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1 Introduction

Stock and bond returns in the US display an average correlation of about 19 percent

during the post–1968 period. A number of models have had a modest degree of success

in generating realistic average correlations using economic state variables. Yet, Shiller

and Beltratti (1992) under-estimate the empirical correlation using a present value with

constant discount rates, whereas Bekaert, Engstrom, and Grenadier (2005a) over-estimate

it in a consumption-based asset pricing model with stochastic risk aversion.

The substantial time variation the stock-bond return correlation displays is undoubtedly

a more puzzling empirical phenomenon. Over our sample period, we identify one 5-

year episode in which the stock-bond return correlation was as high as 75 percent, and

one in which it dropped to lower than minus 60 percent. There is a growing literature

documenting this time variation using sophisticated statistical models (see Guidolin and

Timmermann (2004)), but much less work trying to disentangle its economic sources. In

particular, the negative stock–bond return correlations observed since 1998 are mostly

ascribed to a “flight-to-safety” phenomenon (see e.g. Connolly, Stivers, and Sun (2005)),

where increased stock market uncertainty induces investors to flee stocks in favor of bonds.

This article asks whether a dynamic factor model in which stock and bond returns depend

on a number of economic state variables can explain the average stock-bond return correla-

tion and its variation over time. Our economic state variables do not only include interest

rates, inflation, output growth and cash flow growth, but also a “fundamental” risk aver-

sion measure derived from consumption growth data based on Campbell and Cochrane

(1999) and macro-economic uncertainty measures derived from survey data on inflation

and GDP growth expectations. The latter variables may reflect true economic uncertainty

in the sense of the models of Ribeiro and Veronesi (2002) and David and Veronesi (2004),

or heteroskedasticity as in Bansal and Yaron (2004) and Bekaert, Engstrom, and Xing

(2005b).

We specify a number of different dynamic models for the economic state variables, includ-

ing vector autoregressions (VARs) with state-dependent volatilities and regime-switching

VARs. We consider non-structural versions of the state variable models and a model with

structural restrictions inspired by recent standard New-Keynesian models. Time variation

in stock and bond return correlations follows from either the heteroskedasticity present
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in the state variable model (and identified only from economic state variable data) or, in

some specifications, from time variation in factor exposures. We then analyze how well

such models fit stock and bond return comovements, characterizing how much of the cor-

relation can be ascribed to economic state variables. For example, the lower variability of

inflation and output growth observed since the mid-1980s, the so-called Great Moderation

(Blanchard and Simon (2001)), could conceivably lead to lower correlations between stock

and bond returns. Whether its timing actually helps matching the time variation in the

stock-bond return correlations, including negative correlations at the end of the nineties,

remains to be seen.

The remainder of this paper is organized as follows. Section 2 develops a purely statisti-

cal bivariate conditional volatility model that produces conditional correlations to serve

as a benchmark for the implied correlations from the dynamic economic factor model.

Section 3 describes this factor model in more detail and develops the structural and non-

structural state variable models used to identify the economic factors. Section 4 details

the estimation procedure and the model selection criteria. Section 5 reports the results for

the economic factor models. We find that models with time-varying factor exposures and

regime-switching dynamics that capture the Great Moderation best fit bond and stock

return correlations. While a 8-factor model using the macro-economic uncertainty vari-

ables marginally has the best fit, it is fair to say that the fit of all models is rather poor.

Section 6 reports a number of robustness checks, which do not change that conclusion. In

Section 7, we show that non-macro variables, such as liquidity proxies and stock market

uncertainty, help explain the residual correlations. A final section concludes.

2 Regime-Switching Analysis of Stock and Bond Re-

turns

The dynamic factor model we introduce in Section 3 generates fundamentally-driven con-

ditional correlations between stock and bond returns at each point in time. We cannot

directly assess and compare the fit of the various factor models with the data because the

true conditional correlation is essentially unobserved. While we conduct a number of indi-

rect tests to assess the performance of the various factor model specifications, this section

creates an empirical proxy for the true conditional correlation, using a flexible statistical
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conditional time series model that hopefully captures the time variation in correlations

well.

To estimate various candidate models, we obtained daily and quarterly US data over the

period 1968Q4-2004Q4 from CRSP. For stock returns, we use NYSE-AMEX-NASDAQ

value-weighted returns including dividends from the CRSP Stock File Indices. For the

bond market returns, we use returns on 10-year government bonds taken from the CRSP

US Treasury and Inflation module. The returns are in excess of the US 3-month T-bill

rate. Further details on the data are in Appendix A.

Our analysis is mostly at a quarterly frequency. This is the frequency at which data on

the economic state variables used in the dynamic factor models are available, and may

also be the highest frequency at which a fundamentals based model is expected to have

explanatory power. Nevertheless, we first characterize the variation in stock-bond return

correlations using daily return data to calculate ex-post quarterly correlations1. Figure

1 plots these correlations over time. While they are (modestly) positive for most of the

time, their variation over time is substantial. Correlations were at slightly positive levels

in the 1970s, but rose to relatively high levels (about 40%) for most of the 1980s and

1990s. This period of high correlations ended quite abruptly at the end of 1998 when a

period of often very negative stock-bond return correlations started. Figure 1 also shows

that stock and bond return correlations tend to be quite persistent, an important feature

any empirical model should match.

To generate conditional correlations comparable with correlations from the dynamic fac-

tor model, we consider a number of alternative conditional models. Table 1 provides a

list of the models we estimate. They include bivariate BEKK models (see Engle and

Kroner (1995)), a number of regime-switching normal models building on Guidolin and

Timmermann (2004), regime-switching models that incorporate ARCH effects (see Cai

(1994) and Hamilton and Susmel (1994)), and regime-switching models that use the ex-

post quarterly correlations as additional instruments to capture persistence. Because the

latter model is - to our knowledge - new to the literature, we describe it in more detail

in Appendix B. We subject these models to a battery of specification tests. A first set

of tests directly focuses on how well the various specifications perform in modeling the

covariance between stock and bond returns. More specifically, we test whether the differ-

ence between the model-implied covariance and the product of stock and bond residuals
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has zero mean and zero autocorrelation (up to an order of 4). We also present a number

of heuristic tests, namely the mean absolute difference between the model-implied corre-

lation at time t and the quarterly ex-post correlation at time t + 1 as well as the R2 from

a regression of the ex-post on the model-implied correlations. Finally, for all models, we

also report the Akaike, Schwarz, and Hannan-Quinn information criteria.

Table 2 presents the main specification test results. Panel A reports the covariance spec-

ification tests as well as the two heuristic statistics, while Panel B reports the three

information criteria. The winning model clearly is model 6, in which both the stock and

bond return volatilities as well as their correlation depend on a two-state regime variable

and respectively the lagged quarterly ex-post stock (bond) variance and the ex-post corre-

lation. This model is preferred by all information criteria and performs well in the various

specification tests. The three-state alternative of this model performs marginally better

on the specification tests, but worse on the information criteria (partially because it has

26 instead of 16 parameters for the two-state model) and the heuristic test. Interestingly,

the two models including the ex-post volatilities and correlations perform substantially

better than those without. A Likelihood Ratio test rejects the null hypothesis that the

coefficients on the ex-post measures are zero at the 1 percent level in both models.

For completeness, and because the model is new, Table 3 reports the estimation results

for model 6. In Regime 1, which corresponds to the ‘normal’ regime of positive stock-

bond return correlations, stock-bond return variances and correlations are significantly

positively related to their (lagged) ex-post counterpart. For the equity (bond) market

variance, the coefficient on the past realized variance is substantially (slightly) above

one, but the persistence coefficient is below one (about 0.59) for conditional stock-bond

return correlations. Regime 2 is observed during episodes of negative stock-bond return

correlation. Within this regime, the ex-post measures lose all their explanatory power.

Both regimes are highly persistent and have an expected duration of respectively 53 and 20

quarters. Panel A of Figure 1 plots the data-implied conditional correlations together with

the quarterly ex-post correlations. Clearly, the conditional correlation shows a similar (but

not identical) time series pattern to that of the realized correlations. The most obvious

exception is the period after the 1987 crash, during which the ex-ante correlations are -

contrary to the ex-post correlations - highly negative. This may simply be a manifestation

of the effects of the crash dissipating faster than expected. This contrasts with the post
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1998 period when both the ex-ante and ex-post correlations drop to strongly negative

values.

3 Dynamic Stock and Bond Return Factor Model

In this section we present the general factor model linking stock and bond returns to

structural factors. Section 3.1 considers the dynamic factor model. Section 3.2 discusses

the models for the economic state variables.

3.1 The Dynamic Factor Model

3.1.1 Constant Beta Factor Model

Let rs,t denote the excess stock return and rb,t the excess bond return. We assume the

following dynamics for rt = (rs,t, rb,t)
′:

rt = Et−1(rt) + β′t−1Ft + εt (1)

where Et−1(rt) represents the expected excess return vector, βt−1 = (βs,t−1, βb,t−1) is a

n × 2 matrix of respectively stock and bond return factor loadings, and Ft is a n × 1

vector containing the structural factors. The vector εt = (εs,t, εb,t)
′ represents return

shocks not explained by the economic factors. The factors Ft represent innovations to the

fundamental state variables Xt, i.e.

Ft = Xt − Et−1(Xt)

with

Ft ∼ N (O,Σt) .

Σt is a n×n diagonal matrix containing the conditional variances of the structural factors,

which are potentially time-varying. The off-diagonal elements are zero as we enforce

structural factors to be orthogonal.

Because our focus is on second moments, we do not further explore the implications of the

factor model for expected returns. We simply model expected returns as constants but

investigate the robustness of our results to this assumption in Section 6. Under the null of

the model, the covariance matrix of the stock and bond return residuals is homoskedastic
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and diagonal. We denote the residual variance by hs and hb, respectively. The betas

βs,t−1 and βb,t−1 are the sensitivities of respectively stock and bond returns to shocks in

the economic state variables. The benchmark model forces these betas to be constant,

i.e. βs,t−1 = βs, βb,t−1 = βb. Simple affine pricing models imply that stock and bond

return innovations are constant beta functions of the innovations in the state variables.

Similarly, linearized versions of many present value models for equity pricing (see e.g.

Campbell and Ammer (1993) and Bekaert, Engstrom, and Grenadier (2005a)) imply a

similar constraint on the betas. We discuss some economic reasons for time variation in

the betas in Section 3.1.3.

The factor model implies that the comovement between stock and bond returns follows di-

rectly from their joint exposure to the same economic factors. The conditional covariance

can be written as:

covt−1 (rs,t, rb,t) = β′sΣtβb.

Hence, the sole driver of time variation in the covariance between stock and bond re-

turns is the heteroskedasticity in the structural factors. The betas determine the sign

of the covariance. Dividing the covariance by the product of the stock return and bond

return volatilities, i.e.
√

β′sΣtβs + hs and
√

β′bΣtβb + hb, yields the model-implied condi-

tional correlation between stock and bond returns ρt−1 (rs,t, rb,t). We can decompose the

correlation as follows:

ρt−1 (rs,t, rb,t) =
β1

sβ
1
bvart−1(F

1
t )√

β′sΣtβs + hs

√
β′bΣtβb + hb

+
β2

sβ
2
bvart−1(F

2
t )√

β′sΣtβs + hs

√
β′bΣtβb + hb

(2)

+... +
βn

s βn
b vart−1(F

n
t )√

β′sΣtβs + hs

√
β′bΣtβb + hb

.

This decomposition clearly shows the standard effects of a linear factor model. First,

factors with higher variances have the largest effect on comovement. Second, when the

variance of a factor increases, its contribution to the comovement can become arbitrarily

large. Third, if bond and stock betas have the same sign, increased factor variances lead to

increased comovement, and vice versa. Consequently, to generate the substantial variation

in comovements documented in Section 2 in the context of this model, the volatility of

the fundamentals must display substantial time variation. Moreover, to generate negative

covariances, it must be true that there is at least one factor to which bonds and stocks have

opposite exposures, and this factor must at times have substantial relative variance. We
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now motivate which factors should be included in the factor model from the perspective

of rational pricing models.

3.1.2 Economic Motivation for the Factors

In standard rational pricing models, the fundamental factors driving stock and bond

returns either affect cash flows, or discount rates. We discuss each in turn.

Cash Flows A crucial difference between stocks and bonds is that stocks have stochastic

cash flows (dividends), while bonds have fixed nominal cash flows. As a consequence,

inflation is an obvious state variable that may generate different exposures between bond

and stock returns. Unfortunately, the discount rate effects of inflation likely dominate

the cash flow effects (see below). Any factor highly correlated with the evolution of real

dividends should affect stock but not bond returns. Apart from including cash flow growth

(dividend growth) directly, we also use the observed and expected output gap (defined as

output minus potential output) as additional economic ‘cash flow’ factors2. These macro

factors may have discount rate effects too.

Discount Rates (Term Structure Effects) As is well known, the level of interest

rates drives most of the variation in bond returns, and we include a short-term interest

rate as a factor in our model. For long-term bonds, the relevant state variable is the

long-term interest rate, which can in turn be decomposed into a short-term real rate, a

term premium, expected inflation and an inflation risk premium. Increases in all these

4 components unambiguously decrease bond returns. While exposure to real rates and

term premiums may induce positive correlation between bond and stock returns, because

equities represent a claim on real assets the discount rate on stocks should not depend

on nominal factors such as expected inflation. However, the Mundell-Tobin model states

that high expected inflation raises the opportunity cost of money, causing people to switch

from money to interest-bearing and real assets. This switch may drive down real rates

and induce a negative correlation between real rates and expected inflation. This in turn

may imply a positive correlation between stock returns and (expected) inflation shocks.

Yet, a recurring finding is that stocks seem to be very poor hedges against inflation and

their returns correlate negatively with inflation shocks and expected inflation (see e.g.

Fama and Schwert (1977)). To identify the term structure components of discount rates,
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we introduce inflation, expected inflation, and the short-term nominal interest rate as

state variables3. Finally, note that measures correlated with expected output growth may

reflect information about real rates as well and hence induce positive correlation between

stock and bond returns.

Discount Rates (Risk Premiums) We use measures of economic uncertainty and

risk aversion to capture stock and bond risk premia. For instance, Bekaert, Engstrom,

and Grenadier (2005a) show that stochastic risk aversion plays an important role in ex-

plaining positive stock-bond return correlations. The effects of risk aversion are, however,

quite complex. In the models of Bekaert, Engstrom, and Grenadier (2005a) and Wachter

(2006), increases in risk aversion unambiguously increase equity and bond premiums, but

their effect on discount rates is actually ambiguous. A rise in risk aversion may increase

the real interest rate through a consumption smoothing effect or decrease it through a

precautionary savings effect. Bansal and Yaron (2004) and Bekaert, Engstrom, and Xing

(2005b) stress economic uncertainty as a channel that may affect risk premiums and eq-

uity valuation. The effect of increases in uncertainty on equity valuation, while often

thought to be unambiguously negative, is actually ambiguous as increased uncertainty

may lower real interest rates through precautionary savings effects. Hence, an increase in

uncertainty may cause bonds and stocks to move in opposite directions depending on the

relative strenghts of the term structure and risk premium effects. Cash flow uncertainty

is likely correlated with general measures of economic uncertainty, such as uncertainty

about GDP growth.

An alternative motivation for the use of uncertainty measures in explaining stock and

bond return comovement follows from recent studies by Ribeiro and Veronesi (2002) and

David and Veronesi (2004). They show that higher uncertainty about future economic

state variables makes investors’ expectations react more swiftly to news, affecting both

variances and covariances of asset returns.

Because we try to disentangle economic sources of comovements from potentially behav-

ioral ones, we use a measure of risk aversion that is tied tightly to economic fundamentals,

taken from Bekaert and Engstrom (2006). They create an empirical proxy for risk aver-

sion, based on the external habit specification of Campbell and Cochrane (1999). The

risk aversion measure is generated solely by past consumption growth data, and tends
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to behave counter-cyclically. To capture economic uncertainty, we use the survey of pro-

fessional forecasters to create measures of inflation, output gap, and cash flow growth

uncertainty. The data appendix provides full details.

Eventually we retain the following economic state variables: output gap (yt), inflation

(πt), expected future output gap (yet), output uncertainty (ydt), expected inflation (πet),

inflation uncertainty (πdt), nominal interest rate (it), cash flow growth (cgt), cash flow

uncertainty (cgdt) and risk aversion (frat), for a total of 10 state variables.

3.1.3 Is There Time Variation in the Betas?

Because time variation in the betas could spuriously pick up non-fundamental sources of

comovement, we significantly limit the state dependence of the betas. Yet, there certainly

are reasons to expect betas to be time-varying. First, because we use a constant maturity

bond portfolio, interest rate changes affect the duration of the portfolio and consequently

its interest rate sensitivity. As interest rates increase, the bond portfolio’s lower duration

should decrease its sensitivity to interest rate shocks. This line of thought applies to

stocks as well, as stocks are long-duration assets with stochastic cash flows. The duration

of stock returns actually depends on its dividend yield. We therefore allow the betas

of stocks with respect to interest rate shocks to be a function of the level of the (log)

payout ratio denoted by dyt. Unfortunately, it is conceivable that behavioral factors may

indirectly account for the resulting time variation in betas, if they are correlated with

valuation effects reflected in payout ratios. Second, economic uncertainty may not only

affect the heteroskedasticity in the fundamental factors (see section 3.2), but also the

betas. In the model of David and Veronesi (2004), widening the dispersion in beliefs

increases the effect of economic shocks on returns. Our measures of inflation and output

uncertainty can be viewed as proxies to belief dispersion regarding inflation and economic

growth expectations. Hence, we let the sensitivity to inflation, output gap and cash flow

growth shocks be a function of respectively inflation, output and cash flow uncertainty.

In the model of Bekaert, Engstrom, and Xing (2005b), the variability of risk aversion

increases as risk aversion increases. Consequently, in the model with risk aversion, we let

the exposure to risk aversion shocks be a function of (lagged) risk aversion itself.
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Summarizing, we assume:

βk
s(b),t−1 = βk

s(b),0 + βk
s(b),1ydt−1

βj
s(b),t−1 = βj

s(b),0 + βj
s(b),1πdt−1

βi
s,t−1 = βi

s,0 + βi
s,1dyt−1

βi
b,t−1 = βi

b,0 + βi
b,1it−1

βcg
s(b),t−1 = βcg

s(b),0 + βcg
s(b),1cgdt−1

βfra
s(b),t−1 = βfra

s(b),0 + βfra
s(b),1frat−1

for k = y, ye, yd and j = π, πe, πd.

3.2 The State Variable Model

This section explains the specification of the models for the fundamental state variables,

which leads to the identification of the structural factors Ft. Let Xt = [yt, πt, yet, ydt, πet,

πdt, it, cgt, cgdt, frat]
′. The general model has the following form:

Xt = µ + AXt−1 + ΓtFt (3)

with Ft ∼ N(0, Σt). Σt is a n × n diagonal stochastic covariance matrix, implying that

the structural shocks or factors Ft are uncorrelated, conditional on time t− 1 information

(see below). Γt is a n×n matrix of structural parameters, capturing the contemporaneous

correlation between the fundamental state variables. The n × n matrix A captures the

feedback in the state variables, and we denote the drift by the n× 1 vector µ4.

Our modeling of Σt is inspired by direct empirical evidence of changing fundamental

variances. Macroeconomists have noted a downward trend in the volatility of output

growth and inflation from 1985 onwards (see e.g. Stock, Watson, Gali, and Hall (2003) and

Blanchard and Simon (2001)), a phenomenon known as the Great Moderation. Monetary

economists debate the effects of heteroskedasticity in the fundamental shocks versus shifts

in monetary policy on the identification of economic and monetary policy shocks (see e.g.

Cogley and Sargent (2005) and Sims and Zha (2005)).

Consequently, we consider four different models for the variance matrix Σt. First, we

consider a homoskedastic volatility model as a benchmark but likely misspecified model.

In a second model, the state-dependent volatility model, we allow the factor variances to
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depend on the own lagged state variables Xt−1. There is a long tradition in finance to

use state-dependent volatility models (see e.g. Cox, Ingersoll, and Ross (1985)), but it

is less common in macroeconomics (see Evans and Wachtel (1993) though for a related

inflation volatility model). The third model, the regime-switching volatility model, allows

the volatilities of the structural factors to be driven by a latent regime variable St. The

regime variable can capture structural changes in the variance of fundamental shocks

as identified for instance by Sims and Zha (2005) and Ang, Bekaert, and Wei (2007b)

and/or the Great Moderation phenomenon. Our final model, the regime-switching state-

dependent volatility model, includes both lagged state variables and regime-switching

variables. In summary, we have the following models:

Model Specification

Homoskedastic Volatility Model Σt = Σ

State-dependent Volatility Model Σt = Σ(Xt−1)

Regime-Switching (RS) Volatility Model Σt = Σ(St)

RS State-dependent Volatility Model Σt = Σ(Xt−1, St).

In modelling St, we follow Bikbov (2005), and use three different regime variables in the

most general version of our model. One variable, sex
t shifts the volatility of the exogenous

shocks, like output gap and inflation shocks5. A second variable sir
t affects the volatility

of the interest rate shock, i.e. the monetary policy shock. The third variable sm
t either

switches certain structural parameters contained in Γt, which we discuss below, or shifts

the volatility of cash flow growth shocks or risk aversion shocks. In summary, we have

St = {sex
t , sir

t , sm
t }. To retain tractability, we assume the three regime variables to be

independent Markov chain processes. In most cases, the regime variable can take on two

values with the transition probabilities between states assumed constant.

Finally, modeling Γt leads to the actual identification of the factors in equation (3). To

accommodate a structural identification, we first consider a simple model with just three

state variables: the output gap yt, inflation πt and the nominal interest rate it. These

are the variables typically used in New-Keynesian models to identify respectively demand

shocks, supply shocks and monetary policy shocks. By imposing restrictions from a

state-of-the-art New-Keynesian macro model, we obtain a structural interpretation of the

various shocks identified through the model. We also considered the three state variable

model, identified non-structurally through a simple Choleski decomposition using the
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ordering Xt = [yt, πt, it]
′. This model performed worse than the structural model and we

do not report on it further. We do consider an extension of this non-structural model

where risk aversion is added as a state variable. We order risk aversion last, so that the risk

aversion shock is purged of the other fundamental shocks. Finally, we consider a model

with 8 state variables: Xt = [yt, πt, yet, ydt, πet, πdt, it, cgt]
′. In this model, we identify the

shocks through a Choleski decomposition using the order indicated above. Consequently,

in this model the uncertainty measures proxy for bond and equity risk premiums. We do

not consider models that combine both risk aversion and uncertainty measures, as our

risk aversion and inflation uncertainty measures are 63 percent correlated.

We now discuss the three different state variable models in more detail.

3.2.1 Three State Structural VAR Model

The three variable model should lead to the identification of three structural shocks F y
t ,

F π
t and F i

t , respectively the output, inflation and interest rate shock. To do so, we use

a standard New-Keynesian three-equation model (see e.g. Bekaert, Cho, and Moreno

(2006)) comprising an IS or demand equation, an aggregate supply (AS) equation, and a

forward looking monetary policy rule:

yt = aIS + µEt(yt+1) + (1− µ) yt−1 − φ (it − Et (πt+1)) + F y
t (4)

πt = aAS + δEt(πt+1) + (1− δ) πt−1 + λyt + F π
t (5)

it = aMP + ρit−1 + (1− ρ) [β(sm
t )Et (πt+1) + γ(sm

t )yt] + F i
t . (6)

The µ parameter and δ parameter represent the degree of forward-looking behavior in

the IS and AS equations and if they are not equal to one the model features endogenous

persistence. The φ parameter measures the impact of changes in real interest rates on

output and λ the effect of output on inflation. They are critical parameters in the mon-

etary transmission mechanism, and high and positive values imply that monetary policy

has significant effects on the real economy and inflation. Because all these parameters

arise from micro-founded models, for example representing preference parameters, we as-

sume them to be time invariant. The monetary policy rule is the typical forward-looking

Taylor rule with smoothing parameter ρ. However, as in Bikbov (2005), we allow sys-

tematic monetary policy to vary with a regime variable. There is substantive evidence

that monetary policy has gone through activist and more accommodating spells (see e.g.
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Cho and Moreno (2006), Boivin (2005)). This structural model provides an economic

interpretation to the contemporaneous relations between the state variables and a nat-

ural identification of the shocks F y
t , F π

t and F i
t . We furthermore specify the general

regime-switching state-dependent volatility model for the three factors as follows:

var(F y
t |Xt−1, St ) = exp(αy(s

ex
t ) + θ1,yyt−1 + θ2,yydt−1) (7)

var(F π
t |Xt−1, St ) = exp(απ(sex

t ) + θ1,ππt−1 + θ2,ππdt−1) (8)

var(F i
t |Xt−1, St ) = exp(αi(s

ir
t ) + θiit−1). (9)

The exponential function guarantees non-negative volatilities. Here, ydt−1 and πdt−1 are

respectively output uncertainty and inflation uncertainty (as measured by the survey

forecasts). Hence, we relate the volatility of the output and inflation factors to the

uncertainty about its forecast. Further, the variance of each of the state variables depends

on the lagged state variable level and on a regime variable. As mentioned before, we

differentiate between a variable sex
t affecting the volatility of exogenous shocks and a

variable sir
t affecting the volatility of interest rate shocks The homoskedastic, state-

dependent, and regime-switching volatility models are obvious special cases of the model

outlined in equations (7) to (9).

While it is theoretically possible to obtain the rational expectations solution of the model

in equations (4)-(6), the model implies highly non-linear restrictions further complicated

by the presence of regime-switching and heteroskedasticity in the structural shocks. Bik-

bov (2005) estimates a slightly simpler version of this model adding term structure

data and notes that without these additional data the identification of the regimes is

rather poor. Our strategy is different. We replace the forward-looking rational expecta-

tions with our survey forecast measures for expectations6. More specifically, we assume

Et (Xt+1) = Xf
t with Xf

t the median of the individual survey forecasts for the different

state variables. Using these forecasts, we write the model in compact matrix notation as

B11Xt = α + A11X
f
t + B12Xt−1 + Ft, Ft ∼ N(0, Σt)

where

B11 =




1 0 φ

−λ 1 0

− (1− ρ) γ(ss
t) 0 1


 ,A11 =




µ φ 0

0 δ 0

0 (1− ρ) β(ss
t) 0


 ,B12 =




1− µ 0 0

0 1− δ 0

0 0 ρ
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leading to the following reduced form:

Xt = c + Ω1X
f
t + Ω2Xt−1 + ΓFt

with c = B−1
11 α, Ω1 = B−1

11 A11, Ω2 = B−1
11 B12, Γ = B−1

11 , and Σt the diagonal conditional

covariance matrix described in equations (7)-(9).

This model can be estimated using limited maximum likelihood (we do not specify the

dynamics of yet−1 and πet−1). The use of the survey forecasts therefore both adds ad-

ditional information and permits to identify the structural parameters with a relatively

easy and straightforward estimation procedure. The quality of the model identification

depends to a large extent on the quality of the survey forecasts. While there is not much

evidence on the quality of the GDP growth survey forecasts, which we use to forecast the

output gap, a recent paper by Ang, Bekaert, and Wei (2007a) suggests that the median

survey forecast of inflation is the best inflation forecast out of sample, beating time series,

Philips curve and term structure models.

There is definitely controversy about what constitutes an adequate empirical proxy for

the output gap. While our initial model uses a quadratic trend to measure potential

output, the robustness section considers alternative output gap measures and also uses

GDP and consumption growth as state variables in non-structural versions of the three

state variable model.

3.2.2 Four State Non-Structural VAR Model with Risk Aversion

The four variable model should lead to the identification of four structural shocks F y
t ,

F π
t , F i

t and F fra
t , respectively the output, inflation, interest rate and risk aversion shock.

To do so, we use a Choleski decomposition with the ordering Xt = [yt, πt, it, frat]
′. The

matrix Γt is assumed to be lower-triangular, allowing identification of the shocks. While

it seems natural to rank the interest rate last but one, this ordering is to a certain extent

arbitrary. The ordening implies that F π
t represents inflation shocks not correlated with

output, while F i
t represents an interest rate shock cleansed of the influence of inflation

and the output gap. Similarly, the risk aversion shock represents a shock that is corrected

for contemporaneous correlation with the output gap, inflation and the interest rate.

Consequently, some of its cyclical properties may have disappeared.
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The variance model concretely consists of:

var(F y
t |Xt−1, St ) = exp(αy(s

ex
t ) + θ1,yyt−1 + θ2,yydt−1)

var(F π
t |Xt−1, St ) = exp(απ(sex

t ) + θ1,ππt−1 + θ2,ππdt−1)

var(F i
t |Xt−1, St ) = exp(αi(s

ir
t ) + θiit−1)

var(F fra
t |Xt−1, St ) = exp(αfra(s

m
t ) + θfrafrat−1).

The risk aversion factor variance is a loglinear function of lagged risk aversion in case of

the state-dependent volatility specifications. The regime-switching volatility specifications

allow the risk aversion factor variance to switch according to a seperate regime variable,

sm
t . In a specification analogous to the structural model, we let the interest rate coefficients

in Γt depend on a regime variable. However, it proved difficult to disentangle regimes in

Γt and Σt, so we abandoned this effort.

3.2.3 Eight State Non-Structural VAR Model

For the eight state non-structural model, we use the Choleski ordening Xt = [yt, πt, yet, ydt,

πet, πdt, it, cgt]
′. That is, we rank the expectation measures and their uncertainty after

the output gap and inflation, so that these shocks reflect information that is not present

in contemporaneous observed macro information. The cash flow growth shock is purged

of all contemporaneous macro-economic influences, including the interest rate. We again

assume Γt to be lower-triangular and constant. We use an additional regime swiching

variable, sm
t , for the cash flow growth variance. Whereas the variances of yt, πt and it are

modeled as is 3.2.2, we also have

var(F ye
t |Xt−1, St ) = exp(αye(s

ex
t ) + θ1,yeyet−1 + θ2,yeydt−1)

var(F yd
t |Xt−1, St ) = exp(αyd(s

ex
t ) + θydydt−1)

var(F πe
t |Xt−1, St ) = exp(απe(s

ex
t ) + θ1,πeπet−1 + θ2,πeπdt−1)

var(F πd
t |Xt−1, St ) = exp(απd(s

ex
t ) + θπdπdt−1)

var(F cg
t |Xt−1, St ) = exp(αcg(s

m
t ) + θ1,cgcgt−1 + θ2,cgcgdt−1).

The variances of expected output growth and expected inflation are modeled using both

the lagged state variable and the aggregate lagged uncertainty measures as instruments.

The variances of the uncertainty measures depend on their own lag. The variance of cash

flow growth depends both on its own lag and on lagged cash flow uncertainty. All variance
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specifications have a regime-switching constant, but the regime variables sir
t and sm

t in

the interest rate and cash flow equations differ from the one present in the specifications

for the other variables.

Because the volatility of (expected) output and inflation uncertainty shocks shifts with

sex
t , one could expect the uncertainty measures, which are highly correlated with true

heteroskedasticity, to exhibit a mean shift. That is, µyd and µπd should depend on sex
t

as well. While we do not allow this dependence in the initial specification, we assess its

importance in the robustness section.

4 Estimation and Model Selection

4.1 Model Estimation

We follow a two-stage procedure to estimate the bivariate model presented in equation

(1). In a first stage, we estimate the state variable model using maximum likelihood. In

a second step, we estimate the factor model conditional on the economic factor shocks

identified in the first step. Under the null of the model, the covariance between stock

and bond returns is captured by their joint exposure to the economic factor innovations,

therefore there is no loss in efficiency from estimating the stock and bond return equations

seperately.

From an econometric point of view, it would be more efficient to estimate the factor and

state variable models in one step. The goal of our article, however, necessitates a two-step

estimation. An important risk of a one-step estimation procedure is that the parameters

of the state variable model are estimated to help accommodate the conditional stock-

bond return correlation, which would make the economic interpretation of the factors

problematic.

We estimate the structural model using limited-information maximum likelihood because

we replace unobservable conditional expected values by observable measures based on

survey forecasts. For the non-structural state variable models we use full-information

maximum likelihood.

To choose the optimal number of lags in these reduced-form VARs, we use the Schwarz

criterion. The criterion selects one lag for the four and eight variable state models. The

17



eight state variable model is still likely to be over-parameterized. We impose further

restrictions on the parameter matrix A as follows. We obtain consistent estimates of the

feedback coefficients using OLS, and compute White (1980) heteroskedasticity-consistent

standard errors for the coefficients. We then set coefficients with a t-statistic lower than

one equal to zero in the maximum likelihood estimation.

4.2 Model Selection

To determine which of the different models best fits stock-bond return correlations, we

investigate a number of selection criteria.

First, we conduct specification tests on the estimated cross-product of the stock and

bond residuals, ẑt = ε̂s,tε̂b,t, for each model. Under the null hypothesis that the model is

correctly specified and captures stock-bond return comovements, we have

E [ẑt] = 0 (10)

E [ẑtẑt−k] = 0, for k = 1, ..., τ . (11)

The former is a zero mean test and verifies if the model fits the average level of the

comovement between stock and bond returns. The latter tests whether there is serial

correlation left in the cross residuals. Serial correlation indicates that the model does not

capture the time variation in the comovements. To maintain sufficient power, we only use

τ = 2 and τ = 4. We test the validity of these orthogonality conditions within a GMM

framework.

Second, we compare our model-implied conditional correlations, calculated through equa-

tion (2), with the data-implied conditional correlation based on the regime-switching

model7 described and estimated in Section 2. We expect the latter to give us a good

picture of how the actual conditional correlations vary through time. Consequently, we

compute the mean absolute deviation (MAD) between the model-implied correlation and

our proxy for the actual conditional correlation. We compute one additional MAD mea-

sure for the model correlations, comparing them to the realized correlations, measured

using daily returns of the following quarter. This essentially tests the predictive power of

the various models for future correlations.

Third, we expect our factor model to capture the features in the data uncovered in Section

2. Particularly, the stock and bond residuals of a well performing model should not exhibit
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the regime-switching patterns found in the raw stock and bond returns. Consequently,

we use the best performing regime-switching model in Section 2 (Model 6) and evaluate

it using the residuals from the various factor models as “data”. If the factor model has

managed to fit the patterns in the data, this model should provide a rather poor fit to the

residuals. In particlar, the model should no longer uncover clearly seperated regimes. We

investigate this by computing the regime classification measure RCM of Ang and Bekaert

(2002):

RCM = 400× 1

T

T∑
t=1

pt (1− pt)

with pt the smoothed (ex-post) probability of being in state 1 at time t. If no regimes

remain, this measure should be close to 100. This means that the regime-switching model

cannot distinguish between regimes.

As a final diagnostic, we compute the R2 of the factor model for respectively stock and

bond returns. If the factors fit only a small fraction of the return variance then it is

unrealistic to hope for a satisfactory fit for the covariance of stock and bond returns. The

literature on stock returns in particular has a long but controversial exponent arguing

that stock returns are excessively volatile (see for instance the old debate between Shiller

(1981) and Kleidon (1986)).

5 Empirical Results for Models with Macro Variables

This section presents the estimation results for the state variable and dynamic factor

models. In the first subsection, we select the best performing state variable models using

the specification tests outlined in Section 4.2. Subsections 5.2 and 5.3 present detailed

results regarding, respectively, the state variable dynamics and factor exposures of the

best models.

5.1 Model Selection Tests

Table 4 presents the model selection tests for the three, the four and the eight factor

models in three panels. For each of these models, we consider 8 specifications depending

on the beta specification (constant or time-varying) and the volatility specification of the

factor shocks (homoskedastic, state-dependent, regime-switching, and a combination of

the latter two).
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Let us first get a general picture going from Panel A to Panel C. In terms of the residual

specification tests, all models remove the serial correlation in the cross product of the

residuals, perhaps revealing this to be a not very powerful test. The zero mean test does

reject in many cases at the 10% level. The distance measures reveal that no model fits

actual conditional correlations (as proxied by our empirical model) particularly well, with

the average absolute distance hovering around 40%. The empirical model estimated in

Section 2 registered a mean absolute deviation with future realized correlations of 0.241.

As would be expected, all models with macro factors perform considerably worse. The

benchmark for the RCM statistic is 12.4, the value reached in the raw data. Here, only the

8 factor models with time-varying betas produce substantially higher RCM’s suggesting

they capture some of the regime-switching behavior of the empirical model.

Within each model, the specification with the time-varying betas and regime-switching

volatilities produces the smallest distance measures. These are the models that we will

study in a bit more detail in the next two sub-sections. Of these three models, only the

8 factor model fails to reject the null of zero residual covariances at the 10 percent level.

Comparing across models, the best 4 factor and 8 factor models generate substantially

lower distance measures than the best 3-factor model. This suggests that time variation

in risk aversion and/or uncertainty is a necessary ingredient to understand stock and

bond return comovements. While the 8-factor model performs best, the performance of

the risk aversion model is notable as it occurs in a parsimonious non-structural model.

The non-structural 3-factor model performs much worse than the 3-factor model with

structural identification, so augmenting the model with risk aversion is very helpful.

It is conceivable that the relative performance of the various models is linked to how much

they explain of bond and stock return dynamics. In the last two columns, we report the

R2 and adjusted R2 of the various factor models for the stock and bond return equations.

Clearly, the macro factors explain much more of bond return variation than they do of

stock return variation. The adjusted R2 for one variant of the 8 factor model for the

bond return equation is 36%. For stock returns, the adjusted R2 is never higher than

12.5%. Clearly, the highest R2s occur for the 4 and 8 factor models, but only in models

with time-varying betas. There the improvement for explaining stock return variation is

substantial, often leading to almost twice as high R2s. Their constant beta variants only

do better than the 3 factor counterparts for the bond return equation but far worse for
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equity.

The distance measures show that the conditional correlations implied by even the best

performing factor models are far from the stock-bond return correlation observed in the

data. Panel B, C and D of Figure 1 show the conditional correlations implied by the se-

lected three factor, four factor and eight factor models. The three models show a similar

pattern generating positive correlations until 1985-1990 (at the time of the Great Mod-

eration), and decreasing and even negative correlations thereafter. While this does not

appear to be unlike the pattern observed in the data (see Panel A), both the magnitudes

and timing are off. For the three-factor model, the correlations are simply minuscule. For

the 4-factor model, the positive correlations observed before 1985 are somewhat too low

and the decrease happens way too early. The uncertainty model (8 factors) has similar

problems even though the decrease in correlation happens somewhat later, but still earlier

than in the data.

5.2 State Variable Dynamics

To conserve space, we report parameter estimates for the 3 retained models in an Ap-

pendix (available upon request). We focus the discussion on the identification of regimes

and the volatility dynamics of the models as they determine the fundamental stock and

bond return correlations. In the New-Keynesian model, the structural parameters are of

independent interest but a detailed discussion is beyond the scope of this article8. Let us

only comment on the regime variable for systematic monetary policy in the interest rate

equation. Our β estimates reveal an activist monetary policy regime (with β = 1.9) and

an accommodating monetary policy regime (with β smaller and insignificantly different

from 1). The coefficient on the output gap, γ, is only significantly positive in the second

regime.

Figure 2 plots the smoothed probabilities for the regime variables for the three different

models. All models show significant regime-switching volatility both in statistical and

economic terms. Figure 3 then plots the conditional volatilities of the various factors.

We discuss the two figures in tandem. We first focus on the regime variable affecting the

volatility of the exogenous shocks, i.e. output gap and inflation shocks, in the three factor

model. We observe a sudden drop in output and inflation factor volatility in 1984, which

corresponds to the start of the Great Moderation. The decreased volatility persists for the
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remainder of the sample (except for a short period during the 1990 recession), consistent

with the Great Moderation representing a permanent structural break. Of course, in our

regime-switching model, there is a positive probability that the high volatility regime

will re-occur. The identification of this regime is nearly identical in the model with risk

aversion. However, the structural model leads to less volatile output shocks. In terms

of volatility levels (Figure 3), the non-structural 8 state model is similar to the model

with risk aversion, but the time-path of the high volatility regime (Figure 2) is different.

The regime variable affecting the volatility of the exogenous shocks in fact coincides with

NBER recessions, confirming the counter-cyclical nature of real volatility, noted by Ferson

and Merrick (1987) and Kandel and Stambaugh (1990) among others. We also do not

observe a sudden drop in output and inflation volatility in 1984, but in 1992. We find

that the additional variables, such as the survey-based measures for the expectation and

uncertainty regarding the output gap and inflation, are instrumental in the identification

of the ‘exogenous’ regime.

The various models also feature a regime variable capturing the variability of the interest

rate shock. For all three models, the high interest rate volatility regime occurs during the

1980-1982 Volcker period. Our estimates indicate that interest rate volatility was about

four times as high during the Volcker period as during other periods. This is consistent

with the results in Bikbov (2005) who also categorizes the Volcker period as a period

of discretionary monetary policy. Unlike Bikbov (2005), our structural model identifies

systematic monetary policy to be activist during this period. The model also shows that

the 1990 and 2001 recessions were accompanied by an accommodating monetary policy

regime, but that activist monetary policy spells became more frequent from 1980 onwards.

In the 4-factor model, the regime variable for risk aversion shocks spikes up during reces-

sions, with the shock volatility approximately doubling relative to normal models. In the

8 variable model, the regime variable affecting the volatility of the cash flow growth shocks

appears to capture the permanent structural break in 1984, corresponding to the start of

the Great Moderation. The striking fact is that cash flow growth volatility shifts upwards

instead of downwards after 1984. Note that this regime variable only applies to cash

flow shocks cleansed from macro-economic influences. This finding appears to suggest

that idiosyncratic cash flow growth volatility increased as macro-economic uncertainty

decreased.
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5.3 Factor Beta Exposures

Table 5 presents the beta estimates for the three retained models. Note that the in-

struments in the beta specification are standardized, so that the betas βs and βb are

the response to a one standard deviation move in the instrument. We start with the

three-factor model. First, for stock returns only the output factor has a beta statistically

different from zero, while for bond returns, significance is limited to the interest rate fac-

tor. Second, for both stocks and bonds, we find that higher uncertainty regarding output

and inflation actually decreases the beta exposures, which is inconsistent with David and

Veronesi (2004). Of course, the coefficients are not statistically significant. Third, while

we find little statistical evidence for significant time variation in the betas, all three mod-

els generate similar time variation in the betas. We graph them for the four-factor model

in Figure 4. Note, and this is also true for the three factor model, that the output gap

betas for stocks are mostly positive (potentially representing positive cash flow news),

while for bonds they are mostly negative (possibly reflecting an interest rate effect). In

contrast, the inflation factor is not a source of negative correlation between stock and

bond returns as both stocks and bonds have negative inflation betas. Fourth, for the

time variation in the interest rate exposures to reflect a duration effect, the coefficients on

the payout ratio (for stocks), respectively the interest rate (for bonds), must be negative.

While the interest rate exposure of stocks has the correct sign, the coefficient is insignif-

icant, but as Figure 4 shows, the time variation in the interest rate exposure of stocks

seems economically significant. Whether this represents a duration effect remains to be

seen. It is conceivable that the model simply picks up “unusually” high stock valuations

through this channel, with no fundamental interpretation. Alternatively, a positive reac-

tion to real interest rate shocks could be consistent with real rates capturing productivity

changes that positively affect stock market valuations. The exposure of bond returns to

interest rate shocks is overall negative as expected, but depends positively on the interest

rate level, which is inconsistent with a duration effect, complicating a full structural in-

terpretation of the model. This time variation in the exposures to interest rate shocks has

important implications for the stock-bond return correlation. As can be seen in Figure

4, during the high correlation period in the second half of the seventies and the eighties,

both stock and bond returns react negatively to interest shocks. However, as the payout

ratio decreases in the nineties, the exposure of stock returns to interest rate shocks turns

positive. The difference between the exposures for stock and bond returns is especially
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substantial in the 1998-2004 period. This explains some of the negative stock-bond return

correlations at the end of the sample period (see Figure 1). Again, all three models share

this behavior.

For the four factor model, the factor exposures to the output gap, inflation and the

interest rate are qualitatively the same as for the three factor model, with significance

(at the 10% level) also concentrated in the interest rate exposures. The coefficient on the

payout ratio for the interest rate exposure of stocks is now significant at the 10% level. Of

most interest, is the exposure to risk aversion shocks. The exposures of stock and bond

returns to shocks in risk aversion are negatively related to the the lagged risk aversion

variable, although not significantly, and the constant terms are negative as well. Figure 4

shows that the exposures of stock and bond returns are mostly simultaneously negative.

At low levels of risk aversion, the betas sometimes have different signs, implying that the

risk aversion factor can potentially generate negative correlations. Whether it will do so

also depends on the magnitude of the risk aversion factor variance. Our previous figure on

factor volatilities (Figure 3) shows that the variance of the risk aversion factor switches

between a high and a low variance state. While recently risk aversion is in the high

variance state, it is also a relatively low variance factor. Consequently, it is not surprising

that risk aversion fails to generate high negative correlations, as Figure 1 demonstrated.

Figure 1 does indicate that the model with risk aversion provides a better fit with the

positive correlations before 1987 than the other two models.

The results for the overlapping shocks in the 8-factor model are entirely consistent with the

other two models. As to the other factors, there are no significant beta coefficients for the

output variables (expected output gap and output uncertainty), but the inflation variables

generate some significant effects in the stock return equation. Inflation uncertainty affects

both stocks and bond returns negatively. Both the exposures of stock and bond returns

to cash flow growth shocks are a positive function of cash flow growth uncertainty. Recall

that this shock is cleansed of macro- and interest rate effects. There is a sharp decrease in

the cash flow growth uncertainty around 1992, which turns the exposure of stock returns

to cash flow growth shocks from mostly positive to mostly negative9. The exposure of

bond returns is positive and rather stable around 0.15. This helps generate negative

correlations between stock and bond returns after 1992, whereas before exposures for

both stock and bond returns help explain some of the positive correlations.
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6 Robustness

Our fundamentals-based model fails to fit much of the time variation in conditional stock-

bond return correlations. There are a number of reasons why our model may not fully

explain the data patterns. Section 6.1 explores potential measurement problems for our

fundamental state variables. In Section 6.2 we discuss the potential impact of relaxing our

assumption of constant expected stock and bond excess returns. Section 6.3 explores the

effects of functional form mis-specification and potentially omitted structural changes.

6.1 Measurement Problems

Because there is much disagreement about how to measure the natural rate of output in

the New-Keynesian models, we consider two alternative proxies for the output gap: the

Hodrick Prescott filtered value of output, and the measure provided by the Congressional

Budget Office (CBO). While theoretically we should not use GDP growth in the structural

model, we nevertheless also consider a specification with GDP growth replacing the output

gap. Finally, we replace GDP growth by consumption growth. The micro foundation for

the model builds on a representative agent economy where consumption growth is a state

variable, with consumption assumed to equal output (or output plus an i.i.d. shock), a

rather heroic assumption.

In our four and eight factor (non-structural) models, we also examine the performance

when the output gap is replaced by GDP or consumption growth. In addition, we also

re-consider the measurement of economic uncertainty for the eight factor model. Our

proxies for output and inflation uncertainty use information from each individual’s forecast

uncertainty (see the Data Appendix). This measure incorporates both the individual

uncertainty about the forecasts and the disagreement in point forecasts (see Giordani and

Soderlind (2003) for a discussion). As an alternative, we consider an uncertainty measure

only incorporating the disagreement in point forecasts. This is measured as the standard

deviation of the real output gap (inflation) forecasts of individual professional forecasters.

Finally, we replace our economic uncertainty measure by a proxy for the conditional

volatility of consumption growth. We compute this volatility using a 60-month moving

window of data on real consumption growth for non-durables. As shown in the Data

Appendix, consumption growth volatility shows a gradual decrease throughout the sample
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period, consistent with the Great Moderation. However this pattern is reversed from the

year 2000 onwards, with a sharp increase in consumption growth volatility during the

last 5 years. This phenomenon may well help explain the negative stock-bond return

correlation at the end of the sample. In simple consumption-based asset pricing models,

consumption growth volatility, just as risk aversion, may potentially have opposite effects

on bond and stock returns. An increase in volatility leads to a lower real interest rate

through a precautionary savings effect thereby positively affecting both stock and bond

returns. However, increased volatility may also drive up equity risk premiums much more

than term premiums leading to net exposures that are potentially different across stocks

and bonds.

Table 6 reports the model selection tests. The table reveals that the use of alternative

output gap measures fails to improve the fit of the three factor model (rows (1) and

(2)). The distance measures increase and the R2 measures decrease. However, there is an

improvement of fit using the growth measures, especially using consumption growth (rows

(3) and (4)). The improvement in the explanatory power of the factor model for stock

returns is particularly dramatic. The improvement in fit appears to arise from the joint

positive exposures of stock and bond returns to consumption growth shocks leading to

higher correlations on average. In contrast, the distance measures do not improve when

alternative growth measures are used in the four (rows (5) and (6)) and the eight factor

model (rows (7) and (8)), indicating that the additional information in these alternative

output measures is well captured by the existing state variables. Finally, our results do

not meaningfully improve when the alternative output and inflation uncertainty measures

(row (9)) and consumption growth volatility (row (10)) are used.

6.2 Time-Varying Expected Returns

As Figure 1 shows, the selected factor models tend to under-estimate conditional stock

and bond return correlations, on average. They also produce too low unconditional cor-

relations. In the data, this correlation amounts to 19 percent, but the three, four, and

eight factor models produce average correlations of respectively 1, 2 and 5 percent. One

potential channel to increase unconditional correlations not present in our current model

is time variation in expected returns. For instance, in the model of Bekaert, Engstrom,

and Grenadier (2005a) risk premiums on stocks and bonds are highly correlated, thus
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increasing the unconditional correlation between stock and bond returns. In addition,

mis-measurement of expected returns may affect the estimation of conditional covariance

dynamics. An assumption of constant risk premiums seems particularly strong in light

of the important structural shifts in the variances of fundamental variables such as infla-

tion and output growth that we uncovered. Such important changes may lead to abrupt

changes in risk premiums, which are unaccounted for in our present models. In fact,

Lettau, Ludvigson, and Wachter (2004) recently claim that the decline in macroeconomic

volatility may have led to a decline in the equity risk premium.

We consider two extensions to our models to accommodate time variation in expected

stock and bond returns. First, we model expected excess returns as a linear function of

instruments, including the lagged (log) earnings yield eyt−1, the lagged nominal interest

rate it−1, and the lagged term spread termt−1. Second, we use the regime probabilities

identified in the structural factor model estimation as instruments for expected returns

in univariate regressions.

In Table 7, we report results based on the three factor structural model. Let us first focus

on Panel B which shows the conditional mean coefficients. In the instrumental variables

regression and using a 10 percent significance level, the earnings yield and the interest rate

significantly impact equity risk premiums, whereas the term spread and the interest rate

have a positive and significant effect on bond premiums. The coefficient on the equity

yield (interest rate) in the equity regression is positive (negative) confirming standard

results in the literature. This only leaves the term spread, which has positive coefficients

in both regressions, to possibly help generate positive covariation between stock and bond

premiums. Structural changes, as identified by the regime variables, do not seem to affect

expected stock and bond returns in a meaningful way. In particular, the coefficient on

exogenous economic volatility regimes is negative but not significantly different from zero.

In Panel A, we repeat the model selection tests for the new models. Not surprisingly,

accommodating structural shifts in expected returns does not improve the fit but accom-

modating linear predictability leads to lower distance measures, a higher RCM statistic,

and higher R2’s for the factor regressions. While this improvement in fit is substantial,

the resulting model still performs worse than the 8 factor model. The linear predictability

model generates positively correlated risk premiums, so that the unconditional correlation

between stock and bond returns increases from 1 to 8 percent.

27



6.3 Structural Changes

The models in this article only allow for regime-switching behavior in the state variable

innovations and their variances. With the exception of a simple version of the New-

Keynesian model, the models we estimate are non-structural. In the spirit of the Lucas

critique, all parameters should therefore be potentially dependent on the regime variables,

including the feedback parameters of the state variable models, the conditional betas

and the conditional means of bond and stock returns (see Section 6.2), and even their

idiosyncratic variances. For example, the structural downward shift in macroeconomic

volatility (the Great Moderation) may translate into lower expected returns and lower

systematic stock and bond return variances. However, the long-run variance of stock

returns does not seem to have decreased in line with the Great Moderation, which suggests

that either betas increased in absolute value or idiosyncratic variances increased. In fact,

Campbell, Lettau, Malkiel, and Xu (2001) argue that the idiosyncratic variance of stocks

has trended upwards. While it is not yet clear whether this result is robust, one potential

reason for the effect may be another structural shift: the post 1995 stock market boom

may have led to a larger proportion of younger and more volatile firms to list on stock

exchanges.

Accounting for such structural changes must happen in a very controlled manner. For

example, it is tempting to accommodate more intricate beta dynamics using a regime-

switching beta specification. Unfortunately, such parameter flexibility hampers the struc-

tural interpretation of the implied stock-bond return correlation dynamics. Instead, we

allow the betas to depend on the three regime variables exogenously extracted from the

state variables, without using stock and bond returns.

Table 8 reports the model selection tests for such a specification applied to the eight

factor model. The models accommodating structural changes in the betas constitute a

significant improvement on the constant beta specification, but they also produce smaller

conditional correlation distance statistics than the dynamic beta benchmark model. The

best model is the one where betas change with the cash flow growth regime. In this

model, the distance statistic drops to 0.322 and the RCM statistic increases to over 30.

The explanatory power of the factor model for stock and bond returns increases rather

substantially. The main mechanism for the improved fit is a joint positive exposure to

cash flow shocks before 1986 that leads to correlations in the 0.4 range. Afterwards, these
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exposures are mostly opposite in sign for stocks and bonds, contributing to low or even

negative correlations. However, the model performs worse than the benchmark model in

predicting realized correlations, suggesting that it fails to fit higher frequency correlation

dynamics.

In addition, we consider the possibility of a few other exogenously specified breaks for

betas. First, a large literature has documented cyclical patterns in risk premiums, Sharpe

ratios, and stock betas. Therefore, we estimate a specification in which the betas depend

on the NBER recession indicator. Second, we consider the effect of monetary policy

regimes using either a dummy for the Volcker period, or for the post-Volcker period.

Finally, we consider a break in 1984, a popular date for the onset of the Great Moderation.

Table 8 reports the resulting model selection tests. The model with NBER dummies fails

to improve upon our dynamic beta specification. The Volcker dummies are a simple way

to accommodate monetary policy regimes and are correlated with the sir
t -specification

discussed before. While the post-Volcker period dummy specification is better in some

respect, it is not overall better than the sir
t specification. The same is true for the 1984-

break model relative to the sex
t specification. None of these models improves upon the

sm
t specification, yet they invariably have high explanatory power for the bond and stock

return regressions. We also estimated a 8 factor model (not reported) where the intercepts(
µyd, µπd

)
in the output and inflation uncertainty equations depend on sex

t . This model’s

performance is similar to the benchmark model’s performance.

7 Liquidity and Flight-to-Safety

Our fundamental factor models fail to fit the extreme range of conditional stock-bond re-

turns correlations. They particularly fail to generate the extremely negative correlations

observed since 1998. In this section, we explore some alternative non-fundamental de-

terminants of stock and bond return correlations. First, an often cited non-fundamental

explanation for the occasionally observed negative correlations is the flight-to-safety phe-

nomenon, where investors switch from the risky asset, stocks, to a safe haven, bonds, in

times of increased stock market uncertainty. This portfolio shift is assumed to cause price

changes, and thus implies a negative correlation between stock and bond returns. Con-

nolly, Stivers, and Sun (2005) use the VIX implied volatility measure as a proxy for stock

market uncertainty and show that stock and bond return comovements are negatively
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and significantly related to stock market uncertainty. Second, an exploding literature

has stressed the importance of liquidity effects in stock and bond pricing. There is no

reason for these liquidity shocks to be perfectly correlated across the two markets and

hence “liquidity risk” may be an important omitted variable. Of course, liquidity effects

may correlate with the flight-to-safety phenomenon. Crisis periods may drive investors

and traders from less liquid stocks into highly liquid Treasury bonds, and the resulting

price-pressure effects may induce negative stock-bond return correlations. However, the

pricing of liquidity risk may induce positive correlation depending on how stock and bond

market liquidity co-move. For example, the monetary policy stance can affect liquidity

in both markets by altering the terms of margin borrowing and by alleviating the bor-

rowing constraints of dealers. Existing studies of the commonality in stock and bond

liquidity (Chordia, Sarkar, and Subrahmanyam (2005) and Goyenko (2006)) are some-

what inconclusive as to which effect dominates. Finally, if behavioral factors play a role,

and individual investors are more prevalent in stock than bond markets, it is possible that

a measure of consumer confidence may help explain correlation patterns. In times of high

consumer confidence, stocks may be bid up relative to bonds. Of course, such increases

in consumer confidence may also be correlated with changes in fundamental risk aversion

and the business cycle.

7.1 Test Design and Data

To test whether liquidity, consumer confidence, or flight-fo-safety factors help explain the

stock-bond return correlations, we regress the cross product of the residuals from our

fundamental model, ε̂s,tε̂b,t, on shocks to proxies for liquidity, consumer confidence, and

flight-to-safety, denoted by the vector εz,t :

ε̂s,tε̂b,t = γ0 + γ′1εz,t.

This is basically a specification test verifying whether cov (εs,t, εb,t) = 0. We take stock

and bond return residuals from the best performing eight factor model, but check the

robustness of our results to using residuals from the other factor models. We identify the

innovations in the liquidity, consumer confidence, and flight-to-safety measures using a

VAR of order n, where n is determined using the Schwartz information criterion.

To capture the flight-to-safety phenomenon, we use two measures for stock market uncer-

tainty: the VIX implied volatility (as used by Connolly, Stivers, and Sun (2005)) and the
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conditional stock return variance as estimated in Section 2. The advantage of the latter

instrument is that it is available over the full sample, while the VIX series only starts in

1986. As a proxy for consumer confidence, we use the University of Michigan’s Consumer

Sentiment Index (see Dominitz and Manski (2004) for a discussion). Our measure of bond

market illiquidity is a monthly average of quoted bid-ask spreads across all maturities,

taken from Goyenko (2006). As an alternative indicator, we use the on/off the run spread,

even though for this indicator we have only data starting in 1994. Our measures of eq-

uity market illiquidity use the “zero return” concept developed in Lesmond, Ogden, and

Trzcinka (1999), and are taken from Bekaert, Harvey, and Lundblad (2007). They obtain

two measures of equity market illiquidity. First, they calculate a capitalization-based

proportion of zero daily returns across all firms, and aggregate this proportion over the

month. Second, because a zero return does not necessarily mean zero volume, they also

calculate the market-cap weighted proportion of zero daily returns on zero volume days

within a particular month. Both measures have a positive and high correlation with more

standard measures, such as Hasbrouck (2006)’s effective costs and Amihud (2002)’s price

impact measures.

With the exception of our equity market volatility measure, all explanatory variables are

observed at the monthly frequency. We therefore average them over the quarter before

estimating the VAR on quarterly time series.

7.2 Empirical Results

Table 9 reports the estimation results of a regression of the cross product of stock-bond

return residuals from the 8 factor model on innovations in the various (combination of)

instruments. To conserve space, we do not report detailed estimation results for the

VAR10. The results are qualitatively similar when residuals from the three and four factor

models are used.

Columns 1 and 2 indicate that our fundamental model fails to capture the flight-to-safety

phenomenon, as the stock market uncertainty measures have a highly significant, negative

effect on the residual correlations11. Hence, stock-bond return comovements decrease in

times of high stock market uncertainty, confirming the results in Connolly, Stivers, and

Sun (2005). Column 3 shows that there is no significant relationship between innova-

tions in consumer confidence and residual stock-bond return comovement. In the next
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4 columns, we test whether liquidity helps explaining stock-bond return comovements.

Column 4 shows that ε̂s,tε̂b,t is negatively related to the on/off-the-run spread, indicating

that stock and bond returns move in opposite directions when bond market liquidity is

low. It is conceivable that the on/off the run spread captures more general liquidity con-

ditions, and that the negative sign indirectly reflects a “flight-to-safety” effect. Column

5 shows a positive but insignificant impact of innovations in bond illiquidity on stock-

bond return comovements. Poor significance may in part be due to the relatively low

quarterly frequency of our dependent variable. The sign is nevertheless consistent with

Goyenko (2006). Increases in bond market illiquidity increase expected bond returns,

leading to an immediate drop in bond prices. Goyenko (2006) shows that periods of poor

bond market liquidity are associated with times of monetary policy tightening, which is

in turn bad news for equity markets. Columns 6 and 7 reveal that innovations in equity

market illiquidity have a negative impact on residual stock-bond return comovements12.

This finding is consistent with Goyenko (2006), who finds that stock returns decrease and

bond returns increase after a surprise increase in equity market illiquidity. If liquidity is

priced in equity markets, an increase in equity illiquidity raises expected returns, leading

to an immediate decrease in stock prices. At the same time, a flight-to-liquidity results in

a flow of funds into treasuries, hereby decreasing yields and increasing returns. Columns

8 and 9 show that parameter estimates and significance levels remain similar when we

perform a multivariate regression of residual stock-bond return comovements on all re-

gressors simultaneously. The R2’s remain relatively low, however, with a maximum of

about 7 percent.

The current results ignore interaction effects. If stock market illiquidity occurs at the

same time as bond market illiquidity, the negative effect of shocks to equity illiquidity on

residual stock-bond return comovements should be mitigated. In columns 10 and 11, we

include the interaction between stock and bond illiquidity as an additional regressor. We

confirm the negative relationship between ε̂s,tε̂b,t and shocks to equity market volatility

and illiquidity. We find a positive and significant liquidity interaction effect, indicating

that when liquidity drops in the equity and bond market, the stock illiquidity effect is

reduced13. Note that the interaction term increases the R2’s from 7.08 percent to 11.58

percent, in case the zero return - zero volume equity illiquidity measure is used. In

unreported results, we did not find significant effects from interacting bond and equity

market illiquidity with equity market volatility, or from interacting shocks to consumer
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confidence with shocks to the other instruments.

8 Conclusions

The substantial time variation in stock-bond return correlations has long been viewed

as puzzling. Without assessing what time variation in correlations a formal model of

fundamentals can generate, this may be a premature judgment. For instance, much has

been made of the negative correlation between bond and stock returns in recent times.

However, the real economy and the inflation process have undergone some remarkable

changes recently. In particular, it is well known that output and inflation volatility have

decreased substantially since 1985. If bonds and stocks have similar exposures to these

economic factors, their correlation should have decreased. It is also conceivable that these

fundamental changes have affected risk aversion, a factor on which bonds and stocks may

load with a different sign. While it remains difficult to think of economic factors that

would cause a sudden and steep decrease of stock-bond return correlations into negative

territory, it remains useful to quantify how much of the correlation dynamics can be

attributed to fundamentals. This is what this paper sets out to do using a dynamic factor

model with fundamental factors.

Importantly, we considered a large number of economic factors, and a large number of

model specifications, some with scant structural restrictions. Yet, we fail to find a satisfac-

tory fit with stock-bond return correlations. A number of our models have a satisfactory

fit with the unconditional correlation between stocks and bonds. Specifications including

risk aversion or economic uncertainty measures substantially outperform models that do

not, suggesting that common variation in risk premiums is an essential component in any

stock-bond return correlation model. We also find that the performance of our funda-

mental models improves when factor shocks are ‘structurally’ identified by means of a

New-Keynesian model. Not unlike the pattern observed in the data, our fundamental-

based models do generate positive correlations until the end of the 1980s, and decreasing

and even negative correlations afterwards. Using fundamentals only, however, our models

are unable to match both the timing and the magnitude of the correlation movements.

In our last section, we examine some potential non-fundamental sources of these correla-

tions. We find that the cross-residuals of our models load significantly on stock market

uncertainty or volatility. While this may be a confirmation of the flight-to-quality phe-
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nomenon, it may also simply indicate that models that better explain the variability in

the stock market may also help capture stock-bond return correlations. We also explored

some liquidity factors. Liquidity factors are more and more viewed as being of primary

importance in asset pricing. Although we model correlations at the quarterly frequency,

stock market illiquidity seems to have important explanatory power for the part of bond

and stock return correlations not explained by our fundamental models. We suspect that a

model which combines high frequency liquidity factors with lower frequency fundamental

factors may be more succesful at explaining stock and bond return correlation dynamics.
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Notes

1Autocorrelation in daily stock and bond returns potentially biases our estimates of quarterly stock

and bond return volatilities and correlations. While we do find a moderate degree of autocorrelation in

both stock and bond returns, correcting for this bias (using 4 Newey and West (1987) lags) does not

meaningfully alter stock-bond return volatilities and correlations.
2The expected output gap is measured as the median of individual forecasts of the output gap. We

compute the individual output gap forecasts using individual real GDP growth forecasts from the survey

of professional forecasters (see Data Appendix).
3Expected inflation is measured as the median of individual inflation forecasts from the survey of

professional forecasters.
4In principle, the drift parameter µ and the feedback matrix A may also vary through time, especially

if Γt and Σt depend on variables capturing structural changes. We investigate this possibility in Section

6.
5Allowing for two independent regime variables for the volatility of respectively the output gap and

inflation leads to highly correlated ex ante probabilities.
6Adam and Padula (2003) advocate using survey forecasts instead of the rational expectations concept.
7In computing conditional correlations for the regime-switching models, we use ex-ante regime prob-

abilities conditional on time t− 1 information.
8We find mostly parameters in line with the extant literature, including a rather weak monetary

transmission mechanism (see Bekaert, Cho, and Moreno (2006)).
9Note that we find idiosyncratic cash flow volatility to increase post 1986, yet the uncertainty regarding

future cash flows, as measured by the Survey of Professional Forecasters, decreases in the 1990s.
10The Schwartz information criterion selects a VAR of order 1. Detailed estimation results are available

on request.
11In unreported results, we confirm that this effect is mainly due to the part of stock volatility not

explained by our fundamental factor model.
12The effect is only significant at the 10 percent level for the illiquidity measure which uses volume

data.
13We obtain similar results when we condition the interaction effect also on a dummy that has the

value of one when both the stock and bond illiquidity shocks are positive, and zero otherwise.
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Appendix

A Data Appendix

Our dataset consists of stock and bond returns and a number of economic (fundamental)

and non-fundamental state variables for the US. Our sample period is from the fourth

quarter of 1968 to the fourth quarter of 2004 for a total of 145 observations. The economic

state variables are seasonally adjusted. Below we give details on the exact data sources

used and on the way the series are constructed:

1. Stock Excess Returns (rs): End-of-quarter NYSE/AMEX/NASDAQ value-weighted

returns including dividends. The source is the Center for Research in Security Prices

(CRSP) Stock File Indices. The returns are in excess of the US 3-month T-bill rate.

2. Bond Excess Returns (rb): End-of-quarter 10-year bond returns. The source is

the CRSP US Treasury and Inflation Module. The returns are in excess of the US

3-month T-bill rate.

3. Inflation (π): Log difference in the Consumer Price Index for All Urban Consumers

(All Items). The source is the Bureau of Labor Statistics.

4. Expected Inflation (πe): Median survey reponse of expected growth in the GDP

deflator over the next quarter. The source is the Survey of Professional Forecasters

(SPF).

5. Inflation Uncertainty (πd): Average SPF respondents’ assessment of inflation

uncertainty, taken from Bekaert and Engstrom (2006). The SPF survey contains

information about the uncertainty in expected growth in the GDP deflator over

the next year for each individual forecaster. Each respondent fills in probabilities

on a histogram for values of expected growth in the GDP deflator over the next

year. Based on these individual distributions, a measure of an individual’s forecast

uncertainty is constructed. Eventually, these individual measures are averaged out

to create an aggregate measure for inflation uncertainty (see Bekaert and Engstrom

(2006) for details). As a robustness measure for inflation uncertainty, we take the

standard deviation of the SPF respondents’ forecasts of expected growth in the GDP

deflator over the next quarter.
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6. Output Gap (y): The output measure is the real Gross Domestic Product. The

source is the Bureau of Economic Analysis. The gap is computed as the output

measure minus its quadratic trend.

7. Expected Output Gap (ye): Current output gap augmented with expected

growth in output and the expected increase in potential growth. The latter is

the deterministic increase in the quadratic trend. Expected growth in output is

computed as the median survey reponse of expected growth in real GDP over the

next quarter. The source is the Survey of Professional Forecasters (SPF).

8. Output Uncertainty (yd): Average SPF respondents’ assessment of real output

uncertainty, taken from Bekaert and Engstrom (2006). The SPF survey contains in-

formation about the uncertainty in expected real GDP growth over the next year for

each individual forecaster. Each respondent fills in probabilities on a histogram for

values of expected growth in real GDP over the next year. Based on these individ-

ual distributions, a measure of an individual’s forecast uncertainty is constructed.

Eventually, these individual measures are averaged out to create an aggregate mea-

sure for output uncertainty (see Bekaert and Engstrom (2006) for details). As a

robustness measure for output uncertainty, we take the standard deviation of the

SPF respondents’ forecasts of expected growth in real GDP over the next quarter.

9. Nominal Risk-free Rate (i): 3-Month Treasury Bill: Secondary Market Rate.

The source is the Federal Reserve.

10. Cash Flow Growth (cg): Dividend growth including repurchases, taken from

Bekaert and Engstrom (2006). The source for the dividends is CRSP. The source for

the repurchases is Securities Data Corporation. Dividend growth is transformed into

cash flow growth using the ratio of repurchases to (seasonally adjusted) dividends.

11. Cash Flow Uncertainty (cgd): Standard deviation of the SPF respondents’ fore-

casts of expected growth in corporate profits (after taxes) over the next quarter.

12. Consumption Growth (cons): Growth in real personal consumption expendi-

tures. The source is US Department of Commerce: Bureau of Economic Analysis.

13. Conditional Volatility of Consumption Growth (consd): 60-month moving

window of growth in real personal consumption expenditures (see figure below).
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14. Fundamental Risk Aversion (fra): Our measure of fundamental risk aversion

is based on the external habit specification of Campbell and Cochrane (1999), and

taken from Bekaert and Engstrom (2006).

15. Non-Fundamental Risk Aversion (nfra): The University of Michigan’s Con-

sumer Confidence Index (rescaled and orthogonalized on fundamental risk aversion)

16. VIX Implied Volatility (vix): Daily volatility index created by the Chicage Board

Options Exchange. It measures the market’s expectation of near term volatility as

reflected in the options prices of S&P 500 stock index. The series starts in 1986.

17. Bond Market Illiquidity (illiqb): Monthly average of quoted bid-ask spreads

across all maturities, taken from Goyenko (2006). He uses securities of 1 month,

3 months, 1, 2, 3, 5, 7, 10, 20, and 30 years to maturity, and deletes the first

month of trading, when the security is ‘on-the-run’, as well as the last month of

trading. Consequently, he calculates a monthly equally-weighted average of quoted

spreads from daily observations for each security. Finally, the market-wide illiquidity

measure is calculated as an equally-weighted average across all securities for each

month.

18. On/off the run spread: Difference between the on-the-run 30-year government

bond and a synthetically created bond with the same maturity and coupon schedules

as the on-the-run bond, based on a yield curve fitted to off-the-run bond yields using

the Svensson method.

19. Equity Market Illiquidity (illiqs): Capitalization-based proportion of zero daily

returns and/or zero volumes across all firms, aggegated over the quarter, obtained

from Bekaert, Harvey, and Lundblad (2007).

The included figure shows the conditional volatility of consumption growth, as explained

above:
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Conditional Volatility of Consumption Growth
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The included table shows some descriptive statistics and the unconditional correlations

between the asset returns and state variables:
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B Overview of Regime-Switching Models

In Section 2, we compare the performance of four types of bivariate conditional variance-

covariance models. The first three models, namely a bivariate asymmetric BEKK model,

a regime-switching normal model, and a regime-switching ARCH model are well described

in the literature (see e.g. Baele (2005)). The fourth model, which is to our knowledge new

to the volatility literature and described below, makes the conditional stock-bond return

variances (correlation) a function of a latent regime variable and the lagged quarterly

ex-post variances (correlation). The latter are measured using daily stock-bond return

data over the previous quarter.

Let rt = (rs,t, rb,t) denote the vector of excess stock and bond returns, whose dynamics is

decribed by the following set of equations:

rt = Et−1 [rt] + εt

εt ∼ N (0, Ωt) .

The variance-covariance matrix Ωt is specified as follows:

Ωt =

[
σ2

s,t σs,tσb,tρs,b,t

σs,tσb,tρs,b,t σ2
b,t

]
.

The conditional stock and bond return variances σ2
s,t and σ2

b,t and the conditional stock-

bond correlation ρs,b,t are modeled as follows:

σ2
t,s = σ2

s(St) + θs (St) σ̂2
s,t−1

σ2
t,b = σ2

b(St) + θb (St) σ̂2
b,t−1

ρs,b,t = ρs,b(St) + θρ (St) ρ̂s,b,t−1

where σ̂2
s,t and σ̂2

b,t represent the time t realized stock and bond return variance, and ρ̂s,b,t

the ex-post stock-bond return correlation. To keep the regime-switching intercept in the

correlation function within [−1, 1], we parameterize it as−1+2 exp (α (St)) / (1 + exp (α (St))) .

We estimate models where the latent regime variable St can take on two and three

states. All parameters are estimated using the maximum likelihood procedure developed

by Hamilton (1989).
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Table 1: Overview of the Different Statistical Correlation Models

This table gives an overview of the different conditional correlation models we estimate. The
first three models are various versions of the bivariate BEKK model. Models 4 and 7 are regime-
switching normal models with respectively 2 and 3 states. Models 5 and 8 augment these models
incorporating GARCH and asymmetry effects. Models 6 and 9 extend further adding lagged
realized correlation and realized volatilities to the specifications. The column ’States’ shows how
much different states are allowed in the specific model.

Model Description States
1 Diagonal BEKK bivariate GARCH model with Asymmetry 1
2 Full BEKK bivariate GARCH model with Asymmetry 1
3 Diagonal BEKK bivariate model with Asymmetry and Regime-Switches 1
4 Markov Switching Normal Volatility Model 2
5 Markov Switching GARCH Volatility Model with Asymmetry 2
6 Markov Switching Volatility Model with Realized Correlation/Volatility 2
7 Markov Switching Normal Volatility Model 3
8 Markov Switching GARCH Volatility Model with Asymmetry 3
9 Markov Switching Volatility Model with Realized Correlation/Volatility 3



Table 2: Specification Test Results for the Statistical Correlation Models

This table reports the results of the specification tests for the different models. Panel A reports
covariance specification tests as well as two heuristic statistics. The specification tests are con-
ducted on the difference between the model-implied covariances and the product of stock and bond
residuals. We test for zero mean and serial correlation of respectively order 2 and 4. The joint
test combines the zero mean test and the test for fourth-order serial correlation. P-values are
reported between brackets. The heuristic test computes the mean absolute difference between the
model-implied and the quarterly ex post correlation, one period ahead. The R2 test computes the
R2 from a regression of the ex post correlation on the model-implied correlation. Panel B reports
the Akaike, Schwarz, and Hannan-Quinn information criteria. The lower the criteria, the better
the model fits the data.

Panel A: Covariance Specification Tests

Mean Ser. Corr Joint Heuristic Test R2 Test
Model 2 lags 4 lags

1 0.025 5.327 8.277 8.679 0.243 0.140
(0.874) (0.255) (0.082) (0.123)

2 0.002 0.189 2.777 3.046 0.262 0.065
(0.967) (0.996) (0.596) (0.693)

3 0.058 6.035 9.709 9.879 0.290 0.156
(0.810) (0.197) (0.046) (0.079)

4 0.000 6.206 9.641 9.649 0.228 0.252
(0.997) (0.184) (0.047) (0.086)

5 0.512 8.193 12.534 12.819 0.256 0.225
(0.474) (0.085) (0.014) (0.025)

6 0.406 5.863 8.796 9.770 0.242 0.362
(0.524) (0.210) (0.066) (0.082)

7 0.007 7.248 11.014 11.368 0.238 0.320
(0.931) (0.123) (0.026) (0.045)

8 0.087 8.381 13.550 15.419 0.270 0.187
(0.768) (0.079) (0.009) (0.009)

9 1.913 4.278 5.745 7.440 0.268 0.394
(0.167) (0.370) (0.219) (0.190)

Panel B: Information Criteria

Model Nr. Par. Akaike Schwarz Hannan-Quinn
1 11 -5.401 -5.174 -5.431
2 17 -5.400 -5.050 -5.447
3 16 -5.485 -5.155 -5.529
4 10 -5.394 -5.188 -5.421
5 16 -5.462 -5.132 -5.506
6 16 -5.555 -5.225 -5.599
7 17 -5.397 -5.047 -5.444
8 23 -5.508 -5.034 -5.572
9 26 -5.502 -4.966 -5.573



Table 3: Estimation Results for Two State Markov Switching Volatility Model with Rea-
lized Correlation and Volatility

This table reports the estimation results for the two state Markov switching volatility model with
the realized correlation and variances as additional instruments. The conditional correlation and
variances are a function of a constant and respectively the past realized correlation and the past
realized variance. Both parameters are allowed to switch according to a two state regime variable.
Realized stock-bond return correlation is computed as the sum of the cross-product of daily within-
quarter stock and bond returns. Realized stock (bond) variance is computed as the sum of squared
daily within quarter stock (bond) returns. P-values are reported between brackets.

Volatility Stock Volatility Bonds Correlation Prob
constant ex-post constant ex-post constant ex-post

Regime 1 0.000 1.893 0.029 1.153 0.363 0.591 0.981
(0.394) (0.000) (0.001) (0.064) (0.004) (0.023) (0.000)

Regime 2 0.108 0.009 0.039 0.018 -0.601 0.004 0.951
(0.000) (0.398) (0.000) (0.398) (0.000) (0.398) (0.000)
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Figure 1: Data-Implied and Model-Implied Conditional Correlations

Panel A: Data-Implied Correlation Panel B: Three Factor Model
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Panel C: Four Factor Model Panel D: Eight Factor Model
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This figure plots the data-implied correlations (Panel A) and the model-implied correlations for
respectively the best performing three factor model (Panel B), four factor model (Panel C) and
eight factor model (Panel D). Model-implied correlations are computed as shown in Section 3.1.1.
For the data-implied correlations, we differentiate between the conditional correlation based on
the two state markov switching volatility model with realized correlation and volatilities as extra
instruments, and the quarterly ex post correlation.



Figure 2: Smoothed Probabilities of Regimes in Different State Variable Models

Panel A: Three State Variable Model
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Panel B: Four State Variable Model
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Panel C: Eight State Variable Model
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This figure shows the smoothed probabilities of the three independent regimes in respectively the
selected structural three state variable model (Panel A), the selected non-structural four state
variable model (Panel B), and the selected non-structural eight state variable model (Panel C).
The different regimes are defined in Section 3.2. All three panels show the smoothed probability
of a high exogenous volatility regime (i.e. high output gap and inflation shock volatility) and the
smoothed probability of a high interest rate shock volatility. Panel A further shows the smoothed
probability of an active monetary policy regime in which the FED aggressively stabilizes the price
level; Panel B the smoothed probability of a high risk aversion shock volatility regime; Panel C
the smoothed probability of a high cash flow growth shock volatility regime. NBER recessions are
shaded gray.



Figure 3: Volatility of the Factors in Different State Variable Models

Panel A: Three State Variable Model
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Panel B: Four State Variable Model
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Panel C: Eight State Variable Model

1970 1975 1980 1985 1990 1995 2000 2005
0

0.01

0.02

0.03

0.04

 

 

y
t π

t
i
t

cg
t

This figure shows the conditional volatilities (annualized) of the various factors identified in respec-
tively the selected structural three state variable model (Panel A), the selected non-structural four
state variable model (Panel B), and the selected non-structural eight state variable model (Panel
C). For each model, the factor volatilities are identified according to the regime-switching volatility
specification. yt refers to the output gap factor; πt the inflation factor; it the interest rate factor;
frat the risk aversion factor; cgt the cash flow growth factor. Cash flow growth factor volatility
is divided by 10 as to make it comparable with the other factor volatilities. NBER recessions are
shaded gray.



Figure 4: Factor Exposures in the Four Factor Model
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This plot shows the dynamic factor exposures for the ouput gap, inflation, interest rate and risk
aversion shocks for the selected four factor model. The factor model comprises the specification
with time-varying betas and regime-switching volatilities. The dynamic betas for the factor models
are specificied as explained in Section 3.1.3. The output gap exposure is a function of the lagged
output uncertainty. The inflation exposure is a function of the lagged inflation uncertainty. Both
output and inflation uncertainty fluctuate between 0.1 and 1.2. The short rate exposure for stocks
(bond) is a function of the lagged (log) payout ratio (the lagged short rate). The short rate is
expressed in percentages. The risk aversion exposure is a function of the (lagged) risk aversion
itself. The instruments in the beta specifications are standardized.


