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Abstract 

The objective of this study is to model implied volatility surfaces and identify risk factors that 

account for most of the randomness in the volatility surface. The approach is similar to the 

Dumas, Fleming and Whaley (DFW) (1998) study; we use moneyness (e.g., in forward price) 

and out-of-the-money (OTM) put-call options on FTSE100 index. After these adjustments, 

the nonlinear parametric optimization technique is employed to estimate different models of 

DFW in order to characterize the implied volatility surfaces and produce smooth implied 

volatility surfaces. Next, principal component analysis (PCA) is applied to the implied 

volatility surfaces to extract principal components that account for most of the dynamics in 

the shape of the surface. Hence, we estimate and obtain smooth implied volatility surfaces 

with the parametric models that account for both smile and time to maturity, and, therefore, 

the constant volatility model fails to explain the variations in the surfaces. Finally, we find 

that the first three principal components can explain about 69-82% of the variances in the 

implied volatility surfaces. The applications of our study are hedging of derivatives positions, 

trading, risk management, and policy making.  
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1     Introduction 

Modelling and exploring the dynamics of financial assets' volatility has been the main issue 

and central focal point among finance academics and practitioners. Volatility is fundamental 

for risk management, option pricing, hedging of derivatives positions and policy making. 

Most previous research has focused on historical volatility, but recently implied volatility has 

received attention due to some breakthrough studies, such as Christensen and Probhala 

(1998), Fleming (1998), and Dumas, Fleming and Whaley (1998). They show that implied 

information is superior to historical when forecasting volatility and further point out that a 

precise notion of the market's judgment and expectation of volatility is vital. For instance, to 

develop expectations about volatility based on past behaviour of stock prices and other 

relevant information is backward-looking and called historical volatility. In contrast, implied 

volatility is forward looking, that is implied by market prices of options. Option prices are the 

common consensus of the market participants about the expected future volatility. Therefore, 

implied volatility is the market expectation about the average future volatility of the 

underlying asset over the remaining life of an option. The volatility expectation of market 

participants can be recovered by inverting the option-pricing formula.  However, it is well 

known that after the October 1987 market crash, implied volatility computed from the 

options’ prices on stock indexes appears to be different across strikes and term structure, if 

examined at the same time, for example, the same day. This implies that implied volatilities 

present a two-dimensional surface whose dynamics across strikes and over time has to be 

examined.  

     However, the Black and Scholes (1973) model assumes that underlying assets follow a 

geometric Brownian motion and constant volatility. This implies that options with different 

strikes and maturities on the same underlying asset should have the same implied volatility. In 

the real world, however, we observe departure from this assumption. Mostly asset prices are 
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influenced by risk factors such as jumps, stochastic volatility, and costs occurs during 

transactions (Carr et al 2001, Heston 1993 and Leland 1985). In order to account for these 

deviations, traders and practitioners use different implied volatilities for different strikes and 

maturities. Hence, the implied volatility of an option reflects determinants of the option value 

that are not captured by the BS-model; this volatility structure illustrates discrepancies 

between theoretical prices and the market. Thus, a volatility surface that includes all these 

features is essential in practice. A surface helps particularly in pricing illiquid options and in 

hedging exotic derivatives.   

     On the other hand, financial markets present a high degree of correlations, which is high 

dependence among market-risk factors. When few important sources of information are 

common to market risk factors, we find a high degree of correlation among risk factors. For 

risk management systems that hedge and price huge portfolios, these portfolios might consist 

of different securities. Hence, they depend on hundreds of underlying correlated risk factors. 

Principal component analysis (PCA) is a tool that extracts the most important independent 

risk factors from these correlated systems that can explain most of the dynamics. Hence, PCA 

makes it easier for risk managers to reduce the dimensionality of the systems and enhance 

computational efficiency. Similarly, implied volatility surfaces can be viewed as highly 

correlated, that could be explained by just few independent risk factors. 

     There are few studies that estimate and obtain smooth implied volatility surfaces and 

further study the dynamics of these surfaces by applying principal component analysis. 

However, we can find abundant studies examining either Smile/Skew (strike) or term 

structure of volatilities. One of the famous studies on implied volatility surfaces was 

conducted by Cont and Fonseca (2002), who examined the dynamics of implied volatility 

surfaces of SP500 and FTSE100 index options. The prices of an index option at a given date 

are represented by a corresponding implied volatility surface, having smile/skew and term 
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structure features. They used different methods to obtain smooth implied surfaces. However, 

the main findings were, first, that an implied volatility surface has a non-flat shape and 

displays both a strike and term structure. Second, the shape of the implied volatility surface 

changes with time. Third, implied volatilities have positive autocorrelation and behave mean 

reversion. Fourth, the variance of the daily log variations in implied volatility can be 

explained by two or three principal components. Finally, the movements in the underlying 

assets are not correlated with movements in the implied volatility. Another study on implied 

volatility surfaces was conducted by Roux (2006). First, he estimated surfaces and then 

examined the dynamics of these surfaces. For that he developed an econometric model to 

estimate the implied volatility surface and then explored the dynamics of the implied 

volatility surface by the principal component analysis (PCA) technique. However, his data 

consist of the VIX index and options on the SP500 index; he found that 75.2% of the 

variations of the implied volatility surface can be explained by the first principal component 

(PC) and another 15.6% by the second PC. Moreover, he found that processes for these 

factors appear to be independent of the process for the VIX index.  Alentorn (2004) adapted a 

parametric form of the Dumas, Fleming and Whaley (DFW) (1998) approach and estimated 

implied volatility surfaces for options on FTSE100 futures. He used three of the DFW 

models. He further suggests how to implement this methodology in real time. This study, 

however, differs from the above two. This study only estimates implied volatility surfaces, 

whereas the other two further study the dynamics of implied volatility surfaces, an addition to 

estimation of implied surfaces.  

     However, many studies have been conducted that study the dynamics of either smile or 

surfaces by applying PCA; one famous study by Skiadopoulos, Hodges, and Clewlow(1999) 

investigated the number and shape of shocks that move implied volatility smiles and surfaces 

of S&P500 index options by applying principal component analysis. They formed maturity 
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buckets in the surfaces, average implied volatilities of options whose maturities fall into them 

and apply PCA to each bucket covariance matrix separately. They identified two factors that 

explain about 60% of the variance. They suggest that for effective pricing hedging of future 

options, one needs only three risk factors: one for the underlying asset, and the other two for 

implied volatility. Another study was conducted by Alexander (2001), who developed a new 

principal component model of fixed strike volatility deviations from at-the-money volatility. 

She focuses on its application to the skew and used FTSE100 index options with maximum 

three-month maturities. She investigated if the index moves, the volatility surface will move 

continuously and furthermore, if second and higher PCs have non-zero conditional correlation 

with the index changes, there will be non-parallel movements in the surface as the index 

moves. She found that most of the variation in the implied volatility of the FTSE100 index 

option can be explained by just three key risk factors: parallel shifts, tilts and curvature 

changes. However, the latter study differs from the former in a manner that it studied only the 

skew, whereas the former studied both skew and surfaces.       

     The objective of this study is to estimate and obtain smooth surfaces while using 

parametric models, and further study the dynamics of these surfaces by applying PCA. 

However, our study is related to the studies of Dumas, Fleming and Whaley (DFW) (1998)  in 

terms of functional forms of their estimated models for different implied volatility surfaces, 

while the second part of our study is closer to the study by Skiadopoulos, Hodges, and 

Clewlow (1999), in which they apply PCA on implied volatility surfaces. Nevertheless, our 

study differs in some ways from the two cited studies; first, we estimate implied volatility 

surfaces by using out-of-the-money (OTM) puts for low strikes, and out-of-the-money calls 

for high strikes, which are not accounted in DFW. Second, we study implied volatility 

surfaces in term of moneyness and time to maturity, whereas DFW incorporate strike instead. 

Third, in our next analysis that employs principal component analysis (PCA) to extract those 
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risk factors that explain most of the dynamics in the smile surfaces and determine what these 

factors look like and how many factors can explain these surfaces. We study the dynamics of 

the surfaces of FTSE100 index options (i.e. recent three years), whereas Skiadopoulos, 

Hodges, and Clewlow (1999) study future options on the S&P index. 

     Our main findings for this study are that the DFW constant volatility model fails to capture 

the variations in the implied volatility surfaces and, consequently, generate flat volatility 

surfaces. Model 2 which captures the smile (skew) effects is good enough; however, there are 

some variations that can be attributed to the time dimension in the implied volatilities. 

Therefore, models such as 3 and 4, which account for variations in both dimensions, fit well 

to the surfaces. They produce smooth and tighter volatility surfaces to the observed data. 

Finally, we find that the first three principal components can explain about 69-82% of the 

variances in the implied volatility surfaces.  However, when applying PCA to maturity 

groups, we find that parallel shifts are evident and important for shorter and longer maturities 

of option implied volatilities.  

     This paper is organized as follows. Section 2 consists of the methodology; it presents the 

implied volatility model, optimization of implied volatility surfaces, and principal component 

analysis of implied volatility surfaces.  Section 3 describes our data. The empirical results are 

presented in Section 4. Section 5 concludes our study. 
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2     Methodology  

We first present in Section 2.1 our model for implied volatility. Section 2.2 describes the 

parametric form of models and the optimization technique for implied volatility surface. 

Section 2.3 presents the principal component analysis of the implied volatility surface.  

 

2.1 Model for Implied Volatility 

Merton (1973) extended the Black-Scholes (BS) model for European call and put options on 

dividend paying index tS  with strike price K  and time-to-maturity tTτ −= , a call with 

payoff of K,0)(SMax t −  and put ,0)S(KMax t− . The Black-Scholes formula for the value of 

these call and put options are  
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where q is dividend yield, r  is the risk free interest rate, and N(d)  is the cumulative unit 

normal density function with upper integral d . Now consider that in a market where the 

Black-Scholes assumptions do not hold as previously empirically found, the quoted market 

prices of call and put options are T)(K,C *
t , and T)(K,P *

t . Now the implied volatility of the BS-

model T)(K,σ BS
t  of the option is the value of the volatility parameter which equates the 

theoretical option price with the market price. 
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The Black-Scholes implied volatility can be found uniquely because of the monotonicity of 

the Black-Scholes formula in the volatility parameter,  

0
σ

BS
>

∂
∂ . 

For the fixed T)(K, , T)(K,σBS
t  is a stochastic process and for fixed t, its value depends on the 

characteristics of the option such as the maturity T and the strike K, the function  

T)(K,σT)(K,:σ BS
t

BS
t → . 

This is the implied volatility surface at date t. However, with moneyness of the option the 

implied volatility surface is a function of moneyness and time-to-maturity 

.τ)t(M(S(t),στ)(M,I BS
tt +=  

This depiction is appropriate because there is a range of moneyness nearby ATM position 

where options are liquid and empirical data are easily available. Cont and de Fonseca (2002) 

used a similar technique but their emphasis was only on call implied volatility, whereas this 

study includes both call and put implied volatilities.  

     To compute implied volatilities we use the Bisection Method. This method is efficient and 

fast and without the knowledge of Vega we can estimate implied volatilities. The Bisection 

method requires two initial volatility estimates (seed values) and the algorithm goes as 

follows: 

- A low estimate of the implied volatility, Lowσ , corresponding to an option value, LowC . 

- A high volatility estimate, Highσ , corresponding to an option value, HighC . 

The market price *
tC  lies between LowC  and HighC . The bisection estimate is then given as the 

linear interpolation between the two estimates. We use a linear interpolation and with support 

of an iterative process, given a desired degree of accuracy. With this iterative search method, 

we finally obtain the volatility figure that is the most accurate one. We use this approach in 

order to obtain both out of the money put and call implied volatilities. 
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2.2 Modelling Implied Volatility Surface  

In order to model and obtain a smooth implied volatility surface, we follow the approach 

proposed by Dumas,Fleming and Whaley (DFW) (1998). According to Christoffersen and 

Jacobs (2004), this approach is known as the Practitioner Black-Scholes model. Its simplicity 

and application motivate us to study it thoroughly and extend it further. However, we 

approach the problem somewhat differently than the original Dumas, Fleming and Whaley 

(1998) work. First, we use out-of-money put and call data. Second, we obtain smooth surfaces 

with more practitioner-friendly moneyness, which takes into account forward prices as well as 

time dependence. We need to be able to update the volatility surface in order to take into 

account changes in the market prices and implied volatilities for the traded contracts. The 

implied volatility as a function of strike does not adequately capture volatility market 

movements, whereas the implied volatility as a function of moneyness parameter does. Third, 

we use data of FTSE100 index options, while they use S&P500 data. Fourth, we employ the 

parametric optimization technique to estimate surfaces, which is more common in practice.  

     One simple moneyness approach suggested by Fung and Hasieh (1991) and Jackwerth and 

Rubenstien (1996) is to take the ratio of the strike price and underlying (with the former 

inverting this ratio). They can easily reverse the equation in order to obtain the actual strike 

price. However, rather than absolute moneyness, many traders express moneyness based on 

the log of the forward price versus the strike. For a strike K  and a forward price τrSe t , where 

tr  is interest rate until maturity of the contract, and τ  is time to maturity. This ratio has the 

shortcoming that it is time independent. The time dependence is important when updating the 

volatility surface. There are many approaches in the market which take into account different 

information in the market. We follow Gross and Waltner (1995), Cassese and Guildolin 

(2006) and Alentorn (2004)  in using an alternative to the strike over the underlying ratio. 
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Therefore, we use the moneyness that is more common in practice as well as suitable to this 

kind of study. Hence, we enter this moneyness separately to the models below: 

t

τr
t

τ
/K)elog(S

m
t

= . 

     We estimate and obtain the smooth implied volatility surface while using four different 

structural forms, each of which differs in the parametric structure that serves to characterize 

implied volatility: 

Model 1:  εβτ)I(m, 0+=  

Model 2:  εmβmββτ)I(m, 2
210 +++=  

Model 3:  εmτβτβmβmββτ)I(m, 43
2

210 +++++=  

Model 4:          ετβmτβτβmβmββτ)I(m, 2
543

2
210 ++++++=  

Model 1 is the volatility function of the constant volatility model of Black-Scholes that gives 

constant volatility, without taking into account the smile (skew) and term structure implied 

volatility effects. Model 2 attempts to capture the quadratic volatility smile (e.g., moneyness 

slope and curvature) across moneyness. Model 3 captures additional variation attributable to 

the time (e.g., time to maturity slope), and a combined effect of the moneyness and time 

dimension. Lastly, Model 4 adds up a parameter that captures the time to maturity curvature 

effect.  

     Further details of our models are as follows: τ)I(m,   represents the implied volatility 

dependence on the moneyness level as well as time to maturity. While 0β  is the level 

parameter which is constant for all models,  1β  captures the moneyness slope, the smile effect 

(skew). 2β  captures the moneyness curvature across moneyness, while 3β   is the parameter for 

the time to maturity slope, 4β captures the time to maturity and moneyness combined, and 

finally 5β represents the time to maturity curvature. 
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      We estimate and obtain smooth surfaces through the above four structural forms by using 

the optimization technique; first, we choose optimization because this is more common in the 

market, particularly in the multifactor models, such as the famous LIBOR Market Models. 

Second, optimization is more flexible. Third, one needs to calibrate parameters to the market 

information continuously. Fourth, this can capture the nonlinear effects nicely. Nevertheless, 

we optimize the surface with a nonlinear least square function (lsqnonlin) in Matlab. This is a 

built in function; it follows an algorithm that minimizes the sum of squared errors between the 

actual and the prediction for a given vector of parameter. However, to test for the goodness of 

fit for these models, therefore, we employ two important loss functions proposed by 

Christoffersen and Jacobs (2004), which are relative root mean squared errors (%RMSE) and 

implied volatility root mean squared errors (IVRMSE). The relative root mean squared error 

loss function is the following 

∑
=

=
N

i
ii eoptionprice

N
RMSE

1

2)/)((1)(% θθ  

The %RMSE loss function minimizes the relative difference between market (i.e. Black-

Schole volaitities) and Practitioner Black-Scholes model volatilities. Hence %RMSE assign 

more weights to deep out-of-the-money options, as these values have small values. As we can 

notice that in the %RMSE loss function in the denominator includes market price of options, 

when market price of option is small then the difference between the volatilities become 

amplified. On the other hand, implied volatility root mean squared errors (IVRMSE) loss 

function assign equal weights to volatilities as follows 

.))((1)(
1

2∑
=

−=
N

i
iiN

IVRMSE θσσθ  

Thus IVRMSE loss function minimizes the error between the given and model obtained 

implied volatilities. 
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2.3 Principal Component Analysis of the Implied Volatility Surface 

We show how to further simplify the implied volatility surface models to reduce the whole 

surface dimensions to just two or three factors, while using the technique of principal 

component analysis (PCA). The rationale is to extract independent factors that explain most 

of the dynamics of the implied volatility surface. Previously many researchers have attempted 

to extract those risk factors that explain most of the variations in the implied volatility, skew 

and surfaces; for FTSE100 index implied volatility, Alexander (2000) and Cont and da 

Fonseca (2002); for the S&P500 index implied volatility, Cont and da Fonseca (2002), and 

Skiadopoulos, Hodges, and Clewlow (1999); and for the DAX index implied volatility, 

Fengler, Härdle and Villa (2004). Their findings confirmed that about 70-90 percent of the 

total variations in the volatility surface or skew can be attributed to just three risk factors: 

parallel shift, tilt, and curvature, changes that are captured by the first three principal 

components. Our approach is, therefore, similar to that of Skiadopoulos, Hodges, and 

Clewlow (1999) but our data differ, i.e. FTSE100 index implied volatility surfaces are used, 

whereas they used SP500 index implied volatilities data.  

     Principal component analysis is a more suitable technique to identify those random shocks 

that influence the implied volatility surfaces which are independent risk factors. By applying 

this technique, we can identify important principal components without any assumption. 

Nonetheless, the data input to PCA must be stationary, since implied volatilities are often 

nonstationary. We, therefore, compute the first difference implied volatilities across different 

moneyness and time to maturities. For instance, if we do not make series stationary, we can 

end up with results that are mostly influenced by input factors with the greatest volatility. 

Moreover, we assemble data into different groups on the basis of trading days left to expiry, 

i.e. 8-30 days, 30-60, 60-90, 90-150, 150-220, and 220-above. After grouping, we then pool 

all groups to analyze the dynamics of the implied volatility surface. However, for a more 
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detailed investigation we apply PCA on each group, i.e.  30-60, 60-90, 90-150, and so forth. 

     A detailed illustration of principal component analysis is the following: Principal 

component analysis is a method of matrix decomposition into eigenvectors and eigenvalues 

matrices. We apply this method to the implied volatility surface, which in our case is a pool of 

implied volatilities across moneyness level and term structure. Thus, we decompose pp*  

matrix V*VB '=  between the variables V , which is a variance-covariance matrix of input data. 

We have time T1,......,τ = , and variable V represents the number of variables, i.e. volatilities. 

As iV  is 1Tx  vector of V . As we have T  volatility observations of  p  variables. Now V is a 

pT*  data matrix of volatilities. The objective is to find a linear combination of the first 

difference volatilities that explains maximum of variation in the implied volatility surface.  

Now the weights in the linear combination can be chosen from a set of eigenvectors of the 

correlation matrix, represented by W  the pp*  matrix of eigenvectors Z . Therefore, we have  

WΛZW =   or  'WΛΛZ =  

where Λ  is pp*  diagonal matrix of eigenvalues of Z . The column of W , )(w ij  for 

p,1,......,ji, =  are then sorted to the size of the corresponding eigenvalue that the rth column of 

W , denoted '
prr1r )w.,,.........(ww = , is the 1p*  eigenvector corresponding to eigenvalue rλ  

where the columns of Λ  are sorted so that p21 λ........λλ >>> . 

Therefore, we define the rth principal component as follows  

ppr3r32r21r1r Vw..........VwVwVwP ++++=  

or in the matrix form,  

rr VWP = . 

Thus, each PC is a time series of the transformed V factors. The full pT*  matrix of PCs is 

VWP = . 

To know that the PCs are orthogonal, we note that 
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WΛWVWWXWVWPP ''''' === . 

Since W  is uncorrelated, therefore, IWWWW '' == . Thus,  

ΛPP' =  

where Λ  is diagonal matrix, then the columns of P  are orthogonal, and the variance of rth PC 

is rλ . Nonetheless, the proportion of the total variation in V that is explained by the rth PC is 

p
λ r  where p  is the sum of eigenvalues is the trace of Λ , the diagonal matrix of eigenvalues of  

V . The trace of Λ  is the number of variables in the system, which is in our case different 

maturity groups of implied volatilities. Therefore, the proportion of variation explained by the 

first m  PCs  is                                                ∑
=

m

1i

r

p
λ . 

Because of the choice of column labelling in W , the PCs is ordered so that 1P  belongs to the 

largest eigenvalue 1λ , 2P  belongs to second largest eigenvalue 2λ  and so forth. In highly 

correlated implied volatilities, the first eigenvalue would be much larger than the others; as a 

result, the first PC can alone explain much of the variation in the volatilities. If the first two or 

three PCs explain most of the variation in the implied surface, then these PCs can replace the 

original p  variables without loss of much information. Since 1' WW −= , we can write 

'PWV = , 

that is 

pip33i22i11ii Pw..........PwPwPwV ++++= . 

Thus, each of original volatility input data may be written as a linear combination of the 

principal components, which reduces the dimensions of the system. As we have noticed that 

once the data input V  has been transformed into the principal component system, then the 

original system can be transformed back by the above equation. 
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3     Data 

We use daily data on European type options on the FTSE100 index from Euronext for the 

period 1 January, 2004, to 31 October, 2006. The main data for our study are the end-of-the 

day prices updated daily in the Euronext database. This database includes the following daily 

information for each call and put traded options: the style (call/put), the date, delivery date, 

strike price, volume, open interest; the opening, high, low and closing option prices; and 

underlying price. First, we use options data ranges from eight days up to one year maturities, 

and options across different strike prices. The second type of data is discount curve data with 

different maturities to proxy for a risk-free rate downloaded from Thomson DataStream. 

     We merely consider data for out-of-the-money (OTM) put and call options: OTM puts for 

low strikes and OTM calls for high strikes. OTM options have most of the information and 

exhibit high volatilities.  Since a put option is a hedging instrument against the downward 

movements of the underlying asset, and investors want to hedge their positions with puts, they 

are willing to pay more for them. Hence, put options volatilities would be higher than calls.  

However, the data on in-the-money (ITM) puts and calls are not used because they are 

sensitive to the non-synchronity problem. Moreover, options with less than 8 days to expiry 

are excluded because they are very sensitive to the small errors in the option price.  

     Figure 1 displays the scatter graph of the FTSE100 Index level and ATM implied 

volatility. On the x-axis we have ATM implied volatility, whereas on the horizontal axis the 

FTSE100 index level. We observe noticeable negative correlation between the two historical 

series. This evidence is consistent with previous research, which found similar evidence that 

the price is negatively correlated with implied volatility. 
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Figure 1: FTSE100 Index (level) versus ATM Implied Volatility from 1 January, 2004, to 31 October, 2006. 

 

     Table1 presents the descriptive statistics for the FTSE100 index and ATM implied 

volatilities, both for level and log differences 1 January, 2004, to 31 October, 2006.  Panel I of 

Table 1 shows descriptive statistics for the level. The mean ATM volatility is 12.5% annually, 

maximum 18.4% and minimum 7.5 %, whereas for the FTSE100 index the mean is 5178 

points. The maximum level it reaches during the sample period is 6385 points and minimum 

4292 points. However, Panel II of Table 1 documents the descriptive statistics on the log 

differences. We can observe from the skewness and kurtosis values that ATM-implied 

volatility is non-normally distributed. ATM implied volatility is negatively skewed, in order 

to be normally distributed; the skewness must be equal to zero and kurtosis 3, which is not the 

case here; thus, we observe here non-normality. Similarly, we observe non-normality in the 

underlying series. Previously researchers documented that non-normality in the underlying 

triggers non-constant implied volatilities. Panel III of Table 1 shows correlation between the 

FTSE100 index and ATM implied volatility. Thus, correlation between the FTSE100 index 

and ATM implied volatility is -0.48, which is significantly negative and, therefore, confirms 

Figure 1 results.  
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Table 1 
Descriptive Statistics I 

At-the-Money Implied volatilities and FTSE100 index both level and log differences 
Panel I: Level   

 ATM Implied Volatility FTSE100 Index 

Mean 12.4831 5178.7524 
Median 12.5500 5040.5000 
Minimum 7.5000 4292.0000 
Maximum 18.4500 6385.5000 
Panel II: Logarithmic 1st  Differences 

 ATM Implied Volatility FTSE100 Index 

Mean 0.0000 -0.0005 
Median 0.0032 -0.0005 
Minimum -0.3426 -0.0313 
Maximum 0.1557 0.0293 
Standard Deviation 0.0415 0.0069 
Skewness -2.3094 0.2559 
Kurtosis 15.9252 1.9701 
Panel III: Correlation 

 ATM Implied Volatility FTSE100 Index 

ATM Implied Volatility 1.0000 -0.4841 

FTSE100 Index -0.4841 1.0000 

 

However, Table 2 displays descriptive statistics of the implied volatilities for the out of the 

money put and call options weekly data from 2004-2006 for the months of March and 

October. The mean level of the implied volatility is about 17% annually, whereas the log 

difference mean is zero. The Maximum level of the volatility is 41%, with a minimum level 

of 7.5 %. However, there is noticeable non-normality in the data, which can be noticed from 

the values of skewness and kurtosis for log differences of the implied volatility. 
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Table 2 

Descriptive Statistics II 
 OTM-PutCall Volatility(Level) OTM-PutCal lmplied Volatility (LN) 

Mean 16.8708 0.0002 
Median 15.5610 0.0289 
Minimum 7.5621 -1.4594 
Maximum 41.3337 0.1976 
Standard Deviation 6.4497 0.1632 
Skewness 0.8703 -5.7609 
Kurtosis 3.2597 36.1365 
 

 

 

 

Figure 2  OTM-Put Call implied volatility versus moneyness 

Figure 2 shows a plot of OTM put and call implied volatilities against moneyness level from 

2004 to 2006 for the months of March and October. There is an almost one to one relation 

between the implied volatilities and moneyness level, i.e. most of the data lie on a forty-five 

degree angle. This evidence supports the monotonic relation between implied volatility and 

the price of the option. As the volatility increases, the price of the option increases. 

    We obtained two important results, consistent with previous research. First, the underlying 
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in non-normally distributed which is stock index; as a result, it does not follow lognormal 

distribution. This non-normality, therefore, causes non-constant volatility; thus, the 

assumption of the Black-Scholes model of constant volatility fails. Second, there is a one-to-

one relationship between volatility and moneyness, which means that the price of the option 

has monotonic relationship with volatility. This relation is important for investors who hold 

options who will just observe volatility; if volatility increases, there is high probability that 

out of the money options will end up in the money and vice versa. 

 

4     Empirical Results 

4.1 Results of the Four Estimated Models for Volatility Surfaces 

Table 3 reports results for estimated implied volatility surfaces in the months March and 

October for years 2004, 2005, and 2006. These surfaces are estimated with four parametric 

models by using nonlinear optimization technique. Panel I of Table 3 shows results for Model 

1, the constant volatility model. The goodness of fit criterions IVRMSE and %RMSE ranges 

from minimum 0.046 (0.046) to maximum 0.078 (0.067) and, therefore, presents very high 

values. Figure 3 shows the visual display of average implied volatility surface (March, 2004), 

which corresponds to model 1. As can be seen in Figure 3, the implied volatility surface is 

flat; therefore, implied volatility is constant at every point of the surface. Nonetheless, later on 

we use this constant volatility model as a reference model, and merely for comparison 

purposes.    
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Table 3 

Results for estimated Implied Volatility Surfaces (2004-2006) 
Panel-I:                         Model 1     εβτ)I(m, 0 +=  

 Date 
0β       IVRMSE %RMSE 

 Mar-2004 0.2082      0.0775 0.0640 

 Mar-2005 0.1468      0.0562 0.0639 

 Mar-2006 0.1529      0.0458 0.0501 

 Oct-2004 0.1752      0.0698 0.0666 

 Oct-2005 0.1633      0.0627 0.0689 

 Oct-2006 0.1631      0.0493 0.0461 

Panel-II:                        Model 2    εmβmββτ)I(m, 2
210 +++=  

 Date 
0β  1β  2β     IVRMSE %RMSE 

 Mar-2004 0.1674 0.2156 0.0077    0.0250 0.0174 

 Mar-2005 0.1098 0.1671 0.0794    0.0123 0.0110 

 Mar-2006 0.1221 0.1466 0.0669    0.0110 0.0080 

 Oct-2004 0.1309 0.1850 0.0679    0.0164 0.0159 

 Oct-2005 0.1256 0.1810 0.0614    0.0141 0.0119 

 Oct-2006 0.1285 0.1888 0.0006    0.0105 0.0073 

Panel-III:                       Model 3   εmτβτβmβmββτ)I(m, 43
2

210 +++++=  

 Date 
0β  1β  2β  3β  4β   IVRMSE %RMSE 

 Mar-2004 0.1570 0.1756 0.0362 0.0186 0.0827  0.0221 0.0152 

 Mar-2005 0.1024 0.1535 0.0787 0.0163 0.0384  0.0100 0.0112 

 Mar-2006 0.1127 0.1187 0.0937 0.0185 0.0441  0.0068 0.0063 

 Oct-2004 0.1223 0.1600 0.0837 0.0182 0.0501  0.0139 0.0148 

 Oct-2005 0.1218 0.1491 0.0854 0.0073 0.0858  0.0126 0.0106 

 Oct-2006 0.1200 0.1716 0.0200 0.0198 0.0245  0.0076 0.0067 

 Panel-IV:                      Model 4   ετβmτβτβmβmββτ)I(m, 2
543

2
210 ++++++=  

 Date 
0β  1β  2β  3β  4β  5β  IVRMSE %RMSE 

 Mar-2004 0.1438 0.1818 0.0319 0.0938 0.0739 -0.0666 0.0214 0.0155 

 Mar-2005 0.0997 0.1552 0.0772 0.0313 0.0345 -0.0130 0.0100 0.0115 

 Mar-2006 0.1137 0.1185 0.0941 0.0133 0.0442 0.0046 0.0068 0.0063 

 Oct-2004 0.1271 0.1588 0.0838 -0.0092 0.0525 0.0258 0.0138 0.0144 

 Oct-2005 0.1192 0.1503 0.0853 0.0230 0.0823 -0.0152 0.0126 0.0106 

 Oct-2006 0.1194 0.1717 0.0198 0.0230 0.0243 -0.0031 0.0076 0.0068 
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Figure-3 Estimated implied volatility surface with Model 1 for March 2004 

 

Panel II of Table 3 displays results for model 2, the quadratic smile (skew) model, which 

includes additional parameters for moneyness slope and moneyness curvature. As can be 

noticed from goodness of fit criterions IVRMSE and %RMSE decreases for all six months 

ranges from minimum 0.010 (0.007) to 0.025 (0.017), improved by 0.036(0.039) to 0.053 

(0.050) points in comparison to model 1. Figure 4 shows the corresponding 3D graph for the 

March 2004 implied volatility surface. As can be seen, the pink dots present the observed 

term structure of the smile (also called strings), therefore, skewed in moneyness level, and 

declining in term structure. Figure 4 presents two important implications. First, as moneyness 

increases, volatilities also increases, i.e. a monotonic relation. This finding is consistent with 

previous research.  Secondly, we observe high volatilities for options with shorter time to 

maturities than options with longer time to maturities. Nevertheless, the skewed implied 

surface of model 2 is contrary to the Black-Sholes (1973) constant volatility assumption.  
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Figure-4 Estimated implied volatility surface with Model 2 for March 2004 

 

    Panel III of Table 3 reports results for implied volatility surfaces estimated with model 3, 

which add on model 2 one additional parameter for combined effect of moneyness and time 

dimension. As can be observed from the goodness of fit criterions IVRMSE and %RMSE 

decreases for all six months with ranges from minimum 0.007 (0.006) to 0.022 (0.015), 

improved by 0.003 (0.001) to 0.0032 (0.002) points in comparison to model 2 (smile model). 

Figure 5 displays a 3D graph of implied volatilities for March 2004. As can be observed, the 

implied surface is now tighter to the observed data, with the last corner of the surface 

stretched upward in comparison to the Figure 4 surface. Figure 5, therefore, suggests that 

there is a term structure effect in the implied volatilities, as we also noticed in the results of 

panel III of Table 3.  
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Figure-5 Estimated implied volatility surface with Model 3 for March 2004 

 

     Panel IV of Table 3 represents the results for model 4 which adds one additional parameter 

to model 3 to capture the curvature effect of the term structure in volatilities. As can be 

noticed from goodness of fit criterions IVRMSE and %RMSE decreases for all six months 

with values show minimum 0.007(0.006) to 0.021 (0.015), improved by 0.00(0.00) to 

0.001(0.001) points in comparison to model 3. If we compare the goodness of fit of model 4 

with model 3, very small improvements can be noticed. Figure 6 presents the 3 D surface; we 

can notice a slight change in shape, and the last corner of the surface is now stretched 

somewhat further. 

      We conclude for Table 3 that model 1 cannot explain variations in the implied volatility 

surfaces, therefore, gives constant volatilities across both dimensions.  However, model 4 

explains most of the variations in the implied volatility surface. Thus, it fits to the surface 

very well. However, the difference with model 3 in explaining variations is very small. The 

criterions for goodness of fit show significant values, and, therefore, model 3 and model 4 

generate smooth implied volatility surfaces. In case  if we compare the IVRMSE and 

%RMSE values, as can be seen that relative root mean squared errors (%RMSE) throughout 
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presents minimum values in contrast to implied volatility root mean squared error (IVRMSE). 

Nevertheless, in our case %RMSE is the most suitable one, as we it assign greater weights to 

out-of-the-money options.  

 

 

Figure-6 Estimated implied volatility surface with Model 4 for March 2004 

 

4.2 Results for Principal Component Analysis of Implied Volatility Surfaces 

Table 4 presents results for PCA on the average implied volatility surfaces for the March and 

October months for years 2004, 2005 and 2006; from column two to column three, we have 

results for the three most important principal components (PCs). The first PC is common to 

the whole surface; we call this parallel shift, the second PC is tilt, and the third PC 

corresponds to curvature. However, column four represents total variance of the surface 

explained by three PCs.  Figure 7 demonstrates PCA for the March 2004 surface, and Figure 8 

shows graphs for the three factor loadings1. Hence, on average 77% variance of the implied 

volatility surfaces can be explained by just three principal components for all six surfaces. 

                                                 
1 Appendix B include figures for PCA  of the implied volatility surfaces 
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When comparing the first three PCs for each of these surfaces, we note that the first three PCs 

can explain surface variations of the March 2004 surface to the maximum and the October 

2006 surface to the minimum. To summarize Table 4, the first three PCs can explain 69-82% 

of the variance in all six volatility surfaces. These results are consistent with the previous 

studies on the dynamics of smile surfaces, such as Cont and da Fonseca (2002), and 

Skiadopoulos, Hodges, and Clewlow (1999) and Roux(2006).  

 

Table 4 
Principal components in the implied volatility surfaces 

Period 1st PC 2nd PC 3rd PC Total explained variance(%) by 1-3 

Mar-2004 64.0% 10.4% 7.7% 
82.1% 

Mar-2005 53.6% 12.0% 10.0% 
75.6% 

Mar-2006 43.6% 31.3% 4.8% 
79.7% 

Oct-2004 55.5% 13.0% 8.5% 
77.0% 

Oct-2005 59.3% 10.9% 7.0% 
77.2% 

Oct-2006 46.6% 12.5% 10.6% 
69.7% 

Mean 
53.8% 15.0% 8.1% 77.0% 

 

 

 

Figure 7 Principal components of the implied volatility surface for March 2004 
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Figure 8  Three factor loadings of the Implied Volatility Surface for March 2004 

 

 

Figure 9 implied Surface versus PCs predicted Surface 

 

To further investigate implied volatilities, we analyze each group of the maturities, i.e. 8-30 

days, 30-60, 60-90, 90-150, 150-220 and 220 above. Table 5 documents results for different 

maturity groups. As can be seen, the first three principal components can capture variations in 

each group.  Thus, we find two distinct patterns in all six groups. The first principal 
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component which corresponds to parallel shifts, can explain, on average, 60% variance in the 

first three groups (from 8-90 days). However, for the remaining three groups, results are 

completely in contrast; here most of the dynamics can be attributed to parallel shifts in the 

implied surfaces; therefore, about 90 percents of the variations can be explained by parallel 

shifts. However, the second PC which corresponds to tilt can explain about 18 percent of the 

variations in the implied volatility for the first three groups, while, for last three groups, this 

PC, on average, explains 5 percent variance. The third PC is important for the first three 

groups only that capture the curvature, which explains 9 percent of the variations in the 

implied volatility, and only 2 percent of the variance it captures in the last three groups.  

     Upon summarizing Table 5, we can conclude that shocks that are common to the entire 

surfaces that can be captured by the first PC are very important for the longer (90-above) and 

for the shortest (8-30) maturities; therefore, this factor is of sole importance for these surfaces. 

However, the other two factors are essential for (8-90 days) maturities. 

     Figure 9 presents a graph for actual values ( Red ) and fitted values ( Blue ) for the March 

2004 implied volatility surface. As can be noticed, there are four subplots in Figure 9; the first 

subplot shows predicted implied volatility surface values merely from the first principal 

component, the second subplot in Figure 9 presents predicted values with the first two 

principal components, similarly third subplot with three PCs, however, the fourth subplot 

predicted implied surface with twenty principal components. It further confirms our results in 

Table 4 and Table 5 that the first three PCs can explain most of the dynamics in the implied 

volatility surface. Thus, the whole correlated system (implied volatility surface) can be 

reduced to just three risk factors; therefore, we can project implied surface by three principal 

components.  
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Table 5 
 Principal Components in the  different maturity groups  

Range Month 1st PC 2nd PC 3rd PC Total explained variance(%) by 1-3 PCs

8-30 Mar-2004 68.03% 14.35% 7.84% 90.23% 

 Mar-2005 68.87% 14.97% 8.53% 92.37% 
 Mar-2006 72.79% 14.62% 6.00% 93.42% 

 Oct-2004 60.02% 25.98% 8.79% 94.79% 

 Oct-2005 66.63% 15.33% 9.97% 91.94% 

 Oct-2006 64.71% 19.01% 8.13% 91.85% 

 Mean 66.84% 17.38% 8.21% 92.43% 

30-60 Mar-2004 69.72% 16.86% 8.31% 94.89% 

 Mar-2005 63.28% 14.16v 10.99% 88.43% 

 Mar-2006 54.26% 15.23% 10.72% 80.22% 

 Oct-2004 55.28% 22.17% 15.24% 92.68% 

 Oct-2005 52.15% 22.91% 11.00% 86.07% 

 Oct-2006 50.16% 20.39% 15.28% 85.83% 

 Mean 57.48% 18.62% 11.92% 88.02% 

60-90 Mar-2004 48.65% 21.24% 17.95% 87.84% 

 Mar-2005 57.23% 20.09% 14.01% 91.33% 

 Mar-2006 55.10% 22.22% 9.76% 87.09% 

 Oct-2004 69.06% 11.99% 7.50% 88.55% 

 Oct-2005 69.79% 14.25% 7.02% 91.07% 

 Oct-2006 52.63% 22.47% 14.33% 89.43% 

 Mean 58.75% 18.71% 11.76% 89.28% 

90-150 Mar-2004 94.74% 2.72% 1.44% 98.90% 

 Mar-2005 92.55% 5.62% 1.13% 99.30% 

 Mar-2006 90.98% 7.40% 1.03% 98.81% 

 Oct-2004 77.65% 15.71% 5.44% 98.81% 

 Oct-2005 94.87% 3.44% 1.10% 99.41% 

 Oct-2006 63.30% 18.64% 14.16% 96.10% 

 Mean 85.68% 8.92% 4.05% 98.65% 

150-220 Mar-2004 95.90% 1.43% 1.27% 98.60% 

 Mar-2005 67.29% 29.78% 1.58% 98.67% 

 Mar-2006 90.58% 6.01% 1.93% 98.52% 

 Oct-2004 94.13% 2.73% 2.41% 99.28% 

 Oct-2005 97.91% 0.96% 0.75% 99.63% 

 Oct-2006 92.04% 4.08% 2.90% 98.99% 

 Mean 89.65% 7.50% 1.80%   98.948% 

220-Above Mar-2004 93.17% 4.230% 1.65% 99.12% 

 Mar-2005 97.82% 1.32% 0.60% 99.72% 

 Mar-2006 92.52% 6.69% 0.63% 99.84% 

 Oct-2004 95.73% 3.15% 0.90% 99.78% 

 Oct-2005 96.58% 1.73% 1.10% 99.39% 

 Oct-2006 93.10% 3.40% 1.91% 98.91% 

 Mean 94.91% 3.43% 1.12% 99.46% 
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Conclusion 

 

We estimate and obtain smooth implied volatility surfaces of FTSE100 index options with 

parametric structural models proposed by Dumas, Fleming and Whaley (1998). However, we 

make adjustments to these models by considering moneyness in forward price and out-of-the-

money put and call options. Further, we study the dynamics of these implied volatility 

surfaces by using principal component analysis. 

     We estimate four parametric models; the constant volatility model 1 fails to capture 

variations in the implied volatility surfaces; it gives merely flat surfaces. However, model 2 

which captures the smile (skew) effect does a good job, and captures most of the smile (skew) 

effects. When we estimate parametric models 3 and 4, which account for both term structure 

and smile (skew) effects, they perform better than the one dimensional smile model. 

Nonetheless, both models fit the data best and, thus, generate smooth and tighter volatility 

surfaces to the observed data. In the second part of the study, which includes principal 

component analysis, we, therefore, find that the first three principal components can explain 

about 69-82% of the variances in the implied volatility surfaces. When applying PCA to the 

maturity groups, we find that parallel shifts are evident and, hence, important for the shorter 

and longer maturities of option volatilities.  

     Implied volatility surface is very important in practice, because in option markets, we 

usually find every day a limited number of traded options, i.e. about 100 options with 

different strikes and maturities on the FTSE100 index. When a practitioner needs to quote 

options with different strikes or maturities, he is generally too restricted, which could be 

solved by implied volatility surface. With interpolation and extrapolation of observed implied 

volatilities and generates a whole surface of implied volatilities. Where, he can easily quote 

new options by taking estimates from implied volatility surfaces. Second, the implied 
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volatility surface can be used to manage exotic derivatives positions, which can be hedged 

with plain vanilla options such as European options. Third, the volatility index can easily be 

constructed from implied volatility surfaces, and, consequently, volatility derivatives can be 

priced. Fourth, risk can be managed for those securities which underly the FTSE100 index by 

using independent risk factors from the implied volatility surfaces. 
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Appendix A Figures of Implied Volatility Surfaces estimated with four Models for Oct-2005 
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Appendix B Figures for PCA of the Implied Volatility Surface for October 2005 
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