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The Coskewness Puzzle 
 
 

In testing the 3M-CAPM, Dittmar (2002) assumes that the representative investor’s 

utility is concave in wealth. This assumption is, however, overly restrictive and, as a 

consequence, his test is not conclusive. We propose instead a novel test based on a 

positivity constraint on the estimated stochastic discount factor (SDF) and, more 

importantly, an upper bound on its volatility. The former restriction rules out arbitrage 

opportunities, while the later rules out unduly large Sharpe ratios, based on a sensible 

upper bound on investors’ risk aversion. Together, these restrictions reduce the risk of 

spurious estimates of the 3M-CAPM parameters without the need to impose overly-

restrictive assumptions about the shape of investor’s utility. We find that the 3M-CAPM 

is empirically admissible in the cross-section of excess returns on industry-sorted 

portfolios but, crucially, it is rejected when the set of test asset payoffs is augmented to 

include portfolios managed on the basis of conditioning information, even under a very 

loose SDF volatility upper bound. In light of the considerable explanatory power of 

coskewness in the cross-section of stock returns, this gives rise to a coskewness puzzle. 

 

 

1. Introduction 

 

There is evidence that, controlling for covariance with popular market portfolio proxies, 

assets that display higher coskewness with the latter offer lower average returns. For 

example, Harvey and Siddique (2000) find that coskewness is important and commands 

on average a risk premium of 3.6 percent per annum. Kraus and Litzenberger (1976), 

Friend and Westerfield (1980), Harvey and Siddique (2000), among others, explain this 

empirical regularity on the basis of a three-moment extension of the Capital Asset 

Pricing Model (henceforth, 3M-CAPM). Two crucial 3M-CAPM predictions are, first, 

that the inter-temporal marginal rate of substitution (henceforth, IMRS) of a rational, 

expected utility maximizing representative investors is a valid stochastic discount factor 

(henceforth, SDF) that prices all assets and, second, that the SDF can be approximated 

as a quadratic polynomial in the market return. A crucial corollary of these two 

predictions is that the market portfolio is efficient. Consistently with the 3M-CAPM, 

Dittmar (2002) finds that a SDF quadratic in market wealth provides a much better fit to 
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the observed cross-section of stock returns than a linear model. Both Dittmar (2002) and 

Post, Levy and van Vliet (2005), however, find that the superior performance of the 

3M-CAPM is greatly reduced when the SDF is restricted to be decreasing in wealth and 

thus when the representative investor’s utility function is restricted to display risk 

aversion over all values of sample wealth.  

 

It is not uncommon, in the extant literature, to find experimental evidence consistent 

with non-concave utility and local risk-seeking and specifications of investors’ 

preferences that admit this type of behaviour. Active stock traders appear to play 

negative-sum games and their behaviour can sometimes be interpreted as ‘gambling’ 

(see Statman (2002)). Psychologists, led by Kahneman and Tversky (1979), find 

experimental evidence for local risk seeking behavior. Friedman and Savage (1948) and 

Markowitz (1952) argue that the willingness to purchase both insurance and lottery 

tickets implies that marginal utility is increasing over a range. See Hartley and Farrell 

(2001) and Post and Levy (2002) for a discussion. Post, Levy and Van Vliet (2005), 

however, argue that non-concave utility is problematic from the 3M-CAPM point of 

view. In essence, they point out that, if the representative investor’s utility function is 

not concave, the market portfolio is not guaranteed to maximize her expected utility 

function and, therefore, the 3M-CAPM does not necessarily hold even if the SDF is 

quadratic in such portfolio.  

 

The problematic shape of the representative investor’s utility function, implied by 

unrestricted estimates of the 3M-CAPM, represents a puzzling conundrum. On the one 

hand, Dittmar’s (2002) results and the critique put forth Levy and Van Vliet (2005) 

suggest that estimating coskewness premia under no restriction on the shape of the SDF 
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might lead to spurious estimates of the parameters of the 3M-CAPM. On the other hand, 

in tests of the 3M-CAPM, concavity of utility is a sufficient but not necessary condition 

for the market portfolio to maximize expected utility. This implies that it is formally 

impossible to make any conclusive inference on the empirical validity of the 3M-CAPM 

if the latter is rejected when this condition is imposed in estimation, as in the tests 

performed by Dittmar (2002) and Post, Levy and Van Vliet (2005). Such tests, in fact, 

amount to tests of the joint hypothesis that the 3M-CAPM holds and utility is concave.  

 

To avoid this problem, we test the 3M-CAPM under weaker assumptions about the 

representative investor’s preferences. We only impose a positivity restriction on the 

estimated SDF, to rule out arbitrage opportunities, and an upper bound on its volatility, 

to rule out unduly high Sharpe ratios (henceforth, SR). The SDF volatility upper bound 

applies under a fairly broad family of utility functions and mild assumptions about the 

distribution of returns and it is a generalization of the bound derived by Ross (2005). 

Consistently with the 3M-CAPM, these restrictions are based on the assumption that the 

representative investor’s preferences display non-satiation, satisfy a reasonable upper 

bound on relative risk aversion and display non-increasing absolute risk aversion. 

 

We find that, while a SDF quadratic in a market return proxy performs much better than 

its linear counterpart, even under a reasonable upper bound on SDF volatility, it is badly 

rejected when the set of test asset payoffs is augmented to include portfolio managed on 

the basis of conditioning information. Unlike in Dittmar’s (2002) study, based on the 

overly-restrictive assumption about the concavity of the representative investor’s utility 

function, this finding allows us to formally reject the 3M-CAPM. An additional finding 

is that the extent to which coskewness drives away the explanatory power of the 
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loadings on the Fama and French (1993) size and book-to-market factor mimicking 

portfolios heavily depends on the amount of allowed SDF volatility. 

 

In the next Section, we present some background analytical results on stochastic 

discount factor pricing and we discuss the problem of bounding from above SDF 

volatility. In Section 3, we outline the estimation methodology that underlies our tests. 

In Section 4, we present our dataset. In Section 5, we present our main empirical results. 

In Section 6, we discuss the implications of our findings for the 3M-CAPM and the 

extent to which they give rise to a coskewness puzzle. In the final Section, we restate 

our main findings and present our conclusions. 

 

2. Asset Pricing and SDF Volatility 

 

The SDF is the random variable mt+1 that satisfies the following condition for all 

payoffs xt+1 and payoff prices pt: 

 

( )11 ++= tttt xmEp         (1) 

 

Here, the expectation is taken conditional on the available information set. A well 

known theorem, credited to Harrison and Kreps (1979), says that, given free portfolio 

formation and the law of one price, such a variable exists and, under the additional 

assumption of no arbitrage, it is positive. Factor models specify mt+1 as a linear function 

of a set of factors ft+1: 

 

11 ++ ′+= tttt fbam         (2) 
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Letting [ ]2

1,1,1 +++ =′
tmtmt RRf , we model the SDF imposing on (2) a second order 

polynomial structure defined over the market return, Rm,t+1: 

 

2

1,,21,,11 1 +++ ++= tmttmtt RbRbm       (3) 

 

We call this specification the quadratic market model (QMFM). While linear in 

polynomials of the market return, it implies that mt+1 is a non linear function of the 

latter. Based on (3), the variance tttttt bfVarbm )(')( 11

2

++ =σ  of the SDF is: 

 

),(2)()()( 2

1,1,,2,1

2

1,

22

,21,

22

,11

2

+++++ ++= tmtmttttmtttmtttt RRCovbbRbRbm σσσ  (4) 

 

Here, the terms )( 1,

2

+tmt Rσ ,  ),( 2

1,1, ++ tmtmt RRCov  and )( 2

1,

2

+tmt Rσ  are related to the market 

variance, skewness and kurtosis. Taking unconditional expectations of both sides of (4) 

and assuming, for the time being, that its parameters are not time-varying yield:  

 

),(2)()()( 2

1,1,21

2

1,

22

21,

22

11

2

+++++ ++= tmtmtmtmt RRCovbbRbRbm σσσ   (5) 

 

When pricing excess-returns under the 3M-CAPM, as briefly explained in Appendix A, 

(3) can be seen as the marginal utility (henceforth, MU) of a representative investor 

with preferences that can be approximated using a third order Taylor expansion of a 

generic non-polynomial standardized utility function. Therefore, the relation in (5) links 

the volatility of the SDF to the parameters that capture the marginal investor’s 

preference for portfolio volatility and skewness. Its usefulness is that, if we find a 
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meaningful way of bounding these parameters, i.e. if we bound the elements of b , we 

then have a bound on the volatility of the SDF that prices the assets.  

 

To do this, following Ross (2005), we place an upper bound on the relative risk aversion 

(henceforth RRA) of the marginal investor, i.e. we let VRRARRA ≤ . Since U is, by 

assumption, a standardized utility function, the representative investor’s RRA around 

the point of expansion is )2( 1,21 ++−=′′ tmRbbU . Imposing the upper bound VRRA  on 

RRA, this implies 

 

Vtm RRARbb ≤+− + )2( 1,21         (6) 

or, 

)2( 1,21 ++−≥ tmV RbRRAb         (7) 

 

Assume further non increasing absolute risk-aversion (NIARA) and thus b2 ≥ 0.  A 

necessary condition for (7) is that )2( 1,21 +−+−≥ tmV RbMaxRRAb . Under 02 ≥b , this 

implies  min

1,21 2 +−−≥ tmV RbRRAb , where min

1, +tmR  denotes the minimum value of the range 

over which the representative investor’s market return probability density function is 

defined. Making the reasonable assumption that the minimum of the market return is a 

negative number, a necessary condition for this inequality to hold is that: 

 

VRRAb −≥1            (8) 
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Local risk aversion, a milder assumption than concave utility (i.e., global risk aversion), 

implies 01 <b . For the latter to hold, (7) implies that: 

 

02 1,2 >+ +tmV RbRRA          (9) 

 

Similarly, for (9) to hold over the entire range of the possible negative values of the 

return on market wealth (i.e., the values to which the representative investor assigns 

positive probability), it must be that: 

 

1,

2
1

2

+

−<
tm

V

R

RRA
b     01, <+tmR     (10) 

 

For this inequality to hold over the entire range of the possible market returns, it must 

be that: 

 

min

1,

2
1

2

+

−<
tm

V

R

RRA
b          (11) 

 

Combining (5), (8) and (11), we obtain an upper bound on the volatility of the SDF:  

 

),(2)()()( 2

1,1,2,,1,

2

1,

22

2,1,

22

1,1

2

+++++ ++≤ tmtmVtVtmVtmVt RRCovbbRbRbm σσσ  (12) 

 

Here, based on (8), VV RRAb −=1,   and, based on (11), 
min

1,

2
1

2,

+

−=
tm

V

V
R

RRA
b .  This upper 

bound on the volatility of the SDF depends on quantities related to the volatility, 
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skewness and kurtosis of the portfolio held by the marginal investor and on the 

preferences for portfolio volatility and skewness embodied by a monotone, concave 

transformation of his utility function (i.e., the transformation with RRA corresponding to 

the upper bound RRAV). It applies under an arbitrary non-polynomial utility function at 

least three times continuously differentiable, as long as its expectation is quasi-concave 

(to ensure efficiency of the market portfolio), and under any distribution of returns for 

which moments of at least the first four orders exist (and are finite). Thus, it must hold 

also under the 3M-CAPM. It is therefore a generalization of a similar result derived by 

Ross (2005) that instead applies only when U(Wt+1) is quadratic or returns are normally 

distributed. All we need, in order to compute the bounds in (8) and (11), and thus the 

bound in (12), is an upper bound on the relative risk aversion of the marginal investor 

and the assumption about NIARA. The bound also applies when the SDF parameters 

are conditionally time-varying, as long as (8) and (11) hold. 

 

To identify a suitable value for the RRA bound, we follow Ross’ (2005) advice and 

experimental evidence on investors’ RRA provided by the extant literature. Ross (2005) 

suggests imposing an upper bound of 5 on the relative risk aversion of the marginal 

investor, i.e. 5=VRRA . Among the motivations advanced by Ross (2005) to do so, the 

one that most easily applies to a world with possibly non-normally distributed returns 

and non quadratic utility is the simple observation that a relative risk aversion higher 

than 5 would imply that the marginal investor is willing to pay more than 10 percent per 

annum to avoid a 20 percent volatility of his wealth (i.e., about the unconditional 

volatility of the S&P from 1926), which seems a rather large amount. A study by Meyer 

and Meyer (2005) has recently provided a comprehensive re-evaluation of the hitherto 

scattered empirical evidence on investors’ risk aversion. They show that relative risk 
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aversion estimates reported by the extant literature are less heterogeneous and extreme 

if one takes into account measurement issues and the outcome variable with respect to 

which each study defines risk aversion. Using returns on stock investments as the 

outcome variable, calculations by Meyer and Meyer (2005) show that the RRA 

coefficient in the classical Friend and Blume’s (1975) study of household asset 

allocation choices ranges between 6.4 and 2.0, and decreases in investors’ wealth. Using 

returns on the investors’ overall wealth, including real estate and a measure of human 

capital, the RRA estimate ranges between 3.0 and 2.4. The same calculations show
1
 that 

the RRA implied by Barsky et al. (1997) study ranges between 0.8 and 1.6.  

 

We compute the SDF volatility upper bounds, based on (8), (11) and (12), under two 

different upper bounds on RRA. The first bound is 5 and corresponds to the bound 

suggested by Ross (2005). The second bound is 6.4 and corresponds to the RRA 

coefficient of the most risk-averse cohort of investors in Friend and Blume (1975) study, 

as re-calculated by Meyer and Meyer (2005). The 5 and 6.4 upper bounds on RRA 

imply that the investor would be willing to pay no more than 10 and 12.8 percent per 

annum, respectively, to avoid a 20 percent volatility of her wealth. By introspection, 

these are arguably large amounts. The different assumptions used in the computation of 

the bounds, reported in Table 1, reflect sample moments estimated over the period 

1927-2005 and portions thereof, and market lows over the same periods but they also 

apply in a non mean-variance world.  

 

                                                           
1
 Meyer and Meyer (2005) calculate somewhat higher values based on estimates provided by studies of 

the equity premium puzzle. Since these estimates are backed out parametrically from estimates of a 

particular asset pricing model, often based on a narrow definition of the market portfolio, they are of no 

interest for the purpose of computing the SDF volatility bound in (4e). Moreover, their use would imply a 

circular argument. 
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3. Estimating Factor Models under No-Good Deal Restrictions 

 

When pricing excess-returns, the mean of the SDF can be set equal to an arbitrary value. 

This is because
2
, as explained by Cochrane (2001), excess returns do not identify it. 

Thus, for convenience, we let the intercept in (2) equal one. Imposing the existence of a 

conditionally risk free rate, (3) is therefore equivalent to the following: 

 

1,21,,11 1 +++ ++= tttmtt qbrbm        (13) 

 

Here, 1, +tmr  and tftmt RRq ,

2

1,1 −= ++  can be seen as a new set of factors. Restricting tb ,2  to 

equal zero yields a linear specification, that we label the linear market factor model 

(LMFM). Writing the SDF in (2) as a linear function of the size and book-to-market 

factor mimicking portfolios yields the the Fama and French (1993) 3-factor model 

(henceforth FFM). We also denote as QMFM-FFM the model that nests the QMFM and 

the FFM. Given a a set of n test asset payoffs xt+1, a no arbitrage restriction and an 

upper bound on its volatity, the SDF parameters can be estimated solving the following 

problem: 

 

tttt

tnnt
m

Ammts

gWg

≤≥

′

++

×

)(,0..

min

1

2

1

}{

σ
       (14) 

with 

)()( 111 +++ −= tttttt xpxmEg        (15) 

                                                           
2
 This is strictly true only as long as the risk free rate is not unrealistically high. 
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The elements of the vector tg  correspond to the moment conditions implied by the 

factor pricing model in (1) and can be interpreted as pricing errors, while W is a suitable 

nxn weighting matrix
3
. The efficient choice is Hansen’s (1982) optimal weighting 

matrix. This yields GMM estimates of the SDF parameters. Other choices are, however, 

admissible. An example is the identity matrix, which yields OLS. In (14), we might add 

the constraint )()( 111 +++ = ttttt fpfmE  to assign zero pricing error to the factors, 

whenever the latter are returns on traded assets. In estimation, we may use sample 

averages ()TE  instead of unconditional and we might expand the set of orthogonality 

conditions by imposing the pricing errors to be unpredictable using information carried 

by a vector of k instruments zt: 

 

Ammts

gWg

tTt

TknknT
m

≤≥

′

++

+×+

)(,0..

min

1

2

1

)1()1(
}{

σ
       (16) 

[ ]ttttTT zpxmEg ⊗−= ++ )( 11        (17) 

 

Under appropriate conditions, the minimization of the pricing error metric in (16) yields 

the same estimates as a classic 2-pass regression. Adding the constraint 

[ ])()(
111 +++ =

tEWtTtEWtT xpExmE  forces the estimated model to assign zero pricing error 

to the equally weighted average payoff 
1+tEWx  and thus, using the identity matrix as the 

                                                           
3
 This is similar to the approach followed by Cochrane and Saà-Requejo (2000) and Cochrane (2001) to 

extend, in incomplete markets, the pricing implications of the factor prices and of (1) to a non-redundant 

security. An important difference, however, is that Cochrane and Saà-Requejo (2000) and Cochrane 

(2001) motivate the volatility bound as a bound on the market SR, thus implicitly assuming quadratic 

utility3.  
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weighting matrix for the moment conditions, yields OLS second pass regression 

estimates. When working with excess returns, this constraint reduces to 

[ ] 0)()(
111 == +++ tEWtTtEWtT rpErmE , where 

1+tEWr  is the excess return on the equally 

weighted portfolio of the test assets
4
. A zero intercept in second pass regressions is 

equivalent to no volatility bound in (16). On the contrary, an appropriate volatility 

bound gives point estimates corresponding to a second pass regression with intercept. 

This is because, by construction, all the cross-sectional variation in historical average 

excess returns captured by a second pass regression without intercept is explained by 

variation in factor loadings, leaving no portion of variation to be explained by the 

intercept, whereas imposing a volatility bound limits the explained portion of sample 

average excess returns. 

 

4. Data 

 

We use quarterly data, from 1952 to 2002, constructed sorting stocks of the Centre for 

Research on Security Prices (CRSP) database into an overall market portfolio, 17 and 

30 industry portfolios
5
. We use quarterly data on 1 and 3 month T-Bill returns, on their 

spread and on Lettau and Ludvigson (2001) consumption-wealth ratio estimate. We use 

the quarterly returns on the 3-month US Government Treasury Bill as a proxy for the 

risk free rate.  

 

                                                           
4
 As another example, adding the constraint [ ])()( 111 +++ = ttTttT fpEfmE  and using the optimal 

weighting matrix yields GLS second pass regression estimates. This is because GLS assigns the largest 

weights to the moments estimated with most precision.  
5
 We thank K. French for making this data publicly available for download. 
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5. Empirical Results 

 

We preliminarily estimate, by OLS and without volatility constraint, unconditional 

versions, i.e. with fixed b, of the QMFM, LMFM, FFM and QMFM+FFM using simple 

2-pass regressions
6
, both without and with intercept in second pass regressions. We 

estimate OLS standard errors corrected to take cross-sectional error correlation into 

account and, following Shanken (1992), for the fact that factor loadings are estimated. 

For each model, we also estimate the volatility σ(m) of the corresponding SDF. This is 

done by taking the sample standard deviation of mt+1, given the sample realizations of 

the factors and the point estimates of the model parameters.  

 

The unconstrained estimates from 2-pass regressions, without and with intercept in the 

second pass regression, are reported in Table 2 and 3, respectively. The sample period is 

1952-2002. The QMFM displays a much stronger explanatory power than the FFM. The 

sign of the market risk premium is positive, in accordance with the notion that the 

typical investor is averse to systematic stock market risk. The coefficient of the QMFM 

squared market return polynomial factor is negative, thus satisfying a necessary 

condition for NIARA and preference for skewness
7
. When the QMFM is estimated with 

no intercept in second pass regressions, its SDF takes negative values over a range of 

                                                           
6
 Since, as shown by Jagannathan and Wang (2002), the Beta-method and the SDF-method are equivalent 

in terms of consistency and asymptotic efficiency, we estimate the LMFM, QMFM and FFM following 

the former because of its greater simplicity. This way, we directly estimate the parameters of the beta-

pricing representation of these models. In a 2-step procedure, we first regress the time series of the 30 

industry portfolios and size and book-to-market sorted portfolios excess returns on the factors allowing 

for an intercept in the regression equations. This yields estimates of the factor loadings β. We then 

estimate the risk premia λ using a cross sectional regression of the average portfolio returns on the factor 

loadings estimated in the first step, without an intercept term. We then obtain the SDF representation of 

these estimates using (B6). This procedure yields exactly the same estimates of the SDF as (16) under the 

appropriate choice of the weighting matrix and no SDF positivity or volatility constraint (and without 

instruments apart from a constant).  
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the market return realizations, as shown in Figure 1, and thus violates the no-arbitrage 

requirement (i.e. it does not always assigns a positive price to strictly non-negative 

payoffs). The SDF is also very volatile, especially in the case of the QMFM and when 

the models are estimated with no intercept in second pass regressions. In particular, the 

QMFM displays a SDF volatility that is appreciably higher than the volatility bounds 

reported in Table 1.  

 

 

Constrained Estimates 

 

We then estimate the QMFM under positivity and volatility restrictions on its SDF. The 

(annualized) volatility constraint is set to 50, 75 and 100 percent, i.e. we set A in (16) 

equal to the corresponding quarterly SDF variance. The 50 percent bound is close to the 

SR of the market portfolio, yet it is somewhat higher than the latter to allow for the 

possibility that certain dynamic strategies may offer a reward for coskewness risk that 

the representative investor desires to shed. Based on (8), (11) and (12), it implies an 

upper bound of 2.5 on the relative risk aversion of the marginal investor. The other 

values of the volatility bound, i.e. 75 and 100 percent, broadly correspond to the values 

reported in Table 1. 

 

The contrained estimates are reported in Table 4 and 5. In the former, we report the b 

parameter estimates while in Table 5 we report the corresponding the factor risk premia. 

The estimation is conducted without instruments, i.e. by setting zt in (16) equal to 1. We 

                                                                                                                                                                          
7
 Because there is considerable cross-sectional dispersion, industry returns are notoriously difficult to fit. 

Thus, relatively low coefficients of cross-sectional determination should not surprise and are in line with 

the estimates reported by Harvey and Siddique (2000). 
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use Hansen’s (1982) optimal weighting matrix with zero lags
8
 for the moment 

conditions. None of the models is rejected by a Chi-squared test based on Hansen’s 

(1982) TJT statistics. The coskewness risk price is, however, substantially smaller than 

in the corresponding unconstrained estimates. For example, in the benchmark case, the 

QMFM estimated under the 75 percent annualized volatility bound, the coskewness risk 

price is almost cut in half relative to its unconstrained counterpart and the coskewness 

risk premium changes from -0.66 to -0.40 percent per quarter (from -2.64 to -1.6 

percent per annum, i.e. about 1 percent less in absolute value). These are sizeable 

differences from a capital budgeting and valuation perspective.  

 

To allow a comparison between the estimated models, we also report Hansen’s (1982) 

TJT statistics re-calculated using a pre-specified weighting matrix, namely the optimal 

weighting matrix with zero lags of the QMFM+FFM model under a 100 percent SDF 

volatility bound. The difference between the QMFM and QMFM+FFM Hansen’s (1982) 

TJT statistics is statistically insignificant. For example, in the case of the estimates under 

the 50 percent SDF volatility bound, this difference is 1.30, which is significant at the 

0.522 level with two degrees of freedom. The difference between the FFM and 

QMFM+FFM Hansen’s (1982) TJT statistics, however, is marginally significant. For 

example, in the case of the estimates under the 50 percent SDF volatility bound, this 

difference is 2.33, which is significant at the 0.127 level with one degree of freedom. 

Thus, while Hansen’s (1982) TJ test marginally rejects the restriction that the FFM 

                                                           
8
 This specification of the optimal weighting matrix corresponds to a null hypothesis that the pricing 

errors are unpredictable. It neglects possible serial auto-correlation and cross-correlation of the pricing 

errors and thus it is sub-efficient. This simplification however is more robust to mispecification errors and, 

while it likely does not affect much the size of the test because returns are not very auto-correlated at this 

frequency, it increases its power. See Cochrane (2001) for a discussion. 
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model imposes on the model that combines QMFM and FFM, it does not reject the 

restriction imposed by the QMFM.  

 

Conditional Estimates 

 

Finally, and importantly, we estimate the QMFM and, for comparison, the FFM 

allowing for conditional variation in the parameters of the SDF and, following Dittmar 

(2002), augmenting the market portfolio by a proxy for the return on human capital, i.e. 

labour income ∆yt. We model time variation in bt as a linear function of a set of 

conditioning variables. In a multi-period version of the 3M-CAPM, variation in the 

shape of the conditional SDF reflects changes in the investment opportunity set and thus 

variation in expected returns. We therefore seek conditioning variables that predict 

future market excess returns.  

 

In Table 6, we report the correlations between the market excess return and various lags 

of candidate conditioning variables. The latter, following Dittmar (2002), include the 

market excess return itself, the 1 and 3 month T-Bill rate, the spread st between these 

two rates and, following Lettau and Ludvigson (2001), the consumption wealth ratio 

cayt. We also include the first lag of qt among the candidate conditioning variables. The 

variable that displays the largest correlation with future returns is cayt and its 

explanatory power increases with the horizon, due its persistence.  The first lag of qt 

displays the second largest correlation (in absolute value) with one period ahead returns 

but its explanatory power fades away when longer-horizon returns are considered.  This 

variable, moreover, displays a fairly high serial correlation, e.g. its autocorrelation is 

about 0.29. This implies that, since qt is one of the factors, the inclusion of its lag as a 
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conditioning variable would induce an identification problem. With the exception of st, 

all other variables display considerably less explanatory power. Using too many 

conditioning variables in modelling the dynamics of the SDF parameter might leave too 

few degrees of freedom in estimation. Parsimony is thus important and we consequently 

use only cayt and st to capture the time-variation in risk prices.  

 

The estimates of the conditional models are reported in Table 7. The conditional 

QMFM is denoted by CQMFM, while the conditional version of the FFM is denoted by 

C-FFM. The test asset payoffs are excess returns on the 17 industry sorted CRSP stock 

portfolios, augmented to include portfolios managed using conditional information, i.e. 

cross-products between the primitive excess-return payoffs and the conditioning 

variables. In estimation, we impose exact pricing of the stock market factor. 

Consistently with Dittmar’s (2002) results, we find that the C-QMFM is superior, in 

terms of empirical fit, to the C-FFM. Under a positivity constraint on the SDF, the FFM 

is actually rejected while the C-QMFM is not.  

 

Importantly, however, we find that the C-QMFM is overwhelmingly rejected even 

under very loose restrictions on SDF volatility, such as a 150 percent per annum upper 

bound (of course, as shown by un-tabulated results, the rejection is even more 

resounding under the lower bounds reported in Table 1). This result contrasts with 

Dittmar’s (2002) study, as in the latter the human capital 3M-CAPM is not rejected 

when the SDF is restricted to be decreasing in wealth. A possible explanation for these 

contrasting results is that cayt has a much larger predictive power than the conditioning 

variables used by Dittmar (2002). The maximal SR of the managed portfolios is thus 

higher and, therefore, it takes a more volatile SDF to price them.  
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5. The Coskewness Puzzle 

 

As reported in Table 7, the QMFM is rejected under a SDF volatility upper bound as 

high as 150 percent per annum. This allows one to reject the 3M-CAPM. In fact, based 

on (5), (8) and (11), it would take a RRA of around 10 to explain such a high SDF 

volatility. The experimental and survey evidence summarized by Meyer and Meyer 

(2005) suggests that this is an un-plausibly high value for RRA. The evidence on the 

explanatory power of coskewness, coupled with the rejection of the QMFM under a 

reasonable SDF volatility upper bound, implies that, while coskewness is likely priced 

in the cross-section of stock returns, its price cannot be explained by the 3M-CAPM. 

Coskewness and thus, essentially, the tendency of stock returns to co-vary with market 

volatility are therefore stock characteristics that, just like covariance with firm and value 

factor mimicking portfolios, explain differences in average returns across stocks for 

reasons that we do not fully understand. This gives rise to yet another puzzle in 

empirical asset pricing, that we might label as the coskewness puzzle.  

 

A possible explanation for this puzzle is that the quadratic market factor qt+1 proxies for 

other priced but omitted factors. As suggested by the relatively large correlation 

between the lagged quadratic market factor and the market excess return, reported in 

Table 6, one possibility is that coskewness proxies for exposure to time variation in 

expected returns. To gain some intuition, we therefore estimate the cross-sectional 

correlation between the QMFM factor loading on tq , i.e. βi,q, and the factor loading on 

ttm zr 1, + , i.e. βi,mz, of a conditional version of the LMFM. We estimate the factor loadings 

by running the usual time series regressions with intercepts of the industry portfolio 
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excess returns on the factors and we estimate the time-series regressions in a maximum 

likelihood setting, by iterated system least squares. For the sake of robustness, we do 

not impose any constraint on the contemporaneous covariance of the residuals nor on 

their variance.  

 

In Figure 2, we plot the cross-sectional 30-month rolling correlation between βi,mz, and 

βi,q against 30-month rolling market returns. With the exception of the period 1959-1972, 

the plots of the cross-sectional correlation and of the market returns series seem to share 

the same ‘trend’ (with some sort of lag structure and a lot of noise) in the 3 (roughly) 

decades 1972-1982, 1982-1992, 1993-1999. This suggests that, while volatility 

exposure (captured by coskewness and thus by βi,q) is almost the same as conditional 

beta exposure (i.e. the sensitivity of asset betas to the state of the economy captured by 

βi,mz) at the peak of bull markets, they are almost unrelated at the bottom of a bear 

market.  

 

Thus, it appears that, when valuations are high, coskewness is essentially generated by 

co-variation with market sensitivity to expected returns. This makes sense, as when 

valuations are high a small change in expected returns causes a large contemporaneous 

change in market valuation and thus a large (in absolute value) market return, i.e. the 

market return is more sensitive to expected returns changes when valuations are high. 

This produces more coskewness for any given level of asset sensitivity to the interaction 

between the market return and expected returns. This is not the case however when 

valuations are low. This simple mechanism explains, at least in part, the large 

explanatory power of coskewness, even in the presence of the reduced price of 

coskewness risk implied by QMFM estimates consistent with sensible SDF volatility 



 21 

upper bounds and thus with the 3M-CAPM. We leave a more formal investigation of 

this important issue for future research. 

  

6. Main Findings and Conclusions 

 

In this paper, we acknowledge the importance of Dittmar’s (2002) findings and of the 

criticism of unrestricted 3M-CAPM tests put forth by Post, Levy and Van Vliet (2005), 

in that they highlight the danger of spurious estimates of the 3M-CAPM parameters. We 

emphasize, however, that a decreasing SDF, albeit sufficient, is not a necessary 

condition for the 3M-CAPM. In testing the latter, we thus impose alternative restrictions 

on the shape of the SDF, namely a positivity requirement and a volatility upper bound. 

These restrictions boil down to ruling out arbitrage opportunities and unduly high SR 

that to most investors would resemble obvious near arbitrage opportunities
9
. This way, 

we limit the risk of over-fitting the cross-section of asset returns without the need to 

resort to the overly-restrictive assumption that utility is concave.  

 

Our results imply that the 3M-CAPM provides at best a partial explanation of the 

differences in average returns across stocks. In fact, while the QMFM fits well the 

cross-section of industry sorted portfolios, it badly fails to explain the cross-section of 

portfolios managed on the basis of conditioning information, even under relatively loose 

upper bounds on SDF volatility. The inability of the 3M-CAPM to account for the 

explanatory power of coskewness gives rise to a coskewness puzzle. The solution of the 

latter requires an explanation, different from the 3M-CAPM, for why the quadratic 

                                                           
9
 Beside, recognising that coskewness is an asset characteristic that explains a considerable portion of the 

cross-section of asset returns, such an approach is also consistent with a multi-factor, no-arbitrage 

perspective, along the lines of Ross’ (1976) APT and especially Ross’ (1978) linear pricing theory. 
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market factor is priced in the cross-section of stock returns. One possibility is that this 

factor proxies for priced but omitted factors. Because of the high cross-sectional 

correlation between coskewness and the loading on caytrm,t+1 at particular times,  qt 

might capture the time-varying impact of changes in expected returns on stock market 

excess returns. Vanden’s (2006) results suggest that it might proxy for omitted option-

related factors. This possibility, while intriguing, requires however further scrutiny 

because Vanden’s (2006) sample period is relatively short and, more importantly, it 

remains to be established whether his estimated SDF satisfies an appropriate volatility 

upper bound.  

 

There is also the possibility that the managed portfolios correspond to unfeasible 

strategies, i.e. strategies with unfeasibly high SRs. Luttmer (1996), for example, shows 

how even modest proportional transaction costs, short sales restrictions and margin 

requirements considerably lower the mean-variance SDF frontier. We leave the 

investigation of these possible explanations of the coskewness puzzle for future research. 

Another fruitful avenue for future research is the application of sign and volatility 

constraints in tests of multi-factor models motivated by the  Ross’ (1976) APT. 
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Table 1 

SDF Volatility Bounds 

 

 

Panel A 

(Volatility Bounds Calculations) 

 
Rm,t+1

min
 Rm,t+1

min 
Period RRAV b1 b2 σ

2
(m) σ(m) 

annualized 

Quarterly 1927-2002: 

-33.5% 3Q 1931 5 -5.00 7.45         0.26            1.01  

-29.2% 3Q 1929 5 -5.00  8.58         0.28            1.06  

Quarterly 1952-2002: 

-24.2% 3Q 1987 5 -5.00  10.31         0.17            0.78  

-17.0% 3Q 2002 5 -5.00  14.71         0.18            0.78  

Monthly 1927-2005: 

-29.0% Sep. 1931 5 -5.00  8.61         0.07            0.94  

-20.1% Oct. 1929 5 -5.00  12.43         0.08            0.97  

Monthly 1952-2005: 

-23.1% Oct. 1987 5 -5.00  10.83         0.05            0.74  

-16.1% Aug. 1998 5 -5.00  15.52         0.05            0.76  

 

Panel B 

(Input Factor Variance-Covariance Matrices) 

 

Quarterly Data 









=−

34.035.0

35.031.1
)( 20021926fVar   








=−

01.003.0

03.067.0
)( 20021952fVar  

Monthly Data: 









=−

01.001.0

01.031.0
)( 20021926fVar   








=−

00.000.0

00.018.0
)( 20021952fVar  

 

 

 

 

Notes. Panel A of this Table summarizes assumptions and computed values for the SDF 

volatility bound under different assumptions, corresponding to different sub-sample periods. 

Panel B reports the variance-covariance matrix estimates used in computing the bounds 

reported in Panel A. The factors are the market return and its square. All the variables are 

defined as in the text. The data frequency is either quarterly or monthly.  
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Table 2 

Second Pass Regressions without Intercept (1952-2002) 

Industry Portfolios 

 

Model rmt+1 qt+1 SMB HML R
2 

Adj. 

R
2 

σ(m) 

Panel A 

(Beta Pricing Representation) 

LMFM 1.71    3.7 3.7  

 (2.85)       

QMFM 1.90 -0.66   31.2 28.7  

 (3.12) (-1.91)      

FFM 2.15  -0.34 -0.66 10.1 3.4  

 (3.64)   (-0.74)  (-1.22)     

QMFM+FFM 2.09 

(3.52) 

-0.54 

(-1.70) 

-0.08 

(-0.17) 

-0.71 

(-1.19) 

35.6 28.1  

Panel B 

(SDF Pricing Representation) 

LMFM -2.51      39.3 

 (-2.83)       

QMFM -4.08 47.51     125.2 

 (-2.86)  (4.27)      

FFM -4.15  3.86 0.20   64.5 

 (-3.71)  (2.24) (0.12)    

QMFM+FFM -4.78 

(-3.12) 

40.00 

(3.47) 

2.38 

(1.20) 

0.12 

(0.473) 

  113.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes. Panel A of this Table reports 2-step regression estimates of the beta-

pricing representation of various factor models for the period 1952-2002. The 

second pass regressions are estimated without an intercept term. The top row 

indicates the factors included in each model. For each included factor, we report 

the risk premia point estimates in percentage and t-statistics in brackets. These 

are computed using OLS standard errors that account for correlated errors across 

test portfolios and using Shanken (1992) correction for the fact that the beta 

coefficients are estimated. The third and second last columns report the 

coefficient of determination R
2
, both unadjusted and adjusted for the degrees of 

freedom, in percentage. Panel B reports the elements of the b vector, the negative 

of the risk prices, implied by the 2-pass regression estimates (without intercept in 

the second pass regressions) and, in brackets, associated t-statistics. These are 

computed using standard errors based on a specification of the S matrix that does 

not allow for serially correlated pricing errors. The last column reports the 

annualized volatility of the stochastic discount factor in percentage. The market 

Sharpe ratio is 40.4 percent. All the variables are defined as in the text. The data 

frequency is quarterly.  
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Table 3 

Second Pass Regressions with Intercept (1952-2002) 

Beta Pricing Representation Estimates 

 

Model rmt+1 qmt+1 SMB HML R
2 

Adj. 

R
2 

σ(m) 

 

LMFM 0.44 

(0.89) 

    3.8 0.4 10.3 

QMFM 0.91 

(1.51) 

-0.51 

(-1.59) 

  36.1 31.3 96.7 

FFM -0.20 

(-0.34) 

 0.16 

(0.34) 

-0.79 

(-1.43) 

24.8 16.1 31.6 

QMFM+FFM 0.32 

(0.54) 

-0.49 

(-1.60) 

0.25 

(0.50) 

-0.77 

(-1.34) 

46.9 38.5 85.5 

        

 

 

 

 

 

 

 

Notes. This Table reports 2-step regression estimates of the beta-pricing representation of 

various factor models for the period 1952-2002. The second pass regressions are estimated 

with an intercept term. The top row indicates the factors included in each model. For each 

included factor, I report the risk premia point estimates in percentage and t-statistics in 

brackets. These are computed using OLS standard errors that account for correlated errors 

across test portfolios and using Shanken (1992) correction for the fact that the beta coefficients 

are estimated. The last three columns report the coefficient of determination R
2
 (both 

unadjusted and adjusted for the degrees of freedom) and the annualized volatility of the 

stochastic discount factor in percentage. The market Sharpe ratio is 40.4 percent. All the 

variables are defined as in the text. The data frequency is quarterly.  
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Figure 1 

Second Pass Regressions (1952-2002) 

 

 

 

 

 

 

 

Notes. This Figure reports the SDF time-series implied by the 2-step regression 

point estimates of the QMFM, FFM and QMFM+FFM. The data is quarterly data 

for the period 1952-2002.  
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Table 4 

GMM Estimates with Volatility Bound – SDF Representation 

Industry Sorted Portfolios 

 

Model rmt+1 qmt+1 SMB HML TJT TJT*  σ(m) 

        

FFM -2.72 

(0.007) 

 2.00 

(0.138) 

1.54 

(0.184) 

21.30 

(0.749) 

19.84 

(0.799) 

50.0 

 -3.39  2.81 2.54 20.86 20.91 67.2 

 (0.002)  (0.053) (0.075) (0.749) (0.747)  

QMFM  -2.06 

(0.052) 

17.37 

(0.069) 

  20.27 

(0.872) 

16.86 

(0.913) 

50.0 

 -2.41 28.55   16.59 15.40 75.0 

 (0.024) (0.005)   (0.956) (0.949)  

 -2.61 39.48   14.76 15.04 100.0 

 (0.025) (0.000)   (0.981) (0.957)  

QMFM+FFM -2.20 

(0.040) 

15.51 

(0.093) 

1.12 

(0.273) 

0.87 

(0.310) 

18.97 

(0.838) 

16.18 

(0.932) 

50.0 

 -2.55 27.24 1.10 0.97 16.00  14.67 75.0 

 (0.033) (0.010) (0.283) (0.294) (0.936) (0.963)  

 -2.73 38.67 0.96 0.84 14.39 14.39 100.0 

 (0.033) (0.001) (0.313) (0.322) (0.967) (0.967)  

        

 

 

 

 

 

 

 

 

 

Notes. This Table reports GMM parameter estimates with positivity and volatility 

bound on the SDF of various factor models for the period 1952-2002. For each 

included factor, we report the corresponding bk (the negative of the risk price) point 

estimate and its p-value in brackets. Three sets of TJT statistics with p-value in 

brackets are reported. The first are Hansen’s (1982) TJT statistics. The second and 

third sets of TJT statistics are calculated using a common weighting matrix for all 

models, the S  matrix of QMFM+FFM with 100 percent volatility bound, and Hansen 

and Jagannathan (1997) second moment matrix. The last column reports the 

annualized volatility of the stochastic discount factor in percentage. The market 

portfolio Sharpe ratio is 40.4 percent. All the variables are defined as in the text. 
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Table 5 

GMM Estimates with Volatility Bound – Beta Pricing Representation 

Industry Sorted Portfolios 

 

Model rmt+1 qmt+1 SMB HML R
2 

Adj. 

R
2 

σ(m) 

FFM 1.77 

(3.04) 

 -0.02 

(-0.04) 

-0.90 

(-1.96) 

14.5  4.6 50.0 

 2.26 0.00 -0.09 -1.30 16.3 6.6 67.2 

 (3.83) (-0.02) (-0.19) (-2.30)    

QMFM  1.08 

(1.86) 

-0.23 

(-1.10) 

  21.8 16.0 50.0 

 1.11 -0.40   31.6 29.2 75.0 

 (1.84) (-1.26)      

 1.04 -0.56   36.0 33.7 100.0 

 (1.71) (-1.71)      

QMFM+FFM 1.16 

(2.00) 

-0.20 

(-0.97) 

0.01 

(0.03) 

-0.59 

(-1.28) 

33.0 22.3 50.0 

 1.20 -0.38 0.01 -0.65 40.7 33.9 75.0 

 (2.04) (-1.26) (0.02) (-1.14)    

 1.12 -0.55 0.00 -0.62 42.2 35.6 100.0 

 (1.88) (-1.76) (0.00) (-1.06)    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes. This Table reports the percentage risk premia corresponding, in a beta-

pricing representation, to the GMM estimates with positivity and volatility bound 

on the SDF. For each included factor, we report the corresponding λk point estimate 

and t-statistic in brackets. These are computed using GLS standard errors that 

account for correlated errors across test portfolios and Shanken’s (1992) correction 

for the fact that the beta coefficients are estimated. The third and second last two 

columns report the percentage coefficient of determination R
2
, both unadjusted and 

adjusted for the degrees of freedom. The last column reports the SDF volatility. 
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Figure 2 

Coskewness vs. Market Return Sensitivity to Expected Returns  
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Notes. The darker line in this figure plots the 30-quarter (7 years and 6 months) rolling 

cross-sectional correlation between the conditional LMFM coefficients βi,mz 

(multiplied by a factor 10 to facilitate visual comparison) and the conditional QMFM 

coefficients βi,q. The former are the sensitivities of industry excess returns to the 

product of the market excess-return and the conditioning variable (the lagged 

consumption-wealth ratio) whereas the latter are the coskewness coefficients. The 

jagged line represents the rolling time series of 30-quarter returns on the market 

portfolio. 
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Appendix A: Third Order Expansion of Utility 

 

When pricing excess returns under the 3M-CAPM, we can let the SDF equal the 

representative investor’s marginal utility (MU) in place of her IMRS. This is because 

an investor’s IMRS is, essentially, her marginal utility growth and the price of excess 

returns is zero. Modelling the SDF as MU is a convenient simplification that we will 

adopt here, i.e. we let )( 1,1 ++ ′= tmt RUm , where  U(Wm,t+1) denotes the representative 

investor’s utility function. Taking a third order Taylor expansion of U(Wm,t+1), we 

can write the representative investor’s MU as follows,  

 

2

1,21,11, 1)( +++ ++≅′
tmtmtm RbRbRU      

 

Here, 
tm

tm

tm
W

W
R

,

1,

1,

+
+ ≡ , tmtmV WWVb ,,1 )(

2

1
′′≡ , 2

,,2 )(
6

1
tmtmV WWVb ′′′≡ , and Wm,t is an 

initial wealth level around which U(Wm,t+1) is expanded in a Taylor series. 

Normalizing this level to one, U(Wm,t+1) is standardized in such a way that 

0)1()( , ==UWU tm  and 1)1()( , =′=′ UWU tm . This standardization is legitimate since 

utility functions are unique only up to a linear transformation.  
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Appendix B: Alternative Representations 

 

The price of excess returns is by definition equal to zero. Thus, denoting by ri,t+1 the 

excess return on the i-th asset, (1) can be rewritten as follows: 

 

( )1,10 ++= titt rmE         (B1) 

 

The cross-sectional implications that the model given by (2) and (B1) imposes on the 

cross-section of expected returns can be represented in a number of ways. We will 

mainly consider their covariance and the beta-pricing representations: 

 

 ( ) tttittit bfrCovrE 11,1, ,)( +++ −≅        (B2) 

 ( ) ttitit rE λβ ,1,
′=+          (B3) 

Where, 

 ( ) ( ) 111 ≅′+= ++ tttttt fEbamE        (B4) 

 ( ) ( )1,1

1

1, , ++

−

+= tittttti rfCovfVarβ       (B5) 

 ( ) tttt bfVar 1+−≅λ          (B6) 

 

Here, expectations and variances are denoted by familiar symbols and the time 

subscript indicates that they are conditional on the information set available at t. The 

elements of -bt can be seen as the factor risk prices, ti ,β  can be seen as a vector of 

coefficients from the regression of asset i on the factors and its elements are factor 

loadings. The elements of the λt vector are the factor risk premia.
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