

Median 0.0915 0.1316 0.1513 0.1386 0.1523 0.1603 

Std. Dev. 0.0137 0.0194 0.0218 0.0206 0.0202 0.0170 

Minimum 0.0769 0.1023 0.1017 0.1017 0.1253 0.1352 

Maximum 0.1429 0.1996 0.2195 0.2066 0.2149 0.2195 

Skewness 1.2477 0.7911 0.7390 0.9640 1.2408 1.5248 

Kurtosis 4.1257 3.2665 3.4544 3.3636 3.7012 5.1418 
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B. Estimation Procedure and Conditional Moment Restrictions 

It has been especially difficult to estimate the continuous-time stochastic volatility 

models that are best suited for pricing derivatives. Our jump-related models create 

additional latent state variable of asset prices jump and time-varying jump intensity. 

Previous estimation approaches include analytically tractable specifications such as 

Gaussian and Regime-switching specifications, GMM approaches based on analytic 

moment conditions, Bates’ (2006) AML (approximate maximum likelihood), and 

simulation-based approaches such as Gallant and Tauchen’s (2002) EMM (Efficient 

Method of Moments), or Jacquier et al.’s (1994) MCMC (Monte Carlo Markov Chain) 

approach. Bates (2006) provides an overview of parameter estimation of 

continuous-time models. Since the latent stochastic volatility can be inferred from 

observed VIX data, we focus primarily on parameter estimation and thus 

moment-based approaches provide an adequate framework. In addition, the analytical 

solutions for the conditional moments in alternate models under physical and 

risk-neutral probability measures set the stage for the construction of a GMM-type 

estimator. The efficiency of the resulting estimator defined from these conditions 

depends upon the particular choice of instruments (Hansen, 1985; Hansen et al., 1988; 

and Gallant and Tauchen, 1996). This paper simply arguments the first and second 

moments with lag-one and lag-one squared counterparts as well as the cross moment, 

resulting in the following moments )(Φtf . By construction 0)]([E =Φtt f  using 

numerical minimization11 and joint data of VIX time series and integrated volatilities, 

the estimates of model parameters are obtained. 

 

                                                 
11 Although the GMM procedure is the standard procedure to operationally implement 0)]([E =Φtt f  
in the literature, this paper instead adopts numerical minimization that is common in derivatives 
studies. 
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 (54) 

 

where 365/30=−= tTτ . Structure parameters of alternate models are given by, 

},,,,,{SV νννν ηρσθκηS=Φ  

},,,,,,,,,,{ **
SVJ jJjjJS μλσμληρσθκη νννν=Φ  

},,,,,,,,,,,,,{ ***
SVCJ jjJjjJS ρμμλμσμληρσθκη νννννν=Φ  

},,,,,,,,,,,,,,,{ ***
1

*
010SVSCJ jjjjS ρμμλλμσμλληρσθκη νννννν=Φ . 

 

The closed-form solutions to the operational moments in equation (54) are given by, 
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where the values of SVSCJ,HΔ , SVSCJ,IΔ  and SVSCJ,JΔ  can be found in (B.12), while 

SVSCJ,NΔ , SVSCJ,OΔ , SVSCJ,PΔ , and SVSCJ,QΔ  are derived in (B.14). Similarly, these 

solutions are obtained for the SVCJ by restricting Jλλ =0 , **
0 Jλλ =  and 0*

11 == λλ , 

for the SVJ by further imposing 0* == νν μμ , and for the SV by additionally setting 

0* == JJ λλ . 

 

 

VI. EMPIRICAL RESULTS 

Summary statistics for parameter estimation results and out-of-sample pricing fits for 

VIX futures are shown in Tables 2 and 3, respectively. The market prices of diffusive 

and jump risks are reported in Table 4. 
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A. In-Sample Pricing Fit 

Physical and risk-neutral parameter estimates from alternate models implicit in the 

joint VIX and integrated volatilities along with in-sample mean absolute errors are 

shown in Table 2. The in-sample mean absolute pricing error (MAE) was considerably 

and consistently smaller under the SVSCJ (MAE=4.3785) than the ones under the 

SVCJ (MAE=4.6388), the SVJ (MAE=4.7589) and the SV (MAE=5.5574). There are 

several interesting features of the parameter estimates in Table 2. The long-term mean 

of the volatility process after taking into account volatility jumps, if any, 

)/()( 10 ννννν μλκμλθκ −+  is 0.0371, 0.0279, 0.0714 and 0.0700 for the SV, SVJ, 

SVCJ and SVSCJ, while the long-run mean under the risk-neutral measure are 0.0389, 

0.0310, 0.0573 and 0.0314, respectively. The difference between these parameters 

across the two measures is the market prices associated with total volatility change 

risk. Eraker (2004) uses the MCMC approach along with the joint SPX option and 

return data over January 1, 1987−December 31, 1990 to estimate model parameters. 

In contrast, Eraker et al. (2003) use only daily SPX returns over January 2, 

1980−December 31, 1999 to perform their estimation. While the comparable total 

long-run variance means, )/()( 10 ννννν μλκμλθκ −+ , in Eraker (2004) are 0.0487, 

0.0416, 0.0377 and −0.0003 across models, Eraker et al. (2003) find 0.0228, 0.0205, 

0.0230 and 0.0240 instead.  

 

 

The speed of mean reversion, νν μλκ 1− , when taken into volatility jumps, is 6.8977, 

9.4814, 8.5660 and 9.1504 for the SV, SVJ, SVCJ and SVSCJ, while their risk-neutral 

counterparts are 6.6516, 8.8939, 7.9864 and 9.0062. The speed of mean reversion can 

be compared with the risk-neutral values of 1.49 and 2.45 or 1.15 and 2.03 for the SV 
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and SVJ found by Bates (2000) for S&P 500 futures options for the period 1988 to 

1993 and Bakshi et al. (1997) for S&P 500 index options over the period 1988 to 1991. 

Based on daily SPX returns over 1953-1996, Andersen et al.’s (2002) EMM-based 

estimates are 3.93 and 3.7 for the SV and SVJ, while Bates’ (2006) AML-based 

estimates are 5.94 and 4.38. In addition, the value of 3.29 for the SV is found by 

Nandi (1998) for S&P 500 index options over the period 1991 to 1992. The diffusive 

volatility risk premia, tνην , are estimated to be negative across all models. The 

consistently negative estimates of νη  are −0.2460, −0.5875, −0.5797 and −0.3133 

for the SV, SVJ, SVCJ and SVSCJ, indicating a substantial negative premium for 

diffusive volatility risk, consistent with the negative correlation between volatility and 

index returns, i.e. ρ  being −0.46, −0.72, −0.52 and −0.27 across models. The figures 

of ρ  for the SV and SVJ can be compared to (−0.57, −0.55) and (−0.58, −0.61) in 

Bates (2000) and Bates (2006), −0.64 and −0.57 in Bakshi et al. (1997), −0.60 and 

−0.62 in Andersen et al. (2002), and −0.79 for the SV in Nandi (1998). The joint 

values of ),( ρην  suggest that investors are averse to changes in diffusive volatility.  

 

Next, the instantaneous covariance of Brownian increments in index returns and 

volatilities, i.e. )2()( 2
10 ννν μρμμνλλρνσ jjtt +++ , is on average −0.0012, −0.0030, 

−0.1570 and 0.0329 for the SV, SVJ, SVCJ and SVSCJ, when taken into account 

price and volatility jumps if any. Their risk-neutral counterparts for the SVCJ and 

SVSCJ are downward to the values of −0.3251 and 0.0005, respectively. This positive 

instantaneous covariance for the SVSCJ is caused by a relatively greater portion 

attributed to the jump shocks than the one due to diffusive shocks.  

 

The variation coefficient under the respective probability measures, i.e. 
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1
22

0
2 2/2 λμσνλμ ννν ++t  and *

1
2*2*

0
2* )(2/)(2 λμσνλμ ννν ++t , determines how 

fat-tailed the (risk-neutral) distribution is and thereby the relative values of deep OTM 

options versus near-the-money options. The values of {0.3169, 0.4215, 10.2839, 

11.3183} under P and {0.3169, 0.4215, 4.9006, 1.1691} under Q for the SV, SVJ, 

SVCJ and SVSCJ are found in this study compares with νσ  values of 0.742 or 0.315 

for the SV and 0.378 or 0.244 for the SVJ in Bates (2000) or Bates (2006), 0.39 for 

the SV and 0.38 for the SVJ in Bakshi et al. (1997), 0.197 for the SV and 0.184 for 

the SVJ in Andersen et al. (2002), and 0.26 for the SV in Nandi (1998).  

 

The jumps under the SVJ occur frequently, with Jλ =2.4223 and *
Jλ =3.1575, 

compared to the one under the SVCJ with Jλ =0.7852 and *
Jλ =0.7912 or the one 

under the SVSCJ with )5369.0 ,5951.0(),( 10 =λλ  and ).22620 ,0047.2(),( *
1

*
0 =λλ . 

The estimates of the mean jump sizes, jμ  and *
jμ , are negative for all models and 

the SVJ achieves the greatest values in absolute magnitudes. The SVCJ and SVSCJ 

models have simultaneous correlated jumps in spot prices and volatility. The 

correlation, jρ , is found to be positive for both models and has greater value for the 

SVSCJ. The volatility jump-size is estimated to be )4659.0 ,7335.0(),( * =νν μμ  for 

the SVSCJ and )4128.0 ,5785.0(),( * =νν μμ  for the SVCJ. The t values for the 

parameter estimates of the price and volatility processes are significantly different 

from zero at the 5% significant level. 
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Table 2 Parameter Estimates and In-Sample Pricing Fits 
This table shows the parameter estimates of SV, SVJ, SVCJ and SVSCJ models and their in-sample 
mean absolute pricing errors (MAE). The figures reported here are the averages over 24 
non-overlapping estimation months from 21 April 2004 to 18 April 2006. The t-statistics calculated 
from the Newey-West (1987) heteroscedasticity and autocorrelation consistent standard errors are 
given in parentheses. ** and * denote statistical significance at 1% and 5% levels, respectively.  
Parameters SV SVJ SVCJ SVSCJ 
Sample size 24 24 24 24 
MAE 5.5574 4.7589 4.6452 4.3785 

Sη  
0.5523** 
(6.7867) 

0.5302** 
(2.8422) 

0.5293** 
(3.6870) 

0.5413** 
(3.0529) 

νκ  
6.8977** 
(4.7651) 

9.4814** 
(2.6767) 

8.4928** 
(7.1222) 

9.3676** 
(6.5577) 

νθ  
0.0514** 
(9.3658) 

0.0292** 
(5.5443) 

0.0290** 
(2.5209) 

0.0197* 
(2.9084) 

νσ  
0.3183** 
(2.6982) 

0.4084** 
(3.40287) 

0.3759** 
(5.9960) 

0.1125** 
(6.1823) 

ρ  
−0.4641** 
(−8.6914) 

−0.7212** 
(−3.6819) 

−0.4708** 
(−7.9043) 

−0.2712** 
(−5.3926) 

νη  
−0.2460** 
(−5.6678) 

−0.5875** 
(−2.6116) 

−0.6385** 
(−5.3140) 

−0.3133** 
(−3.1039) 

0λ  or Jλ   
2.4223* 
(2.4223) 

0.8008** 
(7.8518) 

0.5951** 
(8.4847) 

1λ     
0.5369** 
(9.0157) 

jμ   
−0.5912** 
(−5.9118) 

−0.0725** 
(−6.9754) 

−0.1543** 
(−5.9298) 

jσ   
0.3704** 
(3.7039) 

0.0028* 
(2.2570) 

0.0811* 
(2.2128) 

νμ    
0.5669** 
(5.7850) 

0.7335** 
(6.5548) 

jρ    
−0.1591* 
(2.3959) 

0.3251* 
(2.4224) 

*
0λ  or *

Jλ   
3.1575** 
(3.1575) 

0.7328** 
(7.9124) 

2.0047** 
(4.0386) 

*
1λ     

0.2262** 
(5.4496) 

*
jμ   

−0.4991** 
(−4.9913) 

−0.0704* 
(−2.0516) 

−0.1983** 
(−4.7909) 

*
νμ    

0.3181** 
(4.1276) 

0.4659** 
(3.7838) 
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B. Out-of-Sample Pricing Fit 

While a more complicated model will generally lead to a better in-sample fit, it will 

not necessarily perform better in out-of-sample pricing because any overfitting will be 

penalized. To test whether the additional parameters of the volatility models are 

economically informative for VIX futures pricing, this section provides a comparison 

of out-of-sample pricing. Three measures of goodness of fit were then employed to 

assess the out-of-sample pricing performance of the VIX futures pricing models on 

the SV, SVJ, SVCJ and SVSCJ specifications. These were the root mean squared 

pricing error (RMSE), the mean percentage pricing error (PE), and the mean absolute 

pricing error (MAE). Table 3 reports RMSE, PE, and MAE values for several 

categories according to time to expiration. Out of maturity combinations reported in 

Table 3, RMSE and MAE were lower for the SVSCJ (SVJ) model for the short-term 

(medium- and long-term) futures contracts. Thus, improvement was generated for 

short-dated VIX futures under the SVSCJ. From the panel of PE values, in contrast to 

the SV’s results, the SVJ and SVCJ models substantially overpriced the short-term 

and medium-term VIX futures and underpriced the long-dated VIX futures. The PE 

values showed that the SVSCJ pricing errors across maturities were less than zero, 

indicating an overpricing fit for VIX futures. 

 

 

Table 3 Out-of-Sample Root Mean Squared Pricing Errors (RMSE), Percentage 
Pricing Errors (PE), and Mean Absolute Pricing Errors (MAE) 

  Days to Expiration 
Pricing errors  <60 60−180 >180 

SV 4.6125 5.0469 20.5714 
SVJ 4.2026 4.3946 5.5327 
SVCJ 4.9342 5.3136 6.2425 

RMSE 

SVSCJ 4.0424 4.6157 5.9926 
SV 0.0036 0.0071 −0.0879 
SVJ −0.0133 −0.0302 0.0022 
SVCJ −0.0224 −0.0367 0.0092 

PE 

SVSCJ −0.0055 −0.0324 −0.0003 
SV 3.5545 4.1741 14.5512 
SVJ 3.5064 4.1358 4.0024 
SVCJ 3.9794 5.0210 4.2364 

MAE 

SVSCJ 3.4141 4.4326 4.5087 
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C. Market Prices of Price and Volatility Risks 

This section focuses on the risk premiums that price four important sources of risks: 

diffusive price shocks, price jumps, diffusive volatility shocks and volatility jumps. 

Premia for the “conventional” return risks (Brownian price shocks) are parameterized 

by tSνη  for a constant coefficient Sη . This is similar to the risk-return trade-off in a 

CAPM framework. Premia for “volatility” risks, on the other hand, are not as 

transparent, since volatility is not directly traded as an asset. Because volatility is, 

itself, volatile, options may reflect an additional volatility risk premium. Volatility risk 

is priced via the extra term tνην  in the risk-neutral dynamics of tν . For a negative 

coefficient νη , the time-t instantaneous mean growth rate of the volatility process tν  

is, therefore, tνην  higher under the risk-neutral measure Q than under the 

data-generating measure P. Since option prices respond positively to the volatility of 

the underlying price in this model, option prices are increasing in − νη .  

 

 

 

 

The market prices of risks are implicit in the dynamics of (lnS, ν) under the joint 

distribution associated with the risk-neutral measure Q and the data-generating 

measure P. Comparing the specification of the risk-neutral dynamics of (lnS, ν) with 

that of the data-generating process, one can obtain an intuitive understanding of how 

different risk factors are priced. Consequently, the instantaneous risk-neutral expected 

rate of index returns is ))((2/)( ***
1

*
0

**
1

*
0 νμρμνλλνκνλλδ jjtttr +++−+−− , while 

)()( *
1

*
0

***
tt νλλμνθκ ννν ++−  for the volatility process in the SVSCJ model. Focusing 

first on the time-t instantaneous risk premium associated with the diffusive price 

shock is tSνη , while that associated with the volatility shock is tνην . Similarly, the 

time-t expected excess index return compensating for the jump risk whenever the 

underlying price jumps is ))(())(( ***
1

*
010 νν μρμνλλμρμνλλ jjtjjt ++−++ , while 

the form of volatility jump-risk premia is **
1

*
010 )()( νν μνλλμνλλ tt +−+  if the 

volatility jumps. The diffusive and jump risk premiums associated with price and 

volatility risks for the SV, SVJ and SVCJ models are obtained by restricting 
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0**
11

*
00 ======== jjj μμμρλλλλ ν , 0 , , *

11
**

00 ====== νμρλλλλλλ jJJ  

and 0 , , *
11

**
00 ==== λλλλλλ JJ , respectively. Table 4 reports related results. We 

find the diffusive price-risk premia are remarkably similar across models, ranging 

from 0.0036 for the SVCJ to 0.0043 for the SV. The diffusive volatility-risk premia 

are on average negative and the SVCJ and SVJ have strong negative diffusive 

volatility-risk premium of −0.0044 and −0.0042, respectively, compared to the SV of 

−0.0026 and the SVSCJ of −0.0021. The results are consistent with the relative 

magnitudes of parameter estimates Sη  and νη  across models in Table 2. Associated 

with the market prices of jump risks, the SVJ achieves the greatest price jump-risk 

premia of 0.1794, followed by the SVCJ with the value of 0.0507 and the SVSCJ with 

the value of 0.0011. In contrast, the SVSCJ has the greater volatility jump-risk 

premium of 0.2510 than the SVCJ with the value 0.1410. In summary, the diffusive 

and jump risk premia vary across models. In terms of volatility shocks, the SVSCJ has 

the greatest volatility jump risk premium, while the SVCJ has the strongest negative 

diffusive volatility-risk premium. Thus, the existence of volatility jumps is related to 

the estimation of volatility risk premia. For the price shocks, the SVJ has the greatest 

price jump-risk premium and the SV achieves the greatest diffusive price-risk 

premium.  
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Table 4 Market Prices of Diffusive and Jump Risks Implicit in the Joint VIX and 
Integrated Volatility 

The diffusive price-risk premium is tSνη , while that associated with the volatility shock is tνην . 
Similarly, the price jump-risk premium that prices the logarithmic price changes Sd ln  is 

))(())(( ***
1

*
010 νν μρμνλλμρμνλλ jjtjjt ++−++  for the SVSCJ, )()( ***

νν μρμλμρμλ jjJjjJ +−+ for 
the SVCJ, and **

jJjJ μλμλ −  for the SVJ. The form of volatility jump-risk premia associated with the 
volatility change dν is **

1
*
010 )()( νν μνλλμνλλ tt +−+  for the SVSCJ, and **

νν μλμλ JJ −  for the SVCJ. 
The instantaneous variance tν  is computed as ***

1
**

2
2*

1
* // VIX)/( tTtTtTTtTt abaa −−−− −−= ζζτζτν  

where )]([21 ****
1

*
1 νμρμκλζ jj +−+=  and )]([2 ****

0
*
2 νμρμκλζ jj +−=  for the SVSCJ, 1*

1 =ζ  and 
)]([2 *****

2 νμρμκλζ jjJ +−=  for the SVCJ, 1*
1 =ζ  and )(2 ****

2 jJ μκλζ −=  for the SVJ, and 
1*

1 =ζ  and 0*
2 =ζ  for the SV. For the SVSCJ, )/()]})((exp[1{ **

1
***

1
**

νννν μλκμλκ −−−−−=− tTa tT  
and )/(]))[(( **

1
****

0
***

ννννν μλκμλθκ −−−+= −− tTtT atTb . The values of *
tTa − and *

tTb − for the SVCJ are 
obtained by setting 0 and *

1
**

0 == λλλ J , while further restricting 0* =νμ  we have *
tTa − and *

tTb −  for 
both SVJ and SV. The sample covers the period of 21 April 2004−18 April 2006, in total 502 trading 
days. 
 

Risk premiums and models dlnS dν 
Diffusive risk premium SV 0.0043 −0.0026 
 SVJ 0.0039 −0.0042 
 SVCJ 0.0036 −0.0044 
 SVSCJ 0.0041 −0.0021 
Jump risk premium SV — — 
 SVJ 0.1794 — 
 SVCJ 0.0507 0.1410 
 SVSCJ 0.0011 0.2510 

 

 

VII. CONCLUSION 

The contributions of this paper to existing literature are (i) to propose closed-form 

solutions to the fair value of the VIX futures under alternate affine diffusion-jump 

stochastic volatility processes; (ii) to propose a methodology for an integrated analysis 

of spot and option prices, or equivalently integrated volatility and VIX; (iii) 

closed-form moment conditions for the total quadratic variations of index returns, i.e. 

our integrated volatilities, are derived for model estimation; and (iv) the market prices 

of risks are estimated. Four models are specified in this paper including the ones with 

jumps in returns and in volatility simultaneously. For the VIX futures valuation, our 

empirical results indicate that both of these jump components are important. The 

model with only diffusive stochastic volatility and jumps in returns, i.e. SVJ, 

outperforms for medium- and long-dated futures contracts, while additionally 

including a state-dependent component driving the conditional volatility of returns, 

which is rapidly moving, i.e. the SVSCJ, can further reduce out-of-sample pricing 
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errors for short-dated futures. Parameters and risk premia also have important impacts 

on VIX futures prices. To obtain accurate estimates, this study follows the work of 

Chernov and Ghysels (2000), Eraker (2004), and Pan (2002) to use joint spot and 

option prices, or equivalently integrated volatilities and VIX, to perform our empirical 

work. The diffusive price-risk premiums are found to be positive, while the premiums 

associated with the diffusive volatility shocks are negative for all models. The price 

jump-risk premium is found to be positive and the SVJ achieves the greatest value, 

followed by the SVCJ and SVSCJ. The volatility jump-risk premium is also found to 

be positive, however, the SVSCJ has a greater value than the SVCJ. Overall, our 

results, on one hand, support the claim that a model with stochastic volatility and 

correlated state-dependent random jumps both in underlying returns and volatility is a 

better model for short-dated VIX futures. On the other hand, a model with stochastic 

volatility and random jumps a better alternative to other models for medium- and 

long-term VIX futures. 

 

 

APPENDIX 

A. VIX Squared in Terms of Fair Value of Price-Diffusion Variance 
Breeden and Litzenberger (1978) demonstrate that the risk-neutral probability density 

function of the stock price ST at time T is given by, 

( ) ( ) ( )
TT SX

t
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tT X

TtXSP
X
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∂
∂

=
∂
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= 2

2

2

2
* ,,,~,,,~

,;,  

where C~  and P~  represent undiscounted call and put prices respectively. The value 

of a claim with a generalized terminal payoff g(ST) is then calculated as, 

∫∫∫
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where )( )( tTr
t eSF −−= δ  denoting the forward price of the stock with a risk-free 

interest rate r and a dividend yield δ, and Q being the risk-neutral probability measure. 

Integrating by parts twice and using the put-call parity relation XFPC −=− ~~  give, 
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 (A.1) 

By letting t→T in equation (A.1), any European-style twice differentiable payoff may 

be replicated using a portfolio of European options with strikes from 0 to ∞ with the 

weight of each option equal to the second derivative of the payoff at the strike price of 

the option. This portfolio of European options is a static hedge because the weight of 

an option with a particular strike depends only on the strike price and the form of the 

payoff function and not on time or the level of the stock price. Note that equation (A.1) 

is completely model-independent. Now consider a log contract, )/ln( FST . Then 

XST
T

SXg
=

−−=′′ 2)(  and it follows from equation (A.1) that 
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By the definition of VIX squared, we have 
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where 365/30=−= tTτ . Thus, VIX squared can be expressed in terms of the 

risk-neutral expectation of the log contract. Different dynamics for the index price tS  

will result in various expressions for VIX squared. The stochastic volatility with 

state-dependent and correlated jumps (SVSCJ) in both index returns and volatility is 

the most general process considered in this paper. The dynamics of ),(ln ttS ν  under 

the risk-neutral measure Q are of the form, 

  ( ) ***
,

**
1

*
0    

2
1 ln tStStttt dNzddtrSd ++⎥⎦

⎤
⎢⎣
⎡ −+−−= ωννκνλλδ   

  ( ) ***
,

**   ttttt dNzddtd ννννν ωνσνθκν ++−=   
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where the correlated Brownian motions *
,tSdω  and *

,td νω  are independent, 

respectively, of the compounded Poisson processes **
tS dNz  and **

tdNzν . The jumps 

arrive at the exponential rate of dtt )( *
1

*
0 νλλ +  with jumps in volatility driven by an 

exponential distribution, ( )** exp~ νν μz , and jumps in asset log-prices normally 

distributed conditional on the realization of *
νz , formally ( )2**** ,~ jjjS zNzz σρμ νν + . 

*κ  is the price-jump size mean for the percentage price change . The diffusive 

component of tν  is governed by Heston’s (1993) stochastic volatility process. 

Applying Itô’s Lemma to )/ln( FST  under the SVSCJ and comparing with equation 

(A.2), we have 
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where ∫=
T

t uuTt Sd )ln(var,υ  is the total quadratic variation of Sln  over the period 

],[ Tt  that reconciles the spirit of integrated variance constructed in the literature. It 

consists of the price-diffusion part, ∫=
T

t u
c
Tt duνυ , , and the price-jump part, 

∫=
T

t J
J
Tt duνυ ,  where dtjjjjtJJ

Q
t ])())[(()(E 2*222****

0 νν μρσμρμνλλν ++++= . 12 

Thus, the fair value of total quadratic variation of Sln  after subtracting the 

price-jump component and also adjusting for price-jump mean is explicitly given by 

the value of an infinite strip of European options in a completely model-independent 

way. Note that the correlation between Brownian shocks in index price and volatility, 

                                                 
12 The realized variance of lnS over [t,T] is calculated as ( )tTt

T

t ut SSSd lnlnvarlnvar −=⎟
⎠
⎞⎜

⎝
⎛ ∫ , which is a 

constant and thus different from the random variable-type quadratic variation of lnS over [t,T], i.e. 

∫=
T

t uuTt Sd )ln(var,υ . 
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i.e. ),(corr *
,

*
, ttS dddt νωωρ = , does not enter the VIX formula explicitly.  

As a result of changing the state-dependent jump arrival frequency, tνλλ *
1

*
0 + , 

into a constant, *
Jλ , i.e. restricting **

0 Jλλ =  and 0*
1 =λ  in the SVSCJ, the VIX 

squared for the SVCJ model becomes 
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Further, the SVJ model with the volatility driven only by diffusive component 

leads to the VIX squared shown as follows, 
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Finally, the VIX squared under diffusive dynamics of lnS with mean-reverting 

square root stochastic volatility (the SV model) is given as the total quadratic 

variation of lnS, i.e. Tt ,υ , which is fully contributed by the smooth part, c
Tt ,υ . 
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B. Conditional Moments of Total Quadratic Variation of Log-Price 

B.1 Conditional Mean 
The first and second conditional moments of the point-in-time volatility, under the 

physical probability measure P, driven by the price-diffusion component for the 

SVSCJ model satisfy, 
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The conditional mean of the total quadratic variation of the log-price for the SVSCJ 

model satisfies, 
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Focusing on the one-day horizon, i.e. 365/1=Δ , it follows that, 
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By the Law of Iterated Expectations or reduction in information sets (Meddahi and 

Renault, 2004),  
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By setting Jλλ =0  and 01 =λ , we have the conditional mean of total quadratic 

variation of log-price for the SVCJ, 
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Further additionally restricting 0=νμ  in (B.6), the conditional mean of integrated 

volatility for the SV and SVJ becomes, 
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Replacing tν  in (B.3) with (B.4), we have 
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B.2 Conditional Variance of Integrated Volatility 

The stochastic differential equation for )(E ,Tt
P
t υ  could be generated as a function of 

tν  by applying Itô’s lemma to the affine equation in the SVSCJ, 
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Now fix the upper limit T, and let the lower limit t be time-varying. The Itô integral 

implied by (B.7) then takes the form, 
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By standard arguments and the substitution of equation (B.1), we have 
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Focusing on the one-day horizon, (B.10) and (B.4) imply that 
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Leading the arguments by one period and applying the Law of Iterated Expectation 

produces, 
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Now substituting for )(E Δ+t
P
t ν  by equation (B.1) and )(E 2
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P
t ν  by equation (B.2), 

and reversely substituting out 2
tν  by equation (B.11) and tν  by equation (B.4), it 

follows that 
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By setting Jλλ =0  and 01 =λ  in equation (B.12), we have the conditional variance 

of integrated volatility for the SVCJ model. Additionally restricting 0=νμ  and 

further 0=Jλ  in the SVCJ model, ])[(E 2
2,

c
tt

P
t Δ+Δ+υ  for the SVJ and SV models, 

respectively, are obtained. 
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B.3 Cross Moment Condition of Leverage Effect 
Apply Itô’s lemma to ttS ν×ln , express the product as a stochastic differential 

equation, and take the conditional expectation of TTS ν×ln  under the SVSCJ, 
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Interchanging the two integration operators and taking derivatives of both sides with 

respect to the upper time limit, then yields the first-order linear ordinary differential 

equation, 
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By applying Itô’s lemma to )(lnE] )exp[( 1 ss
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Substituting existing solutions for )(lnE T
P
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P
t ν , )(E 2

T
P
t ν  and 

)(E TTS
P
t dNzdNz ν× , the solution is given by, 

SVSCJ,SVSCJ,
2

SVSCJ,

SVSCJ,0SVSCJ,

MLK                            

ln)()(ln)(lnE

tTttTttT

ttTtttTTT
P
t SaSS

−−−

−−

+×+×+

×++××=×

νν

μλθκναν ννν     (B.13) 

where 

)2(
)](

2
1 [K 2

1
2

SVSCJ,
1

**
1SVSCJ,

νν
ν μλσ
μρμλκλη

+
++−−= −

−
tT

jjStT

C

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡

+
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
+

+

−
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

+
−
+

−

×

++−−+

−×+++++−−

=

−
−

−
−

−

−

)2(
2

  

)()(
)2(

)(

                

)](
2
1 [

)(])2()([

L

2
1

2
SVSCJ,

SVSCJ,
1

0

1

SVSCJ,

1

0

1

2
1

2

SVSCJ,

1
**

1

SVSCJ,
2

10
**

0

SVSCJ,

νννν

ννν

νννν

ννν

νν

νν

ν

νννν

μλσμλκ
μλθκ

μλκμλκ
μλθκ

μλκ
μλσ

α

μρμλκλη

αμρμμλρσμρμλκλδ

tT
tT

tT
tT

jjS

tTjjjj

tT

C
a

C
tT

tTr

[ ]

SVSCJ,
2

0

SVSCJ,0
**

0

SVSCJ,
1

0
2

1
2

SVSCJ,
SVSCJ,

1

2
0

SVSCJ,SVSCJ,
11

0

SVSCJ,SVSCJ,
1

0

1

2
1

2

SVSCJ,2
1

2
SVSCJ,

SVSCJ,

2

1

0

1
**

1

SVSCJ,SVSCJ,
1

0

2
10

**
0

SVSCJ,

)2(

 )]([

)2(

2
1

)(
1

)(2
)(2
)2(

)(
)2(

                      

)](
2
1 [

)]([                 

 ])2()([

M

tTjj

tTjj

tT
tT

tT

tTtT

tTtT

tT
tT

tT

jjS

tTtT

jjjj

tT

a

br

b
C

a

C

tTa

tT
C

a

tTa

r

−

−

−
−

−

−−

−−

−
−

−

−−

−

++

++−−+

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

+⎥
⎦

⎤
⎢
⎣

⎡

+
−×

−
+

⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

+

−−×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

−
+

+

⎥
⎦

⎤
⎢
⎣

⎡
−−

+
+×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
+

×

++−−+

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

×

+++++−−

=

νν

ν

νν

ννν

νννν

ν

νννν

ννν

νν

ννν

νν

νν

νννν

ννν

ν

νν

ννν

νννν

μρμμλ

μρμλκλδ

μλκ
μλθκ

μλσμλκ
μλ

β
μλκμλκ

μλθκ

α
μλκ
μλθκ

μλκ
μλσ

α
μλσμλκ

μλθκ

μρμλκλη

α
μλκ
μλθκ

μρμμλρσμρμλκλδ

 

 

Focusing on the unit time-interval, or Δ+= tT , and using the earlier result that 
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)(E , Δ+tt
P
t υ  in (B.4), )(E 2

, Δ+tt
P
t υ  in (B.11) and the Law of Iterated Expectations, the 

cross moment condition of (B.13), which is directly implementable, becomes 
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By setting Jλλ =0  and 01 =λ  in equation (B.14), we have the cross moment of 

total quadratic variation for the SVCJ model. Additionally restricting 0=νμ  and 

further 0=Jλ  in the SVCJ model, cross moments for the SVJ and SV models, 

respectively, are obtained. 
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