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Abstract
In this paper, we model international equity markets according to two sto-

chastic volatility models: the log-normal SV model which is estimated by quasi-
maximum likelihood with the kalman filter, and the two-regime switching model
which is estimated by maximum likelihood with the Hamilton filter. Then based
on the one-day-ahead forecast conditional volatility from both models, we evalu-
ate the Value-at-Risk (VaR) in each market. We find that the VaR estimates, in
general, are higher for the SV model than those for the regime-switching model
for all markets and over all horizons. The exception is Nikkei225, where in both
cases, the SV model generate lower VaR values than those of the regime switch-
ing model. Comparing the VaRs calculated directly from the two models and the
unconditional return distribution, there appears to be a tendency for the two con-
ditional models to generate smaller VaRs, except for the Japanse market, where
the SV model produces smaller VaRs than those obtained from the returns. Con-
sidering how the VaRs increase with horizon, generally, according to the regime
switching model, VaRs increase more slowly with horizon than the SV approach.
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1. Introduction

Volatility is a key ingredient for derivative pricing, portfolio optimization and
value-at-risk analysis. Hence, accurate estimates and good modelling of stock
price volatility are of central interest in financial applications. The valuation of fi-
nancial instruments is complicated by two characteristics of the volalitily process.
First, It is generally acknowledged that the volatility of many financial return se-
ries is not constant over time and exhibit prolonged periods of high and low
volatility, often referred to as volatility clustering (Mandelbrot, 1963; Engle 1982:
among many others). Second, volatility is not directly observable1. Two mod-
els have been developed which capture this time-varying autocorrelated volatility
process: the GARCH and the Stochastic Volatility (SV) model. GARCH models
define the time-varying variance as a deterministic function of past squared inno-
vations and lagged conditional variances whereas the variance in the SV model is
modelled as an unobserved component that follows some stochastic process. Sto-
chastic volatility models are also attractive because they are close to the models
often used in Financial Theory to represent the behavior of financial prices. Fur-
thermore, their statistical properties are easy to derive using well-known results
on long-normal distributions. Finally, compared with the more popular GARCH
models, they capture in a more appropriate way the main empirical properties
often observed in daily series of financial returns (see, for example, Carnero et al.,
2003). For surveys on the extensive GARCH literature we refer to Bollerslev et
al. (1992), Bera and Higgins (1993) and Bollerslev et al. (1994). SV models are
reviewed in, for example, Taylor (1994), Ghysels et al. (1996) Shephard (1996),
and Broto and Ruiz (2004)). Both models are defined by their first and second
moments. The Stochastic Volatility model introduced by Taylor (1986) provides
an alternative to GARCH models in accounting for the time-varying and persis-
tent volatility as well as for the leptokurtosis in financial return series. It arises
from the mixture-of-distributions hypothesis which assumes that the volatility
process is driven by the unobservable flow of price-relevant information. These
models present two main advantages over ARCH models. The first one is their
solid theoretical background, as they can be interpreted as discretized versions of
stochastic volatility continuous-time models put forward by modern finance the-
ory (see Hull and White (1987)). The second is their ability to generalize from

1For a comprehensive review of volatility measures and their properties see Andersen, Boller-
sleve and Diebold (2002) and for forecasting financial volatility see the survey by Poon and
Granger (2003).
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univariate to multivariate series in a more natural way, as far as their estima-
tion and interpretation are concerned. On the other hand, SV models are more
difficult to estimate than ARCH models, due to the fact that it is not easy to
derive their exact likelihood function. For this reason, a number of econometric
methods have been proposed to solve the problem of estimation of SV models.

The stochastic volatility model defines volatility as a logarithmic first-order
autoregressive process, which is a discrete-time approximation of the continuous-
time Ornstein-Uhlenbeck diffusion process used in the option-pricing literature
(See Hull and White (1987). It is an alternative to the GARCH models which
have relied on simultaneous modelling of the first and second moment. For cer-
tain financial time series such as stock index return, which have been shown to
display high positive first-order autocorrelations, this constitutes an improvement
in terms of efficiency; see Campell et al. (1997, Chapter 2). The volatility of daily
stock index returns has been estimated with SV models but usually results have
relied on extensive pre-modelling of these series, thus avoiding the problem of
simultaneous estimation of the mean and variance. Koopman and Hol Uspensky
(2002) proposed the Stochastic Volatility in Mean model (SVM) that incorporates
volatility as one of the determinants of the mean. The fact that we are able to
estimate an SV model that includes volatility as one of the determinants of the
mean makes the model suitable for empirical applications between the mean and
variance of returns. The SVM model can be viewed as the SV counterpart of the
ARCH-M model of Engle et al. (1987) with the main difference between the two
models is that the ARCH-M model intends to estimate the relationship between
expected returns and expected volatility, whereas the aim of the SVM model is to
simultaneously estimate the ex ante relation between returns and volatility and
the volatility feedback effect.

Another way of modelling economic time series is to define different states
of the world or regimes, and to allow for the possibility tha the dynamic behav-
ior of economic variables depends on the regime that occurs at any given point
in time. By “state-dependent dynamic behavior” of a time series, it is meant
that certain properties of the time series, such as its mean, variance and /or au-
tocorrelation, are different in different regimes. Regime switching models were
first introduced in the econometrics literature by Goldfeld and Quandt (1973)
to provide a simple way to model endogenously determined structural breaks or
regime shifts in parameters. Hamilton (1989) generalizes this setting by allowing
the mixing probability to be time-varying function of the history of the data. To
illustrate the importance of stochastic regime switching for financial time series,
for example, LeBaron (1992) shows that the autocorrelations of stock returns are
related to the level of volatility of these returns. In particular, autocorrelations

3



tend to be larger during periods of low volatility and smaller during periods of
high volatility2. The periods of low and high volatility can be interpreted as
distinct regime - or, put differently, the level of volatility can be regarded as the
regime-determining process. In this setup, the level of volatility is not known
with certainty and what we can do is to make a sensible forecast of this level, and
hence, of the regimes that will occur in the future, by assigning probabilities to
the occurrence of the different regimes.

Markov switching models have been found to provide a flexible framework
to handle many features of asset returns (see Hamilton 1989 and 1994). In par-
ticular, they allow for nonlinearities arising from persistent jumps in the model
parameters. These modesl have several appealing features. First, they provide a
convenient framework to endogenously identify regime shifts that are common-
place in financial data. Regimes are treated as latent processes which are not
observable by the econometrician, but can be inferred from the estimation algo-
rithm using observable data, such as the history of the asset’s returns. Second,
as Markov switching modesl belong to the mixture-of-distributions class of sto-
chastic processes, they are as versatile as mixture models in capturing salient
features of financial data such as time-varying volatilities, skewness, and letp-
torkurtosis. A detailed study of the statistical properties of Markov switching
models by Timmerman (2000) shows the Markov switching models can indeed
approximate general classes of density functions with a wide range of conditional
moments. Ang and Bekaert (2001) show that Markov switching models with
state-dependent means and variances can match exceedance correlations better
than do standard GARCH models or bivariate jump diffusion processes.

This paper is organized as follows. In section 2, we introduce the two compet-
ing models (i.e, the regime switching model and the stochastic volatility model.
In section 3, we describe the available data and characterize the stylized facts
of the corresponding realized volatility. In section 4, we use the two models to
compute the Value at Risk and assess their performance. Section 5 concludes.

2Returns on international equity markets were characterized by jumps, and these jumps
tend to occur at the same time across countries, implying that conditional correlations between
international equity returns tend to be higher in periods of high market volatility or following
large downside moves. Evidence on jumps is provided by Jorion (1988), Akgiray and Booth
(1988), Bates (1996), and Bekaert et al. (1998). And for evidence on changing conditional
correlations see, for instance Ang and Chen (2002), Longin and Solnik (1995), Karolyi and Stulz
(1996), and Chakrabarti and Roll (2000).
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2. Models of volatility

The empirical regularities of asset returns (i.e., volatility clustering; squared
returns exhibit prolonged serial correlation; and heavy tails and persistence of
volatility) suggest that the behavior of financial time series can be captured by a
model which recognizes the time-varying nature of return volatility as follows:

yt = μt + σtεt (1)

μt = a+
k

i=1

bixi,t (2)

with εt ∼ NID(0, 1). μt represents the mean and depends on a constant a
and regression coefficients b1, ....., bk. The explanatory variables x1,t, .........xk,t
may also contain lagged exogenous and dependent variables. The disturbance
term εt is IID with zero mean and unit variance and a usual assumption of a
normal distribution.

Following Shephard (1996), models of changing volatility can be usefully par-
titioned into observation-driven and parameter-driven models and both can be
expressed using a parametric framework as: yt/zt ∼ N(μt σ2t ). In the first class,
the autoregressive heteroskedasticity (ARCH) models introduced by Engle (1982)
are the most representative example. In the second class, zt is a function of an un-
observed or latent component. The log-normal stochastic volatility model created
by Taylor (1986) is the simplest and best known example:

yt/ht ∼ N(0t exp(ht)) , ht = α+ βht−1 + ηt , ηt ∼ NID(0,σ2η) (3)

where ht represents the log-volatility, which is unobserved but can be esti-
mated using the observations. One interpretation for the latent ht is to represent
the random and unveven flow of new information, which is difficult to model
directly, into financial markets. The most popular model from Taylor (1986),
puts:

yt = εt exp(ht/2) (4)

and

ht = α+ βht−1 + ηt (5)
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where εt and ηt are two independent Gaussian white noises, with variances
1 and σ2η, respectively. Due to the Gaussianity of ηt, this model is called a log-
normal SV model3.

Another possible intepretation for ht is to characterize the regime in which
financial markets are operating and then it could be described by a discrete valued
variable. The most popular approach to modelling changes in regime is the class
of Markov switching models introduced by Hamilton (1989). In that case the
model is:

yt = εt exp(ht/2) (6)

and

ht = α+ βst (7)

where st is a two state first-order Markov chain which can take values 0,1 and
is independent of εt. The value of the time series st, for all t, depends only on
the last value st−1, for i, j = 0, 1:

P (st = j|st−1 = i, st−2 = i, ...) = P (st = j|st−1 = i) = pij (8)

The probabilities (pij)i,j=0,1 are called transition probabilities of moving from
one state to the other. These transition probabilities are collected in the transition
matrix P :

p00 1− p11
1− p00 p11

(9)

which fully describes the Markov chain and also we get: p00+p01 = p10+p11 =
1. A two-state Markov chain can be represented by a simple AR(1) process as
follows:

st = (1− p00) + (−1 + p00 + p11)st−1 + υt (10)

where υt = st−E(st|st−1, st−2, ....) and the volatility equation can be written
the following way:

ht = α+ βst = α+ β[(1− p00) + (−1 + p00 + p11)st−1 + υt] (11)

or
3Although the assumption of Gaussianity of ηt can seem ad hoc at first sight, Andersen et

al. (2001, 2003) show that the log-volatility process can be well approximated by a Normal
distribution.
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ht = (2−p00−p11)+β(1−p00)+(−1+p00+p11)ht−1+βυt = a+bht−1+ωt (12)

which implies the same structure of the stochastic volatility model but with
a noise that can take only a finite set of values.

2.1. Estimation of the models

A variety of estimation procedures has been proposed for the SV models, includ-
ing for example the Generalized Method of Moments (GMM) used by Melino and
Turnbull (1990), the Quasi Maximum Likelihood (QML) approach followed by
Harvey et al. (1994) and Ruiz (1994), the Efficient Method of Moments (EMM)
applied by Gallant et al. (1997), and Markov-Chain Monte Carlo (MCMC) pro-
cedures used by Jacquier et al. (1994) and Kim et al. (1998). Although each
of these methods is reported to work well under certain conditions, it is difficult
to assess their overall perforances across data sets. In this paper, the parame-
ters of the SV model are estimated by exact maximum likelihood methods using
Monte Carlo importance sampling techniques. We refer the reader to Koopman
and Hol Uspensky (2002) for more explanations. The likelihood function for the
SV model can be constructed using simulation methods developed by Shephard
and Pitt (1997) and Durbin and Koopman (1997). We start by considering the
standard SV model of the equation of the volatility process (10). The non-linear
relation between log-volatility ht and the observation equation of yt does not allow
the computation of the likelihood by linear methods such as the Kalman filter.
For the SV model we can express the likelihood function as:

L(ψ) = p(y/ψ) = p(y, θ/ψ)dθ = p(y/θ,ψ)p(θ/ψ)dθ (11)

where ψ = (φ,ση,σε)�, θ = (h1, ......hT )�. An efficient way of evaluating such
expressions is by using importance sampling; see Ripley (1987, Chapter 5). A
simulation devices is required to sample from an importance density p(y/θ,ψ)
which is preferred to be as close as possible to the true density p(y/θ,ψ). A
choice for the importance density is the conditional Gaussian density since in
this case it is relatively straightforward to sample from p(y/θ,ψ) = g(y/θ,ψ)
using simulation smoothers such as the ones developed by de Jong and Shephard
(1995) and Durbin and Koopman (2002). Guidelines for the construction of an
importance model and the likelihood function for the SV model using this model
are given by Hol and Koopman (2000). The SV in mean models were estimated
using programs written in the Ox language of Doornik (1998) using SsfPack by
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Koopman, Shephard and Doornik (1999). The Ox programs were downloaded
from www.econ.vu.nl/koppman/sv/.

In this section we estimate the two models, i.e., the log-normal SV model
which is estimated by quasi-maximum likelihood with the kalman filter, and the
two-regime switching model which is estimated by maximum likelihood with the
Hamilton filter.

The first model is:

yt = εt exp(ht/2) (12)

and

ht = α+ βht−1 + ηt (13)

with εt and ηt independent Gaussian white noises. Their variances are 1 and
σ2η, respectively. The volatility equation is characterized by the constant parame-
ter α, the autoregressive parameter β and the variance σ2η of the volatility noise.
The mean is either imposed equal to zero or estimated with the empirical mean of
the series. Since the specification of the conditional volatility is an autoregressive
process of order one, the stationarity condition is |β| < 1.Moreover, the volatility
ση must be strictly positive. In the estimation procedure the following logistic
and logarithm reparameterizations:

β = 2
exp(b)

1 + exp(b)
− 1 and ση = exp(sη) ((14))

have been considered in order to satisfy these conditions.
The second model is a particular specification of the regime switching model

introduced by Hamitlon. Precisely the distribution of the returns is described
by two regimes with the same mean but different variances and by a constant
transition matrix:

yt =
μ+ σ0εt if st = 0
μ+ σ1εt if st = 1

((15))

and

p00 1− p11
1− p00 p11

(16)

where st is a two-state Markov chain independent of εt, which is a Gaussian
white noise with unit variance. The parameters of this model are the mean
μ, the low and high standard deviation σ0,σ1 and the transition probabilities
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p00, p11(also called regime transformations probabilities). As for the log-normal
SV model, the logarithm and the logistic transformations ensure the positiveness
of the volatilities and constrain the transition probabilities to assume values in
the (0,1) interval. Further, for the log-normal SV model the returns are modified
as follows:

y∗t = log(yt − yt) + 1.27 (17)

where yt is the empirical mean. Thus, for the log-normal SV model the mean
is not estimated but is simply set equal to the empirical mean. For the estimation,
the starting values of the parameters are calculated considering the time series
analyzed. For example, the sample mean is used as an approximation of the
mean of the switching regime model and the empirical variance multiplied by
appropriate factors is used for the high and low variance. However, for the log-
normal SV model, a range of possible values of the parameters were fixed and a
value is randomly extracted. This method proved to be useful for us, since we do
not have an idea about the possible value of the parameters but want to better
investigate the parametric space.

We present some graphical analysis of the returns and estimated volatility
for both models. In the case of the log-normal SV model, the estimated volatil-
ity is obtained by using the Kalman smoother ht/T = E(ht|Y ∗T ), which is not
very useful. In fact, we are interested in E(σt|Y T ) = E(exp(ht/2)|Y T ), but
E(exp(ht/2)|Y T ) 9= expE(ht/2)|Y T )). Thus, a first-order Taylor expansion of
exp(ht/2) around ht/T is considered and compute the conditional mean and esti-
mated the volatility in the following way:

σt/T = E(exp(
ht
2
)|Y T ) ∼= exp(ht/T

2
) +

1

8
exp(

ht/T
2
)Qt/T (18)

In the case of the switching model, we present historical return series, the es-
timated volatility and the estimated switches between regimes. To estimated the
volatility we consider the output of the Kim smoother. Since σt = exp(α/2)(1−
st) + exp((α+ β)/2)st = σ0(1− st) + σ1st, we can compute:

σt/T = E(σt|Y T ) = σ0P (st = 0|Y T ) + σ1P (st = 1|Y T ) (19)

where P (st = 0|Y T ) = P (ht = α|Y T ) and P (st = 1|Y T ) = P (ht = α+ β|Y T )
The parameters of Markov switching model can be estimated by using maxi-

mum likelihood
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2.2. Estimation Results

We examine the behavior of following equity markets. These are the S&P500 for
USA, FTSE100 for United Kingdom, CAC40 for France, S&P/TSX for Canada,
Nikkei225 for Japan, DAX for Germany, and Swiss Market for Switzerland. The
price data was obtained from Datastream. Each of the price indices was trans-
formed via first differencing of the log price data to create a series, which ap-
proximates the continuously compounded percentage return. The stock index
prices are not adjusted for dividends following studies of French et al. (1987)
and Poon and Taylor (1992) who found that inclusion of dividends affected es-
timation results only marginally. Returns are calculated on a continuously com-
pounded basis and expressed in percentages, they are therefore calculated as
rt = 100 ∗ (log(Pt/Pt−1)), where Pt denotes the stock index in day t.

The summary statistics are presented in Table 1. We observe that the Swiss
Market shows the highest mean returns followed by CAC40 and then the DAX.
All the indices exchibit similar patterns of volatility represented by the standard
deviation, with Nikkei225 having the highest variability and S&P/TSX having
the lowest. We further observe that the returns are highly autocorrelated at lag
1, with S&P/TSX maintaining the highest autocorrelation. The high first-order
autocorrelation reflects the effects of non-synchronous or thin trading, whereas
highly correlated squared returns can bes seen as an indication of volatility clus-
tering. The Q(12) and Qs(12) test statistics, which is a joint test for the hy-
pothesis that the first twelve autocorrelation coefficients on returns and squared
returns are equal to zero, indicate that this hypothesis has to be rejected at the
1% significance level for all return series and squared return series4. Autocorrela-
tion of squared returns is consistent with the presence of time-varying volatility
such as GARCH effects. As pointed out by Lamoureux and Lastrapes (1990) and
confirmed by Hamilton and Susmel (1994), regime shifts in the volatility process
can also induce a spuriously high degree of volatility clustering.

Before estimating the models, we begin by testing whether there are indeed
regime shifts in the stock markets. To do so, we apply Hansen’s (1992) modified
likelihood ratio test for regimes under the null hypothesis that returns are gen-
erated by a switching model. Detection of regime shifts requires non-standard
tests, because the presence of nuisance parameters under the null of a single
regime invalidates the use of standard likelihood ratio tests. Using empirical
process theory, Hansen (1992) shows that a modified LR statistic can be applied

4A number of empirical studies has found similar results on market returns distributional
characteristics. Kim and Kon (1994) showed similar results for 30 stocks in DJIA, S&P500, and
CRSP indices. Campbell, Lo and Mackinlay (1997) concluded that daily US stock indexes show
negatively skewed and positive excess kurtosis.
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under non-standard conditions. We apply Hansen’s test to evaluate the null hy-
pothesis of a geometric random walk for daily stock prices against the alternative
of a two-state Markov switching model.

The estimation results of the two models are reported in Tables 2 and 3.
Table 2 presents the results of estimating the regime switching model in the
different markets5. For this model, we can judge the persistence of the volatility
from the values taken by the transition (or persistence) probabilities p00 and
p11, they are all high and higher than 0.90, confirming the high persistence of
the volatility in all markets. The parameter which govern the mean process is
also reported in the first column of Table 2 with the corresponding standard
errors. The mean parameter is positive and statistically significant for all series,
except being negative for Nikkei225. The estimation results of the log-normal SV
model applied to international equity markets is reported in Table 3. All markets
show strong persistence, since all the estimated autoregressive coefficients of the
volatility equation (β) are higher than 0.90. Also all the volatility estimates are all
highly significant and quite similar for all markets. In practice, for many financial
time series this coefficient is often found to be bigger than 0.90. This near-unity
volatility persistence for high-frequency data is consistent with findings from both
the SV and the GARCH literature. Among all the markets, the Swiss market,
FTSE100, Nikkei225 and Dax show the hightest variability in their volatility
noise. For example, the standard deviation of the volatility noise in the FTSE100
is 0.1066, while that in the S&P500 is 0.071.

3. Value at Risk

VaR indicates the maximum potential loss at a given level of confidence (p) for
a portfolio of financial assets over a specified time horizon (h). In practice, the
value of a portfolio is expressed as a function of K risk factors such as interest
rates, exchange rates or stock indexes. If their distribution is known, the VaR is
a solution to the following problem:

p =
V aR(h,p)

−∞
f(xt+h)dx (20)

with x being the value of the portfolio. Different methods have been proposed
to calculate the VaR. One of them is the parametric model that can be used to
forecast the portfolio return distribution, if this distribution is known in a closed

5The standard errors are calculated following Ruiz (1994) for the log-normal SV model and
as the inverse of the information matrix for the switching model. In both cases the z−statistics
asymptotically follow an N(0, 1) distribution.
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form and the VaR simply being the quantile of this distribution. In the case
of non-linearity we can use either Monte Carlo simulation or historical simula-
tion approches. The advatange of the parametric approach is that the factors
variance-covariance matrix can be updated using a general model of changing
volatility. Having chosen the asset or portfolio distribution (usually the normal
one), it is possible to use the forecasted volatility to characterise the future return
distribution. Thus, σT+1/T can be used to calculate the VaR over the next period.
A different approach using the stochastic volatility (SV) model is to devolatize
the observed return series and to revolatilize it with an appropriate forecasted
value, obtained with a particular model of changing volatility. This approach is
considered in several recent works (Barone-Adesi et al. (1998); Hull and White
(1998)).

Consider a portfolio which perfectly replicates the composition of each stock
marke index. Given the estimated volatility of the stochastic volatility model, the
VaR of this portfolio can be obtained following the procedure proposed in Barone-
Adesi et al. (1998). The historical portfolio returns are rescaled by the estimated
volatility series to obtain the standardized residuals ut = yt/σt, t = 1, ...., T . This
historical simulation can be performed by boostrapping the standardized returns
to obtained the desired number of residuals u∗j , j = 1, .....,M, where M can be
arbitrarly large. To calculate the next period returns, it is sufficient to multiply
the simulated residuals by the forecasted volatility σT+1/T : y∗j = u∗jσT+1/T ,
and then the VaR for the next day, at the desired level of confidence h, is then
calculated as the Mth element of these returns sorted in ascending order.

To make the historical simulation consistent with empirical findings, the log-
normal SV model and the regime switching model may be considered to describe
the volatility behavior. Past returns are standardized by the estimated volatility
to obtain standardized residuals. Statistical tests can confirm that these standard-
ized residuals behave approximately as an iid series which exhibits heavy tails.
Historical simulation can then be used. Finally, to adjust them to the current
market conditions, the randomly selected standardized residuals are multiplied
by the forecasted volatility obtained with the SV model.

The VaRs for the two models are presented together with the results obtained
from unconditional returns in Tables 4 and 5. An examination of the results
reveals that the VaR estimates, in general, are higher for the SV model than those
for the regime-switching model for almost all markets and over all horizons. The
exception is Nikkei225, where in both cases, whether using historical simulation
or delta-normal approximation, the SV model generate lower VaR values than
those of the regime switching model. The Comparing among the VaRs calculated
directly from the two models and unconditional distribution of returns, there
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appears to be a tendency for the two conditional models to generate smaller VaRs,
except again for the Japanse market, where the SV model produces smaller VaRs
than those obtained from the returns. Considering how the VaRs increase with
horizon, generally, according to the regime switching model, VaRs increase more
slowly with horizon than the SV approach.

3.1. Back-testing the VaR models

The Value-at-Risk V aRpt+1 measure promises that the actual return will only be
worse than the V aRpt+1forecast p*100 of the time. Given a time series of past
ex-ante VaR forecasts and past ex-post returns, we can define the “hit sequence”
of VaR violations as:

It+1 =
1, if Rpf,t+1 < −V aRpt+1
0, if Rpf,t+1 > −V aRpt+1

(21)

The hit sequence returns a 1 on day t+1 if the loss on that day was larger
than the VaR number predicted in advance for that day. If the VaR was not
violated, then the hit sequence returns a 0. When backtesting our models, we
construct a sequence {It+1}Tt+1 across T days indicating when the past violations
occurred. We implement three test statistics derived from Christoffersen (1998),
the unconditional, independenc, and conditional coverage6. Christoffersen (1998)
idea is to separate out the particular predictions being tested, and then test each
prediction separately. The first of these is that the model generates the “correct”
frequency of exceedances, which is in this context is described as the prediction of
correct unconditional coverage. The other prediction is that exceedances are in-
dependent of each other. This later prediction is important in so far as it suggests
that exceedances should not be clusterd over time. to explain the Christoffersen
approach, we briefly explain the three tests.

3.1.1. Unconditional Coverage Testing

According to this test, we are interested in testing if the fraction of violations
obtained from our models, call it π, is significantly different from the promised
fraction, p. We call this the unconditional coverage hypothesis. To test this, we
write the likelihood of an i.i.d. Bernoulli (π) hit sequence:

6For other methods and elements in backtesting VaR models, see Christoffersen and Diebold
(2000), Christoffersen and Pelletier (2003), McNeil and Frey (2000), Diebold, Gunther, and Tay
(1998), and Diebold, Hahn, and Tay (1999).
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L(π) =
T

t=1

(1− π)1−It+1πIt+1 = (1− π)T0πT1 (22)

where T0 and T1 are the number of 0s and 1s in the sample. π can be esti-
mated from π =T1 /T - that is, the observed fraction of violations in the sequence.
Plugging the estimate back into the likelihood function gives the optimized like-
lihood as: L(π) = (1 − T1 /T )T0(T1 /T )T1 . Under the unconditional coverage
null hypothesis that π = p, where p is the known VaR coverage rate, we have
the likelihood: L(p) = T

t=1(1− p)1−It+1pIt+1 = (1− p)T0pT1 . The unconditional
coverage hypothesis using a likelihood ratio test can be checked as:

LRuc = −2 ln[L(p)/L(π)] (23)

Asymptotically, as T goes to infinity, the test will be distributed as a χ2 with
one degree of freedom. Substituting in the likelihood functions, we write:

LRuc = −2 ln[(1− p)T0pT1/{(1− T1/T )T0(T1/T )T1}] ∼ χ2 (24)

The VaR model is rejected or accepted either using a specific critical value,
or calculating the P-value associated with our test statistic.

3.1.2. Independence testing

According to this test, the hit sequence is assumed to be dependent over time and
that it can be described as a so-called first-order Markov sequence with transition
probability matrix:

Π1 =
1− π01 π01
1− π11 π11

(25)

These transition probabilities simply mean that conditional on today being a
nonviolation (that is, It = 0), then the probability of tomorrow being a violation
(that is, It+1 = 1) is π01. The probability of tomorrow being a violation given
today is also a violation is: π11 = Pr(It = 1 and It+1 = 1). Accordingly, the two
probabilities π01and π11 describe the entire process. The probability of a nonvi-
olation following a nonviolation is 1− π01, and the probability of a nonviolation
following a violation is 1 − π11. If we observe a sample of T observations, then
the likelihood function of the first-order Markov process can be written as:

L(Π1) = (1− π01)
T00πT0101 (1− π11)

T10π
T11

11 (26)

14



where Tij , i, j = 0, 1 is the number of observations with a j following an i.
Taking first derivatives with respect to π01and π11 and setting these derivatives to
zero, we can solve for the maximum likelihood estimates: π01 = ((T01/(T00+T01))
and π11 = ((T11/(T10 + T11)). Using the fact that the probabilities have to sum
to one, we have: π00 = 1−π01 and π10 = 1−π11, which can be used to determine
the matrix of the estimated transition proabilities.

In the case of the hits being independent over time, then the probability of a
violation tomorrow does not depend on today being a violation or not, and we can

write π01 = π11 = π, and the transition matrix can becomes: Π1 =
1− π π
1− π π

.

Then in this case, we can test the independence hypothesis that π01 = π11 using
a likelihood ratio test:

LRind = −2 ln[L(π)/L(Π1)] ∼ χ21 (28)

where L(π) is the likelihood under the alternative hypothesis from the LRuc
test.

3.1.3. Conditional Coverage Testing

Ultimately, we care about simulatenously testing if the VaR violations are inde-
pendent and the average number of violations is correct. We can test jointly for
independence and correct coverage using the conditional coverage test:

LRcc = −2 ln[L(p)/L(Π1)] ∼ χ22 (29)

which corresponds to testing that π01 = π11 = p. Notice that the LRcc
test takes the likelihood from the null hypothesis in the LRuc and combines it
with the likelihood from the alternative hypothesis in the LRind test. There-
fore, LRcc = −2 ln[L(p)/L(Π1)] = −2 ln[{L(p)/L(π)}{L(π)/L(Π1)}] or LRcc =
−2 ln[L(p)/L(π)]− 2 ln[L(π)/L(Π1)] = LRuc + LRind.

The Christoffersen approach enables use to test both coverage and indepen-
dence hypotheses at the same time. Moreover, if the model fails a test of both
hypotheses combined, his approach enable us to test each hypothesis separately,
and so establish where the model failure arises.

4. Conclusion

Under the Bank of International Settelement Regulation, investment firms and
banks are permitted to use their own internal risk management models to cal-
culate the required capital to cover losses in their trading positions. Given that

15



such models are now in widespread usage, it is crucial that a body of research
is generated that compares between different approaches to computing value at
risk. This paper proposes two different models, namel the log stochastic volatility
model and regime switching model for calculating value at risk. Our approach
has been applied to international equity markets, and was compared to the un-
conditional measures from the actual returns. We also examined the performance
of VaRs calculated directly from the two models. It was observed that the two
models generated smaller VaRs than the unconditional distributional method,
except for those of Japan, where the SV model produces smaller VaRs than those
obtained from the returns. Considering how the VaRs increase with horizon, gen-
erally, according to the regime switching model, VaRs increase more slowly with
horizon than the SV approach.
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[21] Carnero, A., Peňa, D. and Ruiz, E. (2003) Persistence and curtosis in au-
toregressive stochastic volatility models (manuscrpit, Universidad Carlos III
de Madrid).

[22] Chakrabarti, R, and Roll, R. (2000) East Asian and Europe During the
1997 Asian Collapse: A Clinical Study of a Financial Crisis, Working Paper,
UCLA.

[23] Christoffersen, P. (1998) Evaluating Interval Forecasts. International Eco-
nomic Review, 39, 841-862.

[24] Christoffersen, P. and F. Diebold. (2000) How Relevant Is Volatility Fore-
casting for Financial Risk Management? Review of Economics and Statistics,
82, 12-22.

18



[25] Christoffersen, P. and D. Pelletier (2003) Backtesting Portfolio Risk Mea-
sures: A Duration-Based Approach, Manuscript, McGill University and
CIRANO.

[26] de Jong, P, and Shephard, N. (1995) The simulation smoother for time series
models. Biometrika, 82, 339-350.

[27] Diebold, F. X., T. Gunther, and A. Tay (1998) Evaluating Density Forecasts,
with Applications to Financial Risk Management. International Economic
Review, 39, 863-883.

[28] Diebold, F. X., J. Hahn, and A. Tay (1999) Multivariate Density Forecasts
Evaluation and Calibration in Financial Risk Management: High Frequency
Returns on Foreign Exchange. Review of Economics and Statistics, 81, 661-
673.

[29] Doornik, J. (1998) Object-Oriented Matrix Program-
ming using Ox 2.0. Timberlake Consultants Ltd., London.
http://www.nuff.ox.ac.uk/Users/Doornik.

[30] Durbin, J, and S. Koopman (1997) Monte Carlo maximum likelihood esti-
mation for non-gaussian state space models. Biometrika 84, 669-684.

[31] Durbin, J, and S. Koopman (2002) A simple and efficient simulation
smoother for state space time series analysis (forthcoming in : Biometrika).

[32] Engle, R., (1982) Autoregressive conditional heteroskedasticity with esti-
mates of the variance of U.K. inflation. Econometrica 50, 987-1008.

[33] Engle, R., D. Lilien, and Robins, R. (1987) Estimating time-varying risk
premia in the term structure. The ARCH-M model, Econometrica 55, 391-
407.

[34] French, KR., GW. Schwert, and RF. Stanbaugh (1987) Expected stock re-
turns and volatility, Journal of Financial Economics 19, 3-29.

[35] Gallant, A. R., Hsieh, D. A., Tauchen, G. E. (1997) Estimation of stochastic
volatility models with diagnostics. Journal of Econometrics, 81, 159-192.

[36] Glosten, L., R. Jakannathan, and D. Runkle (1993) On the relation between
the expected value and the volatility of nominal excess return on stocks,
Journal of Finance 48, 1779-1801.

19



[37] Ghysels, E, Harvey, A.C. and Renault, E. (1996), Stochastic volatility, Hand-
book of Statistics, V.14, Statistical Methods in Finance, Maddala, G.S., Rao,
C.R (eds), North-Holland, Amsterdam, 128-198.

[38] Goldfeld, S.M., and R. E. Quandt, (1973) A Markov Model for switching
regressions, Journal of Econometrics, 1, 3-16.

[39] Hamilton, J.D., (1989) A new approach fo the economic analysis of non-
stationary time series and the business cycle, Econometrica, 57, 357-384.

[40] Hamilton, J. D, (1994) Time Series Analysis, Princeton, N.J., Princeton
University Press.

[41] Hamilton, J. D, and R. Susmel, (1994) Autoregressive conditional het-
eroskedasticity and changes in regime, Journal of Econometrics, 64, 307-333

[42] Harvey, A.C., Ruiz, E., Shephard, N. (1994) Multivariate stochastic variance
models. Review of Economic Studies, 61, 247-264.

[43] Hol, E. and S. Koopman (2000) Forecasting the variability of stock
index returns with stochastic volatility models and implied volatility.
http://www.tinbergen.nl.

[44] Hsieh, D. (1989) Testing for nonlinear dependence in daily foreign exchange
rates. Journal of Business 62, 339-368.

[45] Hull, J. andWhite, A. (1987), The pricing of options on assets with stochastic
volatilities, The Journal of Finance, 42, 281-300.

[46] Hull, J. and White, A. (1998) Incorporating volatility updating into the
historical simulation method for Value-at-Risk, The Journal of Risk, 1, 5-19.

[47] Jacquier, E., Polson, N.G., Rossi, P.E. (1994) Bayesian analysis of stochas-
tic volatility models (with discussion). Journal of Business and Economics
Statistics, 12, 371-389.

[48] Jorion, P. (1988) On Jump Processes in the Foreign Exchange and Stock
Markets, Review of Financial Studies, 1, 427-445.

[49] Karolyi, A. and Stulz, R. (1996) Why do Markets Move Together? An
Investigation of U.S.-Japan Stock Return Movements, Journal of Finance,
51, 951-986.

20



[50] Kim, S., Shephard, N., Chib, S. (1998) Stochastic volatility: likelihood in-
ference and comparison with ARCH models. Review of Economics Studies,
65, 361-393.

[51] Koopman, S., and Hol Uspensky, E, (2002), The stochastic volatility in mean
model: empirical evidence from international stock markets, Journal of Ap-
plied Econometrics, 17, 667-689.

[52] Koopman, S., N. Shephard, and J. Doornik (1999). Statistical algorithms for
models in state space using ssfpack 2.2. Econometrics Journal, 2, 113-166.
http://www.ssfpack.com.

[53] Lamoureux, C.G. and W.D. Lastrapes (1990) Persistence in variance, struc-
tural change and the GARCH model, Journal of Business and Economic
Statistics, 8, 225-243.

[54] LeBaron, B., (1992) Some relationships between volatility and serial corre-
lations in stock market returns, Journal of Business, 65, 199-219.

[55] Longin, F. and Solnik, B. (1995) Is the Correlation in International Equity
Returns Constant? Journal of International Money and Finance, 14, 3-26.

[56] McNeil, A., and R. Frey (2000) Estimation of Tail-Related Risk Measures for
Heteroskedastic Financial Time Series: An Extreme Value Approach. Journal
of Empirical Finance, 7, 271-300.

[57] Melino, A., Turnbull, S.M. (1990) Pricing foreign currency options with sto-
chastic volatility. Journal of Econometrics, 45, 239-265.

[58] Nelson, D.B., (1991), Conditional heteroskedasticity in asset returns: a new
approach, Econometrica, 59, 347-370.

[59] Poon, S. and S.J. Taylor (1992) Stock returns and volatility: an empirical
study of the UK stock market, Journal of Banking and Finance 16, 37-59.

[60] Poon, S.H., and Granger, C.W.J., (2003) Forecasting volatility in financial
markets: a review. Journal of Economic Literature, forthcoming.

[61] Ripley, B. (1987). Stochastic simulation. Wiley, New York.

[62] Ruiz, E. (1994) Quasi-maximum likelihood estimation of stochastic volatility
models. Journal of Econometrics, 63, 289-306.

21



[63] Schwert, G.W, (1989), Why does stock market volatility change over time?
Journal of Finance, 44, 1115-1153.

[64] Shepard, N., (1996), Statistical aspects of ARCH and stochastic volatility,
in Time Series Models in Econometrics, Finance and other Fields, Mono-
graphs on Statistics and Applied Probability, 65, Cox, D.R., Hinkley, D.V,
Barndorff-Nielsen, O.E. (eds), Chapman and Hall, 1-67.

[65] Shephard, N. and M. Pitt (1997) Likelihood analysis of non-gaussian mea-
surement time series. Biometrika 84, 653-667.

[66] Timmerman, A., (2000) Moments of Markov switching models, Journal of
Econometrics, 96, 75-111.

[67] Taylor, S.J. (1986) Modelling Financial Time Series. Wiley, Chichester.

22



Table 1 : Summary Statistics of daily returns
S&P500 FTSE100 NIKKEI225 DAX S&P/TSX CAC40 SM

Mean -0.0089 0.017 -0.026 0.020 -0.007 0.029 0.037
S.D. 1.008 1.089 1.495 1.080 0.745 1.002 1.200
Skewness -0.205 -0.069 0.123 -0.506 -0.632 0.358 -0.237
Kurtosis 7.538 5.684 5.051 8.248 9.174 6.448 7.486
J.B. 2731 950.28 561.6 3757 5225 1631 2678
ρ1
ρ2
ρ3

0.052
0.0051
0.064

0.020
−0.041
−0.085

−0.028
−0.050
0.018

0.078
−0.013
−0.016

0.117
−0.012
0.019

0.074
0.040
−0.024

0.051
−0.004
−0.041

Q(12) 60.04 59.04 15.87 72.17 87.72 87.41 29.57
ρs1
ρs2
ρs3

0.182
0.244
0.191

0.214
0.302
0.255

0.099
0.123
0.153

0.107
0.165
0.160

0.129
0.173
0.110

0.165
0.188
0.141

0.232
0.268
0.212

Qs(12) 1186 2173 373 796 687 1013 1691

Notes: J.B. is the Jarque-Bera normality test statistic with 2 degrees of
freedom; ρk is the sample autocorrelation coefficient at lag k with asymptotic
standard error 1/

√
T and Q(k) is the Box-Ljung portmanteau statistic based on

k−squared autocorrelations. ρsk are the sample autocorrelation coefficients at lag
k for squared returns and Qs(12) is the Box-Ljung portmanteau statistic based
on 12−squared autocorrelations.
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Table 2: Results of the regime switching model applied to international equity
markets

Stock Index μ
Low
Persis.Pr.

High
Persis.Pr.

Low V High V FV LogL

S&P500
0.00055
0.000143

0.986
0.0037

0.981
0.0049

0.00618
0.000156

0.0144
0.00034

0.00725 -10278.7

FTSE100
0.00027
0.000156

0.993
0.0022

0.981
0.0057

0.00757
0.00015

0.0166
0.00049

0.00760 -10158.3

NIKKEI225
−0.00017
0.000232

0.980
0.0046

0.964
0.0085

0.108
0.00027

0.0204
0.00064

0.0204 -8974.4

DAX
0.00064
0.000199

0.990
0.0027

0.981
0.0052

0.0091
0.00022

0.0221
0.00059

0.0091 -9284.9

S&P/TSX
0.00054
0.000118

0.987
0.00323

0.976
0.0062

0.0052
0.00012

0.0137
0.00036

0.0053 -10907.2

CAC40
0.00035
0.000213

0.994
0.0018

0.977
0.0075

0.0108
0.00018

0.0229
0.00081

0.0108 -9260.85

SM
0.00076
0.000165

0.986
0.0030

0.959
0.0093

0.0079
0.00018

0.0197
0.00072

0.0181 -9942.67

Notes: A two-regimes switching model introduced by Hamilton is applied to
equity markets and estimated by maximum likelihood with the Hamilton filter. In
this model the returns are distributed with the same mean and different variances
and a constant transition matrix. The standard errors are calculated following
Ruiz (1994) as the inverse of the information matrix for the switching model and
result in z−statistics asymptotically following an N(0, 1) distribution. μ is the
mean value and LogL represents the loglikelihood.
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Table 3: Results of estimating the log-normal SV model applied to international
equity markets

Constant AR part SD
Forecasted
volatility

Loglik

S&P500
−0.0513
0.0261

0.996
0.00195

0.0711
0.0143

0.0013 -4252.87

FTSE100
−0.131
0.048

0.990
0.00352

0.1066
0.0171

0.00087 -4104.7

NIKKEI225
−0.240
0.0823

0.981
0.0062

0.122
0.0227

0.00140 -4232.73

DAX
−0.118
0.0426

0.990
0.0032

0.1228
0.0186

0.00172 -4159.45

S&P/TSX
−0.0522
0.0277

0.996
0.0019

0.074
0.0144

0.00064 -4128.85

CAC40
−0.054
0.0254

0.993
0.00288

0.067
0.0138

0.0113 -4193.88

SM
−0.235
0.0722

0.9825
0.0053

0.156
0.0235

0.00095 -4201.88

Notes: The log-normal SV model is applied to equity markets and estimated
by quasi-maximum likelihood with the kalman filter. The volatility equation is
characterized by the constant parameter α (constant) , the autoregressive para-
meter β (AR part) and the variance σ2η of the volatility noise (SD). The standard
errors are calculated following Ruiz (1994) for the log-normal SV model and result
in z−statistics asymptotically following an N(0, 1) distribution.
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Table 4: VaR measures obtained by using historical simulation method
Time Horizon 5 10 15 5 10 15 5 10 15

unconditional distribution conditional distribution conditional distribution
Stock Index historical returns Log-normal SV Regime switching
S&P500 11.28 15.95 19.54 9.78 13.84 16.95 5.68 8.04 9.84
FTSE100 10.88 15.39 18.84 5.52 7.81 9.56 4.96 7.02 8.60
NIKKEI225 13.32 18.83 23.07 1.44 2.04 2.50 13.33 18.08 23.09
DAX 14.42 20.39 24.97 12.80 18.08 22.17 6.11 8.64 10.59
S&P/TSX 13.93 19.70 24.12 13.04 9.02 11.05 5.37 7.59 9.30
CAC40 13.04 18.45 22.59 9.66 13.67 16.74 7.60 10.75 13.17
SM 12.78 18.08 22.15 7.13 10.08 12.35 11.78 16.67 20.41

Notes: The table reports the VaR estimates based on conditional and uncondi-
tional distribution of the returns and calculated by historical simulation method.
The VaR are calculated for 5-,10- and 15-days holding period with the significance
level is 1%. Unconditional distribution measures are based on historical returns,
while conditional distribution are those obtained by weighting the standardized
residuals by the forecasted volatility.

Table 5: VaR obtained by delta-normal approximation
Time Horizon 5 10 15 5 10 15 5 10 15

unconditional distribution conditional distribution conditional distribution
Stock Index historical returns Log-normal SV Regime switching
S&P500 5.52 7.81 9.56 4.82 6.81 8.34 3.66 5.18 6.35
FTSE100 5.66 8.01 9.81 3.68 5.21 6.38 3.86 5.46 6.69
NIKKEI225 7.77 11.00 13.47 0.84 1.19 1.46 10.29 14.52 17.78
DAX 7.76 10.98 13.44 7.27 10.28 12.59 4.59 6.49 7.95
S&P/TSX 4.74 6.71 8.22 2.99 4.24 5.19 2.67 3.77 4.62
CAC40 7.33 10.36 12.69 6.11 8.65 10.59 5.53 7.82 9.57
SM 6.24 8.83 10.82 4.07 5.75 7.05 0.07 12.83 15.71

Notes: The table reports the VaR estimates based on historical data. The
significance level is 1% and VaR are calcuated based on 5-, 10- and 15-days time
horizons. Unconditional distribution measures are based on historical returns,
while conditional distribution are those obtained by weighting the standardized
residuals by the forecasted volatility.
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Table 6: Unconditional, Conditional and Independence Coverage Tests based on
Log-normal Stochastic Volatility model

Unconditional Independence Conditional
1% (LRuc) 5%(LRuc) 1%(LRind) 5%(LRind) 1%(LRcd) 5%LRcd)

S&P500 0.081 (NR) 0.224 (NR) 4.455 (R) 0.479 (NR) 4.535 (NR) 0.704 (NR)
FTSE100 3.701 (R) 1.371 (NR) 0.368 (NR) 0.0001(NR) 4.070 (NR) 1.371 (NR)
NIKKEI225 1.951 (NR) 0.003 (NR) 0.552 (NR) 0.904 (NR) 2.503 (NR) 0.907 (NR)
DAX 1.064 (NR) 2.296 (NR) 0.700 (NR) 0.776 (NR) 1.765 (NR) 3.072 (NR)
S&P/TSX 0.721 (R) 0.148 (NR) 12.843(R) 16.01(R) 13.56(R) 16.15(R)
CAC40 3.071 (R) 0.224 (NR) 10.521 (R) 0.479 (NR) 13.59(R) 0.704(NR)
SM 1.064 (NR) 2.043 (NR) 0.700 (NR) 0.052 (NR) 1.765 (NR) 2.095 (NR)

Notes: The table reports the unconditional, conditional and independence
coverage tests based on the Log-Normal Stochastic Volatility model. R indicates
rejection and NR indicates NO rejection of the VaR model -Significance 10%

Table 7: Unconditional, Conditional and Independence Coverage Tests
(Christoferesen book)

Results based on Regime Switching model
Unconditional Independence Conditional
1% 5% 1% 5% 1% 5%

S&P500 1.479 (NR) 1.176 (NR) 0.623 (NR) 0.566 (NR) 2.102 (NR) 1.742 (NR)
FTSE100 5.171 (R) 2.843 (R) 2.252 (NR) 0.010 (NR) 7.424 (R) 2.854 (NR)
NIKKEI225 1.94 (NR) 0.021 (NR) 0.552 (NR) 2.523 (NR) 2.497 (NR) 2.545 (NR)
DAX 5.977 (R) 2.296 (NR) 2.102 (NR) 0.035 (R) 8.079 (R) 2.33 (NR)
S&P/TSX 2.475 (NR) 1.581 (NR) 0.486 (NR) 5.317 (R) 2.962 (NR) 6.898 (R)
CAC40 1.064 (NR) 0.829 (NR) 0.700 (NR) 0.074 (NR) 1.765 (NR) 0.904 (NR)
SM 3.071 (R) 0.995 (NR) 2.746 (R) 2.188 (NR) 5.818 (R) 3.184 (NR)

Notes: The table reports the unconditional, conditional and independence
coverage tests based on the regime switching model. R indicates rejection and
NR indicates NO rejection of the VaR model -Significance 10%
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