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Abstract 

We investigate the performance of a sample of German mutual equity funds over 

the period from 1994 to 2003. Our general finding is that mutual funds, on average, 

hardly produce excess returns relative to their benchmark that are large enough to 

cover their expenses. This conclusion is drawn from a variety of model specifica-

tions and is robust to many different benchmarks. Compared to unconditional 

measures, fund performance substantially deteriorates when we measure condi-

tional alphas both in single-index and multi-factor models. We also measure fund 

performance in the Euler-equation framework and test several specifications of the 

stochastic discount factor using GMM. The result that funds underperform even be-

fore costs is even more pronounced. Overall, given the fact that stock returns are to 

some extent predictable by using publicly available information, conditional analy-

sis raises the hurdle for active managers seeking abnormal positive performance, 

because it gives them no credit for exploiting readily available information. 

Keywords: Mutual funds, stock return predictability, conditional perform-

ance measurement, stochastic discount factor. 

EFM classification codes: 380, 370, 350, 310. 

 

 

 

 

 

 

 
a
 Wolfgang Bessler, Chair of Banking and Finance, Justus-Liebig-University Giessen, Licher Strasse 74, Gies-

sen, Germany, Phone: +49-641-9922460, Mail: wolfgang.bessler@wirtschaft.uni-giessen.de. 

b
 Wolfgang Drobetz, Chair of Corporate Finance and Ship Finance, University of Hamburg, Von-Melle-Park 5, 

20146 Hamburg, Germany, Phone: +49-40-42838-5506, Mail: wolfgang.drobetz@wiso.uni-hamburg.de. 

c
 Heinz Zimmermann, Department of Finance, University of Basel, Petersgraben 51, 4003 Basel, Switzerland, 

Phone: +41-61-2673316, Mail: heinz.zimmermann@unibas.ch. 



2 

1.     Introduction 

The public interest in the German mutual equity fund industry has grown rapidly in the past 

years. For example, in 1990 the total mutual fund holdings were worth € 128.9 billion. Ten 

years later, the holdings in mutual funds has increased sharply to € 923.1 billion. German 

funds experienced net capital inflows even during the bear periods on the stock markets and 

mutual fund holdings amounted to € 1’003.0 billion by the end of 2003 (BVI, 2004).
1
 Equity 

funds (including balanced funds) account for 54% of total mutual fund holdings (Maurer, 

2004). This strong interest in equity investments might be explained by the commonly held 

belief that they should play a major role in the development of the German pension system 

which is shifting away from pure defined benefit plans towards a system which puts more 

emphasis on private pension savings. Nevertheless, as measured by US standards, the German 

mutual funds industry is still fairly small. By the end the year 2000, the capital invested in 

mutual funds in the US amounted to € 27’570 per capita, while the corresponding figure in 

Germany was only € 5’154. Krahnen et al. (1997) and Theissen (2004) argue that the minor 

importance of mutual funds in Germany is a side-effect of its bank-based system its compara-

tively small stock market. A well-known feature of the German bank-based financial system 

is that a few big universal banks dominate the capital markets (e.g., Hackethal, 2004), and this 

is also inevitably the case in the German mutual fund industry. The largest mutual fund com-

panies (“Kapitalanlagegesellschaften”, KAGs) are bank subsidiaries and most of their retail 

business is done over the bank-counter. Banks are inclined to sell their own funds, and advise 

their customers in this direction. Therefore, the mutual fund industry is characterized by a re-

strictive distribution network, where the savings banks (“Sparkassen”), the credit-cooperatives 

(“Genossenschaften”), and the four large universal banks (Commerzbank, Deutsche Bank, 

Dresdner Bank, HypoVereinsbank) account for about 80% of all managed assets (Maurer, 

2004). 

Given the increased importance of the German mutual fund industry, performance measure-

ment has also become a crucial issue at least from an investor’s perspective. In most previous 

studies unconditional measures of performance compare the average return on an asset with 

an appropriate benchmark designed to control for the asset’s average risk. The returns and be-

tas are measured as averages over the evaluation period. These averages are taken uncondi-

                                                 

1 These number include both retail funds (“Publikumfonds”) and institutional funds (“Spezialfonds”). 

Institutional funds account for more than 50% of these figures. 
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tionally, i.e., no other information than past returns are used in the estimation. In contrast, the 

focus of this paper is on conditional performance measurement. Conditional performance 

measures relate to changes in the state of the economy and explicitly account for time varia-

tion in expected returns. The key ingredient of the models is that they include information on 

the correlation structure between a fund’s beta and expected market returns, assuming semi-

efficient markets and that both variables are dependent on publicly observable variables. 

If expected returns and risks vary over time, an unconditional approach to performance meas-

urement is likely to be unreliable. Already Jensen (1972) notes that the time-variation in risks 

and risk premiums will be confused with average performance. However, previous empirical 

studies interpret the variation in mutual fund risk and risk premiums as reflecting superior in-

formation or market timing (e.g., Merton, 1981). In a new strand of the literature, Ferson and 

Schadt (1996) were the first to empirically test the hypothesis that any model should not as-

cribe superior performance to a managed portfolio strategy that can be replicated using pub-

licly available information.
2
 Their analysis builds on the results of a set of empirical studies 

showing that the returns and risks of stocks and bonds are at least partly predictable over time, 

e.g., using dividend yields and interest rates (e.g., Cochrane, 1999; Schwert, 2002; Campbell 

and Thompson, 2005). If predictability reflects changing return expectations, valid perform-

ance measures also need to reflect this time variation. The empirical asset pricing literature 

provides convincing evidence that predictability based on ex ante observable instrument vari-

ables can (partly) be explained on the basis of time variation in expected returns (e.g., Ferson 

and Harvey, 1991, 1993; Ferson and Korajzyk, 1995). In addition, conditional versions of as-

set pricing models are better able to explain the cross-sectional variation in expected returns 

(e.g., Cochrane, 1996; Jagannathan and Wang, 1996). 

Our results indicate that – compared to unconditional models – fund performance substan-

tially deteriorates when we measure conditional alphas both in single-index and multi-factor 

models. For example, based on the full set of information variables, the mean conditional al-

pha for our sample of general funds is estimated to be -0.130% per month, or about 1.5% per 

year. In comparison, taking a simple average for all funds over the 1997 to 2003 period, the 

mean total expense ratio is only 1.06%. Accordingly, if we add back management fees, Ger-

man mutual equity funds underperform already on a before fee basis. Given that stock returns 

                                                 

2 See already Breen, Glosten, and Jagannathen (1989). 
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are partly predictable using publicly available information, that part of fund performance that 

is attributable to time-variation in expected returns should be deducted from fund perform-

ance. In performance evaluation tests based on stochastic discount factor models, underper-

formance is even more pronounced and can even be as low as 4% per year. We conclude that 

conditional analysis raises the hurdle on active managers who seek abnormal positive per-

formance because it gives them no credit for using readily available information, and this 

makes it more likely for funds to show no abnormal performance. The pronounced level shift 

in fund performance when switching from the beta-pricing framework to the stochastic dis-

count factor framework (evening unconditional models) can be attributed to the fact that more 

“complicated” stochastic discount factor models and a larger number of primitive assets lead 

to stronger pricing conditions. 

The remainder of this paper is as follows. In section 2 we introduce conditional performance 

evaluation techniques both in a beta pricing framework and in a stochastic discount factor 

(SDF) framework. Section 3 describes the data, and section 4 presents our empirical results. 

2.     Conditional performance measurement 

2.1.    Conditional performance evaluation in a beta pricing framework 

Ferson and Schadt (1996) propose a measure of conditional performance evaluation that is 

consistent with Fama’s (1970) semi-strong form of market efficiency. Their approach modi-

fies the traditional Jensen’s alpha to incorporate conditional information, as represented by a 

set of information variables. The model incorporates time-varying betas and exploits the (un-

conditional) correlation between these conditional betas and the public information variables. 

Time-variation in betas of managed portfolios may come from three different sources. First, 

the betas of the portfolio assets may change over time. Second, the weights of a passive in-

vestment strategy (e.g., buy-and-hold) vary as relative values change. And third, a manager 

can actively manipulate the portfolio weights by deviating from a buy-and-hold strategy. To 

capture the combined effect of these factors on the risk exposures, start with the following 

specification:
3
 

(1a)   ( ) 1t,P1t,BtP1t,P rZr +++ += εβ , 

                                                 

3 See Ferson and Schadt (1996), p. 429f. 
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(1b)   [ ] 01 =+ tt,P ZE ε , 

(1c)   [ ] 011 =++ tt,BT,P ZrE ε , 

where Zt in equation (1a) is a vector of information variables as a proxy for the full set of in-

formation available at time t, and βP(Zt) denotes the time t conditional market betas of the ex-

cess return on portfolio P. Equation (1b) assumes semi-strong market efficiency, and equation 

(1c) implies that βP(Zt) are conditional regression coefficients. This model implies that any 

unbiased forecast of the difference between the portfolio return and the product of the portfo-

lio beta and the excess return on the market portfolio which differs from zero must be based 

on a set of information that is more informative than Zt. If an intercept (alpha) is included into 

the model, it should be zero, and the error term is assumed to be unrelated to public informa-

tion variables, i.e., their informational content is fully exploited in the regression. In empirical 

tests a specific function form of βP(Zt) is required to estimate the model. Following Shanken 

(1990), Ferson and Schadt (1996) assume a linear form for the changing conditional beta of a 

managed portfolio: 

(2)   ( ) tPP0tP1t,P zBbZ ′+==+ ββ , 

where zt = Zt − E(Z) is the normalized vector of deviations of the information variables from 

their unconditional means, and BP is a coefficient vector with the same dimension as Zt. The 

coefficient b0P can be interpreted as the “average beta”, i.e., the beta when all instrument vari-

ables are equal to their means. The elements of BP measure the sensitivity of the conditional 

beta to deviations of the information variables from their means. The specification in equation 

(2) is consistent with the findings in Ferson, Sarkissian, and Simin (2003a,b), who suggest to 

de-mean autocorrelated information variables to reduce the risk of uncovering spurious pre-

dictive relations. 

Combining equations (1) and (2) implies the following generating process for the returns of a 

managed portfolio: 

(3a)   [ ] 1t,P1t,BtP1t,BP01t,P rzBrbr ++++ +′+= ε , 

(3b)   [ ] 01 =+ tt,P ZE ε , 
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(3c)   [ ] 011 =++ tt,Bt,P ZrE ε . 

Empirical tests of the model in equation (3) require running an ordinary least square regres-

sion of a managed portfolio excess returns upon the market factor and the product of the mar-

ket factor with lagged information: 

(4)   ( ) 1t,P1t,BtP21t,BP1P1t,P rzrr ++++ +′++= εδδα . 

Taking expected values of equation (4) reveals that the model implies αP = 0, δ1P = b0P, and 

δ2P = BP.
4
 The products of the future benchmark return and the predetermined information 

variables capture the covariance between the conditional beta and the conditional expected 

market return (given zt). The interaction terms serve as a control for common movements in a 

fund’s conditional beta and the conditional expected benchmark return. The conditional alpha, 

αP, is measured net of the effects of these risk dynamics. When BP = 0, the managed portfolio 

beta is not a function of public information, hence, the conditional and unconditional betas are 

the same. Otherwise, an unconditional alpha contains a bias caused by the common variation 

in betas and expected market returns, and the covariance between beta and future market re-

turns could falsely be interpreted as the result of a portfolio manager’s superior performance 

(e.g., Grinblatt and Titman, 1989). In contrast, the model in equation (4) assumes that manag-

ers do not possess superior information. The null hypothesis of no abnormal performance ex-

plicitly allows for a covariance between beta and the future market returns because both vari-

ables depend on public information that is observable for the econometrician.
5
 

In another strand of the asset pricing literature, Jagannathan and Wang (1996) demonstrate 

that the conditional capital asset pricing model can be interpreted as an unconditional model 

for average expected returns with more than one beta. This interpretation is also suitable for 

the model in equation (4), where (δ1P, δ2P) is a vector of regression coefficients or betas on the 

multiple factors, which are defined as (rB,t+1, zt rB,t+1). The benchmark return is the first factor 

                                                 

4 Bansal and Harvey (1996) employ a similar approach, using a nonparametric benchmark. While the 

alpha in equation (4) reflects the average pricing error based on a conditional version of the condi-

tional capital asset pricing model (parametric benchmark), their alpha represents the pricing error from 

a benchmark return that is constructed to be exactly efficient for a broad class of payoff which in-

cludes dynamic trading strategies. 

5 Already Admati and Ross (1985) suggest that if the actions (portfolio choices) of the manager are 

observable ex post, then these actions should be regressed on the public information available when 

these choices were made, on the ex post observable returns, and on cross-products of the two. 
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and the product of the benchmark return and the lagged information variables are the addi-

tional factors. The latter can be interpreted as the returns to dynamic trading strategies, which 

hold zt units of the market index, financed by borrowing or selling zt units in treasury bills. 

Hansen and Jagannathan (1991) and Cochrane (1996) argue that scaled returns can be inter-

preted as the payoffs of actively managed portfolios. 

2.2.    Conditional performance evaluation in a stochastic discount factor framework 

2.2.1.   Admissible performance measures 

Chen and Knez (1996) were the first to introduce performance evaluation in a stochastic dis-

count factor (SDF) framework. They define a fund’s conditional alpha for a given stochastic 

discount factor, denoted as mt+1, as follows: 

(5)     ( ) 111 −≡ ++ tt,PtPt ZRmEα , 

where we denote αPt as the SDF alpha, and RP,t+1 is the gross return of the fund at time t+1. 

The performance of the fund measures the difference between the expected risk adjusted gross 

return of the fund (conditional in Zt) and its price, which is 1. If the performance is positive 

(negative), this implies that the fund offers a higher (lower) risk-adjusted excess return than 

expected, indicating superior (inferior) performance.
6
 However, the theoretical results in Chen 

and Knez (1996) indicate several measurement problems with SDF alphas. Most important, 

unless the manager’s fund lies in the payoff space generated by the primitive assets, any per-

formance measure is possible.
7
 Moreover, any relative ranking is possible for a whole set of 

managed funds lying outside uninformed investors’ investment opportunity set. As a mini-

mum requirement for performance measurement tests to deliver meaningful results, Farns-

worth et al. (2002) require that if a given stochastic discount factor prices the set of N primi-

tive assets, then αPt in equation (5) must be zero, provided that the fund forms a portfolio of 

these primitive assets (at no costs) and that the portfolio strategy uses only public information 

available at time t. In this case, we have RP,t+1 = x(Zt)’Rt+1, where x(Zt) is a vector of portfolio 

                                                 

6 For the link to performance measures in a beta-pricing framework see Söderlind (1999). 

7 This result ultimately rests upon Hansen and Jagannathan’s (1991) projection argument for the (infi-

nite) set of admissible stochastic discount factors. 
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weights depending on a set of information variables, and the corresponding αPt is an admissi-

ble performance measure, assigning zero performance to an uninformed manager’s portfolio:
8
 

(6)    ( )( )[ ] ( ) ( )[ ] ( ) 01111 =−=−=−= ++++ 'ZxZRmE'ZxZR'ZxmE tt1t1ttt1tt1tPtα . 

This is, however, only a minimum requirement and cannot solve the more general measure-

ment problems described in Chen and Knez (1996). In fact, equation (6) contains two strong 

assumptions: (i) mt+1 is already a valid stochastic discount factor, and (ii) the fund’s return 

spans the benchmark return and, hence, is achievable by the uninformed investor. For this 

special case Chen and Knez (1996) prove that all admissible performance measures will as-

sign zero performance to the fund.
9
 However, in the more interesting case where a fund’s re-

turn lies outside the uninformed investor’s investment opportunity set, the arbitrariness of per-

formance measures described above still remains an unsolved problem. 

The SDF alpha in equation (5) will only produce valid inferences if the candidate stochastic 

discount factor satisfies the Euler equation for a set of N primitive assets. Therefore, we si-

multaneously estimate the parameters of the candidate stochastic discount factors and the SDF 

alpha of the fund using Hansen’s (1982) Generalized Method of Moments (GMM). Following 

Farnsworth et al. (2002), we form the following system of equations, which is subject to our 

empirical tests: 

(7)    ( ) tttt ZRmu ⊗−= ++ 11 11  

      ,12 11 +−= ++ t,PtPt Rmu α  

where u1t denotes the vector of pricing errors relating to the primitive assets (or, reference 

assets), whose gross returns are collected in the vector Rt+1, and u2t is the pricing error of the 

fund with gross return RP,t+1. The parameter αP is the mean of the conditional SDF alpha, de-

fined in equation (5). In the simplest case, where the vector of information variables, Zt, only 

contains a constant, αP measures an unconditional SDF alpha. Under the null hypothesis of no 

abnormal fund performance, αP should be equal to zero. Farnsworth et al. (2002) use this sys-

                                                 

8 See Farnsworth et al. (2002), p. 476. 

9 See Chen and Knez, (1996), theorem 4, p. 525. 
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tem of equations to estimate the performance of U.S. mutual funds, and Fletcher and Forbes 

(2004) apply the same framework to assess the performance of U.K. unit trusts.
10

 

In our empirical analysis, we exploit an additional feature of the stochastic discount factor 

framework. The Euler-equation implies that the mean of the stochastic discount factor should 

be equal to the inverse of the gross return on a risk-free security or, more generally, a zero-

beta asset, hence, E(mt+1) = 1/E(Rf,t+1). This condition can be imposed by including a proxy 

for the risk-free security or a zero-beta asset into the set of primitive assets. Dahlquist and 

Söderlind (1999) and Farnsworth et al. (2002) demonstrate that failure to impose this restric-

tion on the stochastic discount factor can result in estimation of a valid discount factor which 

implies a mean-variance tangency portfolio that is not on the efficient frontier.
11

 Therefore, in 

addition to 10 German sector portfolios as our set of primitive assets, we also include a mo-

ment condition for the risk-free security in our estimations to impose the mean restriction on 

the stochastic discount factor. 

A problem in the GMM estimation procedure is that the number of moment conditions grows 

exponentially if many funds are evaluated at the same time. We therefore estimate the system 

of equations in (7) separately for each fund in our sample. Farnsworth et al. (2002) prove that 

this procedure is not restrictive. Estimating the system of equations for one fund at a time is 

equivalent to estimating a system with many funds simultaneously. The estimates of αP and 

the standard errors for any subset of funds are invariant to the presence of another subset of 

funds in the system.
12

 

2.2.2. Modeling the stochastic discount factor 

We use the SDF alpha in the system of equations in (7) to estimate mutual fund performance. 

However, the SDF alpha depends on the specification of the stochastic discount factor, and 

this is not unique unless financial markets are complete. This indeterminacy implies that dif-

ferent models of the stochastic discount factor can measure fund performance differently and, 

hence, produce different SDF alphas. We employ the following three broad model classes: (i) 

linear factor model SDFs, (ii) primitive-efficient SDFs, and (iii) Bakshi-Chen SDFs. Linear 

                                                 

10 Chen and Knez (1996) and Dahlquist and Söderlind (1999) use a different methodology to estimate 

fund performance in a stochastic discount factor framework that is directly based on the minimum 

value of the quadratic form and the related J-statistic. 

11 See also Hansen and Jagannthan (1997), Jagannthan and Wang (2002), and Dittmar (2003). 

12 See Farnsworth et al. (2002), appendix, p. 499. 
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factor models can capture the traditional CAPM specification and the three-factor model of 

Fama and French (1993). 

Linear factor model SDFs: Linear factor models are models where mt+1 is linear in prespeci-

fied factors. They can potentially capture already many different asset pricing models, includ-

ing the capital asset pricing model and the three-factor model of Fama and French (1993). 

They can also represent capital asset pricing models with higher moments (Dittmar, 2003). In 

the most general form, we have that: 

(8)    ( ) ( ) 11 ++ += tttt FZbZam , 

where Ft+1 denotes the vector of (gross) returns at time t+1 on traded or non-traded factors. As 

before, Zt is a vector of predetermined information variables with dimension L×1, where L 

denotes the number of information variables plus a constant. In the unconditional case, Zt re-

duces to the constant and, hence, the weight parameters a and b are time-constant. A particu-

larly interesting case to analyze is the capital asset pricing model, where mt+1 is a linear func-

tion of the market portfolio (Dybvig and Ingersoll, 1982). This notion can be generalized to 

multiple-beta pricing model (e.g., Chen, Roll, and Ross, 1986). In fact, Ferson and Jaganna-

than (1996) prove that any multiple-beta model can be expressed in the Euler-equation form 

with a particular specification of the stochastic discount factor. 

We test both the capital asset pricing models and the Fama-French (1993) three factor specifi-

cation of the stochastic discount factor. The stochastic discount factor in the unconditional 

version of the capital asset pricing model is given as: 

(9)    1t,M1t bRam ++ += , 

where RM,t+1 is the gross market return. The stochastic discount factor for the Fama-French 

(1993) three-factor model is specified as follows: 

(10)    1t31t21t,M11t SMBbHMLbRbam ++++ +++= , 

where HMLt+1 and SMBt+1 are the gross returns on the high minus low book-to-market and 

small minus big style portfolios, respectively. Plugging equations (9) and (10) into the Euler-

equation and estimating the system of equations in (7) for the set of primitive assets plus the 

risk-free security identifies the a and b parameters. 
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Hansen and Richard (1987) argue that conditional factor models are not directly testable be-

cause the econometrician cannot observe an agent’s information set. However, given a set of 

predetermined information variables, Cochrane (1996, 2001) suggests that conditional factor 

pricing model can be tested by scaling factors. Conditional factor pricing models allow that 

the parameters are time-varying, and again the simplest solution is to assume linearity. With a 

single factor and a single information variable (plus a constant), denoted by zt, we have:
13

 

(11)     ( ) ( ) 1ttt1t Fzbzam ++ += ( ) 1tt10t10 Fzbbzaa ++++= ( )1tt11t0t10 FzbFbzaa ++ +++= . 

Therefore, instead of a one-factor model with time-varying coefficients, we now have a three 

factor model (zt, Ft+1, ztFt+1) with fixed coefficients (plus constant). Linearity is convenient, 

but not restrictive.
14

 Cochrane (1996) suggests that one can simply add scaled factors and es-

timate the unconditional moments of the model as if conditioning information did not exist. 

If there are K factors and L information variables (including a constant), there are L×(K+1) 

parameters to estimate in equation (11). To identify the parameters, the number of primitive 

assets (N) must suffice that N ≥ K+1. Otherwise, the number of parameters is larger than the 

number of orthogonality conditions in GMM estimation. 

Primitive-efficient SDFs: Hansen and Jagannathan (1991) that the solution of the conditional 

projection of a stochastic discount factor mt+1 on the vector of primitive asset returns Rt+1 is: 

(12)   ( ) 1t

1

t1t1t
PE

1t RZRREm +

−

+++
′′= 1 . 

The stochastic discount factor in equation (12) is admissible and prices a given set of primi-

tive assets by construction. PE
1tm +  is usually called a primitive-efficient stochastic discount fac-

tor, because it is a linear function of the returns on the set of primitive assets, where 

( ) 1

1t1t RRE
−

++
′′1  provides the portfolio weights. Instead of computing the weights analytically, 

we follow Chen and Knez (1996), Dahlquist and Söderlind (1999), and Farnsworth, et al. 

(2002) and assume that the weight vector is a linear function of the information variables in 

the Zt vector. Multiplying the primitive asset returns by lagged information variables expands 

the payoff space and results in “dynamic strategies” (Cochrane, 2001). Similar to the condi-

                                                 

13 In this case, small capitalization letters do not indicate demeaned variables. 

14 See Ferson and Siegel (2001) and Beakert and Liu (2004) for a discussion about optimal scaling. 
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tional linear factor models, this procedure results in scaled factor models that can be estimated 

using GMM as if the model was unconditional. With N primitive assets and L instrument 

variables (including a constant), there are N×L weight parameters to estimate and N×L or-

thogonality conditions, implying that the system of equations is exactly identified. 

Bakshi-Chen SDFs: The existence of a strictly positive stochastic discount factor is equivalent 

to a no-arbitrage condition. Chen and Knez (1996) and Dahlquist and Söderlind (1999) im-

pose positivity by cutting off the specification of the stochastic discount factor at zero. An al-

ternative (ad hoc) approach that has been used extensively in the empirical asset pricing litera-

ture to make sure risk premiums are positive is to work with exponential functions.
15

 Bakshi 

and Chen (1998) propose a model in which the stochastic discount factor is an exponential of 

a linear function of the logarithmic returns on the primitive assets. Farnsworth et al. (2002) 

also use this specification to evaluate the performance of U.S. mutual funds. Specifically, the 

Bakshi-Chen SDF is as follows: 

(13)   ( ) ( )[ ]1t
BC

1t RlnZCm ++ = texp , 

where C denotes an N×L matrix of coefficients. In this case, the stochastic discount factor is a 

nonlinear function of the primitive asset returns. The main advantage of this specification for 

the stochastic discount factor is that BC
1tm +  is guaranteed to take on only positive values. How-

ever, this comes at the cost that GMM estimation involving strong nonlinearities becomes 

more complicated. Again, with N×L coefficients and N×L orthogonality conditions, the sys-

tem is exactly identified. 

3. Data 

Fund data: In this study we analyze the database of the Bundesverband Investment und Asset 

Management (BVI). Membership in the BVI is mandatory for all German mutual fund com-

panies, institutional fund companies and asset management companies. Accordingly, the da-

tabase contains all funds of its 74 members starting as early as 1950. We exclude funds that 

invest in foreign stock markets because they have different risk exposures that would require 

additional benchmarks to span the investment opportunity set. Most important, restricting the 

                                                 

15 For example, see Boudoukh, Richardson, and Smith (1993), Ostdiek (1998), De Santis and Gerard 

(1997, 1998), and Harvey (2001). 
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sample to domestic equity funds avoids the problems of dealing with currency risk (e.g., 

Paape, 2003). The funds are divided into regular equity mutual funds, small- and mid-cap 

funds, and growth funds. The sample contains monthly data on 98 general funds, 12 small- or 

mid-cap funds, and 6 growth funds, resulting in a total of 116 funds over the period from 

January 1980 to December 2003. The fund classification is taken from Hoppenstedt, and the 

investment objectives were double-checked by examining the fund fact sheets available from 

the websites of the fund management companies. We also exclude pure index funds, which 

passively track a specified index. The lengths of the available time series of these funds are 

very different (ranging from 288 months to 26 months), and in untabulated results we find 

that this characteristic of the sample can lead to biased results in our conditional performance 

measurement tests. Therefore, we finally use a reduced sample of 50 selected funds for which 

we have a full return history over the period from January 1994 to December 2003 (120 

months). This smaller sample consists of 47 general funds and 3 small- and mid-cap funds. 

Although the number of funds may appear small in comparison with most U.S. studies, our 

sample is exhaustive for the German equity fund market. For comparison, Griese and Kempf 

(2003) also look at German equity mutual funds with an investment objective in German 

stocks. Their data are from Micropal and contain a slightly larger number of 123 funds. Bams 

and Otten (2002) analyze European equity mutual funds and include only 57 German funds 

(including index funds) in their sample. 

We collect the mutual fund net asset values measured on a monthly basis form the BVI data-

base and compute simple fund returns, assuming that total distributions (i.e., dividends and 

capital gain distributions, if any) were reinvested in the fund at the beginning of the following 

month. This implies that the returns are net of management fees and expenses but disregard 

load charges and exit fees (if any). 

Survivorship bias: Previous studies have shown that survivorship issues can severely influ-

ence the results of performance measurement studies (e.g., Brown et al., 1992; Malkiel, 1995; 

Elton et al., 1996). The BVI database contains all funds for which return data exist in a given 

month. By including funds that do not survive until the end of the end of the sample period, 

we can control for a potential sample selection bias related to fund survival, i.e., our sample 

should not be afflicted from survivorship bias. Of the 98 general funds in our sample, only 75 

have data available at December 31, 2003 (end of sample period). In the small- and mid-cap 

segment and the growth fund category there are 2 and 1 non-surviving funds, respectively. 
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The surprisingly high number of non-surviving general funds already indicates that neglecting 

the survivorship-bias might lead to inaccurate estimates of true fund performance. 

We follow the approach in Malkiel (1995) to provide an estimate of the survivorship bias in 

our sample and use raw fund returns. Because the number of funds is only very small before 

1994, we analyze our total sample of 116 (surviving and nonsurviving) funds that existed over 

the 1994-2003 sample period. The results are shown in table 1. In panel A, we report average 

annual returns of all funds in the different fund categories that existed continuously from the 

base year (1994, 1997, or 2000) through 2003. For example, the (equally-weighted) average 

annual return for the period from 1994 to 2003 was 4.97% for all continuously existing funds. 

This is the number one would obtain from normal databases if one asked what was the aver-

age annual return for all funds in existence at December 31, 2003 with a record of at least 10 

years (120 months). All other percentages (for different base years and fund categories) can 

be interpreted accordingly. To assess the amount of survivorship bias, we also compute the 

average returns for all funds in existence in every year, starting from the base year until 2003, 

irrespective of whether the fund survived until December 31, 2003.
16

 In our example given 

above, the equally-weighted average returns for all funds in our sample, including those that 

were liquidated during the 10 year period from 1994 to 2003, was only 4.52%, implying a 

survivorship bias of 45 basis points per year. This number is very close to the 40 basis points 

reported by Griese and Kempf (2003) for their sample of German mutual equity funds. 

[Insert table 1 here] 

In panel B of table 1 we take a slightly different perspective. In a first step, we calculate the 

mean return for all funds in existence each year from 1994 to 2002. In a second step, we com-

pare the mean annual return from the funds that survived until 2003 with those that did not 

survive. We also report the mortality rate (attrition rate); mortality for a 1994 fund means that 

the fund was closed at some point in time between 1995 and 2003. The differences in the 

equally-weighted mean returns are substantial in absolute magnitude and in most instances 

also statistically significant, as indicated by a Welch t-test for equality of the mean returns of 

surviving and non-surviving funds. As expected, the mean return of surviving funds is always 

                                                 

16 Following Malkiel (1995), we dropped funds when they existed only for a partial year, but we in-

cluded every fund that was in existence for the entire year even if it was closed later on. 
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higher than the mean return of non-surviving funds, i.e., non-surviving funs perform less well 

than surviving funds. In addition, we observe that the mortality rates are quite high. However, 

it decrease by construction as one moves down the respective column (i.e., as the length of the 

time period shrinks). The numbers imply an annual attrition rate of 2-3%, which is again con-

sistent with the results by Griese and Kempf (2003). 

Benchmark returns: To alleviate the benchmark problem (e.g., Roll, 1978; Roll and Ross, 

1994, Grinblatt and Titman, 1994) we use a variety of benchmark indexes. Many funds in our 

sample explicitly use the DAX blue-chip index as their benchmark, as indicated in their fund 

prospectus. However, the DAX only consists of 30 blue-chip stocks and, hence, it may not 

capture the total investment opportunity set available to fund managers. Therefore, we also 

use the MSCI Germany Total Return Index Datastream Germany Total Return Index (with 

dividends reinvested) as benchmark portfolios and report the rank correlations of the esti-

mated alphas. Many U.S. studies have applied much broader value-weighted stock market 

proxies. For example, Carhart (1997) used a value-weighted index of all NYSE, Amex, and 

Nasdaq stocks from the CRSP database. For Germany, the Karlsruher Kapitalmarktdatenbank 

(KKMDB) provides the DAFOX index, which represents a broad value-weighted market 

proxy of all stocks traded in the premier market segment (“Amtlicher Handel”) of the Frank-

furt Stock Exchange. The coefficients of correlation between the returns on the DAFOX index 

and the other indexes are very high; the correlation of the DAFOX index with the DAX 30 

index is 0.97, and it is even 0.98 with both the MSCI and the Datastream indexes. 

To test the Fama and French (1993) three-factor model, we use the style portfolios SMB and 

HML as additional style portfolios to capture the size effect (e.g., Banz, 1981) and the value 

effect (e.g., Fama and French, 1992; Lakonishok et al., 1994), respectively. The SMB factor is 

proxied by the monthly return difference between the return on the SMAX index and the 

DAX 30 index.
17

 The HML factor is constructed using the data published on the website of 

Kenneth French.
18

 We use the market-to-book ratio as the defining criterion and compute 

monthly return differences between the value portfolio (low market-to-book ratio) and the 

growth portfolio (high market-to-book ratio). 

                                                 

17 The SMAX index used to be the small- and medium-cap index provided by Deutsche Börse AG. 

Deutsche Börse AG changed its index classification scheme as of 2004, and the SMAX index has been 

continued as a small-cap index of 50 small stocks of the prime segment, denoted as SDAX. 

18 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library. 
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Primitive assets: In a stochastic discount factor framework, a set of reference assets is needed 

to determine the coefficients of the stochastic discount factor. The parameters are estimated 

using the Generalized Method of Moments such that the stochastic discount factor model pro-

duces a “small” pricing error in a system of Euler-equations. In theory, all assets available 

should be included in the estimation. However, similar to the problem that only a proxy for 

the true market portfolio can be used in securities market analysis, the econometrician can 

only employ a subset of available assets. The decision of which assets to include is guided by 

the type of assets in which the fund invests, i.e., the choice of primitive assets should reflect a 

fund manager’s investment universe. In addition to the risk free rate, our set of primitive as-

sets is therefore represented by the 10 German sector indexes according to the Datastream 

classification.
19

 Table 2 provides summary statistics of these sector indexes over the period 

from January 1994 to December 2003. The R
2
 denotes the explanatory power of predictive 

regressions of the sector index returns upon lagged values of the three information variables 

described below. 

[Insert table 2 here] 

Information variables: We apply a set of public information variables that previous studies 

have shown are useful for predicting stock returns and risk over time. The instrument vari-

ables are (i) the lagged dividend yield on the Datastream German Total Return Index, (ii) the 

lagged level of the 1-month interest rate for Euro deposits (German Mark deposits before 

January 1, 2002) on the Eurocurrency market, and (iii) the lagged slope of the term structure. 

The time t dividend yield is computed as the average value of dividends paid over the last 12 

months on the (value-weighted) Datastream index, divided by the index value at time t. Fol-

lowing Lewellen (2004), we use the natural log of the dividend yield rather than the raw se-

ries, because it has better time series properties. The term spread is calculated as the differ-

ence between the yield on long term government bonds (with maturity of at least 10 years) 

and the 3-month interest rate for Euro (German Mark) deposits on the Eurocurrency market. 

In order for conditional performance measurement models to produce meaningful results, a 

necessary condition is that the information variables have predictive power. The econometric 

                                                 

19 Chen and Knez (1996) also use a set of sector portfolios for all stocks listed on the NYSE as primi-

tive assets. Farnsworth et al. (2002) use a broad market index and a set of style portfolios, and Fletcher 

and Forbes (2004) use size portfolios as primitive assets. 
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method used in most prediction studies is an ordinary least squares (OLS) regression of stock 

returns on the lag of the predictor variables. Based on conventional critical values for the t-

test, these studies have concluded that there is evidence for predictability. However, recent 

studies argue that the apparent stock return predictability based on standard t-tests might be 

spurious (e.g., Stambaugh, 1999; Torous et al., 2004; Lewellen, 2004; Amihud and Hurvich, 

2004; Campbell and Yogo, 2005). A problem arises if a predictor variable is highly persistent 

and its innovations are strongly correlated with returns.
20

 

In panel A of table 3 the excess returns on our four benchmark indexes are regressed on the 

lagged predictor variables separately one at a time using ordinary least squares. We report 

conventional t-statistics as well as biased-adjusted t-statistics following the approach by Ami-

hud and Hurvich (2004). The results reveal that the dividend yield does not have predictive 

power for our German sample. This result is in sharp contrast to U.S. most of the evidence, 

but it might be explained by the fact that our sample contains the 1990’s, a decade during 

which several studies claimed that the dividend yield lost its predictive power (e.g., Goyal and 

Welch, 2003; Rey, 2004). In contrast to the dividend yield, both the short-term interest rate 

and the term spread exhibit strong predictive power. A conventional t-test indicates statistical 

significance of the coefficients on the lagged predictor variables at the 5% level. Given the 

small sample bias with highly persistent regressors, these results might overstate the true pre-

dictive power of our information variables. We therefore report the bias-adjusted t-statistic 

based on the method proposed by Amihud and Hurvich (2004), and they indicate that the pre-

diction power of the short rate and the term spread is in fact robust. The coefficients are gen-

erally estimated at the 5% significance level; only in two cases significance reduces to the 

10% level. 

[Insert table 3 here] 

Because we also test specifications where all three information variables are used simultane-

ously to model expected returns in our conditional performance measurement tests, we show 

                                                 

20 All sample autocorrelations at the first lag are above 0.9, indicating strong persistence and possibly 

non-stationarity (unit root). The null hypothesis of a unit root cannot be rejected for all three series 

using both Augmented Dickey-Fuller and Phillips-Perron tests. However, the results of the KPSS-test 

(Kwiatkowski et al., 1992) are inconclusive and, hence, we conclude that all three series are not suffi-

ciently informative to be sure whether they are stationary or integrated. 
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the results of multi-predictor regressions in panel B of table 3. We apply Hansen’s (1982) 

Generalized Method of Moments (GMM) to estimate the multi-predictor regressions, using a 

heteroskedasticity and autocorrelation consistent covariance matrix as weighting matrix and a 

constant plus all three lagged information variables as instruments to specify the orthogonality 

conditions. Our estimation results reveal that the single-predictor results in panel A are robust 

in the multivariate case. Specifically, while the coefficient on the log dividend yield is again 

estimated insignificantly, we still find evidence for predictability with both the short rate and 

the term spread. A Wald test clearly rejects the null hypothesis that all three information vari-

ables are jointly equal to zero. Overall, therefore, we interpret these regression results as evi-

dence that our predictor variables are appropriate to model the time variation in expected re-

turns in conditional performance measurement tests. 

4.     Empirical results 

4.1.   Conditional performance measurement in beta-pricing framework 

4.1.1.  Measuring conditional alphas and betas 

In what follows we use the reduced sample of 50 German mutual equity funds, consisting of 

47 general funds and 3 small- and mid-cap funds, for which we have a full return history over 

the period from January 1994 to December 2003 (120 months). We start with the results for 

an unconditional model. First, we employ the Datastream Germany Total Return Index as the 

market proxy in the single-index model. We choose this benchmark because the time series 

for the dividend yield we use in the conditional tests is based on this index. For the small- and 

medium-cap funds in the single-index model we use the DAFOX as the market proxy. Sec-

ond, we generally employ the DAXOF as the market proxy in the Fama and French (1993) 

three-factor models. Given the construction principles of the DAFOX as the most comprehen-

sive index, we think that this approach is the most appropriate. In the analysis that follows, we 

are less interested in the absolute level of underperformance (which is lowest based on the 

DAFOX), but instead focus more on the resulting shift in the distribution of alphas when con-

ditioning information is incorporated into the model. 

The results of the unconditional performance evaluation are shown in table 4. Most important, 

the mean abnormal return in the single-index model for the subsample of general funds is -

0.045% per month, or about 55 basis points per year. The negative alpha in the three-factor 

model is even -0.217% per month, or -2.6% per year. In contrast, small- and mid-cap funds 
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slightly outperform the multi-factor benchmark. Both the mean and median abnormal returns 

are positive. However, the absolute values are quite low, and given that there are only three 

small- and mid-cap funds with a full 120 months return history, these results should again not 

be overemphasized. 

[Insert table 4 here] 

Tables 5 and 6 present the results from conditional performance evaluation models in the 

standard beta-pricing setup, as specified in equation (4). We start by testing conditional ver-

sions of the single-index model, and use each information variable separately one at a time in 

table 5 and all three information variables simultaneously in table 6. The information vari-

ables are (i) the lagged level of the log dividend yield, (ii) the lagged level of the 1-month in-

terest rate, and (iii) the lagged slope of the term structure. Again, we employ the Datastream 

Germany Total Return Index as the market proxy for the subsample of general funds and the 

DAFOX for the small- and mid-cap funds. In table 5 in the column denoted “#sign”, we also 

report the number of fund for which the coefficient on the interaction term of the benchmark 

return with the (lagged) single instrument variable is estimated significantly. In table 6 in the 

column labeled “pval(F)”, we report the average probability values of Wald F-tests for the 

null hypothesis that the coefficients on all three interaction terms are jointly equal to zero. The 

figures in brackets denote the number of funds for which the F-test rejects the null hypothesis. 

[Insert table 5 and 6 here] 

In general, we observe that the distribution of conditional alphas shifts to the left, i.e., the per-

formance of funds becomes worse when we control for public information. For example, the 

mean conditional alpha in table 5 for the subsample of general funds varies between -0.052% 

and -0.111% per month, depending on the information variable, and the average estimated 

alpha in table 6 is -0.130% per month, or about 1.5% per year. The null hypothesis that all 

interaction terms corresponding to the three instrument variables in table 6 are jointly equal to 

zero can be rejected for 36 funds, i.e., almost three quarters of our sample. 

Our analysis is based on mutual fund returns net of costs, i.e., management fees were already 

deducted from the funds’ returns. Taking the 1.5% annual underperformance as the bench-

mark and adding back the average total expense ratio over the 1997 to 2003 period of 1.06%, 

we find that funds underperform by roughly 45 basis points before fees. This clearly indicates 
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that, on average, active fund management cannot add value to the investor. However, our re-

sults are less pronounced than those in Bams and Otten (2002), who document that the aver-

age fund in their smaller sample of German funds underperforms by even -1.32% per year on 

a conditional basis. 

Overall, compared to an unconditional assessment of mutual fund performance on the basis of 

Jensen’s alpha, our results seem to suggest that the performance of our sample of general 

funds appears even more unfavorable in a conditional framework. These findings are consis-

tent with those in Dahlquist et al. (2000) for Swedish funds, in contrast with the original evi-

dence in Ferson and Schadt (1996) for U.S. mutual funds and Silva et al. (2003) for European 

bond funds. The latter two studies reveal a tendency for better performance when predeter-

mined information variables are incorporated into the analysis. In two follow-up studies with 

much larger samples, Christopherson et al. (1998) and Ferson and Qian (2004) no longer re-

port any significant effect on the distribution of alphas, i.e., conditional alphas do not make 

the performance of the funds look better than unconditional alphas. Chen and Knez (1996) 

argue that only managers who use more than public information have the potential to be as-

signed a positive performance by a conditional performance measure. Conditional analysis 

raises the hurdle on managers seeking abnormal positive performance because it gives them 

no credit for using readily available information, and this makes it more likely for funds to 

show no abnormal performance. 

To double-check our results, in a first step we run all regressions using all four alternative 

benchmark indexes as market proxies. Table 7 shows the rank correlation of the conditional 

versions of Jensen’s alpha for the specification that uses all four instrument variables. Our re-

sults are robust to the choice of the benchmark indexes, and with one exception the rank cor-

relations are all above 0.99. Again, we observe that the DAFOX index produces lower alphas 

than the other indexes, but the results are qualitatively the same. 

[Insert table 7 here] 

Our findings have interesting interpretations. In the sample of general funds, we find that the 

term [ ]1t,BtP r,zCovB +
′  is a positive 0.000859 for the average fund. This finding implies that the 

correlation of fund betas with the expected market return that is attributable to the predeter-

mined information variables tends to be positive, indicating that fund managers tend to in-

crease their market betas when expected returns are high conditional on public information, 
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and/or reduce their market betas when expected returns are low.
21

 Traditional performance 

measurement studies in an unconditional setting and timing models, in particular, interpret the 

covariance between beta and future market returns solely as a result of a portfolio manager’s 

superior (private) performance. In contrast, a conditional setup assumes that markets are semi-

strong efficient, i.e., fund managers do not have superior information but rather exploit public 

information. To come up with a ”fair” performance measure, that part of the ex post abnormal 

return that is attributable to time variation in expected returns based on public information and 

changing betas in the “correct” direction must be excluded. As suggested by Chen and Knez 

(1996), using public information-based dynamic portfolios as performance references leads to 

“tougher” performance yardsticks. 

An alternative (and somewhat agnostic) explanation for Ferson and Schadt’s (1996) result is 

provided by Chen and Knez (1996). They argue that due to the nonuniqueness of admissible 

measures, switching from unconditional to conditional performance measures does not neces-

sarily mean lowering the performance ranking of every fund. Due to the infinity of admissible 

conditional and unconditional measures, it is not the case that any conditional measure will 

automatically assign a performance value lower than what an unconditional measure does.
22

 

4.1.2.  Cross-sectional distribution of mutual fund alphas 

To explore the shift in alphas when switching from an unconditional to a conditional frame-

work more in detail, we now look at the entire distribution of abnormal returns instead of av-

erage returns only. Specifically, table 8 shows the cross-sectional distribution of t-ratios for 

individual fund alphas. Following Ferson and Quian (2004), we summarize the results by pre-

senting the fractions of the individual t-ratios that lie between standard critical values for a 

normal distribution, which is the asymptotic distribution for the t-rations. Column (1) shows 

the fractions that would be expected under the null hypothesis of no abnormal performance, if 

the normal distribution provides a good approximation for the t-ratios. The table also shows 

                                                 

21 In contrast, for our sample of small and mid-cap funds, we find opposite results. They indicate that 

fund managers tend to reduce their market betas when public information implies relatively high ex-

pected market returns, and vice versa. Consequently, fund performance tends to look worse in a condi-

tional framework. This finding is in line with those in the original Ferson and Schadt (1996) study. 

Ferson and Warther (1996) also report that the performance of some funds switches from negative to 

positive. To explain this finding, they suggest a new money-flow hypothesis based on the findings in 

Warther (1995). 

22 See Chen and Knez (1996), p. 531, for more details. 
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the minimum and the maximum t-statistics for each model. Using these values, we test the 

hypothesis that all alphas are jointly equal to zero using the Bonferroni p-value. This is a one-

tailed test of the null hypothesis that all alphas are zero against the alternative that at least one 

alpha is positive (Bonferroni p-value (+)) or negative (Bonferroni p-value (−)). It is computed 

as the smallest of the p-values for the individual tests (the most positive t-statistic and the 

most negative t-statistic) multiplied by the number of funds. 

Similar to Ferson and Schadt (1996) and Ferson and Qian (2004), we find in column (2) of 

table 8 that the distribution of the unconditional alphas is centered slightly to the left of the 

distribution under the null hypothesis. There are 28 funds with insignificantly negative alphas 

and t-values between 0 and -1.645, whereas 3 funds exhibit negative alphas that are even sta-

tistically significant (with t-values below -1.645). There is 1 fund with a significantly positive 

alpha (with a t-value above 2.326). Nevertheless, none of the extreme t-ratios are significant 

based on the Bonferroni test, although unconditional performance measures suggest a nega-

tive performance, on average. Consistent with the regression results for the Fama and French 

(1993) three-factor model in table 4, column (7) of table 16 indicates that the cross-sectional 

distribution of t-ratios shifts even further to the left, and there are more extreme negative al-

phas for individual funds. For example, there are six funds with t-values below -2.326, and 

the Bonferroni p-value rejects the null hypothesis that all alphas are zero against the alterna-

tive that at least one is negative at the 10% level.
23

 

[Insert table 8 here] 

Overall, for the unconditional models we observe that funds have more negative than positive 

alphas. Of the significant alphas (with absolute t-statistics larger than 1.645), all are negative, 

with only one exception for the single-index model. Accordingly, a simple binomial test re-

jects the null hypothesis that 50% of the alphas are positive. The corresponding t-statistics are 

-1.697 for the one-factor model and -4.808 for the three-factor model. Although this result 

clearly indicates poor performance from an investor’s perspective, a caveat is that it is diffi-

                                                 

23 The nonnormality, per se, in the distribution of the t-ratios could have two reasons. First, our sam-

ple size could be too small for the asymptotic distribution to be accurate. Second, Koswoski et al. 

(2005) argue that the cross-section of mutual fund alphas has a complex, non-normal distribution 

which can result from (i) heterogeneous risk-taking and (2) non-normally distributed individual fund 

alphas. Using a bootstrap approach, they document that the superior alphas of star mutual fund man-

agers, net of costs, are not attributable to luck and indicate genuine stock-picking skills. 
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cult to know where the distribution of the alphas should be centered under the hypothesis of 

no abnormal performance. Sharpe (1991) and Malkiel (2003) argue that transaction costs are 

deducted from the funds’ returns but not from the benchmark returns and, hence, the alphas of 

fund returns should be centered to the left of zero. On the other hand, our reduced sample of 

funds selected for the conditional analysis suffers from survivorship bias, which shifts the dis-

tribution of alphas to the right. 

Looking at the distribution of t-ratios for the conditional performance model when all three 

information variables are used in column (6), the distribution becomes even more skewed to 

the left. Most important, 40 funds exhibit negative alphas, and there are 5 funds with t-ratios 

below -2.0. We cannot reject the null hypothesis that all fund alphas are jointly equal to zero 

against the alternative of superior performance, but the minimum t-ratio is close to being sig-

nificantly negative when considering a 10% confidence level (with p-value = 0.1104). A bi-

nomial test again rejects the null hypothesis that 50% of the alphas are positive; the corre-

sponding t-statistic is -4.243. 

Although somewhat less pronounced, the results for the conditional regression specifications 

using only one information variable at a time in columns (3)-(5) are qualitatively similar (es-

pecially for the term spread and the short-term interest rate). This finding is again in contrast 

to the results in Ferson and Schadt (1996), who cannot reject the null hypothesis that 50% of 

the funds exhibit positive alphas in their conditional setup. They conclude that conditioning 

on public information removes the inference of the traditional approach that mutual fund al-

phas tend to be negative. As discussed above, our results for German mutual equity funds 

seem to suggest exactly the opposite conclusion. On average, the performance of the funds in 

our sample looks worse when we correct for the part of the ex post abnormal fund return that 

is attributable to time variation in expected returns based on publicly available information. 

4.2.    Performance measurement in a stochastic discount factor framework 

To estimate unconditional and conditional SDF alphas, we again use the reduced sample of 50 

German mutual equity funds for which we have a full return history over the period from 

January 1994 to December 2003 (120 months). In all our tests we employ the 10 German sec-

tor portfolios according to the Datastream classification and the risk-free security as the set of 

primitive assets. Consequently, in linear models of the stochastic discount factor we also use 

the Datastream Germany Total Return Index as the market proxy. This choice is further justi-
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fied because the dividend yield that we employ in the conditional models is also based on this 

index. In addition, we also use the term spread and the short-term interest rates as information 

variables.
24

 

4.2.1.  Estimating stochastic discount factor models 

We start with specification tests for the stochastic discount factor models. To provide a 

benchmark, the first line in table 9 shows the results from a constant discount factor model, in 

which the stochastic discount factor is assumed to be fixed over time and equal to the inverse 

of the sample mean of the gross 1-month interest rate.
25

 A constant stochastic discount factor 

model can be motivated by risk neutrality, where the marginal rate of substitution of a risk-

neutral investor (with time-additive, state independent utility) is constant over time. The aver-

age monthly interest rate is 0.309% and, hence, the inverse of the 1-month gross return is 

0.997 [= 1/(1+0.00309)]. As shown in the first line of table 9, the estimated value of the con-

stant stochastic discount factor is 0.996, which is very close to the inverse of the sample mean 

of the gross 1-month interest rate. Furthermore, panels A and B of table 9 show the results of 

the different stochastic discount factor models. The means of the fitted values of all stochastic 

discount factor models are slightly below 1.00 as well, indicating that these models are effec-

tive in fixing at least the mean of the “true” stochastic discount factor. Figures 1 and 2 depict 

graphical illustrations of the fitted values from each estimated model. Similar to Farnsworth et 

al. (2002), a first observation is that the standard deviation increases as the stochastic discount 

factor model becomes more “complicated”, i.e., as we move from a one-factor model to 

multi-factor models and, even more pronounced, from unconditional models to conditional 

models. This result can be explained by referring to Hansen and Jagannathan’s (1991) volatil-

ity bounds for admissible stochastic discount factors and the underlying projection argument. 

They document that the minimum variance of an admissible stochastic discount factor in-

                                                 

24 Using all information variables simultaneously can lead to an explosive number of orthogonality 

conditions in a stochastic discount factor framework. Therefore, the results we present for the condi-

tional specifications of both the SDF-Bakshi-Chen model and the SDF-Primitive-efficient model are 

based on the short-term interest as the only information variable in the Generalized Method of Mo-

ments estimation. In contrast, for the SDF-CAPM and the SDF-Fama-French models we use the full 

set of information variables to scale factors. 

25 Specifically, we estimate the system of equations in (7) using all primitive assets, but excluding the 

fund specific equation. 
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creases as the number of included assets increases.
26

 Conditional stochastic discount factor 

models can be tested by adding scaled factors and simply estimating the unconditional mo-

ments of this extended model (e.g., Cochrane, 2001). New “assets” (interpreted as dynamic 

trading strategies) are added to the model by scaling the factors and/or the primitive assets by 

the lagged information variables. Therefore, it is perfectly reasonable to expect that the stan-

dard deviation of the estimated stochastic discount factors is higher in conditional models 

compared to unconditional models. 

[Insert table 9 and figures 1 and 2 here] 

A second (reassuring) observation is that the number of negative values in the time series of 

estimated stochastic discount factors is small in most specifications, as indicated in the last 

column of table 9. The Euler-equation suggests that a negative value of the stochastic discount 

factor implies it assigns positive prices to negative payoffs at some point in time. Obviously, 

as the standard deviation of the estimated stochastic discount factor increases, the number of 

instances where the estimated stochastic discount factor takes on a negative value increases as 

well. The value of a highly volatile stochastic discount factor is ambiguous. On the one hand, 

more volatility is necessary to explain the historical equity premium (e.g., Mehra and Prescott, 

1985), or equivalently, to suffice the Hansen and Jagannathan (1991) volatility bound. On the 

other hand, a more volatile discount factor does not necessarily exhibit better pricing proper-

ties, and more volatility may also imply lower power to detect abnormal performance. 

Following Farnsworth et al. (2002), we also explore the dynamic performance of the different 

stochastic discount factor models. In frictionless markets some transformation of the equilib-

rium price process should follow a martingale with respect to the information that market par-

ticipants use to form expectations. Specifically, the discounted gross return, 1t1t Rm ++ , should 

be a martingale and, hence, it should not be predictable based on the lagged information vari-

ables, collected in Zt (e.g., Zimmermann, 1998; Cochrane, 2001). To test this prediction, we 

compute the pricing errors, 11 uRm 1t1t ≡−++ , for each equation in our system and regress them 

                                                 

26 See De Santis (1995) for an in-dept discussion. Based on this intuition, he develops spanning tests 

in a stochastic discount factor framework. This methodology was used by Beakert and Hodrick (1992), 

Bekaert and Urias (1996), Errunza et al. (1999), and Drobetz (2003) to test for the benefits of interna-

tional diversification. 
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upon the vector of lagged information variables, Zt.
27

 The predicted pricing errors should not 

be significantly different from zero using any information available at time t and, hence, the 

model implies that the regression coefficients should be zero. Even if there is predictability in 

a return, Rt+1, using lagged information variables, Zt, this predictability should be removed 

when Rt+1 is multiplied by the “correct” mt+1. This is the sense in which conditional asset pric-

ing models are required to “explain” predictable variation in asset returns. A related require-

ment is that the standard deviation of the fitted pricing errors of each equation should be small 

if the model captures the predictable variation in expected stock returns. This interpretation is 

similar to the notion of the variance ratio tests in Ferson and Harvey (1993) and Ferson and 

Korajczyk (1995) and the restrictions on the covariance between information variables and 

subsequent asset returns that must hold in efficient markets, as derived by Kirby (1998). 

Table 10 shows the standard deviation of the fitted pricing errors in the different models for 

each primitive asset. The constant discount factor model can serve as a benchmark model, be-

cause it cannot explain any of the predictability. As an example, take the returns of sector 1. 

The monthly standard deviation of the fitted values for this sector is 2.91%, as shown in the 

first line of table 10. With a constant stochastic discount factor, this approach is equivalent to 

a regression of the gross returns of sector 1 multiplied by the estimated constant m minus 1 

upon the lagged information variables. In comparison, the standard deviation of the monthly 

raw return on sector 1 is 14.25%, as shown in table 2. An R-square measures the explanatory 

power of a regression and indicates the percentage of variance explained. Accordingly, the R-

square in an ordinary least squares regression of the returns on sector 1 upon the lagged in-

formation variables is roughly 4.2% [= (0.02908/0.1425)
2
]. In fact, this value is exactly equal 

to the (unadjusted) R-square shown at the bottom of table 2 for the predictive regression in-

volving sector 1 and the three information variables. 

[Insert table 10 here] 

Panel A in table 10 presents the results for the unconditional stochastic discount factor mod-

els. This class of models is unconditional in the sense that they do not exploit the predictive 

power of the information variables for raw returns, Rt+1. However, the stochastic discount fac-

tor, mt+1, is time-varying and, hence, the product mt+1Rt+1 could potentially follow a martin-

                                                 

27 This procedure is similar to the widely used Sargan-test (Sargan, 1958) of overidentifying restric-

tions. See also Davidson and MacKinnonn (2004). 
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gale. Similar to Farnsworth et al. (2002), none of the models can explain the predictable varia-

tion in sector returns better than the constant stochastic discount factor model. The SDF-

CAPM model explains a reasonable fraction of the predictability, implying that the standard 

deviations of the fitted values are relatively small. However, the other three models perform 

poorly and cannot capture the time variation in expected returns. In many cases, the standard 

deviations of the fitted pricing errors are even larger than the standard deviations of the sec-

tors’ raw returns. This result implies that the product of 1−++ 1t1t Rm  has even larger regression 

coefficients upon Zt than Rt+1 has, indicating particularly poor pricing performance. 

Panel B of table 10 presents the results for the conditional stochastic discount factor models. 

The conditional SDF-primitive-efficient and the conditional SDF-Bakshi-Chen models pro-

duce standard deviations of the fitted pricing errors that are virtually zero. This result is simi-

lar those by Farnsworth et al. (2002). In general, we observe that the conditional models per-

form better than the unconditional ones. This finding can be explained by the nature of the 

GMM estimation procedure. Conditional models exploit the lagged instrument variables to 

form a set of orthogonality conditions, and the parameters are estimated to make the expected 

product of the pricing errors and the lagged instrument variables as close to zero as possible in 

the sample.
28

 

4.2.2.  Using the SDF alphas to measure mutual fund performance 

Table 11 presents the cross-sectional distribution of individual fund alphas for the different 

stochastic discount factor models. To characterize this distribution of SDF alphas, we report 

the mean and the median alphas, the alphas of the bottom 3 and bottom 10 funds, and the al-

phas of the top 3 and top 10 funds. We also report the SDF alpha when the system of equa-

tions in (7) is estimated using an equally-weighted portfolio of all funds. Moreover, the table 

shows the Bonferroni p-values for the null hypothesis that all alphas are jointly zero.
29

 

[Insert table 11 here] 

                                                 

28 A notable exception is the conditional SFD-Fama-French model, which performs even worse than 

the constant stochastic discount factor model in explaining the predictable variation in expected sector 

returns. This finding confirms previous results by Kirby (1998), who also reports that the three-factor 

model of Fama and French (1993) is unable to explain the returns on dynamic trading strategies (as 

proxied by scaled returns), which suggests that predictability is inconsistent with rational asset pricing. 

29 If the adjusted p-value exceeds 1, it could also be set equal to 1. 
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In the SDF-CAPM model, the average estimated underperformance is 0.149% per month, or 

roughly 1.77% per year. The same result is obtained for an equally-weighted portfolio of all 

funds. The average expense ratio of our subsample of general funds is 1.29%, indicating that 

already under the simplest stochastic discount factor model the average fund strongly under-

performs, even after adding back total expense ratios. The performance of the top 3 and bot-

tom 3 funds indicates strong negative skewness of the distribution of individual fund alphas. 

Furthermore, this shape of the distribution is not strongly dependent on the stochastic discount 

factor model. 

Table 12 shows the rank correlations between the estimated alphas. In many cases, the corre-

lations are quite high, indicating that the relative performance of individual funds is quite ro-

bust to alternative specifications of the stochastic discount factor. Rank correlations range be-

tween 0.95 and 0.72 for the unconditional models in panel A, and between 0.91 and 0.64 for 

the conditional models in panel B. The lowest rank correlations generally involve the SDF-

Fama-French model, which also tends to be the poorest performing model (see tables 9 and 

10). In results not presented here, we also compute the rank correlations between uncondi-

tional and conditional versions of each model. These rank correlations range between 0.94 

(for the SDF-Fama-French models) and 0.72 (for the SDF-CAPM models). Overall, we there-

fore conclude that the relative performance measured for the individual funds is reasonably 

correlated across different models of the stochastic discount factor. 

[Insert table 12 here] 

Nevertheless, compared to the unconditional SDF-CAPM model, the mean of the distribution 

generally shifts to the left in all other models of the stochastic discount factor. This finding is 

in contrast to the results reported by Farnsworth et al. (2002) and Fletcher and Forbes (2004), 

who report similar performance measures across all stochastic discount factor models. For 

example, in panel A of table 11 the average alpha for the unconditional SDF-primitive-

efficient model is -0.177% per month, or about 2.10% per year. In contrast, the mean SDF 

alpha for the SDF-Fama-French three-factor model sharply deteriorates to -0.304% per 

month, or -3.59% per year. This large negative performance is confirmed when an equally-

weighted portfolio of funds is used instead of estimating the system of equations separately 

for each fund and reporting the average SDF alpha. However, given the poor time series prop-

erties of the estimated stochastic discount factor for this model (see tables 9 and 10), this re-

sult should not be overemphasized. 
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As expected, the results in panel B of table 11 suggest that compared to an unconditional as-

sessment the conditional performance of our funds appears even more unfavorably (with an 

exception of the SDF-Bakshi-Chen model). Compared to the unconditional specifications in 

panel A, the average conditional SDF alphas sharply decrease to values between -0.234% and 

-0.340% per month. This implies large underperformance between -2.77% and -4.00% per 

annum, depending on the model for the stochastic discount factor. The null hypothesis of no 

abnormal performance explicitly allows for a covariance between factor weights and future 

returns on the primitive assets because they depend on public information that is observable 

for the econometrician. A ”fair” performance measure excludes that part of the ex post ab-

normal return that is attributable to time variation in expected returns based on public infor-

mation and changing factor weights in the “correct” direction. Using public information-based 

dynamic portfolios as performance references leads to “tougher” performance yardsticks. 

A second, more technical, explanation for our findings is that a more “complicated” stochastic 

discount factor leads to more restrictive pricing conditions. In a conditional setup, the stochas-

tic discount factor becomes more complicated in the sense that scaled returns (interpreted as 

dynamic trading strategies) are added. As shown by Hansen and Jagannathan (1991), impos-

ing additional assets implies that the volatility bound for stochastic discount factors shifts up-

ward and entails stronger pricing restrictions, i.e., the minimum variance of admissible sto-

chastic discount factors increases. The ray from the origin to the minimum point of the vola-

tility bound has the interpretation of a Sharpe ratio (e.g., De Santis, 1995; Drobetz, 2003) and, 

hence, conditional models specify a tougher benchmark, explaining why the performance of 

our funds looks particularly poor when the tests incorporate conditioning information. 

As already mentioned, the distribution of our estimated SDF alphas is negatively skewed, and 

this property is also reflected in the Bonferroni p-values. With only one exception (the condi-

tional SDF-Fama-French model), we cannot reject the null hypothesis that all SDF alphas are 

jointly equal to zero against the alternative hypothesis that there is at least one significantly 

positive alpha (Bonferroni p-value (+)). In contrast, in most instances we can reject the null 

hypothesis that all SDF alphas are jointly equal to zero against the alternative hypothesis that 

there is at least one significantly negative alpha (Bonferroni p-value (–)). 

4.2.3.  Comparing the results from beta-pricing models and SDF models 

In a final step, it seems worthwhile to compare the estimated SDF alphas with the traditional 

Jensen’s alphas. A general observation is that the performance of our German mutual equity 
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funds looks much worse in the Euler-equation framework than in the traditional beta-pricing 

setup. For example, the average unconditional Jensen’s alpha in table 4 is -0.042% per month, 

or roughly -55 basis points per annum, whereas the average unconditional alpha in the SDF-

CAPM specification in table 11 is -0.140% per month, or roughly -1.77% per year. The corre-

sponding conditional performance measures are -0.116% (table 6) and -0.340% (table 11) per 

month, or about 1.38% and -4.00% per year, respectively. Roughly speaking, in this case the 

negative fund performance differs by a factor of three, but other specifications of the stochas-

tic discount factor lead to somewhat less pronounced performance differences. 

A crucial question that arises is whether elegance and generality of the stochastic discount 

factor framework comes at the cost of estimation efficiency for risk premiums and testing 

power for model specifications. Kan and Zhou (1999) compare the stochastic discount factor 

methodology using the Generalized Method of Moments with maximum likelihood estimates 

of the static linear capital asset pricing model. Their results seem to suggest that the stochastic 

discount factor methodology performs much worse than the beta-pricing approach in specifi-

cation tests. They explain this result by noting that the Euler-equation is merely a restriction 

on part of the first and second moments between the asset returns and the factors. However, 

without a fully specified model of asset returns, this implies ignoring many other first and 

second moments, thereby producing large estimation errors of the factor risk premiums. Intui-

tively, if the stochastic discount factor methodology was not very reliable in detecting even 

gross misspecifications of asset pricing models, this will clearly also have detrimental impli-

cations for performance evaluation tests. 

However, this conclusion might be premature for two reasons. First, the specification tests in 

tables 9 and 10 indicate that, except for the SDF-Fama-French model, our stochastic discount 

factor models behave reasonably well. Second, Jagannathan and Wang (2002) document that 

Kan and Zhou’s (1999) results are based on false assumptions. Kan and Zhou (1999) ignore 

the fact that the risk premium parameters in the two methods are not identical (albeit strictly 

related), and directly compare the asymptotic variances of the two estimators. Jagannathan 

and Wang (2002) present a more appropriate test setup that explicitly incorporates the trans-

formation between the risk parameters in the two methods and conclude that the stochastic 

discount factor methodology is asymptotically as efficient as the beta method. Specification 

tests of asset pricing models based on the two methods are also equally powerful. 
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To gain some preliminary insight, we estimate the direct counterpart of a static Jensen’s alpha 

in the stochastic discount factor framework and label this performance measure “SDF Jen-

sen’s alpha”. Specifically, instead of using the full set of primitive assets in the system of 

equations in (7), we estimate the SDF-CAPM model by merely requiring that the stochastic 

discount factor prices the benchmark index and the risk-free security.
30

 As in all estimations 

above, we employ the Datastream Germany Total Return Index as a proxy for the market 

portfolio. Following Dybvig and Ingersoll (1982), the stochastic discount factor is assumed to 

be a linear function of the market index, which is again represented by the Datastream index. 

In this simple setup the system to be estimated consists of only three equations. Since the sto-

chastic discount factor is a linear combination of the Datastream index, the first equation for-

mulates the pricing restriction on the index itself as a primitive asset, and the second equation 

contains the pricing restriction on the risk-free security. The third equation involves the pric-

ing restriction on the specific fund to be evaluated and the corresponding SDF Jensen’s alpha. 

A graphical comparison of the results is depicted in panel A of figure 3. The figure displays 

alternative performance measures for all 50 funds in our sample: (i) the traditional Jensen’s 

alpha, (ii) the SDF Jensen’s alpha, and (iii) the SDF alpha from the SDF-CAPM model. 

Clearly, the means of all series match the values reported in various tables above. Specifi-

cally, the mean Jensen’s alpha in our sample is -0.042% per month (see table 4), and the mean 

SDF-CAPM alpha is -0.149% per month (see table 11). Most important, the mean SDF Jen-

sen’s alpha is -0.042% per month, which is identical to its direct and more common counter-

part in the beta-pricing formulation. In fact, as can be inferred from figure 3, the correspond-

ing two lines with individual alphas exactly coincide. From this finding we conclude that the 

empirical results from the stochastic discount factor methodology and the beta-pricing method 

are in fact inherently related with each other, as suggested by asset pricing theory. In addition, 

the SDF-CAPM alphas are also highly correlated with the Jensen’s alphas; the rank correla-

tion is 0.91. Nevertheless, there is a notable level shift, which is responsible for our previous 

finding that funds tend to look worse, on average, in a stochastic discount factor framework. 

In panel B of figure 3 we present the same results in a conditional setup, where all three in-

formation variables are used to account for time variation in expected returns. The average 

conditional SDF Jensen’s alpha is -0.063% per month, or -76 basis points per annum, which 

                                                 

30 To be consistent with the beta-pricing framework we omit the information variables as individual 

“factors” to compute the SDF Jensen’s alphas. 
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makes funds look better in this case compared to the Ferson and Schadt (1996) framework, 

for which we report a mean conditional alpha of -0.116% per month, or -1.380% per year (see 

table 6). Note, however, that the average conditional SDF Jensen’s alpha is still slightly lower 

than its average unconditional analogue, which supports our general notion that funds look 

worse under conditional performance measures. Similar to the unconditional setup in panel A, 

the figure in panel B reveals that the conditional alpha of the SDF-CAPM model assigns the 

lowest performance to our funds, with a mean alpha of -0.340% per month (see table 11). As 

can be expected from a mere visual inspection, the rank correlations between the performance 

measures are again reasonably high; they range between 0.66 (between Jensen’s alpha and 

SDF Jensen’s alpha) and 0.81 (between Jensen’s alpha and the SDF-CAPM alpha). 

[Insert figure 3 here] 

Overall, we find that the stochastic discount factor methodology and the beta-pricing method 

deliver closely related performance measures in our empirical tests, as suggested by asset 

pricing theory. We cannot conclude that either one approach leads to grossly misleading per-

formance evaluation results. Nevertheless, our analysis seems to suggest that they depend on 

the model specifications and the estimation techniques. One immediate source of the differ-

ences in our results is the choice of the primitive assets. With a larger set of primitive assets, 

the number of equations in the system to be estimated increases, thereby imposing additional 

moment restrictions that affect the parameter estimates (Bekaert and Liu, 2004). This is me-

chanically true, although our 10 Datastream sector portfolios are merely subindexes of the 

Datastream aggregate market index. Intuitively, additional restrictions will always imply a 

tougher benchmark, leading to lower estimated fund performance. 

Another noteworthy issue is that stochastic discount factors may be biased. Farnsworth et al. 

(2002) test the model using simulated trading strategies with different levels of ability and 

find that that the bias is about -0.19% per month for unconditional models and -0.12% per 

month for conditional models. While this seems economically large, they nevertheless report 

that this is less than two standard errors, as the typical standard error of their alpha measures 

is 0.10% per month. In contrast, studying primitive-efficient models in a slightly different 

setup using Swedish fund data, Dahlquist and Söderlind (1999) find no significant biases in 

the pricing errors but do find size distortions. Tests for the hypothesis of zero abnormal per-

formance reject the null hypothesis too often. 
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4.     Conclusion 

Evaluating the performance of portfolio managers has received wide attention in the financial 

economics literature, presumably because a substantial part of the savings of investors is 

managed by professionals. The general idea behind performance evaluation is straightfor-

ward. In principle, the observer must assign the correct value to the cash flow (net of man-

agement fees) the manager generates from the amount entrusted to him by an investor. The 

difference between the assigned value and the amount entrusted to the manager is the value of 

the services provided by the manager. If this difference is positive, then the manager provides 

“valuable” service. 

However, there are several theoretical difficulties in implementing this simple principle. Most 

important, financial economists still do not have a satisfactory valuation model that consis-

tently prices arbitrary streams of cash flows sufficiently close to their market prices. Every 

asset pricing model that has been suggested in the literature has performed poorly at least with 

respect to one subset of the assets examined. Therefore, the econometrician who uses a par-

ticular valuation model has to be aware of the collection of assets for which the model per-

forms satisfactorily to avoid false inferences on the performance of funds resulting from a 

joint-hypothesis problem. 

In spite of these fundamental issues, the recent performance measurement literature has made 

substantial progress. We have addressed two important issues that have shaped the recent lit-

erature. First, we show how to extend the classical unconditional securities market line analy-

sis to incorporate conditioning information and to compute conditional Jensen’s alphas. This 

strand of the literature has been inspired by the influential studies by Ferson and Schadt 

(1996) and Christopherson et al. (1998). Second, given the deficiencies of securities market 

line analysis and following a general trend in the recent asset pricing literature, the focus 

switched from the classical beta-pricing framework to the more general stochastic discount 

factor framework. This development is based on the seminal work by Chen and Knez (1996), 

and more recently by Farnsworth et al. (2002). 

We investigate the performance of a small, but survivorship bias controlled, sample of Ger-

man mutual equity funds. Our general finding is that mutual funds, on average, hardly pro-

duce returns that are large enough to cover their expenses. This conclusion is drawn from a 

variety of model specifications that we have tested, and it is robust to many different bench-

marks we have employed. Specifically, we start by measuring fund performance in the classi-
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cal unconditional beta-pricing framework. Based on Jensen’s alpha as a performance measure, 

mutual funds slightly underperform, but when expenses are added back their performance 

tends to be neutral. However, funds look much worse when we apply the three-factor model 

of Fama and French (1993) as the benchmark. Most important, fund performance substan-

tially deteriorates when we measure conditional alphas both in single-index and multi-factor 

models. For example, based on the full set of information variables, the mean conditional al-

pha for our sample of general funds is estimated to be -0.130% per month, or about 1.5% per 

year. In comparison, taking a simple average for all funds over the 1997 to 2003 period, the 

mean total expense ratio is only 1.06%. Accordingly, if we add back management fees, Ger-

man mutual equity funds underperform already on a before fee basis. Using the three-factor 

model of Fama and French (1993), fund performance tends to look even worse. This result 

should not come as a surprise: Given that stock returns are partly predictable using publicly 

available information, that part of fund performance that is attributable to time-variation in 

expected returns should be deducted from fund performance. We conclude that conditional 

analysis raises the hurdle on active managers seeking abnormal positive performance because 

it gives them no credit for exploiting readily available information, and this makes it more 

likely for funds to show no abnormal performance. 

We then proceed to performance measurement in the Euler-equation framework and test sev-

eral (unconditional and conditional) models of the stochastic discount factor. The result that 

funds underperform before costs is now even more pronounced, even in some of the uncondi-

tional stochastic discount factor models. Underperformance before fees can even be as low as 

4% per year. To the best of our knowledge, we are the first to directly compare the results 

from performance measurement tests in the beta-pricing framework and the stochastic dis-

count factor framework. We document that both methods are in fact inherently related, as 

suggested by asset pricing theory, and that the relative performance of our funds (i.e., their 

rankings within the sample) is highly correlated across models. However, there is a pro-

nounced level shift when switching from the beta-pricing framework to the stochastic dis-

count factor framework, which can be attributed to the fact that more “complicated” stochas-

tic discount factor models and a larger number of primitive assets (which are required to esti-

mate the parameters of the stochastic discount factor models) lead to stronger pricing condi-

tions. This interpretation follows directly from Hansen and Jagannathan’s (1991) seminar 

analysis on volatility bounds for admissible stochastic discount factors, an aspect which has 

been largely neglected in the previous literature. 
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Figure 1: Unconditional stochastic discount factor (SDF) models 

 

Panel A: SDF-CAPM 

0.7

0.8

0.9

1.0

1.1

1.2

1.3

94 95 96 97 98 99 00 01 02 03

 

0

4

8

12

16

20

0.8 0.9 1.0 1.1 1.2 1.3
 

Panel B: SDF-Fama-French 

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

94 95 96 97 98 99 00 01 02 03

 

0

2

4

6

8

10

12

14

-0.5 -0.0 0.5 1.0 1.5 2.0
 

Panel C: SDF-Primitive-efficient 

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

94 95 96 97 98 99 00 01 02 03

 

0

4

8

12

16

20

0.0 0.5 1.0 1.5
 

Panel D: SDF-Bakshi-Chen 

0.0

0.4

0.8

1.2

1.6

2.0

2.4

94 95 96 97 98 99 00 01 02 03
 

0

2

4

6

8

10

12

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
 



40 

Figure 7: Conditional stochastic discount factor (SDF) models 
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Figure 3: Beta-pricing models versus stochastic discount factor (SDF) models 
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This figure displays alternative performance measures from tests in the beta-pricing framework and the stochas-

tic discount factor (SDF) methodology for our reduced sample of 50 funds: (i) the traditional Jensen’s alpha, (ii) 

the SDF Jensen’s alpha, and (iii) the SDF alpha from the SDF-CAPM model. The sample period is from Janu-

ary 1994 to December 2003, and the full return history (120 months) is available for 47 general funds and 3 

small- and mid-cap funds (50 surviving funds). The units are in percentages per month. 
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Table 1: Estimates of the survivorship bias based on raw returns 

 

Panel A: Estimates of survivorship bias 

 Base year: 1994  Base year: 1997  Base year: 2000 

 
All funds in exis-

tence each year 

Surviving 

funds 
 

All funds in exis-

tence each year 
Surviving funds  

All funds in exis-

tence each year 
Surviving funds 

General 4.52% 4.97%  3.94% 4.35%  -13.43% -11.94% 

Small & mid-cap 4.61% 6.91%  6.01% 6.91%  -13.32% -10.67% 

All funds 4.53% 5.08%  4.15% 4.35%  -13.78% -11.94% 

Panel B: Differences in rates of return of surviving and nonsurviving funds 

 
Total funds in existence in 

base year 
 

Total number of fund 

 surviving until 2003 
 Funds that did not survive until 2003 

 

 Mean return Number  Mean return Number  Mean return Number Mortality rate  

T-test for  

difference 

in means* 

1994 -4.83% 63  -4.69% 49  -5.35% 14 22.22%  0.41 

1995 3.43% 70  4.66% 53  -0.42% 17 24.29%  2.20** 

1996 23.72% 71  25.31% 57  17.22% 14 19.72%  2.93*** 

1997 38.53% 79  40.29% 66  29.56% 13 16.46%  2.44** 

1998 13.96% 86  15.07% 73  7.72% 13 15.12%  1.75* 

1999 34.06% 90  35.39% 75  27.41% 15 16.67%  1.71* 

2000 -4.98% 94  -3.24% 81  -15.86% 13 13.83%  2.79** 

2001 -23.42% 99  -21.54% 85  -34.84% 14 14.14%  2.43** 

2002 -41.87% 94  -41.79% 90  -43.70% 4 4.26%  0.24 

* The t-test is based on a Welch test for equality of the mean returns of surviving and nonsurviving funds. It assumes that the variances of surviving and nonsurviving 

funds are unknowns and unequal. 
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Table 2: Summary statistics of primitive assets 

 

 Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 5 Sector 7 Sector 8 Sector 9 Sector 10 

Mean 0.0324 0.0087 0.0079 0.0082 0.0092 0.0081 0.0069 0.0096 0.0103 0.0046 

Maximum 0.5135 0.2349 0.1638 0.1949 0.1750 0.1194 0.1739 0.3832 0.1075 0.2682 

Minimum -0.3936 -0.1646 -0.1638 -0.1930 -0.2579 -0.1377 -0.2213 -0.3183 -0.0533 -0.2744 

Standard deviation 0.1425 0.0743 0.0662 0.0673 0.0790 0.0458 0.0675 0.1086 0.0303 0.0741 

JB test statistic 6.9247 3.9532 1.1102 2.1235 6.0573 8.7276 1.3090 16.5177 17.3392 51.0554 

p-value 0.0314 0.1385 0.5740 0.3459 0.0484 0.0127 0.5197 0.0003 0.0002 0.0000 

R
2
 0.0420 0.0674 0.0293 0.0581 0.0184 0.0104 0.0314 0.0458 0.0074 0.0485 

Adjusted R
2
 0.0172 0.0433 0.0042 0.0338 -0.0070 -0.0152 0.0063 0.0211 -0.0183 0.0239 

The table reports the summary statistics of the primitive assets that are used to estimate the parameters of the stochastic discount factor model in performance measure-

ment tests within the Euler-equation framework. We use the 10 sector indexes (on a total return basis) according to the Datastream classification as the set of primitive 

assets (in addition to the risk-free security to fix the mean of the stochastic discount factor). The sample period runs from 1994.01 to 2003.12 (120 monthly return observa-

tions). The units are in percentages per month. The units are in percentages per month 
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Table 3: Regressions of stock market excess returns on lagged information variables 

 

 MSCI 

Germany 

Datastream 

Germany 
DAX 30 DAFOX 

Panel A: Single-predictor regressions 

Log dividend yield     

Coefficient 0.023 0.022 0.024 0.011 

t-statistic 0.789 0.872 0.789 0.504 

Amihud-Hurvich t-statistic 0.739 0.825 0.727 0.478 

R
2
 0.005 0.006 0.005 0.002 

Short-term interest rate     

Coefficient -0.174 -0.170 -0.177 -0.151 

t-statistic -2.074** -2.300** -2.033** -2.169** 

Amihud-Hurvich t-statistic -2.000** -2.202** -1.917* -2.087** 

R
2
 0.035 0.042 0.033 0.038 

Term spread     

Coefficient 0.019 0.018 0.020 0.014 

t-statistic 2.250** 2.444** 2.309** 2.071** 

Amihud-Hurvich t-statistic 2.036** 2.212** 2.076** 1.855* 

R
2
 0.041 0.048 0.043 0.035 

Panel B: Multi-predictor regressions 

Log dividend yield     

Coefficient -0.006 -0.005 -0.006 -0.012 

t-statistic -0.180 -0.180 -0.187 -0.418 

Short-term interest rate     

Coefficient -0.130** -0.126** -0.129** -0.122** 

t-statistic -2.347 -2.576 -2.239 -2.470 

Term spread     

Coefficient 0.015** 0.014** 0.017** 0.012* 

t-statistic 2.215 2.230 2.195 1.937 

Adjusted R
2
 0.034 0.046 0.035 0.033 

Wald test (χ2
-statistic) 

18.710 

(0.000) 

21.271 

(0.000) 

18.052 

(0.000) 

19.059 

(0.000) 

The table reports the estimation results of predictive regressions of excess benchmark returns on the information 

variables in single- and multi-predictor specifications. The information variables are (i) the lagged log dividend 

yield on the Datastream German Total Return Index, (ii) the lagged level of the 1-month interest rate for Euro 

deposits (German Mark deposits before January 1, 2000) on the Eurocurrency market, and (iii) the lagged slope 

of the term structure, computed as the difference between the yield on long term government bonds (with matur-

ity of at least 10 years) and the 3-month interest rate for Euro (German Mark) deposits on the Eurocurrency mar-

ket. The sample period is from January 1994 to December 2003 (120 months). For each regression specification 

the estimated coefficient and the standard t-statistic are reported. In addition, for the single-predictor specifica-

tions in panel A we provide the bias-adjusted t-statistic following the method proposed by Amihud and Hurvich 

(2004). The multi-predictor regressions in table B apply Hansen’s (1982) Generalized Method of Moments 

(GMM), using a heteroskedasticity and autocorrelation consistent covariance matrix as weighting matrix and a 

constant and all three lagged information variables to specify the orthogonality conditions. The χ2
-statistic tests 

the null hypothesis that all three information variables are jointly zero. 
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Table 4: Measures of performance using unconditional models (50 selected funds) 

 

 Unconditional CAPM  Fama-French 3-factor model 

 αP t(αP) βP t(βP) R
2
  αP t(αP) β1P t(β1P) β2P t(β2P) β3P t(β3P) R

2
 

Panel A: Mean values of individual fund regressions 

General -0.045 -0.286 1.037 32.32 0.894  -0.217 -1.329 1.030 23.13 -0.008 0.283 -0.078 -2.080 0.889 

Small- & mid-cap 0.008 0.005 0.851 14.82 0.694  0.293 0.999 1.062 17.12 -0.207 -3.170 0.329 4.141 0.769 

All funds -0.042 -0.269 1.026 31.27 0.882  -0.187 -1.189 1.032 22.77 -0.020 0.076 -0.053 -1.707 0.882 

Panel B: Median values of individual fund regressions 

General -0.061 -0.358 1.066 33.37 0.931  -0.261 -1.517 1.045 23.58 0.021 0.788 -0.111 -2.393 0.926 

Small- & mid-cap 0.081 0.271 0.848 13.94 0.702  0.377 1.264 1.078 17.43 -0.186 -3.254 0.357 4.980 0.768 

All funds -0.058 -0.354 1.060 32.48 0.930  -0.243 -1.487 1.049 23.42 0.004 0.130 -0.101 -2.266 0.923 

Panel C: Results for equally-weighted portfolios 

General -0.045 -0.391 1.037 52.37 0.963  -0.217 -1.557 1.030 31.88 -0.008 -0.317 -0.077 -2.273 0.948 

Small- & mid-cap 0.008 0.003 0.851 17.76 0.740  0.293 1.182 1.062 20.03 -0.207 -3.406 0.329 -3.406 0.816 

All funds -0.034 -0.303 1.025 53.42 0.963  -0.186 -1.329 1.032 31.92 -0.020 -0.743 0.053 -1.538 0.947 

The unconditional CAPM tests the following regression model (market model): 

111 +++ ++= t,Pt,BPPt,P rr εβα , 

where rP,t+1 is the excess return of a fund and rB,t+1 is the excess return on the benchmark index. Benchmark indexes are the Datastream Germany Total Return 

Index for general funds, and the DAFOX for small- and mid-cap funds. The sample period is from January 1994 to December 2003, and the full return history 

(120 months) is available for 47 general funds and 3 small- and mid-cap funds (50 surviving funds). The Fama-French (1993) three-factor model is specified 

as follows: 

11312111 +++++ ++++= t,PtPtPt,BPPt,P SMBHMLrr εβββα , 

where the DAFOX is used as the market proxy for all funds, irrespective of the segment they belong to, HML is the return on a portfolio of high book-to-

market stocks minus low book-to-market stocks, and SMB is the return difference between the DAX 30 and the SDAX indexes. The units are in percentages 

per month. All t-ratios are adjusted for heteroscedasticity using the White (1980) covariance matrix. 
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Table 5: Measures of performance using conditional models (1) 

 

 αP t(αP) δ1P t(δ1P) δ2P t(δ2P) # sign. R
2
 

Panel A: Information variable = Term spread 

Mean values of individual fund regressions: 

General -0.102 -0.786 1.047 34.059 0.052 1.278 25 0.896 

Small- & mid-cap 0.090 0.232 0.838 14.117 -0.091 -1.019 0 0.697 

All funds -0.091 -0.725 1.035 32.862 0.044 1.140 25 0.884 

Median values of individual fund regressions: 

General -0.137 -0.882 1.080 34.730 0.077 1.604 25 0.935 

Small- & mid-cap 0.126 0.375 0.831 12.317 -0.109 -1.189 0 0.703 

All funds -0.106 -0.777 1.071 34.003 0.066 1.497 25 0.932 

Results for equally-weighted portfolios: 

General -0.102 -0.947 1.047 57.013 0.052 1.843  0.864 

Small- & mid-cap 0.090 0.281 0.838 17.740 -0.078 -1.169  0.740 

All funds -0.084 -0.751 1.033 57.080 0.046 1.618  0.964 

Panel B: Information variable = Short-term interest rate 

Mean values of individual fund regressions: 

General -0.111 -0.831 1.026 34.049 -0.738 -1.757 29 0.898 

Small- & mid-cap 0.075 0.179 0.870 15.129 0.879 1.088 1 0.699 

All funds -0.100 -0.771 1.016 32.914 -0.641 -1.587 30 0.886 

Median values of individual fund regressions: 

General -0.115 -0.717 1.053 35.270 -0.913 -2.257 29 0.938 

Small- & mid-cap 0.150 0.385 0.851 13.622 0.566 0.546 1 0.714 

All funds -0.111 -0.682 1.045 34.377 -0.793 -2.166 30 0.937 

Results for equally-weighted portfolios: 

General -0.111 -1.114 1.026 60.864 -0.739 -3.020  0.965 

Small- & mid-cap 0.075 0.231 0.870 17.666 0.879 1.350  0.745 

All funds -0.095 -0.910 1.014 60.546 -0.671 -2.798  0.965 

Panel C: Information variable = Log dividend yield 

Mean values of individual fund regressions: 

General -0.052 -0.391 1.034 32.733 3.323 0.921 23 0.900 

Small- & mid-cap 0.015 0.014 0.860 14.394 -7.785 -0.805 1 0.701 

All funds -0.048 -0.367 1.023 31.633 2.657 0.817 24 0.888 

Median values of individual fund regressions: 

General -0.067 -0.444 1.057 33.557 4.633 0.976 23 0.937 

Small- & mid-cap 0.101 0.277 0.844 13.902 -2.548 -0.225 1 0.722 

All funds -0.059 -0.425 1.049 33.158 4.305 0.855 24 0.935 

Results for equally-weighted portfolios: 

General -0.052 -0.515 1.034 53.117 3.324 1.102  0.963 

Small- & mid-cap 0.015 0.046 0.860 16.644 -7.785 -1.122  0.740 

All funds -0.044 -0.380 1.021 54.195 2.603 0.847  0.963 
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This table shows the results from the conditional CAPM tests, where each predetermined information variable is 

used separately one at a time in the following regression model: 

( ) 1t,P1t,BtP21t,BP1P1t,P rzrr ++++ +++= εδδα , 

where rP,t+1 is the excess return of a fund, rB,t+1 is the excess return on the benchmark index, and zt denotes a prede-

termined (lagged) information variable. Benchmark indexes are the Datastream Germany Total Return Index for gen-

eral funds, and the DAFOX for small- and mid-cap funds. As predetermined information variables we use the term-

spread (panel A), the short-term interest rate (panel B), and the log dividend yield (panel C) separately one at a time. 

The sample period is from January 1994 to December 2003, and the full return history (120 months) is available for 

47 general funds and 3 small- and mid-cap funds (50 surviving funds). R
2
 denotes the adjusted R-squares of the re-

gressions, and #sign denotes the number of funds with significantly estimated coefficients (δ2P) on the interaction 

term including the lagged information variable. The units are in percentages per month. All t-ratios are adjusted for 

heteroscedasticity using the White (1980) covariance matrix. 
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Table 6: Measures of performance using the conditional CAPM (2) 

 

 αP t(αP) δ1P t(δ1P) δTS,P t(δTS,P) δSR,P t(δSR,P) δDY,P t(δDY,P) R
2 pval(F) 

Panel A: Mean values of individual fund regressions 

General -0.130 -1.002 1.032 40.511 0.025 0.790 -0.636 -1.540 0.491 0.309 0.904 0.084 [35] 

Small- & mid-cap 0.111 0.288 0.858 14.281 -0.066 -0.771 0.508 0.669 -5.012 -0.413 0.705 0.423 [1] 

All funds -0.116 -0.924 1.021 38.937 0.019 0.697 -0.567 -1.407 0.160 0.266 0.892 0.104 [36] 

Panel B: Median values of individual fund regressions 

General -0.131 -1.074 1.047 41.457 0.044 1.078 -0.635 -1.841 1.118 0.304 0.943 0.010 

Small- & mid-cap 0.169 0.494 0.826 14.026 -0.104 -1.163 0.294 0.301 -0.186 -0.015 0.726 0.584 

All funds -0.129 -1.034 1.043 40.563 0.041 0.990 -0.619 -1.769 1.011 0.289 0.939 0.011 

Panel C: Results for equally-weighted portfolios 

General -0.130 -1.228 1.032 72.646 0.025 1.026 -0.637 -2.749 0.488 0.201 0.964 0.019 

Small- & mid-cap 0.111 0.340 0.858 16.157 -0.066 -0.870 0.508 0.822 -5.012 -0.641 0.738 0.383 

All funds -0.111 -0.997 1.019 70.227 0.020 0.828 -0.603 -2.635 -0.047 -0.018 0.964 0.042 

This table shows the results from the conditional CAPM tests, where all predetermined information variables are used simultaneously in the following regres-

sion model: 

( ) 1t,P1t,BtP21t,BP1P1t,P rzrr ++++ +′++= εδδα , 

where rP,t+1 is the excess return of a fund, rB,t+1 is the excess return on the benchmark index, and zt denotes the vector of predetermined (lagged) information 

variable. Benchmark indexes are the Datastream Germany Total Return Index for general funds, and the DAFOX for small- and mid-cap funds. As predeter-

mined information variables we use the term-spread (TS), the short-term interest rate (SR), and the log dividend yield (DY) simultaneously. The sample period 

is from January 1994 to December 2003, and the full return history (120 months) is available for 47 general funds and 3 small- and mid-cap funds (50 surviv-

ing funds). R
2
 are the adjusted R-squares of the regressions, and pval(F) denotes the probability value of the F-test for the null hypothesis that all coefficients 

on the interaction terms including the predetermined variables (collected in the vector δ2P) are simultaneously equal to zero. The figures in brackets in the last 

column denote the number of funds where the null hypothesis is rejected. The units are in percentages per month. All t-ratios are adjusted for heteroscedastic-

ity using the White (1980) covariance matrix. 
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Table 7: Rank correlation of conditional alphas using alternative benchmarks 

 

 
MSCI 

Germany 

Datastream 

Germany 
DAX 30 DAFOX 

MSCI Germany 1    

Datastream Germany 0.9962 1   

DAX 30 0.9991 0.9952 1  

DAFOX 0.9903 0.9913 0.9875 1 

The table contains the Spearman rank correlations of alphas in the conditional CAPM for individual 

funds using alternative benchmarks for the sample of 50 selected funds. The regression specification 

is identical to table 14, where the term-spread, the short-term interest rate, and the log dividend yield 

are used simultaneously as the set of predetermined information variables. The sample period is from 

January 1994 to December 2003. 
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Table 8: Cross-sectional distribution of t-statistics for the alphas 

 

   Single-index model  Three-factor model 

 (1)  (2) (3) (4) (5) (6)  (7) (8) 

 Null  
Uncond. 

model 

Term 

spread 

Short-term 

rate 

Dividend 

yield 

All informa-

tion variables 
 

Uncond. 

model 

All informa-

tion variables 

Minimum t-statistic   -1.9087 -2.6894 -2.8722 -2.5358 -2.9042  -2.9799 -2.368171 

Bonferroni p-value (−)   1.4676 0.2051 0.1210 0.3135 0.1104  0.0877 0.4909 
           
t < -2.326 0.25  0 4 4 1 5  6 1 

-2.326 < t < -1.960 1.00  0 0 1 2 0  6 2 

-1.960 < t < -1.645 1.25  3 5 3 2 12  9 8 

-1.645 < t < 0 22.50  28 27 32 30 23  22 29 

0 < t < 1.645 22.50  18 13 9 14 9  7 10 

1.645 < t < 1.960 1.25  0 0 0 0 0  0 0 

1.960 < t < 2.326 1.00  0 1 1 0 1  0 0 

t > 2.326 0.25  1 0 0 1 0  0 0 
           
Maximum t-statistic   2.6711 2.2885 2.1881 2.8804 2.0984  1.2873 1.558308 

Bonferroni p-value (+)   0.2154 0.5976 0.7663 0.1181 0.9514  5.0129 3.0521 

This table shows the cross-sectional distribution of heteroscedasticity-consistent t-values for the estimated alphas using different model specifications. For the 

single-index model in column (2), the unconditional alphas are the intercepts in regressions of fund excess returns on the excess returns on the Datastream 

Germany Total return index and the DAFOX for the subsamples of general funds and small- and mid-cap funds, respectively. The conditional alphas in col-

umns (3)-(6) are the intercepts in regressions of fund excess returns on the benchmark index and the product of the index with the vector of predetermined 

(lagged) information variables. The unconditional alphas in the Fama and French (1993) three-factor model in column (7) are the intercepts in the regressions 

of the excess returns of the funds on the DAFOX and the HML and SMB long-short portfolios. The conditional alphas in the three-factor model are the inter-

cepts when fund excess returns are regressed on the factors and the products of the factors with the vector of predetermined (lagged) information variables. 

The entries in the middle block of the table indicate the number of funds for which the t-values for the alphas fall within the range of critical values of a stan-

dard normal distribution. The Bonferroni p-value is the maximum or minimum one-tailed p-value from the distribution of t-values, across all funds, multiplied 

by the number of funds. As predetermined information variables we use the term-spread, the short-term interest rate, and the log dividend yield simultane-

ously. The sample period is from January 1994 to December 2003, and the full return history (120 months) is available for 47 general funds and 3 small- and 

mid-cap funds (50 surviving funds). 
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Table 9: Stochastic discount factor models 

 

 E(m) SD(m) ρ1(m) Minimum Maximum # (m < 0) 

Constant discount factor 0.9961 0.0000 0.0000 0.9963 0.9961 0 

Panel A: Unconditional stochastic discount factor models 

SDF-CAPM 0.9965 0.0784 0.015 0.7922 1.2763 0 

SDF-Bakshi-Chen 0.9970 0.4007 -0.071 0.2893 2.1600 0 

SDF-Fama-French 0.9905 0.4745 0.055 -0.7183 2.1711 3 

SDF-Primitive-efficient 0.9969 0.3883 -0.062 -0.1113 1.8680 1 

Panel B: Conditional stochastic discount factor models 

SDF-CAPM 0.9910 0.3112 -0.146 -0.1860 1.8866 1 

SDF-Bakshi-Chen 0.9970 0.8410 -0.057 0.0012 5.6034 0 

SDF-Fama-French 0.9800 0.7361 -0.153 -0.9771 2.8601 13 

SDF-Primitive-efficient 0.9969 0.6953 0.043 -0.7683 2.5521 10 

This table shows the results from various models for stochastic discount factors, denoted as mt+1, using the following system of equations: 

( ) t1t1tt ZRmu ⊗−= ++ 11  

where u1t denotes the vector of pricing errors relating to the N primitive assets, whose gross returns are collected in the vector Rt+1, and Zt is the vector of pre-

determined information variables. The parameters of the stochastic discount factors are estimated using Hansen’s (1982) Generalized Method of Moments 

(GMM), minimizing a quadratic form of the pricing errors. The standard errors of the estimated coefficients are corrected for the effects of heteroscedasticity 

using the White (1980) methodology. E(m) is the sample mean, SD(m) is the sample standard deviation, and ρ1(m) is the first-order autocorrelation of the es-

timated stochastic discount factor (fitted values). The primitive assets used in estimating the models are the 10 sector portfolios according to the Datastream 

classification and the risk-free security. In linear models of the stochastic discount factors (SDF-CAPM and SDF-Fama-French) the Datastream Germany To-

tal Return Index is used as the market proxy. The predetermined information variables are the term-spread, the short-term interest rate, and the log dividend 

yield. To avoid an explosive number of orthogonality conditions, the results for the conditional specifications of both the SDF-Bakshi-Chen model and the 

SDF-Primitive-efficient model are based on the short-term interest as the only information variable in the estimation. In contrast, for the SDF-CAPM and the 

SDF-Fama-French models we use the full set of information variables to scale factors. The sample period is from January 1994 to December 2003, and the 

full return history (120 months) is available for 47 general funds and 3 small- and mid-cap funds (50 surviving funds). 
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Table 10: Dynamic performance of stochastic discount factor models 

 

 Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 5 Sector 7 Sector 8 Sector 9 Sector 10 Risk-free 

Constant discount factor 2.908% 1.920% 1.128% 1.616% 1.067% 0.466% 1.192% 2.314% 0.259% 1.626% 0.076% 

Panel A: Unconditional stochastic discount factor models 

SDF-CAPM 2.647% 1.874% 0.949% 0.451% 1.074% 1.768% 0.917% 0.490% 2.031% 0.812% 2.060% 

SDF-Fama-French 8.775% 10.083% 9.751% 9.239% 9.516% 11.163% 10.003% 8.317% 11.262% 9.587% 11.276% 

SDF-Primitive-efficient 8.384% 7.275% 8.464% 8.833% 8.336% 7.711% 9.086% 9.723% 7.900% 9.107% 7.727% 

SDF-Bakshi-Chen 6.171% 5.965% 7.087% 7.366% 6.894% 6.488% 7.681% 8.165% 6.808% 7.689% 6.632% 

Panel B: Conditional stochastic discount models 

SDF-CAPM 1.806% 1.725% 1.191% 1.272% 1.451% 1.242% 1.435% 1.661% 1.367% 1.026% 1.120% 

SDF-Fama-French 3.041% 3.397% 3.592% 3.773% 3.577% 3.542% 3.456% 3.668% 3.999% 4.254% 3.642% 

SDF-Primitive-efficient 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

SDF-Bakshi-Chen 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

This table shows the standard deviations of the fitted pricing errors from the following system of equations: 

( ) t1t1tt ZRmu ⊗−= ++ 11  

where u1t denotes the vector of pricing errors relating to the N primitive assets, whose gross returns are collected in the vector Rt+1, mt+1 is the stochastic dis-

count factor, and Zt is the vector of predetermined information variables. The fitted pricing errors are the fitted values of regressions of u1t on Zt, using differ-

ent models of the stochastic discount factor, and the entries in the table show the corresponding standard errors for all primitive assets. The parameters of the 

stochastic discount factors are estimated using Hansen’s (1982) Generalized Method of Moments (GMM), minimizing a quadratic form of the pricing errors. 

The standard errors of the estimated coefficients are corrected for the effects of heteroscedasticity using the White (1980) methodology. The primitive assets 

used in estimating the models are the 10 sector portfolios according to the Datastream classification and the risk-free security. In linear models of the stochas-

tic discount factors (SDF-CAPM and SDF-Fama-French) the Datastream Germany Total Return Index is used as the market proxy. The predetermined infor-

mation variables are the term-spread, the short-term interest rate, and the log dividend yield. To avoid an explosive number of orthogonality conditions, the 

results we present for the conditional specifications of both the SDF-Bakshi-Chen model and the SDF-Primitive-efficient model are based on the short-term 

interest as the only information variable in the estimation. In contrast, for the SDF-CAPM and the SDF-Fama-French models we use the full set of information 

variables to scale factors. The sample period is from January 1994 to December 2003, and the full return history (120 months) is available for 47 general funds 

and 3 small- and mid-cap funds (50 surviving funds). 
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Table 11: Performance of funds using the stochastic discount factor framework 

 

 
Bonferroni 

p-value (–) 
Bottom 3 Bottom 10 Mean EW-Portf. Median Top 10 Top 3 

Bonferroni 

p-value (+) 

Panel A: Unconditional SDF models 

SDF-CAPM 0.005 -0.448 -0.322 -0.149 -0.149 -0.179 0.007 0.112 0.942 

SDF-Fama-French 0.094 -0.838 -0.476 -0.304 -0.304 -0.275 -0.059 0.089 0.935 

SDF-Primitive-efficient 0.136 -0.414 -0.348 -0.177 -0.192 -0.205 -0.031 0.297 1.528 

SDF-Bakshi-Chen 0.068 -0.456 -0.399 -0.238 -0.210 -0.256 -0.103 0.073 1.354 

Panel B: Conditional SDF models 

SDF-CAPM 0.000 -0.528 -0.478 -0.340 -0.360 -0.343 -0.207 -0.018 2.788 

SDF-Fama-French 0.000 -0.924 -0.537 -0.330 -0.320 -0.280 -0.108 0.043 0.000 

SDF-Primitive-efficient 0.007 -0.692 -0.347 -0.234 -0.272 -0.223 -0.042 0.023 6.965 

SDF-Bakshi-Chen 0.001 -0.519 -0.407 -0.243 -0.290 -0.221 -0.076 0.006 5.703 

This table shows the distribution of mutual fund SDF alphas for different models of the stochastic discount factor, mt+1, from estimations of the following sys-

tem of equations: 

( ) t1t1tt ZRmu ⊗−= ++ 11  

1,2 +−=
++ 1t,P1tPt

Rmu α  

where u1t denotes the vector of pricing errors relating to the N primitive assets, whose gross returns are collected in the vector Rt+1, u2t is the pricing error of 

the fund with gross return RP,t+1, mt+1 is the stochastic discount factor, and Zt is the vector of predetermined information variables. αP is the SDF alpha, de-

pending on the model of the stochastic discount factor. All parameters are estimated using Hansen’s (1982) Generalized Method of Moments (GMM), mini-

mizing a quadratic form of the pricing errors. The standard errors of the estimated coefficients are corrected for the effects of heteroscedasticity using the 

White (1980) methodology. The primitive assets used in estimating the models are the 10 sector portfolios according to the Datastream classification and the 

risk-free security. In linear models of the stochastic discount factors (SDF-CAPM and SDF-Fama-French) the Datastream Germany Total Return Index is 

used as the market proxy. The predetermined information variables are the term-spread, the short-term interest rate, and the log dividend yield. To avoid an 

explosive number of orthogonality conditions, the results we present for the conditional specifications of both the SDF-Bakshi-Chen model and the SDF-

Primitive-efficient model are based on the short-term interest as the only information variable in the estimation. In contrast, for the SDF-CAPM and the SDF-

Fama-French models we use the full set of information variables to scale factors. The Bonferroni p-value is the maximum or minimum one-tailed p-value 

from the distribution of t-values, across all funds, multiplied by the number of funds. The sample period is from January 1994 to December 2003, and the full 

return history (120 months) is available for 47 general funds and 3 small- and mid-cap funds (50 surviving funds). 
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Table 12: Rank correlation of SDF alphas 

 

 SDF-CAPM 
SDF-Fama-

French 

SDF-primitive 

efficient 

SDF-Bakshi-

Chen 

Panel A: Unconditional model specifications 

SDF-CAPM 1    

SDF-Fama-French 0.7279 1   

SDF-primitive efficient 0.9476 0.7940 1  

SDF-Bakshi-Chen 0.8553 0.7219 0.9405 1 

Panel B: Conditional model specifications 

SDF-CAPM 1    

SDF-Fama-French 0.6415 1   

SDF-primitive efficient 0.6791 0.6623 1  

SDF-Bakshi-Chen 0.7203 0.7540 0.9102 1 

The table contains the Spearman rank correlations of estimated SDF alphas for the sample of 50 se-

lected funds using different specifications for the stochastic discount factor. The SDF alphas are es-

timated from the system of equations (18) using Hansen’s (1982) Generalized Method of Moments 

(GMM). The sample period is from January 1994 to December 2003. 
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